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The direction of emission of the 7-rays emitted by nuclei which

have been excited by Coulomb interaction with charged particles is cor

related with the direction of incidence of these particles and the angle

through which they are scattered In practice it is convenient to carry

out the envisaged experiment so that the scattered particle is not observed

This is assumed to be the case in the following The results of a cal

culation for the correlation between the incident beam direction and a

subsequent single 7-ray for the case of quadrupole excitation have been

published by Alder and Wmther It is the purpose of this report to

present the details of this calculation, and to generalize the results to

cover the case of the triple correlation between the incident beam direction

and two subsequent 7-rays, either or both of which may be mixed

The basic assumption upon which the work presented herein rests

is that the collision may be treated by the classical impact parameter

method A careful study of the significance of this approximation has been

made by Huby and Newns , particularly as to its effect upon total excitation

1 K Alder and A Wmther, Phys Rev , 91, 1578 (1953), referred to here-
after as AW

2 R Huby and H C Newns, Proc Phys Soc of London, 6kA, 619 (1951)
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cross sections We merely point out here the obvious implication that the

kinetic energy of the system before collision be sufficiently below the

Coulomb barrier to ensure that no nuclear reactions take place via compound

nucleus formation

We consider the sequence of events whereby a nucleus of charge

Zge m the angular momentum state (j0 n^) is excited to the angular momentum

state (j, m,) by Coulomb interaction with a particle of charge Z,e whose

direction of incidence is specified by the unit vector, k-j_, the nucleus

then undergoing transitions (j;^)—> (jgn^)—> (j-*^) by emission of 7-rays

in the directions kg and k*, respectively The correlation function for

these events may be expressed as

W(k-L, kg, %) = }-t E^ (%) Snyn^^ (kg) F^ (£]_) (l)

where

Em mi (V =J ^i^ IH(k3) Î V* ^3*3 IH(V 'J2m2) (la)

Vl ^ "J (J1°1'"^'°=m°>* <J^'̂ '^ <1C)
o

The density matrix E and the coupling coefficients S need not be

discussed here* They may be expressed m the form

3 See L C Biedenharn and M E Rose, Rev Mod Phys 25, 729 (1953),
referred to hereafter as BR
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Emgrn^ (%) = 2- Fy (LjL^jgKjj// L? // jg)* (jj/l Lj II j2)
L3L^3 5

L5+Li-j2+nU JpJc^i *U /\
(-1) ^ ^ ^C22,5D 5, (£,), (2)

mn -nip+1 L^LA -^
Smgmg^l^i (k2} = ^7 y(2Lg-l-l)(2L^l) (-1) C^

LgL^2
2 2 2

1

AL2J2 AL2J2 L2L2J 2 ^2 ,£ *
m^n^-n^ m^rn^-m^ n^-m^m^-m^ m^-m^n^-m^o 2}

ti2*\*^)* (j2"l2//J;l), (3)

where the

J,-0g+l I ' hH***F^ (L3L^3J2) =(-1) ^ d V(2j2+1)(2L5+1)(2L3'+1) C^_J p
3

W(j2t)gL3L^,>'5J5) (k)

have been extensively tabulated2 The C's and W's are Clebsch-Gordan and

Racah coefficients respectively and the D's are the irreducible representa

tions of the rotation group The multipolarities of the first and second

7-rays in the cascade are specified by (Lg, L£) and (L,, Li) respectively

The numbers ^ g and $ , must be even integers

The form of the operator H(k;j_) appearing m the density matrix F

may readily be deduced In view of the above assumptions, we may regard
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the nuclear transition made by the target nucleus as a consequence of the

Coulomb interaction with the projectile as being induced by a time-dependent

potential of the form

™• t F&r
where r(t) specifies the position of the projectile relative to the center

of mass of the target at time, t, and the rx are the position vectors of the

charges e, in the target nucleus measured relative to the nuclear center of

mass Then, according to time-dependent perturbation theory, the pertinent

operator for determining the nuclear transition rate should simply be

H(kx) = e * V(t) dt (6)

where A E =E^-E, is the excitation energy of the target nucleus H(k1) so

defined, of course depends not only upon the incident beam direction but

upon the final direction of a particular orbit as well

The potential V(t) is a function of both the parameter of the orbit

and the internal coordinates of the target nucleus To obtain a useful

separation of this dependence, we expand
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V(t) =Z± eJT
i=l |r(t) -rj

^ ^sZ-, e
sT(t) =

X+l2X + 1 r(t)

(T)

Yf*(r(t))

< -1 -x -i iTtfj

Now the quantities, g£~, are to be evaluated in a special coordinate

system, hence, although the B{ are explicit functions of the nuclear co

ordinates only, they still depend implicitly upon the choice of coordinate

system in which the orbit is analyzed For purposes of this analysis, we

choose our coordinate system as shown in Fig 1

•Piq I
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The orbit lies in the x-y plane of a coordinate system specified by the unit

vectors (ex, ey, ez) such that ex is in the direction of the point of closest

approach The incident beam direction is specified by the unit vector, k.

