


ORKNL 1685

Copy No 4/

Contract No W-T405, eng 26

PHYSICS DIVISION

COULOMB EXCITATION AND ANGULAR CORRELATION

R X Osborn
M E® Rose

FEB 23 1954

Date Issued

OAK RIDGE FATIORAL LABORATORY
operated by
CARBIDE AKRD CARBON CHEMICALS COMPANY
A Division of Union Carbide and Carbon Corporation
Post Office Box P
Oak Ridge, Tennessee

IIHIUHIHIIHIHHMIHHIHIH!IIHI!«(!IIINIWI

3 4456 0349591 O



«i1i-

ORNL 1685
Physics
INTERNAL DISTRIBUT1ON
1l C. E Center 30 R Livingston
2 Biology Library 31 X 4 Morsau
3 Health Phystics Library 32 T A Lincoln
¥H-5 Central Research Library 33 A S Householder
6 Reactor Experimental 34 C, P Keim
Ing wneering Library 35 C S Harrill
T7-11 Laboratory Records Department 36 C E Wanters
12 Iaboratory Records, ORNL R C 37 D S Billington
13 ¢ & Larson 38 D W Cardwell
14 L B Emlet (K-25) 39 E M King
15 J P Murray (Y-12) L0 E 0 Wollan
16 A M WVeinberg b1 A J Miller
17 E H Taylor 4o J A Lane
18 E D Shipley 43 R B Briggs
19 A H Snell b 1. D Roberts
20, F C Vondcrlage 45 R N Lyon
21 R C Briant L6 W C. Koehler
22, J A Swarlout 47 W K Ergen
23 S C Lind 48 E P. Blizard
2h F L Culler 4o M, E. Rose
25 A llollaender 50 D. D. Cowen
26 J H Frye, Jr 51 R K Osborn
27 W M Good 52 M, J Skinnerx
28 M T Kelley 53. W Breazeale (consultant)
29 G H Clewett

IXTERNAL DISTRIBUTIO!N

54 R F Bacher, California Institute of Technology
55-309 Given distribution as shown in TID-4500 under Physics Category

DISIRIBUTION IAGE I'O BE REMOVED IF RIOPORT IS GIVEN PUBLIC DISTRIBUTION



The direction of emission of the y-rays emitted by nuclei which
have been excited by Coulomb interaction with charged particles 1is cor-
related with the direction of incidence of these particles and the angle
through which they are scattered In practice 1t 1s convenient to carry
out the envisaged experiment so that the scattered particle 1s not observed
This 1s assumed to be the case in the following The results of a cal-
culation for the correlation between the incident beam direction and a
subsequent single y-ray for the case of quadrupole excitation have been
published by Alder and Wlntherl It 1s the purpose of this report to
present the details of this calculation, and to generalize the results to
cover the case of the triple correlation between the incident beam direction
and two subsequent y-rays, either or both of which may be mixed

The basic assumption upon which the work presented herein rests
1s that the collision may be treated by the classical impact parameter
method A careful study of the significance of this approximation has been

made by Huby and Newnsz, particularly as to 1ts effect upon total excitation

1 KX Alder and A Winther, Phys Rev , 91, 1578 (1953), referred to here-
after as AW

2 R Huby and H C Newns, Proc Phys Soc of London, 644, 619 (1951)



cross sections We merely point out here the cbvious implication that the
kinetic energy of the system before collision be sufficiently below the
Coulonmb barrier to ensure that no nuclear reactions take place via compound
nucleus formation
We consider the sequence of events whereby a nucleus of charge

Zoe 1n the angular momentum state (J, m,) 1s excited to the angular momentum
state (Jl ml) by Coulomb interaction with a particle of charge Z,e whose
direction of incidence is specified by the unit vector,‘%l, the nucleus
then undergoing transitions (Jlml)——>(32m2)——9(35m5) by emission of y-rays
in the d1rect10ns‘%2 and i%, respectively The correlation function for
these events may be expressed as

s, o, B5) = D Enay (s) Sugnn (o) T R ()

