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ON NORMS OF VECTORS AND MATRICES 

By a norm of a vector x w i l l  be meant any r e a l  valued function 

1 1  x 1 1  of x possessing the following three properties:  

I I A  I( fo r  any scalar  y ; 

Following (2) ,' a given matrix norm will be said t o  be consistent w i t h  a 
/ 

given vector norm provided f o r  every A and every x (square matrices 

of order n and n-dimensional column vectors w i l l  be presupposed 

throughout) it i s  t rue  that 

If it is fur ther  t rue  t h a t  fo r  every A there ex i s t s  an x # 0 .  such tha t  



i 

then the matrix norm i s  said t o  be subordinate t o  the vector norm. 

Faddeeva shows tha t  given a vector norm a matrix norm can be defined by 

the condition 

.. 
I -  

_, 

I ' ,<,- 
,-/ 

/:/ 

We mention t h i s  i n  passing but shall not u t i l i z e  the theoreqdi'ere. 
_ <  /.'<! 

For the vector norm.defined by 

it i s  well known t h a t  . 

i s  a consistent but not 

inatrix norm is equal t o  
1. - -c 

rn 

t 

a subordinate matrix norm. The subordinate 
1 

the square root of the largest  proper value,of 
/ 

A' A. 

two others more readi ly  computed, The purpose of the present note i s , t o  

c a l l  a t tent ion t o  two families of norms which include these last  two, as 

special  cases. 

de l a  Garza (3) .  

Faddeeva, and, previously, Bowker (l), discuss t h i s  norm, and a l so  - 

These classes were suggested by a recent note by 
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Before defining these families it may be worth while t o  

summarize some of the more important properties of norms i n  general. 

In  t h i s  it w i l l  be supposed merely that the  matrix norm i s  consistent 

with the vector norm, but not necessarily t h a t  it i s  subordinate, unless 

the  f a c t  i s  mentioned expl ic i t ly .  

n o m  consistent with a given vector norm, the subordinate'norm may be 

said t o  be optimal. The properties l is ted here are of some importance 

i n  numerical analysis (see 4) e 

It i s  clear  that among all matrix 

qc - _ai_l__ - - 
<- 

If X is any proper value of A , then 

For if x i s  an associated proper vector, 

then 

Since x f 0, IIx 11 f 0 , and the  theorem follows. 

If 11 H 11 < 1 , then the series on the r igh t  of 

2 (2) (I - H)'l = I + H + H + ... 

-3- 



converges t o  the l e f t  number. In  f ac t ,  f o r  any n , 

and since 

(I - H) (I + H + + 9) = I - , 

I H I(  < 1 , therefore 

approaches zero, whence approaches the null matrix. 

If 1 1  HI1  < 1 , then 

If the matrix norm is subordinate t o  the vector norm, then 

In  t h i s  event, i f  11 H 11 < 1 , then 

( 5 )  

To prove (4)  w e  have only t o  note that there ex i s t s  an x f 0 fo r  which 

. 
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... 

. 

$' 

i' 

Then ( 5 )  follows almost immediately. 

If Co i s  an approximate inverse of A , then 

C1 = Co (2 I - A Co) = (2  I - Co A) Co 

i s  a better approximation. 

suff lc ien t  that 

For convergence of the i te ra t ion  it is 

or  that 

[ I K I I <  1 ,  K = I -  Co A 

When the first', condition holds, then 

and a similar inequality holds In  the  other case. 

from the f a c t  that 

This relat ion follows 

A - l  = Co ( I  - H)'l , 

readi ly  ver i f ied from the  def ini t ion of H . From the  definit ion of C , 
we have 

-5- 



-1 C1 = Co (I  + H) = A (I - H2)., 

and, i n  general, 

P '  
C = A ' 1 ( I - 8 ) ~  

, ,  

P . .  

Hence 

This demonstrates the convergence, and gives a measure of the rap id i ty  

of convergence. 