The energy equation is

2 Z, Z0e2
-2- + -J^-2. =E,
2/^

or

1/2 2 • 2v— (/^ r +^r «p )+2 ».2x . Zi Z2 e
2

= E,

a =Z± Z2 ^/yuco- ,

and

. /T7---e6 = Y 1 + (p/a)

The quantity & is the eccentricity of the orbit and p is the impact para

meter The impact parameter is related to the angular momentum constant

for the system by

/^^p^ =/*r24>
The other relevant functions of the orbit may be expressed in terms of the

parameters a, € and C*J according to

r

ax, = reduced mass It is convenient to parametrize the orbit in terms of

a variable, cj , defined by

r = a (1 + £ cosh as ) (8)

where
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t = _S_ (co + £ sinh «^ ), (9)
v

cos y = g+COsh ~ , (10)
1 + £ cosh <s^

,,i J £ - 1 sinh ^ /,, n
sin y = + f, (11)

1 + £ cosh ^

The scattering angle, ® , is related to <£ according to

2 £

We may now express the scattering operator in the form

oO

, s \ f* f if (^ +^ sinh^J ) a
H(kx)=2 Bf e <(^) 7 (1 +f coshc) d^

i = a A E/fiv

The nuclear operators, B^, are here expressed in the (e) coordinate system

They are related to the same set of operators in an arbitrary coordinate

system, (q), according to

where R„ _ is the rotation required to bring the (q) system into the (e)

system Thus
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j&

H(k,)=J Bf DX fei^ +£sinh*, )| V" («,)(l +fi coeh „, )d«,
x^ x /y ^ ^

If now we specialize to the case of pure multipole excitation, then

hSh) =1\ BC »x sC{i>6) (12)
where, after dropping common factors,

if(t*j + 6 sinh^)-^ f

2XX' I(x+//*/)• )(dr/ J^=o'-<p (1 +<£ cosh oj Y"

(13)

and X + /•*> is even These functions are exactly the same as those given

in (AW, 7) for the cases X = 2, /u- = 0 and - 2 It is to be noted that

they are explicitly real If we define

and

X+Ww ___^_ j(x-y/)> y/jj\— (^.i)x ,
X 2XX' / (X+ //*/)' ( (d^ J?=0

- jlil 2 /u+^)' (x^^ry.
2x (>d£).(k£L).

(lAa)

f(<^) = ^ + € sinh *J , (14b)

p (to) = (1 + £ cosh .s^ ) , (Lta)



and take account of the fact that P is an even function whereas f and

li) are odd functions of <*J , we may express

X o pi")

We also note from this that

S^(S,6) =sf(-£,6)
The operator H^) is now in a form such that by application of

methods identical to those employed to obtain E or S in the forms quoted

herein we find for F

V «Ji-ml+*;i JiJi^i
*W <*l'£'*> = I V Jo •>!> (-1) Cmi^l

xxj^

Jq-Jt+1 , XX AJ 1
% (X 0Q Jx) =(-1) /2j1+l (2X+1) C^ W(jlJ;LXX, ^0o) (16)

We have here indicated explicitly the dependence of F, upon
1 1

the orientation of the particular orbit in terms of which it was evaluated

The angle, cf , is that angle whose variation expresses a rotation of the
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orbit about the incident beam direction as an axis If the final direction

of motion of the projectile is not observed, then we must average F over

all orbits Thus

Fm'm fy' j \ ^^(^ 6,?>£d*d?
1 1 €=1 f =0 XX

85 I F^(HJi) ^ ^,-1^
'i

XX *)
i r

\ (.d^1 \'rr f \ sf sfV^ (r Kd.df) XX i^ I X X m^-n^,^ -^ v q-^e' '

/*/*-' 1>-1 (17)

since the rotation R,.^- is itself a function of 6 and 4?
q-r c

We break up the rotation R into the sum of two rotations
q-»e

Rq-*k-, + Rfc _»e wnere (^i) represents a fixed coordinate system whose
/\

+ z-axis is in the direction of the unit vector ^ Then

pl v Jl ^1
V-nL,^'-^ (Rq->e) =)_ ^-n^,^ ^q-*^ B^ ,yu y. <\-»e)

The rotation Rk _,,e consists of Euler rotations through (f ,£ and —-

respectively, so that

<© - *
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The integral in (17) now assumes the form

JJ.

