


Contract No. W-7405-eng-26

OAK RIDGE NATIONAL LABORATORY

REACTOR CONTROLS COMPUTER

J. J. Stone and E. R. Mann

DATE ISSUED

MAR 30 t95tf

OAK RIDGE NATIONAL LABORATORY
Operated by

CARBIDE AND CARBON CHEMICALS COMPANY
A Division of Union Carbide and Carbon Corporation

Post Office Box P
Oak Ridge, Tennessee

OR NL-1632

Copy No. O

MARTIN MARIETTA ENER3Y SYSTEMS LIBRARIES

3 445b 034^512 1





1.

2.

3.

68.

7-11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22

23.

24.

25.

ORNL-1632

Instrumentation

INTERNAL DISTRIBUTION

C. E. Center

Biology Library
Health Physics Library
Central Research Library
Reactor Experimental

Engineering Library
Laboratory Records Department
Laboratory Records, ORNL R.C.
C. E. Larson

L. B. Emlet (K-25)
J. P. Murray (Y-12)
A. M. Weinberg
E. H. Taylor
E. D. Shipley
C. S. Harrill

F. C. VonderLage
C. P. Keim

J. H. Frye, Jr.
R. S. Livingston
R. C Briant

J. A. Swartout

26. S. C. Lind

27. F. L. Culler

28. A. H. Snell

29. A. Hollaender

30. M. T. Kelley
31. G. H. Clewett

32. K. Z. Morgan
33. T. A. Lincoln

34. A. S. Householder

35. C E. Winters

36. D. W. Cardwell

37. J. A. Lane

38. E. M. King
39. L. M. Reynolds
40. W. J. Ladniak

41. D. D. Co wen

42-43. P. M. Reyling
44. E. R. Mann

45-94. E. P. Epler
95. M. J. Skinner

EXTERNAL DISTRIBUTION

96. R. F. Bacher, California Institute of Technology
97-344. Given distribution as shown in TID-4500 under Instrumentation Category

DISTRIBUTION PAGE TO BE REMOVED IF REPORT IS GIVEN PUBLIC DISTRIBUTION



CONTENTS

SUMMARY 1

INTRODUCTION 2
Kinetic Equations, The Basis of the Simulator 2
Purpose of Simulator . 3
Symbols 4

LINEAR OPERATIONS 12

Analysis by Operational Calculus 16

MULTIPLICATION . 18

General 18

Manual and Servo 18

Electronic - Digital-Analog Multiplier 20

SYSTEM SIMULATION 30

A. Analysis of a Servo System 31
B. Analysis of a Reactor 35
C. Analysis of a Thermal System . 39



OAK RIDGE NATIONAL LABORATORY

REAGTOR CONTROLS COMPUTER

J. J. Stone and E. R. Mann

SUMMARY

Reactor control implies the safe regulation of a
system under all conditions. This involves all the
aspects of a system from the basic design to the
operating technique, for example, corrosion,
radiation damage, kinetic response, etc. Proper
control includes the accident as well as the normal

routine, for the accident must be prevented from
endangering the operating personnel or from causing
excessive damage to the system.

Many control problems may be detected and
solved by prior testing and experimentation with
test samples of the materials to be employed and by
the determination of their behavior in a radiation

field of appropriate strength. Other problems may
be anticipated and an operating technique employed
to prevent serious consequences.

The kinetic response, however, depends upon the
entire system. In general, coupling exists between
all components, and a perturbation of the condition
existing in one unit will affect each of the others.
Simulation of the entire system offers a means of
detecting and solving the control problems which
are likely to be encountered in the kinetics. More
specifically, simulation offers a means of mapping
areas of controllability and synthesizing the
necessary auxiliary equipment required for kinetic
stability.

Each component of a reactor system affects the
stability and the kinetic response. Proper con
sideration of the kinetic behavior early in the design
may prevent the inclusion of elaborate or question
able auxiliary control equipment. At this stage of
design, a reactor system is undergoing changes and
the basic considerations are modified rapidly. To
be useful at this stage, a simulator must be suf
ficiently flexible to follow basic changes and to
indicate the import of each change upon the con
trollability of the system before the design engineer
is comitted to the modification.

