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SUMMARY

Experiments were conducted to obtain information on the nature of the Tlow
and heat transfer of ordinary fluids in a thermal convection harp. In addition,
the mean Tlow rate, or Reynolds modulus, was predicted for each of the experi-
ments by use of the wall temperature data and a numerical solution of the lami-
nar flow heat conduction equation.

The harp used in this experiment was & loop consisting of four inter-
connected straight pieces of tubing, two of which were verticsl and two of
which were essentially horizontal. Heat was added to one of the vertical legs
and removed from the other; the two horizontal legs were maintained essentially
adiabatic. The harp was constructed of 0.7 inch I.D. Pyrex tubing and had an
effective height of 2.5 feet. Tap water was used as the primery fluid. Velocity
profiles were obtained from cbservations of suspended particles in the water.
Specially designed thermocouple probes permitted measurement of the wall and
fluid temperatures.

In forced convection the flow is characterized by the value of the Reynolds
modulus, while in free conveetion it is characterized by the valne of the
Grashof modulus. The flow in a thermal convection harp is superimposed-free-and-
forced-flow and both meduli are needed to define the flow system. In the present
experiment the Reynolds modulus was varied from 50 to 270 vwhile the Grashof

L

modulus was varied from 2 x 10% to 67 x 107.
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The investigation revealed that, on the basis of the velocity structure,
the heat transfer rate, and the flow regime, the flow and heat transfer of
ordinary fluids in & thermel convection harp having adisbatic horizontal legs
is more nearly characteristic of free convection than of forced convection.
Above the critieal value of the Grashof modulus, which was about 105, the flow
deviated markedly from the laminar structure. The corresponding value of the
Reynolds modulus was gbout 1l00. The predicted and measured values of the
Beynolds modulus agreed to within 30 percent where the flow was laminer. Above
the critiecal wvalue of the Grashof mo&ulus; where the flov was transitionsl or

turbulent, the method ves not applicable and the agreemen} was unsatisfactory.



INTRODUCTION

On the basis of a cursory appraisal, the harp boiler or thermal convection
harp appears to have several advantages as a dynamic corrosion testing deviee;
the principle advantage seems to be the elimination of the pump. In order Lo
evaluate the overall effectiveness of the device or to interpret the data ob-
tained from it, the corrosion worker would need information concerning the
velocity and temperature structure; a satisfactory method for determining the
mean flow rate would also be desirable. The purpose of the present work is to
furnish this informastion.

In reference 1, Hackett describes the mass transport problem that was
encountered in the overation of the first mercury power plant cycle around
1925. The iron was removed from the hot tubes in the boiler and deposited
on the walls of the cooler part of the circult by the action of the Tlowing
mercury; this resulted in choking or plugging in the cold tubes. Hackett
mentions that A. J. Kerad and associates degigned "harp boilers” that were
used in a research program which resulted in the discovery that the transport
of iron was satisfactorily inhibited by the addition of titanium and magnesium
to the mercury. The details of the research of Nerad, et. al., were not
published and the dynemic structure in their harps is not known. However, the
information available about the harps from reference 1, together with the
known physical properties of mercury, permits one to estimate that the value
of Grashof modnlus was sufficiently high to cause turbulent flow. A com-

parison of the physical properties and liquid temperature ranges for water and
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mercury indicates that the highest Grashof modulus attainable with mercury is
about 500 times greater than that attainable with water in the same system.
For this reason the expected flow regime for water or other ordinary fluids
{non-liguid-metals) is less certain.

The term, ordinary fluid, is used throughout the text to designate fluids
having values of Prandtl modulus in the range from 1 to 100. In contrast to
ordinary fluids, liguid metals are characterized by Prandtl moduli of approxi-
mately 0.01. The thermal structure of these two classes of fluids is markedly
different in the turbulent flow regime and it is thus necessary to differentiate
between the two classes in heat transfer systems.

The flow and heat transfer in a thermal convection harp is essentially a
problem in convection heat transfer. It is natural, then, that the di-
mensionless moduli of convection are the significant parameters. Because the
report is written principally for those interegted in corrosion or mass
transfer rether than for heat transfer gpecialists, the plan of presentation
has been changed to focus the atﬁention on the results as quickly as possible.
For this reason the discussion of the experimentsl apparstus and procedure has
been relegated to the appendix; thus, a brief description of the primary system
is desirable here.

The harp used in this equipment is essentially the same as the harp bollers
of Herad; however, the design was modified to facilitate the measurements of
fluid and wall temperatures and to make the system more amensble to analysis.
The primsry flow circuit; shown in Pigure 1, consists essentially of a piece

of 0.7 ineh I.D. Pyrex tubing 79 inches long, bent in the form of a rectangular
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loop and inter-commected at its two ends. The loop described is indicated by
the hot leg, (1) to (2), the upper connecting leg, (2) to (3), the cold leg,
{(3) to (4), and the lower connecting leg, (4) to (1). Throughout the report
positions along the axis of the harpfare designated by the values of the
normalized axial coordinate, X. The values of ¥ are indicated at each of the
bends in the primary circuit. The extensions at the top of the hot leg, (2)
to {5), and the cold leg, provide access for the thermocouple probes.

The veloeity measurements were made by timing the paths of suspended
droplets in the water. The authors had previously used this technique in
snother free convection experiment. It was not bélieved degirable in this
experiment to refine the technique to include high speed photography. The
visual technique used here is not applicable for highly turbulent flow or for
velocities greater than 200 feet per hour.

This report consists essentially of two parts. The first is an analytical
method for predicting the Reynolds modulus in a harp from wall temperature data
by a numerical solution of the laminar flow heat conduction eguation. The
second is the experimental measurements of the velocity, turbulence, and tempera-

ture structures in the harp.
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NOMENCLATURE

Dimensionless Moduli

? = 8 normalized temperature function
Oy, max
%y = wall temperature _
1 1
aAY, = /@m(ﬁ) af = X o,(H) aH - / op(H) ad
hot leg 0 cold leg

normalized buoyant temperature difference

3
Grg = (é_%;) 6y ,max - Grashof modulus based on d

v

>
Gry = (ngg) Oy ,max - Grashof modulus based on y
Gz = RePr % - Graetz modulus (note that Graetz modulus is

more often defined as & RePr é)

I L

hd
Nu = Nusselt modulus

'llmd
Re = Reynolds modulus
Pr = %é Prandtl modulus

Throughout this report the subscript m indicates that a mean or average
has been taken. In all cases it indicates an averaging process over the

radial coordinate in the following manner:
1

Vm(X) = V(R,X) 2R4AR
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Lower Case letters
inside diameter of primary circuit (d = 0.695 inches); also
differential operator.
functional operator
acceleration of gravity (ft./hr.2)
dimensional comstant = 4.17 x 108 (ft. 1b./1b. hr.2)
vertical distance above the lowest point of the centerline
of primary system (ft.). Convective heat transfer coefficient
(B/hr. £t.2 OF)
total height of primary system (2.5 ft.)
thermal conductivity -(B/hr. ft. °F)

radial position in finite difference grid (also used to
indicate number of velocity observations).

pressure - (1b./rt.2)

radial coordinéte (£t.)

maximum radius of system = % {ft.)

axial position in finite difference grid.
temperature (°F)

, .
mean fluid temperature used for . (tf = bty min * __,é___w ma.x)
evaluating fluiid properties (OF) ?

the minimim inside wall temperature for a given Data Set
(occurred at X £ 0.81) (°F)

fluid velocity (ft./hr.)

axial coordinate measured along centerline and starting at
bottom of hot leg (f£%.)

axial coordinate measured along centerline and starting at
top of cold leg {ft.)
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K.E.