100 Mo

where

n

By m (5) =2 Cogng [05) Lagmy)” (agmg [ 8003) [agm) — 22)
ms

oy (52) = (aom [ H0) | am) (apmy 1HGky) | agmy) (1)

ey (R1) =2 Caymy 150 Lagn )™ Gopny 1805 [ om,) (1)
o

The density matrix E and the coupling coefficients S need not be

discussed here? They may be expressed in the form

3 Seel C Biedenharn and M E Rose, Rev Mod Phys 25, 729 (1953),
referred to hereafter as BR
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(a1 T, 0 Jl)* (3, MLyl 5)), 3)
where the

Jz=d 1 L,Li ¥
Py, s L3ds9,) = (122 (eap)ergn)(egsn) o2 2

W(apdaLlsls,s V 55) (%)
have been extensively tebulated® The C's and W's are Clebsch-Gordsn and
Racah coefficients respectively and the D's are the irreducible representa-
tions of the rotation group The multipolarities of the first and second
y-rays in the cascade are specified by (Lp, L4) and (L., L%) respectively
The numbers Y o and 1)3 must be even integers

‘The form of the operator H(kl) appearing 1n the density matrix F

may readily be deduced In view of the above assumptions, we may regard
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the nuclear transition made by the target nucleus as a consequence of the
Coulomb interaction with the projectile as being induced by a time-dependent

potential of the form

A
vt) - o Aeer (5)

J
1=1 l ri—r(t)l
where r(t) specifies the position of the projectile relative to the center

of mass of the target at time, t, and the r. are the position vectors of the

1

charges e, in the target nucleus measured relative to the nuclear center of
mass Then, according to time-dependent perturbation theory, the pertinent

operator for determining the nuclear transition rate should simply be
©

AE
1 = t
H(ky) = J e v(t) dat (6)
-
where A E = Ep-E, 1s the excitation energy of the target nucleus H(kl) 80

defined, of course depends not only upon the incident beam direction but
upon the final direction of a particular orbit as well

The potential V(t) is & function of both the parameter of the orbit
and the intermal coordinates of the target nucleus To cbtain a useful

separation of this dependence, we expand



A
Z, € ;E: "1

v(t) =
11 |r(t) - x|
- /“(t) B, 7
% g{“(t) B (7)
where
B i S0

o6 + 1 r(t)l+l

A
A
B{L = Eéi €. T YiL(?l)

Now the quantitaies, g{‘, are to be evaluated in a special coordinate

system, hence, although the B{

are explicit functions of the nuclear co-
ordinates only, they still depend implicitly upon the choice of coordinate
system i1n which the orbit 1s analyzed For purposes of this analysis, we

choose our coordinate system as shown in Fig 1

e-l
A
Ll
rl e
~ /’\w ‘// :
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The orbit lies in the x-y plane of a coordinate system specified by the unit

vectors (ey, ey, e,) such that e, 1s in the direction of the point of closest

Yy

A
approach The incident beam direction 1s specified by the unit vector, kl

The energy equation 1s

2 Z

P, g,

2//‘-' T
or
--]2‘—-(/,.,1'2+/,4,r2 (;Je)+ - =
/u. = reduced mass It 1s convenient to parametrize the orbit in terms of
a varigble, &/ , defined by
r =a (lL+ € cosh e ) (8)

where

_ 2 2
a_ZlZQe//ua- ,

{1+ (p/a)

The quantity & 1is the eccentricity of the orbit and p 1s the impact para-

and

€

It

meter The i1mpact parameter 1s related to the angular momentum constant
for the system by
2 [ ]
pOo P = L - ey
The other relevant functions of the orbit may be expressed in terms of the

paremeters a, € and & according to



t:_%_(w + € sinh &), (9)

€ + cosh ev
cos QU

1l + €& cosh «

/ 2
+ &€~ -1 sinh &/ (11)