At a later stage in the reactor system develop
ment, the auxiliary equipment which was syn
thesized by use of the simulator, may be con
structed and tested by coupling it to the simulator
and using it for the simulator control. This,

however, requires that a "unity" time scale be
employed in the simulation of the reactor.

To accomplish these purposes, the ORNL Reactor
Controls Computer was developed. It employs
electronic d-c amplifiers whose functional behavior
is determined by plug-in impedance networks. The
computer, or simulator, contains 20 of these
operational amplifiers. By the design of appropriate
plug-in units and proper coupling of one amplifier
to the others, a wide variety of systems may be
simulated. In whole or in part, the system simulated
may be quickly modified.

An analog-digital, electronic multiplier permits
inclusion of some types of nonlinearities. One
such nonlinearity, encountered in the nuclear
kinetic equations, is the product of the effective
multiplication factor times the power level. The
use of an electronic multiplier enables this product
to be performed on a unity time base such as
described in a preceding paragraph.

Design of proper impedance networks for a
particular reactor to be simulated is the duty of
the reactor control engineer. For this reason this
report describes the theory of operation of the
amplifiers and the networks which are likely to
be employed with them.

In the section on System Simulation a typical
reactor system is discussed to illustrate one method
of designing simulator circuits. The reactor dis
cussed is hypothetical, but the principles en
countered are similar to systems under study.

The use of a simulator for mapping, or surveying,
an area of controllability does not impose stringent
requirements upon the accuracy of each unit. Where
doubt exists as to the validity of a result or where
the margin of safety is small, more accurate
methods of computation should be employed. The
accuracy obtained is a function of the tolerances
of the impedances used and also of the amplifiers.
The amplifier errors are discussed in the sections
on the Operational and Linear Amplifiers.

The flexibility of the computing units incorporated
in the simulator enables it to simulate systems



other than nuclear reactors. Problems of radio

active decays, furnace control, fluid flow, mechani
cal oscillations, and others lend themselves to
simulator study. For some purposes an artificial
time base may prove to be desirable, but this is

obtained through the plug-in impedance networks.
Any system which may be linearized, or which
involves only such nonlinearities as may be handled
by the multiplier, may be simulated by the ORNL
Reactor Controls Computer.

INTRODUCTION

The fact that the kinetic equations of a nuclear
power plant can be represented reasonably satis
factorily by a set of differential equations, all but
one of which are linear with constant coefficients,
has made attractive the use of analog computers or
simulators for determining the response of such a
system to various practical operational demands.
A power system may be stable in that its variables
are nonoscillatory or perhaps exhibit highly damped
oscillations, but an operator of a nuclear power
plant would like to know the magnitude of response
of these variables to his manipulation of control
actuators. Many of these quantities must have their
magnitudes restrained by limits. Maximum or mini
mum temperatures, for example, of either fuel or
moderator may be imperative for certain reactor
designs.

Control engineers can provide external control
mechanisms, such as servo systems, provided their
performance does not preclude systems which lie
well beyond the presently known servo art. A
hypothetical servo system with a response time
of a small fraction of a millisecond may be shown
to be satisfactory for purposes of stabilizing, but
such a system cannot be built on the basis of the
present state of the art.

The second-order linear differential equation,
with constant coefficients representing the motion
in such a servo loop, can be solved handily by
means of an electronic analog computer or simulator.

KINETIC EQUATIONS,

THE BASIS OF THE SIMULATOR

Production of power in a reactor will raise the
temperature of both the fuel and the moderator.
Some means in the form of a fluid coolant is pro
vided to remove this heat from the critical lattice.
Since the rate of change of power production in the
reactor is usually a function of either the fuel or
moderator temperature or of both, then the kinetic
equations of the complete power plant system, in

cluding both the reactor as a heat source and the
heat exchangers as a sink, must be considered if.it
is desired to determine the behavior of a part of the
system. A simplified set of these equations usu
ally can be written without making assumptions
which are difficult to justify. The various parame
ters are constants or known functions of time

determined by a specific reactor design. If the
design is altered, these parameters may likewise
be expected to change.

