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ON NORMS OF VECTORS AND MATRICES

By a norm of a vector x will be meant any real valued function

H X H of x possessing the following three properties:

(Iv) ]Io’l = 0, and for x # 0, le ” > 03
(IIV) ||7 xl! = yy | . ||x||for any scalar 7y ;
() [x+vlls =] + vl -

By a norm of a square -matrix A will be meant any real-valued function

"A ” of A possessing the following four properties:

(1,) ||o” - 0,and for A#O, |a]| > o3

(IIm) |l7 Al‘ = | 7’ . "A " for any scalar 7y ;

| 5

(1v_) laB|| < &l - HBH .

() flavs]< [+ |l2

Following (2);'a given matrix norm will be said to be consistent with a
given vector norm provided for every A and every x (square matrices
of order n and n-dimensional column vectors will be presupposed

throughout) 1t is true that
W flax] o< [fafl o =]
- .

If 1t is further true that for every A there exists an x #£ 0. such that




om fasxll o= Al ]

then the matrix norm is said to be subordinate to the vector norm.
Faddeeva shows that gi#en a vector norm a matrix norm can be defined by

the condition

Il = e sl /-

We mention this in passing but shall not utilize the theoreggfére.
A

For the vector norm.defined by

Il =

it is well known that

A
L
%

A

+

N(A) = trace (AT A)
A

1

———e s

is a consistent -but not a subordinate matrix norm. The subordinate

@atrixﬁndrm is equal to the square root of the largest proper value of

——— PEE—— )
4

Af_éc Faddeeva, and, previously, Bé@ker (1), discuss this norm, and also
two others more readily computed. The purpose of the présent note is&to'
call attention to two families of norms which include these last two, as

special cases. These classes were suggested by a recent note by

" de la Garza (3).

-2-
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| Before definiﬁg these families it may be_wortﬁ vhile to
summarize some of the more impdrtanf properties of norms in general.
In thié it will be supposed merely that the matrix norm is consistent
with the vector norm; but not necessarily that it is subordinate, unleés

the fact is mentioned explicitly. It is clear that among all matrix

norms consistent with a given vector norm, the subordinate ‘norm may be

sald to be optimal. The properties listed here are of some importance

—m—— v e——

in numerical analysis (see L).

If A is any'proper value of 4A s fhen
(1) Il

For 1f x 18 an assoclated proper vector,

Ax = X x,
then
s Il sl < al - g
Since x £ 0, [E: | #0, and the theoren follovs.
Ir “ H “ < 1, tpen the series on the right of
(2) (1-B)71 = T+B+E + ...




converges to the left number. 1In fact, for any n ,

‘ AA(I_\' H) ('I +H+ ... +Hn) 1 _ Hn+.l , . S ]

aﬁa éincé II‘H H>< 1l ; tpergféreiv

s IR M

approaches zero, whence Hg+l approaches the null matrix.

e [|u] < 1, then
R N N DS
If the matrix norm is subordinate to the vector norm, then
() el -1
In this event, if |[E| < 1, then
(5>“ (1 - H)"iH' < 1 /.(1 =l -

To prove (4) we have‘oniy_to note that thefe eiists an X £ 0 fof whiéﬁ
s = 5l - I | .
. y

<ho




Then (5) follows almost immediately.

If Co is an approximate inverse of A , then

Py

| c, = cO (21-a co) =(21 - co A) c0

is a better approximation. For convergence of the iteration it is

sufficient that

|g]l < », = S1-ac,,

0
i or that
; - k] < 1;”,K=i-%A.
When the firét‘éonaition holds, then
© < sl Za- =]

and a similar inequality holds in the other case. This relation follows

from the fact that

-1 v=1
A = Cqy (-8 ",
readily verified from the definition of H . From the definition of. c,

we have

<




¢, = C, (I +H) = At (1 - H?).,;
and, in general, ;
cp = A;i (1 -'Hzp) ;
Hence
I c, = at H2p ,
A R e ,\
This demonstrates the convergence, and gives a measure of the rapidity .

of convergence.

A large class of iterative methqu for solving_the”system

is.of ‘the following character. Write

By X = Y - A%

- -1
Xel TV £ B R X




v

represent the deviation of any iterate from the true solution.

()

Hence

or

Since

'may converge to a solution. If

el < | 8[| ® %0l

. which demonstrates the convergence.




Consequently

O | [ A LI B

‘From this formuls onie can estimate ‘thé residual ‘error by comparing the
current and previous iterates.

Suppose one hes a solution x of the system

and wishes to determine the mggnitude of the:-effect-on x bdbrought about

by small changes in A and y . Thus one has (cf. 5),

(A-8) (x+ d)'_=_ y+e,
or
(A-E)d=e +Ex, "
or
(1 - H). 4 = At (e,f E x),
E = ATE.

.



Hence, finally

a = (I- H)'l At (e + E x).
Assuming,‘as usual, that ” HI|'< 1l , one has therefore
o) Hall < lal Nevmxl /a- =)

Turn, now, to the family of norms to be defined. Let‘ g

be any vector all of whose elements are positive (non-null):

(10) ‘ g = (v) » 7y > 0.

Such a vector will be called admissible. ILet l xl represent the
vector whose elements are Igil , and let |A | represent the matrix

whose elements are .la

iJl

(de 1la Garza calls this the abmatrix of A).
Let 8y represent the columns of A . Then the g-norm of x 1is
defined as
' T
(11) | ||><l|g=8|XI=Z71]§i"

and the g-norm of A 1is defined as

(12) H Allg = mgx ’laj” g /7y = m?x 731 E £ laiJ, .