1l + € cosh &/

(10)

fl
~

sin Y

The scattering angle, @ , 1s related to € according to

2
2 €

We may now express the scattering operator in the form

o0

2 { ei?(‘d+és1nhw)
X/" 2w

a
7 (1L +¢€ coshew ) dev

(e

gf («)
£ -2 AE/My

The nuclear operators, B{" , are here expressed in the (e) coordinate system

They are related to the same set of operators in an arbitrary coordinate

system, (q), according to

B{L(e) =2 B{‘(Q) ]}):,/4_ (Rq__, e)
s

where R 15 the rotation required to bring the (q) system into the (e)

g€

system Thus
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H(k):E B/ D eif(‘”"esmh“’)% #(@w) (1 + € cosh v )de
’ e » 7~/ Joa >

If now we specialize to the case of pure multipole excitation, then

Hx(k)=z B p* s/, e) (12)
Voo
where, after dropping common factors,

s{(£,¢)
T 1€ (wsesinhw)1u P
e d«

JEE ek PN a)“'/*’ (57 [
EX A! (» +[/-4I)' (ds’ &0 - (l+5cosh¢d)x

(13)
and A + H is even These functions are exactly the same as those given
in (AW, 7) for the cases A\ = 2, S= Oand T2 It is to be noted that

they are explicitly real If we defaine

N SN NI PPTBY d)“"“l (3*-1)*
M 2L I B P Ll as s =0

) Vad |
NE \/(“/‘)' (A - ) (1ka)
2 (2£) (=)
f(@W) = ¢ + € sinh e , (1kv)

and

p (@) =(1+ € cosh w ), (1ke)
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and take account of the fact that f> 1s an even function whereas f and

1p are odd functions of </, we may express
fo ]
8,6 - n (et | ”S[fiwi'FWW”ﬂ 0w
o pLe

We also note from this that
iy i
Sx (gié)zsx (-é‘,é)
The operator H(k; ) 1s now in a form such that by application of

methods 1dentical to those employed to obtain E or S in the forms quoted

herein we find for F

A Yy 913V
F . (k,€,9) = F, (M3, 37) (1) Co
mm U ¢l % Yoot my, -my
MY
/"+l A M C - ‘l‘)l
E (-2) o5 M.’»f Dnjomy,p - (Rgye)s (23)
e “1,1
where
Jg=d+l MY
P, (Aagdy) = (-1)° 2341 (2a41) €1 1 Wapapns Y135)  (26)

Yy

We have here indicated explicitly the dependence of F g UPon
1

the orientation of the particular orbit in terms of which 1t was evaluated

The angle, ¢/ , 1s that angle whose variation expresses a rotation of the
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orbit about the incident beam direction as an axis If the final direction

of motion of the projectile 1s not observed, then we must average F over

all orbits Thus

S Fmiml (ky, €, ¢f)ed €ay
?:O

Im+ Yy 3797

= F, (A, 37) (-1) Co
2 Vl o*1l mg, =My
1
ANV
1 C oot V1
pal Sppr o p
-1
E (-1) EoER S8 Parln, - (R, )€deay
< e (1)

since the rotation R 158 1tself a function of € and ¢

q-e

We break up the rotation Rq.,e into the sum of two rotations

Ry 2k + Rkl —»e Where (kl) represents a fixed coordinate system whose

+ z-axis 1s 1n the direction of the unit vector T{l Then

Y yl

b))
1
(Rgse) = . (R ) D (R )
g-»e Dml m ;g a>k 7 Vo s ke

1
D ? -
M) Ty 5 pe ! g

@ - n

L
The rotation Rkl —e consists of Euler rotations through 7 ’ 5 and 5

respectively, so that

DR, L) =D (9,5 E5H)
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The integral in (17) now assumes the form