These equations are differential equations, most
of which are linear with constant coefficients.
However, the differential equation involving the
mean reactor flux or reactor power as a function of
time is nonlinear in that one of the coefficients

usually involves the power, temperature, and/or
some other more or less arbitrary time-variant
parameter. The type of nonlinearity is not singu
larly defined for reactors in general but depends
upon the specific design.

Circulation of the fluid coolant in the system
introduces another type of nonlinearity in some of
the equations because an exact representation of
the differential equations for a system exhibiting a
pure transport lag in some of its parameters would
require an infinite set of linear equations. It is
customary to represent such transport lags approxi
mately by finite sets of first-order linear equations,
with constant coefficients, in which the driving or
forcing function of one such equation is the de
pendent variable of the preceding one in the set.

A shift in flux or power distribution in the critical
lattice during power or temperature transients
would have to be represented analytically by addi
tional equations to describe these variables as a
function of position within the reactor, as well as
of time. It is not customary to attempt to utilize
the analog type of computer for solving the reactor
equations involving functions of space and time
when both the latter quantities are considered as
independent variables.



The reactor power plant equations may then be
considered as a set of differential equations, one
of which is peculiarly nonlinear and the rest linear
with constant coefficients. The number of first

order linear equations with constant coefficients
required to represent transport lag functions usu
ally can be chosen so that the function with trans
port lag is about as reliable as the parameters in
the rest of the equations.

This complete set of equations representing the
entire reactor power plant can be linearized, that
is, considered linear for a small perturbation in
either a driving or forcing function, or in one of the
parameters. The response of the system to such a
perturbation can then be determined. Stability of
the linearized representation of the system can be
determined by Nyquist's criterion. * This is the
general procedure for analyzing a reactor power
plant for stability.

A power plant such as that described above
would be considered inherently stable if the analy
sis of the equations by Nyquist's criterion indicate
stability. There i s not much doubt but that a reactor
design engineer would prefer that his design turn
out to be inherently stable. Stable designs usu
ally simplify the control equipment because they
can be more easily designed to fail safe.

If, however, these equations indicate that the
power plant is unstable and will oscillate in power
or temperature and if it is impractical to alter the
design parameters sufficiently to eliminate the
instability, an external control mechanism in most
practical reactor power plant designs can be pro
vided to prevent these oscillations. The equations
of this external control system, when added to the
previous set of equations, provide a new set which
can again be analyzed for stability. The control
system usually involves the motion of a mass
accelerated by a force and accordingly can be
represented as a second-order linear differential
equation with constant coefficients. The driving
or forcing function of this equation, is proportional
to an error signal made up of perturbations in one
of the dependent variables or a linear combination
of these variables taken from the previously de
termined unstable system. The polarity of such a
forcing function is chosen to make the system de
generative rather than regenerative in response to
a small pertubation.

PURPOSE OF SIMULATOR

The concept of an electronic simulator, for a
nuclear reactor, appears to be definable in a number
of ways, depending upon the experience of the in

dividual who proposes to use it. The definitions
range from "an aid to intuition" for those interested
in finding solutions to the kinetic equations through
"a device for training reactor operators" and
finally including "an engineering tool for develop
ing reactor control equipment." This latter concept
has been the one which established the objective
for developing the ORNL Reactor Controls Computer.
The computer is illustrated in Fig. 1.

Pile simulators have been built and used for

developing control equipment. • In most cases
such units have been so restricted in nature that

they were useful primarily for the particular reactors
for which they were designed. Modifications for
application to other designs would be tedious and
expensive.