A large class  of i t e r a t ive  methods fo r  solving the system 

A X  = y 

i s  .of 'the following character Write 

A = A1 + A2 

- L . 

where AI i s  nonsingulsr and eas i ly  inverted. Then the i te ra t ion  

 AX A1 xp+l 2 P '  

P 

-1 
X p+l = 'A1 y f Ai1 A2 xp 

-6- 



may converge t o  a solution. If 

H = - A 1  -1 A 2 ’  

then a suff ic ient  condition for  convergence i s  that 1 1  H 1 1  < 1 . Let  

8 = x - x  
P P 

represent the  deviation of any i t e r a t e  from the t rue  solution. Then 

= Hp so . 
P-1 

s = H S  (7) P 

Hence 

I 

which demonstrates the convergence. 

Since 

P ’  
= H S  

P+l 
8 

P ’  = (1.- H) s 
P+l 

8 - s  
‘ P  

or 

8 = (I - a)-’ (sp - 8 ) P P+l 
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C ons e quent 1 y 

From t h i s  formula one can estimate the residual  e r ror  by comparing the 

current and previous i t e r a t e s ,  

Suppose one has a solution x of the system 

1 A X  = y 

and wishes t o  determine the magnitude of the  e f fec t  on x brought about 

by small changes i n  A and y Thus one has (cf .  5 ) ,  

o r  

or  

( A - E )  ( x + d )  = y + e ,  

'. >. . . . . , . .. . i i '  . . . i s  . . . .  

, .  ( A - E ) d = e + E x ,  . ,. .. 

(I  - H ) . . d  = A - l  (e + E x ) ,  

H = A - l  E e 

-8- 
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Hence, f i na l ly  

-1 d = (I  - H) A-1 (e  + E  x) .  

Assuming, as usual, t ha t  11 H I I < 1 , one has therefore 

Turn, now, t o  the family of norms t o  be defined. Let g 

be any vector a l l  of whose elements are posit ive (non-null): 

Such a vector w i l l  be called admissible. Let I x I represent the 

vector whose elements are I g i  1 , and l e t  I A I represent the matrix 

whose elements are de l a  Garza c a l l s  t h i s  the abmatrix of A ) .  .I % I ( 
Let  ai represent the  columns of A . Then 

defined as 

and the g-norm of A i s  defined as 

the g-norm of x fs 

-9- 



F i r s t  it w i l l  be shown.that these are norms. Since every 

and Im are obvious, while IIv and IIm 
I V  

> 0 , properties Y i  

follow from the 1inear.ity.and the use of.absolute values. To ver i fy  

IIIv one notes merely that 

and then applies the definit ion.  Now IIIv implies 

f o r  any i Hence.for any i 

. .  . .  . 
, .. 

= IIAIlg + IIBlIg . 

Since th i s  holds f o r  any i , it holds when the l e f t  member i s  

maximized, which ve r i f i e s  111, 

- .  .. . , . < .  To prove IVm , note that:  , .. , . 

a 

-7 
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But 

' One has now only t o  maximize the le f t  member w i t h  respect t o  j 

To show that the norms are  consistent form 

\ < T i  I "ij I bjl 
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Final ly  t o  show that the matrix norm i s  subordinate, l e t  j be such that 
I 

-1 T 
IlAllg = y j  . l .a j  I * ,  

, the  jth uni t  vector, then e3 If x = 

A e j  = as , whence . .  . .  

Thus for  x = e , V I  i s  satisfied, 3 
One of the norm8 considered by Bowker and Faddeeva i s  the 

par t icular  norm obtained on taking 

g = e =  C e i  . 

-12- 
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Clearly, however, i n  a l l  the applications l is ted above it is  

advantageous t o  se lec t  a vector 

of in te res t  (designated by H 

possible. 

from a g = 

matrix H , 

g fo r  which the  norm of the matrix 

in the applications) is  as small as 

An algorithm i s  immediately available, however, by which, 

g1 , one can construct a such that, f o r  a par t icular  QO 

That is, f o r  the matrix H , the  gl-norm is at worst no larger, and 

i n  general is smaller, than the go-norm. The algorithm is simply 

Thus one could, i n  principle,  construct a decreasing sequence of norms 
.~ 

by means of the i t e r a t i o n  

In verifying (13 )  it is  convenient t o  l e t  the re la t ion  

e 
signify that 

-13- 



f o r  every i , and l e t  

signify that 

. .  

fo r  every i and j . For brevi ty  ylso l e t  

vo' = II HI1 go * 

. .  . .  . . . . . ( . . _  L .  