D)Jl [ D»l (¢, % &%) o o e aea
E mi-ml,g-' J‘ J 0’)/61-—/*- y’ —2—, 2 X A 5’
o
Yy J
. 2y [ g s#p 1 1 & -x
We define the particle parameters
MY
~+l C e T @-n
Ve C1,-1
+1 C , 1 1~ "/“' PP o 2
= E (-1 Lol N, s; 8l e cdé
AN Vg 1 AOA
2 C1,-1
MY
/""I'l C ,/U"_/A/ /‘/L
= "l u
2 (-1) M’ul Nul Lo (§) (18)
A Cl,-l
where
oY SR ) E- @]
7€) - fsx 8/ cos[(,u o) Iz e d€ (19)
[po = |

Because of the coefficients N , previously defined in (lla), we see

§y
1
that (18) vanishes unless .Ul 1s an even integer We may express the



density matrix F as

4 917 J1*]1”1
o, ) - 21 Ry (o 9) (DT T ey
Ul_ A
Duim 0 (&) Ayy. (£) (20)
11 1

where we have introduced the normalized particle parameter,

Ay (§) - S (EVg() (21)

These have been evaluated by (AW) for the special cases V=2, V=2
and 4

We may now put E, S and F together to obtain the correlation
function for the case in which both y-ray transitions involve the mixtures

(Ly, Ly + 1) and (Lg, L

3+l)

Wk koks) = Z F”l(M°Jl)A“1*’2 vy (i koks ) a,wl(f)

YidoH3

2
{ (L3 3dp) + g7 F”B(L3+l 3335)

Jz- 2 +1

+ 2 !:rl(—l\ f(232+l)(2L5+l)(2L5+5) G)J (L3L3+l JBJQ)}

X ((212+1) [M (911030, Y1 Y5 u}) + J2(2L2+3) [ (011241 305 Y192 u5)
2 oV @) (E) I (93000 30 Y, u2u3)} (22)
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The functions F) (L3a"), Gy (1L'33%), M (L3, ¥ ¥' V") and A,uu " have
been defined 1n (BR 69b), (BR 70d), (BR 138a) and (BR 138b) respectively
We have further defined

L'V 1

22 2 (2 V3 +1)72

L
IC (o, L,L 0 ¥y v, ) = C

12272
2 (25+1) W(¥ 1 Ypipaps ¥38) W(¥oSLAas,d0Ln) W(31318005 Y1Ls)
S

Jq+3+L, L LMY L 4
1Tt et T o 2 ;
= (-1) Cpy (@¥5+l) ~ X(3y1p05531L40p, V1 Y V) (23)

The mixture ratios are
J\ o (J3 ” L3+l ” J2) ) (J2 ” L3+l ” J3)
1 (3511 s 3,) (3 15 35)

and

(3, I L+1 Il i)
ENENEN)

5, -

In the event that the first y-ray (intermediate radiation) 1s not

observed, we have

Wk, kg) = fw(klkelg) a1 (k)

2 L3+L3'
LyL} Y (-1) Fo5(Lsl3353,) Fay (b9, )
3

(3510151 0,)" (a0 2y 0ap) Wayay3p30, 0 1) By (k) )@,

bk For a definmition of the X coefficient see U Fano, National Bureau of
Standards Report No 121k
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This expression for the case i1n which the observed y-ray is pure i1s the
same as (BR, l4l) except for the factors a.u, (f)
Finally, if there 1s no intermediate y-ray so that L, = 0 and

J] = J2, we have

W(k1k3)=w1+<f2w rod w

II 11T’
where
wr=S 805 G &) a,, ()
)
Glyp = ZAU (ALz+1) P, (k) k3) &y (§)
Y
Jz=Jo+1
")HI = (-1) ET Y (2J2+l)(2L3+l)(2L3+3)
Z Gy (L5541 302) Ty (Modp) By, (B k3) @y (£),
v
and where

J (35 ] Ly+1 I3,)
N E*Y )

for the case in which the y-transition contains the mixture L3 and L3+l
The coefficients Ay, are defined 1n (BR, 692a) If the y-transition is

pure one simply has
A A
W= A, 2, ()5, (& B)
v

as given by (AW, 8)
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