While a flexible analog computer or simulator may
appear as a unit to be complex, it will in general
consist of a multiplicity of more or less identical
units. Operations of addition, subtraction, differ
entiation, and integration are all that are necessary
for the solution of linear differential equations with
constant coefficients. These operations can be
carried out by means of what is known as "opera
tional amplifiers" with appropriate feed back
circuits. There is only one such type amplifier
used in the ORNL Reactor Controls Computer.
Twenty of these amplifiers have been supplied for
this computer, although this number is not neces
sary for some nuclear power plants. The amplifier
is described in detail in the following pages.

The operation of multiplication by means of an
analog computer is more complicated than the opera
tions listed in the previous paragraph. Several
methods for multiplying by analog means are avail
able. The one chosen for this computer is described
in this report, and the reasons for using this par
ticular method are given. Limitations in accuracy
and response time will be given. Division, while
not a necessary operation in this computer, can be
achieved by means of the multiplying unit with
proper feedback networks.

The ORNL Reactor Controls Computer contains
one electronic multiplying unit and fifteen addi
tional operational amplifiers. Suitable interchange
able feedback networks make possible the use of
the amplifiers in solving a rather large number of
simultaneous differential equations of the type
representing reactor power plant kinetics. Adjust
able resistor and resistor-capacitor combinations
allow analog representation of reactor and heat
exchanger parameters. This representation can be
extended over wide practical ranges so that the





THE OPERATIONAL AMPLIFIER

As was stated previously, the operational ampli
fier is a basic constructional unit of the simulator.

Figure 2 shows a simplified schematic diagram of a
typical, single-ended, operational amplifier. It is a
high gain, d-c amplifier with an odd number of
stages of gain. The odd number of stages, usually
three, produces a polarity reversal through the
circuit so that feedback networks connecting
the output to the input will be degenerative.
The over-all gain is the product of the indi
vidual gains of each of the three stages and is
usually near 40,000. A triangle, such as that shown
in Fig. 3, is frequently used as a schematic symbol
of an operational amplifier and will be so employed
in this report. The n denotes the number assigned
to a particular amplifier in a circuit employing more
than one such unit. The triangle represents the
amplifier only; the feedback and input networks are
shown separately.

Ideally, the output voltage of such a circuit
would equal the input times the gain of the ampli
fier, provided the zero adjustment had been made
properly. However, numerous effects may alter this
condition. Heating of components, with a resultant
change in their ratings, voltage drifts in the power
supply, and aging of the vacuum tubes are but a few
of the causes for deviation of the output from the
ideal. Drifts may occur at any point in the circuit,
but for convenience in discussing the relative
stability of various amplifiers and for purposes of
analysis, the combined effect of all drifts is con
sidered as a single drift of the voltage applied to
the input grid.

INPUT

In the circuit of Fig. 4 a feedback impedance,
Z_, degeneratively couples the output, e_, to the
input, while an input impedance, Z.., connects the
input to a driving source, e../ e represents the
normal input signal e developed^ by e.. plus a
second input e , representing the effective input
drift signal, as defined above.

An operating condition of the amplifier shown
schematically in Fig. 2 is that there is no input
grid current in the vacuum tube V,. Accordingly,

INPUT

UNCLASSIFIED

DWG. 22461

••OUTPUT

Fig. 3. Block Diagram Representation of Oper
ational Amplifier.
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DWG. 22462

^
'«

A
^11

GAIN>
II

eg

Fig. 4. Operational Amplifier with Feedback and
Input Impedances Connected.