P.E.
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Upper Case letters

flow area - (f‘t.g)

factors in finite difference eguation
constant

beat capacity -(Btu/lb. OI')

radius distribution function used in Appendix; also used for

2
omlupm)
fluid friction term F = A & ———re (Ft. 1b./ft.2)
da 28,
veloclty distribution function used in Appendix
normalized vertical coordinate = ﬁl (see Figure 1)
o]

factors defined in Equations 19 and 20

distance around the primary circuit measured along
the centerline (L = 78.9 inches)

number of radial subdivisions used in the numerical solution
nunber of axial subdivisions used in the numerical solution

normalized radial coordinate R = .I.
r
o

dimensionless velocity = -2

work dome by fluid - (ft. 1b./ft.0)

normalized axial coordinate = % (see Figure 1)

Combined Upper Case Letters

kinetic energy term in Equation (1)

2
K.E. = (U7), »Eﬁégfl (£t. 1b./ft.)

potential energy term in Equation (1)

P.E. = p, -£ h (ft. 1b./ft.5)
€o
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Greek letters

a molecular thermal diffusivity - (ft.2/hr)

B thermal coefficient of expansion of fluid -{1/°F)

& free convection boundary layer thickmess (ft.)

6 temperature level above base temperature 8 = t - o min, (°m)
8y inside wall temperature level (°F)

ew,mx = tw,max - tw,min ~ the maximum varistion ix} the inside
wall temperature (OF)

P
A friection factor A = -a—é--f—-—-?

L P Vg
d 2g,
where Apr is the pressure drop due to friection
dynamic viscosity -{ib./ft. hr)
kinematic viscosity - ft.2/hr)
radial distribution factor used in Appendix

mass density -(1b./ft .2)

g o w ¥ g

angular coordinate in the cylindrical coordinate
system used here
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PREDICTION OF THE REYNCIDS MODULUS
FCR THE LAMINAR FLOW REGIME

In the application of a thermal convection harp it would be desirable to
know the magnitude of the Reynolds modulus and the amount of variation of the
Reynolds modulus during the course of an experiment. For the case where the
flow is laminar this information can be obtained from wall temperature measure-
ments and a numerical apalysis. In order to prediet the Reynolds modulus by
such an analysis three guantities must be known; these are the Grashof modulus,
the friction factor, and the buoyant temperature difference. The Grashofl
modulus can be computed from the wall temperature data and the fluid properties;
in the present analysis, the friction factor for isothermal laminar flow in
long, straight pipes of circular cross section will be assumed. With these two
quantities known the dynamic equation for a thermal convection harp is reduced
to a relationship between the Reynolds modulus and the normalized buoyant tempera-
ture difference. The prediction of the Reynolds modulus from wall temperature
data is then simplified to the problem of the calculation of the buoyant
temperature difference. ﬂ

The Dynamie Equation for a
Thermal Convection Harp

The dynamlec equation for forced flow through a duct of uniform area is:

dp + &(K.E.) + a¥ + A(P.E.) + aF =0 . . . . . . . . (1)
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Since the system of interest here is a closed loop, the integration of the

equation around the loop is useful.

’}K’ dp = 0
f a(k.E.) £ 0

The kinetic energy term above, although not zero, was assumed to be negligible
for the present system. ©Since there is no puwp in the system the work term is
zero. Equation (1) then reduces to s relationship between the potential energy

and the friction terms, or

/pm(x)é.dh:x%g‘;: R £

From the definition of § get:

g

Dm(X)
Pr

=1 =B Oy may(0g(X) = %) . . ..o . (3)

Putting (3) in (2) and rearranging, get;

b ~ 172 :
Re:(%‘fGrdééb / £ * @ o & s.uw a = (h‘)

Equation (k) is valid for a thermal convection harp in either turbulent or
laminar Tlow. Consgider a gystem in which the geometry and fiunid properties are

fixed; Equation (%) then becomes;
1/2

Ad,
Re = Cl (sw,m —-r-) * * » - L . L . (h—a)
From Equation {ka) it is seen that, if the friction factor, L, is known, and
if the normslized buoyant temperature difference, Ad;,, can be computed, then
the equation is reduced to a relationship between the Reynolds modulus, Re, and

the maximum wall temperature difference, Oy maxe




For isothermwal turbulent flovw in long, swmooth, straight pipes the friction

factor can be expressed over the lower range of Reynolds moduli as;

V=018 80C L. (5)

When this expression is employed Eguation (U4) becomes;

0.555

ReréO.B‘(}%GrdA%) N €9

The friction fector expression for the isothermal laminar flow through a long,

straight pipe of circular cross-sechtion is;

AM=64/Re .. .. e e e e e s (D
Putting {7) in (k) get;

Re = _1 Do .
Rer—.ﬁ.,.é«fGrdA@b............ (8)

Equation (8) is the dynamic equation for a thermal convection harp in laminar
flow. The friction factor postulated does not include the losses around the
bends nor the influence of the free convection entrance regions on the friction.
These idealizations would tend to cause the Reynolds modulus predicted on the
basis of Equation {8) to be too large.

Calculation of A®, by Numerical Solution
of the Heat Conduction Equation

In order to employ Equation (8) to predict the Reynolds modulus in a
thermal convection harp one must be able to determine the value of A®,. The

method suggested here involves a numerical sclution of the heat conduction equation
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for laminar flow. After the method of calculation has been developed from the
basic eguation the calculation procedure used In the present work will be
discussed.
The method

The leminar flow heat conduction equation for flow in a cireular pipe is

given below:

(X,R) 22&%2_ dg 2%(x.R) | __@@(x R) , 1 22(XR)
312 5x° dR= 'R 2R

For the present system, due to the relatively large value of Gz (aI-’-) , the
axial conduction term can be neglected; in addition, to simplify the analysis,
the velocity will be postulated to be & function only of radius. Thus,
Egquation (9) becomes:

U(R)M— G (BQQ(XR)+%_@_(_5&§L) e e e ... (10)
yA

?2R2 2R
The velocity profile observed in this work did change with X; this variation
could have been ipeluded in the numerieal analysis but the results of this work

indicate that it was not pecessary. The finite difference form of Equation (10)

is:

#(s+1,n) = B, ; ¥(s,n-1) + B, ®(s,n+1) + By®(s,n) . . ... {11)
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2
4 NR

1 1
wh B 1 -
ere n-l Gz Ny Uln) ( ZNR R(n ))

i

2
Boe1 = B Lo 14 1 (11a)
ntl = Gy Oln) 5 T,
B = . 8NRE
n Gz Ny U(n)

Ny - number of axial subdivisions used
Ny - number of radial subdivisions used
The symbols s and n indicate the axial and radial locations respectively, in
the finite difference coordinate grid. From Equation (11) it is clear that
one computes the temperature for one axial increment ahead, (s+l), from the
known values of the temperatures for the elements at the axial locations (8).
For the discussion to follow the fluid properties and the geometry of the
harp system will be considered fixed. The Graetz modulus can then be con-
sidered to be proportional to the Reynolds modulus. The solution to Equation (10),

or (11), is of the form:

®(¥,R) = T3 (cl Re, U(R), @W(X)) e e e e e e e o(12)
After ®(X,R) is known from the solution of Equation (11) the mean temperature
can be computed.
1
@m(X)=/2RfI>(X,R)dR. S 5}
(6]
After transforming the mean temperature from the axial coordinate, X, to the

vertical coordinate, H, the buoyant temperature difference can be obtained.