-0~




First it will be shown that these are norms. Since every.. .
75 > 0 , properties Iv and Im are obvious, while IIv and IIm _
follow from the linearity .and the use of absolute values. To verify

IIIv one notes merely that

)

.?‘7%i§i * l"il N 27:i &g | + ZHI"i
and then spplies the definition. Now TIIT  implies
Ceenllg < lalle Al
for any 1 . Hence.for any 1
i leserlle < A el + I 6

e (el e el

IN

VAR

”A”g * HB”g ‘

Since this holds for any i , it holds when the left member is
maximized, which verifies IIIm .

To prove IVm , note that1=

: E :rré B'lgf = m;xing|,A:Bj|;/ ij °'V'

-10-
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e d e || gl

|allg - & [oy ]

This holds for any J . Hence

731 gT lA bj’

One has now only to maxim

< lallg 73t e [y

-SIIA “g : IlBIlg .

ize the left member with respect to J .-

To show that the norms are consistent form

lax]g = o fax]

AL

< 2271‘ |°‘13| "'lﬁjl

=11~




Le |e] |531

I [l |y

N

lallg & I=1

= “A”g 'H-x“g :

Finally to show that the matrix norm is subordinate, let be such that

”A“g = 7:31;' igT lfa,j'!

If x= e'j , the Jth unit vector, then

A e

A ey &y whence
“A%”g= H%“g?iglﬁ\=ﬂﬁl£ PJV7J,

Al e gl = Mlalle - Mesll e

Thus for x = e'j , VI is satisfied.
‘One of the norms considered by Bowker and Faddeeva is the

particular norm obtained on taking

-12-




Clearly, however, in all the applications listed above it is
advanfageous to select a vector g for which the norm 6f the matrix
of interest (designated by H in the applications) is as smg;l as
possible. An algorithm is immediately available, however, 5y which;
froma g = go » one can construct a 8 such that, for a particular

matrix H s

(13) “HH - < HH“go E

’

That is, for the matrix H , the g, -norm is at worst no larger, and

in general is smaller, than the gy-norm. The algorithm is éimply

451 = , B I & °

Thus one could, in'principle, construct a decreasing sequence of norms

by means of. the iteration

(14) g = | E | g -

In verifying (13) it is convenient to let the relation

|=| € |¥]

signify that

-13-
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T Tl
for every i , and let
(A < 3]
signif& that
sl < ol

for every i and j . For ffé#iéy also let

<
i

o= I3l -

" Then Yo {5 the smallest scalar for which

gg | =] ‘\<I,"o gg .

Since all quantities are positive, this inequality implies that

gg H|2 < "oggIH )

and this is to say that

T

o |2l < vog .

=1k




-

)

Consequently, if vy is the smallest scalar for which
T T
g |E] < veg.

it follows that

That in general the terms Yo Vi 5 Vs e of the sequence defined
by repetition of this process are nof all equal is evident from the
following considerations: The matrix |H| has all its elements -
non-negative, and for such a matrix there is a real, positive proper
value which 1sbexceeded by no othér proper.value in magnitude. The
correspondiﬁg pfoper vector has all its elements real and positive.

If h is this proper vector, then the h-norm is optimal for H in

.the-senée fhat

Il < Ml

for all admissible vectors g - Moreover, as is well known, the

sequence of vectbrs 84 approaches ‘h as a limit.

Of the two families referred to at the outset, the other

one is obtained qﬁite obviously by placing the wvector g on the

right of the matrix. Thus, for any matrix A , letrus now designate

-15-
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_its rows by ag , and define now the norm llAllg , by

)  lallge = e [ /s

and the norm -||x||g, by
as il = o (s

That these are, in fact, nerme, and that the matrix norm is consistent
with and subordinate to the rector norm, can be proved very much as
betore. L )

As byproduete.of these consideratione, it ma& be noted that
eertain classical theorems‘ean be proved and generalized almost
immedietely. :We conclude by mentioning tvo. .

The first states that a determinant ﬁith dominant principal
diagonal is non-null (e.g., see 7). It was shown above that if
llHl|~ < 1, however the norm of H may be defined, then I - H
is nqnsingular (since its inverse was obtained as the limit of a
eonverging infinite seriee). If JIHI[ = IIHI'e , where e =" e »
and H has only zeros in its diagonal, this prores the theorem for
_the special case of the determinant of a matrix.~A.= I -H with units
aiongrthe diagonal. If D is an arbitrary diagonal matrix all cases
are taken care of by considering A = D(I - H) or A (I - H)D. An

obvious generalization results on considering IIHI' for any g , and

«16-
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g
the same holds for [‘H'Ié,xi

2 : . ~ The other theorem is that of von Mises and Pollaczek-Geiringer (6),

and, in fact, it was proved above. Their theorem, expressed in these

terms, states merely that the iteration

xP+l = y+H xP 5.

éonverges‘in case llHlle < 1 or ” Hl[e,"< 1. The generalization

comes about, again, on replacing e by any other admissible vector g .
As a final note, mention may be made of a natural generalization

of-the norm |Ix]| defined by
| xl1® = " x .

If G 1s any positive definite matrix the detefminant

-

ATGgA - 2rg

can be shown to have only non-negative real zeros. If )‘l- is the

greatest of these the function

||A'|G = J M
can be shown to a norm, and to be subordinate to the vector morm defined by

|x||¢ = Jatan

i

-17-
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