2. Dm;J_-m;L, cr

cr

r >>

1 w, h %=*) sf <€d£d?o-,/j.-r

*C*C*%y-r (o,|,4=S)«d£

We define the particle parameters

XX^,

K

^1 * ^ XX ^n SX SX B0}/U yu ^°>2}~2~> 6d€

where

XX A>-

/>"•'

XX ^.

'1,-1

A A*
.5 (-i^s.^k-'r^'f^^.10"^"*

*- XX vx

cl,-l

<r- /*+l C //"'_W s*M.

/v*4-

r/*/* (£>=[

XXA»:

%-lJ

S^" S^ cos
X X

jy-^i^j *a«

£ d6

(18)

(19)

//6 ->"- /
Because of the coefficients N , previously defined in (l^a), we see

that (l8) vanishes unless p is an even integer We may express the
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density matrix F as

a <r Jl_ml ^1^1F , (k ) =y Fv (X J J ) (-1) ^ Ct_„
m'1m1 1 L- »2. o 1 "^j ^

Dm.-m,0^l) a^ (O (2°)
11* 1

where we have introduced the normalized particle parameter,

a^W-h^tf)^) (2D
These have been evaluated by (AW) for the special cases X = 2, i) = 2

and k

We may now put E, S and F together to obtain the correlation

function for the case in which both 7-ray transitions involve the mixtures

(L2, L2 + 1) and (L?, L$ + 1)

W^k^) = y F^ (XJ0JX)A (kLS^5)axv (|)
*—- 1 1 2 2 1

^2^3

/Fu5(L3J3°2) +̂ l F»^L3+1 °3J2)

+2S (-1) 5 2 /(2jg+l)(2L3+l)(2L5+3) G^j (LjLj+l J3Jg) [
1 3 J

Xj^Lg+l) f (0lL2J2> ^1^2 J3) +ji(2:L2+3) T(^l^1 ^2' ^1^2 ^
+2cfgV (2L2+l)(2L2+3)2r(j1LgL2+l jg, ^g^)] (22)
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The functions F^ (Ljj«), &j) (LL'JJ'), P(jLj',x'^ i>" )and A^ M/have

been defined in (BR 69b), (BR 70d), (BR 138a) and (BR 138b) respectively

We have further defined

^(J1L2L2V^1^2^3)=C1?T2(2^3 +1)4
X (2S+1) W^^gjgjg, ^3S) W( J^gSLgJ^JgLg) W(j1J1Sjg, ^Lg)
s

J-.+Jo+L^ LpL'^p -i k
=(-1) X d 0^_l ^(2^5+l) X(j1L2j2,j1L2j2, ^^g^) (23)

The mixture ratios are

(j,//L,+l//Jo) (jp/'L,+l//jJ
S.

J3 3 "2' w2 " "3 " °3'

1 (^/(i^/hg) (j2//L5//j3)

and

(yiyi/ij^
^2 (jglUg/fJi)

In the event that the first 7-ray (intermediate radiation) is not

observed, we have

W(kx, Kf) = \ W(k1k2k5) d.yi (kg)

L3+L3

(J5'lL5ll J2) (j5llL^//jg) W(j1J1J2J2,^L2) Py (1^ 1^)0.^

4 For a definition of the X coefficient see U Fano, National Bureau of
Standards Report No 1214
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This expression for the case in which the observed 7-ray is pure is the

same as (BR, l4l) except for the factors ^,11 (5 )

Finally, if there is no intermediate 7-ray so that Lg = 0 and

jx = jg, we have

W(k1k5) =Ct/X +S2 fjj, +2SujiiV
where

eoz =£ A^ (XI3) P^ (kx it,) axJ (| )

^11 =£ A^ (XL3+1) pj> (kl k3> Axi> (^ )
»

*III =(-1) Ĵ2+ ^(2j2+1)(2L5+1)(2L5+3)

^ G^, (L3L5+1 J5Jg) F^ (XjQjg) Py (k-L %) d.^ (| ),
V

and where

p (J3/lL3+l//j2)
^ =" (J3/I L3 || jg)

for the case in which the 7-transition contains the mixture L3 and L3+l

The coefficients A,, are defined in (BR, 69a) If the 7-transition is

pure one simply has

u

as given by (AW, 8)
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