O

A@bnf@m(ﬁ)&ﬁ...,..,,... (1)

Thus Ay = £2 {C3 Re, U(R), @;,,(Xﬁ. s e e e e e s {15)
It should be emphasized here that ¢ and U are normelized variables and express
the form, not the absolute values, of the temperature and the veloeity profiles.
In computing A®, the wall temperature, (X}, is known from experimental
measurements. Then, for each set of postulated values for U{R) and Cq Re, a
unigue value for A%, is obtained.

The procedure

The solution to Egquation (11} was obtained for thirty different conditions;
that is, for five differept wall temperature distributions, three different
values of Graetz modulus and two velocity profiles. The resulting values of
Hp are given in Taeble 2 ipn RESULTS AND DISCUSSION. The solutions were ob-
tained on the ORNL high speed compuber, the ORACIE¥. The harp was divided into
10 radial and 200 axial subdivisions.  To begin the problem a temperature
distribution was postulated at some axial location; say at X = 0. In the
present ease it was postulated that the fluid temperature was uwniform and equal
to the wall temperature at X = O.

Then, for the conditiong being considered, the B factors were cosputed

for each radisl position, or value of n, from Equations (lla). There was one

¥The authors are indebited to Miss Phyllis Brown of the ORNL Mathematics
Panel for having done the coding and programming of this problem.



exception; the equations do not apply for the element at the center of the
pipve. To satisfy symmetry the temperature gradient should be equal to zero
at the center; Tor this reason the ceuter slement was assumed to have the same
temperature as the element radially adjacent to it. Then, with the values of
the Bl's knovm and the wall Tempersbures tabulated the temperatures were com-
puted for the embire circuit around the harp by use of Eguation (11). When the
entire lengbth had beep traversed the temperatures at X = 1 were compared to the
temperatures that were postulated at X = O when the computabtion was begun.
Ideally, if the initislly postulated profile at X = O had been correct, the
profile at ¥ = 1 would be identical to it. Or, if the process 1s repegted for
many cyecles, the solubion will converge to the ideal case mentioned above.
In the present report the wmachine was set to compare the profile at X = 0 for
successive cycles; when the meximum diffevence in the temperatures of these
profiles was less then 0.01 degree Fahrenheit the calculation was considered
satisTactory. The machine was also set to integrate each profile, in
accordance with Equation (13), for the mean teuperature.

Two of the points were checked on a hand ecalculator by the suthors using
2 grid of 7 radial and 50 axisal divisions. The results agreed well with the
mschine ealculations. In this case a concerted effort was made to guess the
starting profile with as great an accuracy as possible. Only five cycles were
necessary in order to obitalin satisfactory convergence.

The normalized buoyant temperature Jifference was obtalned by graphical
integretion of Equation {1}) wsing the mean temperatures, ®,{X), from the

machine caleculations.
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Prediction of the Reynolds Modulus

The Reynolds modulus is predicted by the solution ¢f the dynsmic
Equation (8) end the heat conduction Equation (15). Since A®p is dependent
on Re in Equation (15) and Re is dependent on A®p in Equation (8), a repeated-

trial technigque is necessary.

- (L b
Re 3‘5‘:(:'@"&‘3%"“""""(8)

Al = T (cl Re, U(R), @W(X)) R € 1))

For & particular system, after the wall temperastures have been measured,

the factors EL?. , Grg, C1, and ®,(X) are knovn and the equations become:
Re = C2 A@b s ¢ &2 ¢ * s & ® o+ & & = o+ & (83-)
and A@b=f3(‘Re,U(R))...........(15&)

In order to solve (15a) a value for U(R) must be postulated; for this

discussion let it be postulated that the velocity is uniform; that is:

UR) =1 .+ v v v v it e e e . (16)

The system to be solved now becomes

A%y, = f) (Repost.) e e s e v e » o« (15b)
and Recal’ = CE A% ¢ o s * + s s & o+ » (88-)

To obtain the repeatea-trial solution, a value of Re is postulsted in

post.
(15b) from which A®, is computed. This A®,, when put in (8a), yields a value



of Regyqp,. From repetitions of this procedure a graph can be plotted of

Repgy, versus Repggt,. The intersection of this line with the equation,

Repgl. = Repogt. , 18 the desired solution. In Figure 2 the solution is shown
for the conditions of "Data Set C." The wall tempersture data for this case
are given in RESULTS AND DISCUSSION. The solution was obtained for two values
of U(R) that were believed to be representative of the extremes which might

be expected in the actual sgystem. For this case the Reynolds modulus was
measured as 111. The predicted values were 146 and 154 for postulated velocity

distributions of U(R) = 1 and U(R) = 6R(1-R), respectively.
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RESULTS AND DISCUSSION

The experiments degcribed in this report were performed Tor five different
thermal snd dynamic configurations of the system; these, for convenience, will
be called Data Sets. In Table I the range of the important varisbles is given
for each of the Data Sets. For the benefit of those readers who are not familiar
with the meaning of the various dimensionless moduli used in heat transfer these
moduli have been grouped, in Table I, sccording to flow, thermal driving foree,
and fluid properties. Thus, in a given experiment, where the fluid properties
and the important dimensions are held constant the Reynolds medulus and the

vGraetz modulus are proportional to the mean velocity. Similarly, the Grashof
modulus is proportional to the temperature difference or the thermal driving
force ceusing the flow.