''. Then' v i  . ' i s  . t h e  smallest scalar  f o r  'which 
. .  

I 

4 I H I  ,< 

Since all quant i t ies  are posi t  

V 
' .  0 

T 
go 

ve, L i s  inequal-by imp1,es t h a t  

and t h i s  is t o  say tha t  



.7 

.' 

Consequently, i f  v1 is the smallest scalar f o r  which 

it follows that 

T h a t  i n  general the terms vo , v1 , v2 , 
by repet i t ion of t h i s  process are not a l l  equal i s  evident f romthe 

of the  sequence defined 

following considerations: The matrix I H I has a l l  i t s  elements . 

non-negative, and fo r  such a matrix there is  a real, positive proper 

value which is  exceeded by no other proper value i n  magnitude. The 

corresponding proper vector has a l l  i t s  elements real and positive. 

If h is t h i s  proper vector, then the  h-norm i s  optimal for  H i n  , ,  

the sense tha t  

for  all admissible vectors g , Moreover, as i s  w e l l  known, the  

sequence of vectors gi approaches ' h  as a l i m i t ,  

O f  the  two families referred t o  at  the  outset, the other 

one i s  obtained quite obviously by plac ingthe  vector g on the 

r igh t  of the matrix. Thus, fo r  any matrix A , l e t  us now designate 

P 

-15- 
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i t s  rows by a: , and define now the norm 1 I AI 1 , by 

and the norm 11 X I /  g l  by 

That these m e ,  i n  f ac t ,  nom,, and that the matrix norm is consistent 

with and subordinate t o  the vector norm, can be proved very much as 

before. 

As byproducts of these considerations, it may be noted t h a t  

cer ta in  c lass ica l  theorems can be proved and generalized almost 

immediatelyo We conclude by mentioning two. 

The first s t a t e s  that a determinant w i t h  dominant principal 

diagonal is '  non-null (e .go, see 7) 

I I HI I < 

It w a s  shown above that if  

1 , however the norm of H may be defined, then I - H 

i s  nonsingular (since i t s  inverse w a s  obtained as the l i m i t  of a 

converging i n f i n i t e  se r ies ) .  If 1 1  HI 1 = 1 1  H ) I  e , where e = c ei , 
and H 

the special  case of the determinant of a matrix 

along the diagonal. If D i s  an a rb i t ra ry  diagonal matrix a l l  cases 

are taken care of by considering A = D(I - H) or A = (I - H)D. An 

obvious generalization results on considering 1 1  HI( 

has only zeros i n  i ts  diagonal, t h i s  proves the theorem f o r  

A = I - H with uni t s  

f o r  any g , and Q 

"r 

W 
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t he  same holds f o r  I ( H I I  Q, 

The other theorem is that of von Mises and Pollaczek-Geiringer ( 6 ) ,  

and, i n  f ac t ,  it w a s  proved above. Their theorem, expressed i n  these 

terms, s t a t e s  merely tha t  the i t e r a t ion  

P ' .  
X = ~ + H x  
P+l 

converges i n  cake 

comes about; again, on replacing e by any other admissible vector g . 
1 1  H I I  e < 1 or 11 H I ~  e ,  < 1. The generalization 

A s  a f i n a l  note, mention may be made of a natural generalization 

of the norm ( 1  x 11 defined by 

If G i s  any posit ive def in i te  matrix the determinant 

can be shown t o  have only non-negative real zeros. If X1 i s  the 

greatest  of these the function 

can be shown t o  a norm, and t o  be subordinate t o  the vector norm defined by 

II G = J x ~ G A '  
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