The experiments were performed in four separate stages as follows:

First, for the conditions of Data Sets B, C, D, and ¥, wall temperature measure-
ments were mede and the velocity profiles were messured for the axial position
designated by X equal to 0.677. Second, the optical device used in the velocity
measurements was moved to an axial position corresponding to X egual to 0.555;
then velocity profiles and wall temperature measurements were made for con-
ditions of Data Sets A and C. Third, for the conditions of Data Sets D and E,
fluid temperature profiles were measured at the five positions corresponding

to values of X equal to 0.076, 0.2155, 0.53, 0.63, and 0.79%. TFinally, the

apparatus was adjusted so that the velécity structure over the entire length of



TABIE T

RANGE OF VARIABLES

10W Thermal Driving Force Fluid
F Causing Flow Properties
OBSERVED Maximm |
DATA BET PLOW Wall
REGIME Mean Reynolds Graetz Temperature Grashof Mean Fluid Prandtl
Velocity | Modulus Modulus Difference | Modulus Temperature | Modulus |
2 5
L. _ Upd _ Ued 4 d-Bg ..
R s T C N PO IOUTH
A Laminar 32.% 49.2 2.96 3.3 2.1 x 10% 70 6.82
B Laminar 50,4 8,2 4,76 6.5 5.1 x 104 T 6.42
Laminar L
¢ and 72.1 111 6.59 11.9 8.0 x°10 1 6.
Turbulent 7 &
Laminar L
D and 91.k 150 8.27 22.3 19.2 x 10 76.1 6.2%
; Turbulent
Laminar "
B and 133.7 272 11.73 38 67.2 x 10 93.4 4,9
Turbulent

..ga..
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the cold leg could be observed. With the apparatus so adjusted, gualitative
observations of the velocity structure were made Tor the conditions of Date Sets
A through E, inclusive.

In the discussion that follows the results are treated in four categories;
these are the velocity structure, the temperatnire structure, the evidences of

turbulence, and the comparison of predicted and measured Reynolds moduli.

The Velocity Structure

Before studying the flow in a free convection harp, it may be desirable
to review the boundary layer flow for the case of free convection along a
vertieal plate &s an ald iuv interpreting the velocity structure observed in the
harp used in this experiment. Consider the case of a vertical plate submerged
in a bvody of quiescent fluid. Ilet the plate be maintained st a uniform tempera-~
ture that is lower than the uniform fluid tewmperature. As indicated in Figure 3
the vertical coordinaste along the plate, y, will be considered to be equal to
zero at the top of the plate. The fluid near the plate will be cooled by the
plate and, due to the buoyant force csused thereby, this fluid will flow in a
downward directlon along the plate. At a given level the velocity profile in
the boundary layer near the plate will be as shown in Figure 3. At the top of
plate the boundary layer thickness is zero and the velocity is zero. As one
procedes down the plate to greater values of y the boundary layer increases in
thickness and the velocities increase. During the growith of the laminar boundary
layer the flow remains laminar and the velocity profile retains essentially the
same shape. After some critical value of y i1s reached the boundary layer becomes

thick enough to become unstable and transition to a turbulent boundary layer
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begins. Beyond the transitional region the boundary layer becomes turbulent and
the shape of the velocity profile and the law governing the growth of the boundary
layer becomes different to that for the laminar boundary layer. The thickness

of the laminar boundary layer, §, at a distance y from the top of the plate is

given by the following equation developed by Squire, reference 2.

1/4
S . Pr + 0.952 =1/
- 3.93 (.«»«-------—--—PT,2 ) Gry N ¢ 4

Multiplying both sides of Equation (17) by d and, solving for g , get:

2 9 \*
A Pr< d ]
I+ (:PI‘ T 0.952) (3.93 Grg « « « v o 2 & (178.)

At the entrance to the cold leg, where the boundary layer thickness is small
compared to the pipe diameter, the boundary layer growth should be essentially
identical to that in a flat plate system; however, as the boundary layer
thickness inereases, the influence of the circular geometry and of the forced
flow coutinuity restriction would be expected to cause the boundary layer in a
harp to grow at a faster rate. For the purpose of comparing the resulis of
this experiment with Equation (172) it was decided that the predicted location
at which the boundary layer thickness was equal to 4/4% would be more
significant than a value of d4/2. WNow, for a Prandtl modulus equal to 6.8, the
nmunber of diameters down from the top of the plate at which the boundary layer

thickness is equal to d/4% is computed as:

3 ook
(g)aml.ﬁm Grg « o + o o+ « - (170)
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The principal usefulness of Equation (17b) is to indicaie‘that, from flat
plate free convection boundary layer theory, one would expect to observe the
veloelity profile corresponding to the meeting of the laminar boundary layer in
the cold leg to occur at greater values of y/d ag Grg is inereased.

In reference 5, Eckert and Sochngen, have measured the critieal value of
the Grashof modulus at which transition of the laminar boundary layer to a
turbulent boundary layer for free cogvection mey occur for the‘case of the flow

over a vertical plate at a uniform temperature.
(Gry)critical 2y x 108 R & £ )

Since Gry = Grg (éi) 2

Wow let the flow observed in the cold leg of the thermal convection

- S
> critical  (Gry x 107H)1/3

e s e o« o« {18a)

g

harp in the present experiment be conéidered. The velocity profiles in
Figure 4 are the result of gqualitative observations of the cold leg with the
apparatus adjusted to illuminate the entire ecpld leg. Asg a result of having
traversed the bhorizontal and adisbatic section of fhe harp and having made the
turn at the top of the cold leg the fiuid enters the cold leg with essentially
uniform temperature and velocity. The flow in a thermal convection harp is

properly classed as superimposed-free-and-forced-flow. Although the free fléw

- component appears to be the dominant one, the forced flow aspect imposes an

important restriction on the flow; this is the continuity principle. To satis-

fy this principle the net flow rate through any section of tThe system must be
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the same. This means that, in the harp system at a given sxial location, the
velocities in the center of the pipe must decrease when the velocities near

the wall inerease; in some instances the center velocity would have to become
negative to satisfy comtinuity. In Figure Lk, at the location of g equal to 5,
or 5 diameters from the top of the cold leg, the free conveetion boundary layer
bas reached the center of the tube. At ten diameters down the tube negative
velocities were obsgerved in the central portions of the tube. At around 15
diameters the free convection boundary layer became turbulent and more efficient
mixing of momentum and heat occurred causing the velocity profile to change to
a more uniform distribution similar to that shown at 17 diameters. For the con-
ditions of Data Sets A and B the cenber velocities never became negative and

the change to turbulent free convection boundary layer never occurred. For

the conditions of Data Sets C, D and E, the velocity profile sequence in

Figure 4 is typical. The initiation of the negative center velocity occurred
at & greater value of y as the Grashof modulus was increased; this is in
agreement with Eguation (17p). The transition to turbulence was observed to
oceur earlier for greater values of Grashof modulus; this is in sgreement with
Equation (18a).

In Figure 5 the measured velocitiy profiles in the upper portion of the
cold leg are shown for the conditionsicf Data Sets A and D. In Figure 6, the
velocity profiles for Bats Sets B, C,‘D and E show the progressive growth of
the laminar boundary layer that was described in Figure 4. Because of the low
intensity of the light scaitered from droplets near the center of the pipe it

- was always difficult to obtain data for the first three stations. This was
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especially true for the case of Daba Bet D. By coincidence, the transition
from laminar to turbulent boundsry layer occurred for Data Set D at the position
of observation. Thus, the flow in the center of the pipe was unstable, being
sometimes laminar and sometimes turbulent. That is the reason for the scatter
in these date for Data Set D, 1In view of this it would have been permissible,
perhaps, to draw two profiles for Data Set D. The velocity profile for Data

Set B is obviously turbulent. Although velocity observations were not made in
the horizontal or transverse sections of the harp one would expect the flow
through these sections to be that characteristic of the forced flow sssgociated
with the value of the Reynolds modulus. All the Reynolds moduli in this experi~
ment are well below the criticgl Reynolds modulus for isothermal forced flow.
Therefore one would expect the turbulente that was initiated in the cold or hot
vertical legs to be quickly damped out in going through the horizontal legs.

The fact that the turbulence cbserved near the emtrance to the top of the cold

leg was minimum supports this belief.

The Temperature Structure

The wall temperatures wers measured at various locations in the hot and
cold legs. The wall temperature data for the conditions of Data Set C are
plotted in Figure 7. In Figure 8 curves are shown which indicate the extremes
of the form of the wall temperature data for the various experiments. At the
lower values of the Grashof modulus the wall temperatures more nearly approached
a square wave distribution; that ig’@w = 0 for the cold leg and &; = 1 for the

hot leg. In Figures 9 and 10 the fluid temperature profiles predlcted and
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TABIE II

VAIUES OF A®,, NORMALIZED BUOYANT TEMPERATURE DIFFEREECE,
AS COMPUTED FROM THE NUMERICAL SOLUTION OF THE CONVECTION
EQUATION FOR ILAMINAR FLOW

Postulated Form of Postulated Value for
Velocity Distribution| Wall Temperature Graetz Modulus

Distribution 8 16 %9

U=1 Data Set B 0.152 0.103 0.076

Data Set c 0.158 0.108 0.080

Data Set D 0.159 0.10% 0.076

Data Set E 0.1hk 0.099 0.073

Square Wave® |  oava- 0.245 0.179

U = 6R(1-R) Data Set B 0.164 0.135 0.114

Data Set ¢ 0.166 0.138 0.116

Data Set D 0.158 0.132 0.111

Date Set E 0.153 0.127 0.107

Square Wave¥ 0,336 0.266 0.215

S— . S—

¥Square Wave indicates &y = 1 for 0<X € 0.5 and &; = 0 for 0.5 <X {1
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messured are compared. The presence of turbulence caused the transport of heat
within the fluid to be greater than that predicted by the laminar flow -+
solution. Temperature profiles for these same axial locations were also taken
for the case of Data Set E. The degree of turbulence was even greater and the
agreement between the predicted and the measured fluid temperatures was not as
gocd. For this reason the curves for this case are not shown.

The normalized buoyant temperature differences computed from the
numerical analysis are {abulated in Table II. The decision to perform an
experinent for the conditions of Data Set A was made after the machine calcu-~
lations had been completed. The normalized wall temperature data for Data
Sets A and B were very similar. From Table IT it can be observed that the
computed values of Ady for Data Sets B, C, and D are almost identical. Omn
the basis of these two observations it was decided to use the A®, values
computed for Data Set B in predicting the Reynolds modulus for Date Set A.

The “square wave" calculation corresponds to the limiting value of the wall

temperature distributions for these experiments.

Evidences of Turbulence

A description of the visual observations of the transition to turbulent
flow was given earlier. In Table III may be seen the asmplitude and frequency
of the fluctuations in fluid temperature at five axial positions in the harp.
The minimum values occurred at the wall and the maximum values occurred at g
loecation between the wall and the center of the tube. Although it was not

possible to cbtain quantitative data on the intensity of turbulence in the case
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TABLE III

COMPARISON OF TURBULENT INTENSITY FOR DATA SETS
C AND E AS DERIVED FROM THE FLUID
TEMPERATURE TRAVERSES

Range of Amplitude Range of Average
Axial of Temperature Frequency of Temperature

Location Oscillation - OF Oscillation - Cyecles per min.

Data Set C Data Set B Data Set C Data Set E
X = 0.076 0 0 %o 1 0 0 to 1k
X =0.216 0 to 2.5 5 to0 9 0 to 14 22 to 65
X = 0.528 0 0 to 2 0 1.5 to 12
X = 0.629 0 0.5 to 8 0 3 to ko
X = 0,794 0 to 1.5 2 to 8 0 to 15 15 to 45
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of the visual observations of the droplets, the gqualitative observations do not
disagree with the data in Table III.

It is interesting here to contemplate what the equivalent friction factor,
A, might have been for these experiments. It is recalled that for the cases of
Data Sets C and E the temperature profiles in Tluid were measured at five
different positions within the herp. From these data five values of the mean
temperature can be computed, and from these five mean temperatures the buoyant
temperature difference can be determined. Within the accuracy of this pro-
cedure the resulting buoyant temperature difference is that actually existing
in the fluid and is not a compubed ome. Since the sctual temperature curves
vere very similar to those computed by the numerical analysis, one can establish
fairly accurately the mean temperature curve on the basis of only five mean
temperatures. It is recalled that, earlier, the dynamic equation for & thermal

convection harp was derived as:

2
Re:(%%GTqu’b>l/ s s e e e e e e e e (Ll-)

% = M . XRe
}\M_am. an e e e e e e e e e (19)
(‘3®b)cal.

For the two Data Sets, C and E, now being discussed, all parameters in
Equation (4) have been determined by measurements in the experiment except the

friction factor, A, which can then be computed. The two values of friction
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factor thus determined are indicated in Figure 11 as measured values of A.

In Equations (17) and (18) the factors K, and Ky are defined. For the iso-
thermal laminar flow in a long, straight pipe of circular cross section, the
value of K, is equal to unity. The effect of elbows, bends or turbulence will
tend to increase the value of K, . A‘value for Ky equal to unity indicates that
the computed value of A®, is accurate. It is interesting to note here that
the calculated value of A%, may be quite accurate even for the case where the
temperatures from which it was computed are in rather great error. It is re-
called that in Equation (15b) the value of A®, calculated was computed from

a postulated value of Reynolds modulus. It will be assumed here that the value
of Kg is equal to unity when the Ady calculated is based on the experimentally

determined Reynolds modulus. Putting (17) and (18) in (L) get:

_Kp 1 by
..E;'.B—é-—i-c-rd(A@b)c&l. * ® e o 2 4 & 2 e = (8b)

On the basis of the postulate that Ky is equal to unity (8b) is reduced to (8c).

h
(B Re)oa1. = 55 = 0ra (A0)ga1, « + + =+ - -« (8)

K, Be

M:Kh....,........ (19)
Now 1t is necessary to refer to Figure 2, where the graphical solution was
obtained for the conditioms of Data Set C. From Equation (8c) it is seen
that, for a postulated Reynolds modulus egual to that which was measured in the
experiment, the value of the ordinate is equal to the product K, times Reynolds

modulus. Putting this in Equation (19), one can compute the value of K, ; from
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the value of K) and Be, one can compute the value of M. A numerical exemple
based on Figure 2 may be helpful here. It is recslled that the Reynclds

modulus measured in theiexperiment based on the conditions of Dsta Sets C

vas 11l. From Figure Q‘the values of the ordinate for a value of the abscissa
equal to 111 are 170 and 174 respectively. From this, one computes values of

Ky to be 1.57 and 1.565 respectively; the corresponding values for A are

0.882 and 0.902, respectively. This procedure was used to obtain each of the
values of estimated friction factors givern in Figure 11. There’are two
interesting observations concerning Figure 11. The first is the striking
similarity between Figure 11 and a similar plot for the isothermal forced flow
of a fluid through a system having several bends. A significant difference in
the two cases is the value of Reynolds modulus at which transition to turbulence
occurs; for the harp this value was 110, while for the forced flow system it
would be sbout 20 times greater, or 2200. The second intéresting observation

is the good agreement between the tvwo different methods which were used for the
cases Of Data Sets C and E. Figure 11 is presemted as a matter of interest,‘
not for use as & source for quantitative information concerning friction factors.
‘One could determine the friction factor in a harp rather accurately from measure-
ments of fluid temperature and mean velocity. However the number of tempera-
ture data necessary would be much greater than was obtained here.

" In rvorrelations of heat transfer, friction, mass transfer and similar
phenomena the transition from laminar flow to turbulent flow is usually easily
1recognized by an abrupt change in the slope of the curve. It is interesting
to note that in Figure 12 the indication of & change in flow regime agrees

with the other observations previously discussed.
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Comparison of Measured and Predicted Reymolds Moduli

The predicted value of Reynolds modulus is plotted in Figure 13 versus
the measured value. Tt is recalled that, for these predictions, the friction
factor was postulated to be the same as that for isothermsl laminar flow in a
loug, straight pipe of circular cross section. The non-isothermal velocity
profile and the bends in the harp would cause the effective frietion factor to
be greater than the postulated one; consequently, the resulting predictions
would always be too high. The velocity profile was observed to vary with axial
position; for the computation of the thermal strueture the velocity profile was
postulated to be comstant. From Figure 13 it is seen that the correlation is
better than 30% in the range of Reynolds moduli where the flow was laminar.

For values of Reynolds modulus greater than 100, where the flow was observed
to be turbulent in part of the circuit, the prediction was not good.

The ideal system or thought model employed in the development of the
equations used to predict the Reynolds modulus was a forced flow model. In
the discussion of the experimental results the authors have emphasized the
free flow nature of the dynamic structure. It was previously stated that the
flow is described more accurstely as both free and forced or superimposed-free~
and-forced-flow. Martinelli and co~workers in references 4 and 5 derived
Egquation (20) which satisfactorily correlated a vast quantity of heat transfer
data for the case of superimposed-free-and~forced laminar flow convection in a

vertical pipe of eircular cross section and having a uniform wall temperature.
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1/3
" a 3/’4
Nu = 1.75 Fy | Gz + 0.0722 Fp(Gry Pr .I:) e e .. (20)%

The wall temperatures in Data Sets A and B approximeted this condition in
each of the vertical legs. One might use Equation (20) to classify laminér
flow convection as forced, free, or mixed flow, depending on the influence
that neglecting one of the terms would have on the Nusselt modulus. Eckert,
et. al., in reference 6, have suggested such a classification for the case of
very short tubes-(L/ = 5). For the conﬁitions of Data Set B the Nusgelt
modulus as computed in Equation (20) is 16% lower when the forced flow influence
is neglected than when both are considered. It would seem that the superimposed-
free-gnd~foreced~flow in the vertical legs of & thermal convection harp is more
characteristic of free flow then of forced flow for two reasons; first, the
success with which the growth and transition of the boundary layer was described
by a free econvection model; second, the fact that the foreed flow component

contributed only 164 to the Nusselt modulus as computed from Eguation (20).

*
The factors F] and Fp in Equation (20) are not constants. The user should
consult the original reference where the complicated variation of these
factors with ¥u and Gz is given.
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CONCLUSTIONS

Experiments were performed for the free flow of water in a 0.7 inch I.D.
Pyrex thermal convection harp having an effective height of 2.5 feet. The experi-
ments were conducted for five different sets of conditions corresponding to
ranges of Grashof moduli and Reynolds moduli of 2 x 10% to 70 x 10" and 50 to
270, respectively. Velocity measurements were made in the ¢old leg of the harp;
wall temperature and fluid temperature traverses were made in both legs. A
method was proposed Tor predicting the Reynmolds modulus from wall temperature
data by means of a numerical solution of the laminar flow heat conduction
equation. On the basis of these investigations the following conclusions are
submitted:

1) 1In any forced flow where a radial tempersture difference

exists there is a superimposed free convection effect, and,
depending on the relative magnitudes of the Reynolds modulus
and the Grashof modulus, the two phenomens may be of equal
importance or one may be negligible. The foreced flow influence
secems to be of secondary importance for the flow of ordinary
fluids in the vertical legs of a thermal convection harp for
two reasons; first, free convection equstions satisfactorily
fﬁ%%ﬁiﬂté@ithé'ér@wth‘amd transition ‘off theboundary kayer in
‘ghe cold leg; second, the forced flow component contributed
only 16% to the Nusselt modulus as computed from the Martinelli

equation for superimposed free and forced viscous convection in
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a vertical pipe. It follows that the heat transfer and
mass transfer ig predicted by free convection, not forced
convection correlations, unless both influences are
considered.

2) For values of the Reynolds modulus greater than 100 the
Grashof modulus was large enough to cause approximately
half of the hot and cold legs to be in turbulent flow.
Thus, the laminar flow regime for this harp must be con-
sidered to be below a Beynolds modulus of 100 rather then
sround 2000, the familiar value for isothermal forced
Tlow.

3) The predicted values of the Reynolds modulus were con-
sistently greater than the measured values. In the
range of Reynolds moduli below 100, where the flow was
essentially laminar, the correlation was better than 30%.
In the turbulent regime the method iz not epplicable.

4) The nature of the flow in a thermal convection harp is

greatly influenced by two factors: +the properties of

the fluid and the manner in vhich heat is added and

removed. The wide spectrum over which each of these factors
way vary mekes it impossible to perform & geuneral analysis
that is applicable teo all cases. This work was done for a

Tluid having a moderate value of kinemstic viscosity;
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transitional flow was cbserved. One would expect to obtain
highly turbulent flow for fluids of low viscosity such as

liguid metals and definitely laminar flow for highly viscous

Tluids.
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é@paratué and Procedure

. The design of the harp was begun with the premise that the velocity
measurements would be made by the visual observation of suspended droplets
‘in the priﬁary fluid. This made it necessary that the walls be transparent
and it essentially dlctated the method of heat addition and removel that was
used. During the course of the experiment a concerted effort ﬁas expended toward
minimizing the cost of the apparatus by using onl& those materials and instru-
ments that ﬁere on hand.

Harp arrangement

The primary flow circuit of the harp consisted of 0.895 inch T.D. ?yrex
tubing with an effective height of 50,& inches and a centerline length around
the loop of 78.9 inches. The hot leg extension, as shown in Figure 1k, was ’
installed to provide access to the hot leg for wall and fluid temperature
thermocouple probes; this extension wasg insulated to reduce heat loss to the
air. A similar means of acéess was provided for the top of the cold leg. Eﬁch
of the four legs was provided with a heat exchenger by the attachment of 1.2‘
inch I.D. Pyrex tubes over the length’of the legs. The exchangers on the upper
and lower comnecting legs were never ﬁsed as heat exchangers; hbwever they
did serve to somevhat insulate these legs from the air and reduce heat losses.
Heat was removed from the cold leg by circulating cold water from the building
su@ply’through the ecold leg exchanger. Three needle valves on the hot leg
exchanger inlet line permitted the building hot and cold water to be mixed to
obtain the desired hot leg exchanger inlet temperature. Thermocouple wells

were installed to permit measurement of inlet and outlet exchanger temperatures.
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The secondary flow was measured by rotometers. The flow rate to sach exchanger
was maintained at one gallon per minute for all experiments performed. In:
order to stabilize the flow in the upper and lower connecting legs these legs
were inclined from the horizontal orientation and the hot and cold legs were
chosen so that the flow from the hot leg to the cold leg would have an upward
component. In Figure 15 the box encleging the optical arrangement for velocity
measurements is shown attached to the cold leg.

Instrumentation for velociiy measurements

The velocity profiles were measured by timing the trajectory of oil
droplets viewed in their scattered light. The time for a droplet to traverse
the distance between two horizontal marks separated by a vertical distance of
one inch was measured with a stop watch; simultaneously, by reference to vertical
alignment marks, the radial position of the droplet was observed. The plan:
view of the arrangement'for the vertical alignment marks is shown in Figure 16.

From the results of a refractioﬁ analysis four alignment marks were
scratched on the front and rear plastic plates shown in Figure 16; when the
plates were properly aligned, the line of sight cut through the test section
at radii of + 0.2 and + 0.6 along a radius perpendicular to the line of sight.
A similar set of plates were used to align the light beam. The alignment of
the front and rear plates was accomplished with the aid of a third plate that
was inserted in the priméry system during alignment. A sealed beam spotlight
was used as the light source; the light was collimated with a slit system so
that 1t illuminated a zone of the test section 0.2 4 in width at the center of

the tube. The plastic box enclosure prevented condensation on the cold exchanger




UNCLASSIFIED
PHOTO 20400




REAR PLATE UNCLASSIFIED

REAR ALIGNMENT Dwg. 22744
~ MARKS
/ - /

//’ //

e

1 | PLASTIC BOX ENCLOSURE

| =—— = | _——BLACK MASKING TAPE
Z - WATER

P s AR 4 OIL DROPLETS

L7 ORBEN N B o e N [

Z SURFACE T e T T T z /—

(7 A ITNGE TN COLLIMATING SLIT SYSTEM
S S S R

> == e Ry

v A~ S\ A S ST — R —

g G R\ Y S N S A . e = T
IR\ S S G T S \l — -
= NN E=A T I -

|~ =T =~ A &

e < LTV Z, 2

" < ~ SEALED BEAM SPOTLIGHT
= (SCALE = 1/10)
W — v — — —
o _ FRONT ALIGNMENT
- — - ~~—— MARKS
S /,/’ //
= pd ] FRONT PLATE

PLAN VIEW (SCALE =2)

Fig. 16. Optical

Arrangement Used in Measuring Particle Velocities (Plan View)



- 60 -

wall; black masking tape on three sides of the box served to reduce the random
light from the laboratory. The scattered light intensity from the droplets
was insufficient at an angle of 90° to the beam. Satisfactory intensity was
available at 850, 50 the observations were made at that angle. The scattered
light was intense at an angle of about 135°; this is the angle at which the
qualitative observations were made. In Figure 15 the view is in the direction
of the light beam and the second collimating slit may be seen. The observer
viewed the apparatus from the left of the photograph.

Instrumentation for temperature measurements

The thermocouple probe used for measuring the internal wall temperature
is shown in Figure 17. The spring asction of the two pieces of pilano wire caused
the thermocouple wires to be pressed agasinst the Pyrex pipe wall for approxi-
mately 0.5 inches above and below the thermocouple Junction. This served to
reducé the error due to conduction along the wires.

The thermocouple probe in Figure 18 was used to measure the fluid tempera-
tures. The thermocouple wires used here were 0.003 inches in dismeter and were
coated with a 0.001 inch layer of Teflon. The thermocouple-leads were brought
up through a three foot length of thermocouple-lead tubing. The thermocouple-
lead tubing was held in place by a two inch long guide tube. Piano wire springs
kept the guide tube against the wall of the Pyrex tubing. Small shoulders on
the thermocouple-lead tubing at each end of the guide tube served as thrust
bearings; this permitted rotation and prevented axial translstion of the thermo-
couple lead-tubing relative to the guide tube. The thermocouple-lead tubing
extended two inches below the guide tube; at this point the thermocouple leads

emerged and extended radially to the center of the pipe. A pointer and protractor
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arrangement at the top of the hot or cold leg extemsion was used to control and
to indicate the angle of robation of the thermocouple Junction. When the
assembly had been positioned at the desired axial location the thermocouple was
rotated until the Junction touched one wall of the pipe. The uncertalnty in
locating the position of the pipe wall was less than two degrees of arc; this
corresponded to an error in radius of less than two percent. The fluid tempera-
ture profiles could then be megsured by this device at various axial positions
in the hot and cold legs.

When the voltage response from the thermocouples was steady the measure-
ment was made with a Ieeds and Northrup Portable Precision Potentiometer. In
the turbulent regioné, when the temperature was fluctuating, the thermocouple
voltage was recorded on a Brown strip recorder.

Experimental procedure

The flow in the primery circuit of the harp was set and msintained by
controlling the inlet temperatures of the two heat exchangers that comprised
the secondary circuit. The flow rate through each exchanger was maintained at
one gallon per minute for each of the experiments. Since the cold water tempera-
ture remained essentislly uniform throughout a given run the factor that was set
and econtrolled was the difference between the hot and cold exchanger inlet tempera-
tures. TFor Data Sets B, C, D, and E the value of this temperature difference
wag 7.5, 15, 30, and 60 degrees F., respectively. The maximum variation in this
temperature difference for all runs comprising a Data Set was five percent.

The velocity runs usually required six hours; one hour for the system to
reach steady state and get the optimum distribution of droplets, four hours to

make the 200 to 250 velocity observations, and one hour to measure the wall
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temperatures in the hot and cold legs. The Merism Unity 0il droplets used in
these observations were of the order of 0.0l inches in diameter. The velocity
obgervations were all made in that half of the cold leg near the entrance of the
light because the intensity of tbhe light secattered from the droplets in the
other half was too lov to permit satisfacbory cbservations. HNo velocity obser-
vations were made in the hot leg because the rust deposit on the walls of the
hot leg exchanger reduced the visibility rather greatly. With the aid of the
four visual alignment lines and the two formed by the walls of the test section
the droplets were observed to be in one of the ten radial compartments as showm
in Pigure 19. The timing was done with a stop watch having a2 sweep second hand.
The smallest division on the watch was 0.02 seconds; it can thus be safely
assumed that the error in measuring the time was due entirely to the observer's

limitations.

Treatment of Velocity Data

The analysis of the velocity data would have been simplified if a beam of
width equal to 0.02 4 could have been used instead of the value of 0.2 d that
vas used. With the former value of beam width the variastion of the radius in
a given compartment could have been considered negligible for the purposes of
this work. Due to the turbulence, the droplets sometimes had relatively high
veloeity components in the radial and angular dlrections. If the observations
had been made in a shorter time, and therefore for a shorter distance, or if
the flow had been laminar throughout the experiment the smaller besm width could

have been used. A timing distance of one inch was chosen as the optimm length
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in view of the instruments and methods used. The individual velocity measure-
ments were estimsted to e in =rror by no more than 15 percent; the error in the
average veloecity for a compartment was probably less. With the timing distance
chosen egqual to one ivneh a beem width of 0.2 4 Vag necessary 8o that approxi-
mately half of the droplets chosen at random would tirsverse the entire timing
length before digeppesring from sight due to turbulent compeonents. This condition
was met for the case of Data Set E; for the other Dats Sets the turbulence was
less and fewer than half of the droplets chosen disappeared from view within the
timing distance. Since the radius and the veloeity vary over a wide range within
each eomgartment, one must meke a nugber of velocity cobservatlons and, by some
gtatistiesal method obbain a unique veloeity and radiuvs for each compartment
which, when plotted, will fall on the true velocity versuz radius profile curve
that was present during the experiment. It was decided that s minimum of 20
velocity messurements would be taken for each compartment. For seven of the
points plotted inm the velocity profiles there were less than 20 observations
rade; these points were for compartments 1, 2, and 3 where the light intensity
was low and observations were more difficult to meke. In many cases more than
20 observations were made In a compartment. The combined effects of the excessz
reflected light from the right wall of the Pyrex pipe énd the relatively large
emount of refraction near that wall raised serious doubt concerning the
randomness of the data from compartment 10 so they were not used in any of the
Data Sets except E. 'For Data Set E the data for compertments 9 and 10 were

inadvertently combined so these data were treated as compartment (9-10) data.
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+ was decided to use the arithmetic average of the experimentally cbserved
velocities as the representative or unigue velocity for that compartment. Stated
mathematically, for n obgervations in the ith compartment the average velocity

.
ig:

ui(n) = % Ujo o oo oo oo o s v oo (21)
=1
Let Gi(u) du represent the fraction of the droplets in the ith compariment
having axial velociby components between v and u + du if an infinite mumber of
observations had been made. If uy and u, represent the minimum and maxlmum
velocities, respectively, in the ith compartment then the averasge velocity is:

Yy
i u@{u) du . . e h e e e e e e (22)

o
i

obviously

il

i-j-’: Lim E (n). o - * - - L ] L] L] - L . . . (25)

n—00
In this report 1t was decided to use a value of n egual to 20. In

analyzing the data it is assumed thatb:
E{-‘:EI(EO)-........o.. (2‘*")

The velocity ranges in the various compariments Ffor two typical runs are shown
in Table IV.
The remmining problem is to calculate the value of Ry that is correct to

use in plotting E;, Iet F;(R) 4R represent the fraction of the droplets in the
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TABLE IV

MINIMUM AND MAXIMUM VELOCITIES OBSERVED IN A
COMPARTMENT FOR TWO TYPICAL RUNS

Compartment
Number Number of Velocity Range

Observatiocns Velocity in percent

i n ug of uy

Run No. 7 - Data Set B

1 22 3h.5 5% . 241

2 2Y 55.8 50 - 154

3 29 57.6 62 - 152

L 20 Th 77 - 151

5 2k 75 75 - 137

6 26 Th. L 77 ~ 127

7 21 80 68 - 120

8 33 69.6 66 - 130

9 22 A 48.56 58 - 136

Run No. 12 - Data Set E

1 2k 130.2 64 - 192

2 23 150 69 - 133

3 23 158.4 63 - 146

b 24 185.6 75 - 145

5 26 181 57 - 166

6 22 186.4 7% - 17

7 22 179.2 57 - 140

8 32 173.6 64 - 144
9-10 43 10k4.2 L% - 161
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ith compartment having a radial position between R and R + dR if an infinite
punber of observations are made,
Then

Fi(RMAR = Gi(u) du v v v ¢ v v o o o eo v (25)

By up
and
/ F;(R)AR = / Gs{u) du=1....... (26)
R Wg

a

Now let it be postulated that the veloecity profile can be satisfactorily

repregented by a2 linesr function within the bounds of each compartment or:

u=Cy +Cs5R for RgK R<Rp o v o o o « o« (27)

For small compartments this is permissible. Combining (25), (26), and (27),

get:
Y
(cy, + C5 R) F(R)AR

]

Cy + Cs5 Ry

&

Ry

=
o
HH

BF{(R)AR ¢ o ¢ o o o o « o o (28)

Ra

Presuming s random distribution and cholce of droplets, let it be postulsbed
that the probability that a given droplet, observed to be in the ith compartment,

is in the elemental area R dR 4w is egual te a distribution factor, § s times
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the ratio of the area of the elemental ares 4o the area of the ith comparitment.

Thus:
Wy
R E ald ar
(Fi(R)) aRz wa aeao.oeooa(29)
3 Rp Wy
R g aw ar
Az, w&

If the Tlow had been perfectly streamline a value for § egual to unity
would be correct. In the experiment many of the droplets 4id not traverse the
measuring distance before disappearing from view outside the beam. Tails
suggests that the probebility of obtaining the velocity of droplets was greater
for locations in the center of the beam than for those near the edge of the
beam. This effect can be represented by a linesr form of § that is equal to
unity at the center of the beam and equal to zero at the edges of the "oeam.

The values of Ri were computed by integration of equations (29) and (28)
for the geometry of the light beam as obtained from a refraction analysis.

It was believed that the two values of ¥, which will be called, § = 1,
and § -linear represent extremes which bound the value of Fy(R) aund R
desired. Thus, the values of Ri used ; which appesr in the last column of

Table V, were the result of the average of By (§ = 1) and Rj( E—-lir:ea:f).



MEAN RADII FOR LIGHT BEAM COMPARTMENTS

TABLE V

| Compartnent Range of R Total Range
at Centerline of Ri(% = 1) Bi( 8§ -linear) Ry used
(see Fig. 19) of Beam R ,

1=1 0 to 0.05 0-0.208 0.108 0.078 0.093
2 0.05 to 0.15 0.05-0.265 0.152 0.130 0.1h41

3 0.15 %o 0.25 0.15-0.353 0.235 0.218 0.227

l 0.25 to 0.35 0.25-0.443 0.328 0.317 0.322

5 0.35 to 0.45 0.35-0.5%8 0.h2h 0.411 0.418

6 0.45 to 0.55 0.45-0.638 0.523 0.515 0.519

7 0.55 to 0.65 0.55=0.745 0.622 0.616 0.619

8 0.65 to 0.767 0.65-0.855 0.7%2 0.725 0.728

9 0.767 to 0.884 0.767-0.975 0.848 0.841 0.8kl

10 0,884 to 1.0 0.884-1.000 0.950 0.946 0.948

9+10 0.767 to 1.0 0.765<1.000 0.894 0.890 0.892

u'{L..