UNCLASSIFIED
DWG. 22460

OUTPUT

ZERO
ADJUST

+ 300v
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Fig. 2. Conventional Single-ended Operational Amplifier.
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the current z'n through Zn is equal and opposite
to the current z'_ through Z_, and the following
relationships exist between z'^, z'2, e)1# e2, Z11#
Z2, eg, and ed\

'11 = ~ll

e, , — e

11

1 1

62 - 6S

Using (2) and (3) in (1),

(1)

(2)

(3)

(4)

(5)

also

— e + e
g • • -d

If Z_ be made equal to zero and Z.. infinite, that
is, open circuit, then the normal input signal re
sulting from e.., which is e, will be zero and (5)
becomes

e2 = ed <7>

Thus the input drift signal may be measured in
an operational amplifier by connecting the output
to the input directly. The output then equals the
effective input drift signal. A typical value of this
input drift signal for conventional single-ended
operational amplifiers is 50 millivolts. This may
be reduced by a push-pull connection in which some
of the drifts are balanced out. Such a "differential"

amplifier may have drifts as low as 5 millivolts.
The second term on the right of Eq. 5 is neg

lected in all applications of the operational ampli
fier since this term represents the output error and
should be small when compared with the first term
on the right of this equation for a well designed
amplifier.

/ Z„ \
Error = 1

11.

(6)

(8)

When e , is extremely small, then, over the useful

range of the amplifier output

e =

g
(9)

Since the gain, A, is quite large, the error will
normally be negligible except when the ratio of
impedances is very large. An example for which
the latter condition is true is the condition when

Z, is capacitance only and the operational ampli
fier' with pure reactance feedback Z, is operating
as an integrator.

When e , is large, the error term will be negligible
only for large values of c, and the accurate opera
ting range of e. is greatly diminished. A dynamic
operating range of three decades is normally de
sirable. With a maximum value in e. of 100 volts,
the minimum limit of 0.1 volt will be too low for

accuracy in the conventional single-ended, d-c
amplifier because of the input drift signal.

To extend the operating range to three decades,
the ORNL Reactor Controls Computer employs a
stabilized, single-ended operational amplifier which
was developed by the RCA Laboratories. Figure
5 shows a simplified schematic diagram of this
amplifier, while a complete schematic diagram is
shown in Fig. 6. The amplifier (Fig. 5) is com
posed of a conventional, single-ended amplifier
with a no-drift chopper amplifier added to the input
circuit. The chopper amplifier has a very low fre
quency response; so high frequency components in
the input signal are amplified exactly as they
would be in the conventional amplifier. Very low
frequencies, however, will be amplified by the
chopper circuit, and the behavior of the amplifier

UNCLASSIFIED
DWG. 22463

Fig. 5. Simplified Block Diagram of Stabilized
Operational Amplifier.
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will be modified by the feedback from the chopper
amplifier.

A drift in any portion of the conventional circuit
appears as a d-c offset at the input, shown as e „
Fig. 5; e . is amplified by the chopper amplifier
by a factor of A} and applied to V. as e ' The
cathode connection of V. to V. couples e to V,
so that the effective input to the first tube equals
the arithmetic sum of e , and e _. In Ea. 5, e

g' g* g
represents the total input required for the conven
tional circuit; so it follows that

g g< #2 g^ \ i (10)

"*i 1 + A,
(11)

The actual low frequency input is represented by
e ,, and for zero feedback impedance it represents
the value of the effective input drift signal. There
fore, the chopper amplifier reduces the low frequency
input drift signal by the factor Ml +A^ The zero
frequency gain of the chopper amplifier used is
approximately 2000, so that the drift signal of the
conventional portion of the circuit is reduced by a
factor of approximately. 5 x 10-4. Thus, if the
drift of the conventional amplifier portion were 100
mv, it would be reduced to 0.05 mv by the chopper
amplifier. Such a signal is negligible when com
pared with the normal input signal, e, and will be
neglected in later analyses involving the operational
amplifier.

The chopper stabilized amplifier provides another
distinct advantage over the unstabilized amplifier
in that the error given by Eq. 8 will be reduced by
the factor 1/1 +A1for low frequency input signals.
In the case in which the operational amplifier is
used as an integrator, Z2 in Eq. 8 is of the form
-e2/Ce2, where e_ is the time rate of change of
e2 and C is capacitance. For a slowly varying or
steady input signal, e- is quite small or zero and
hence Z2 is large. It has already been stated that
for large ratios of Z^/Zu in Eq. 8, the error is not
necessarily negligible. The attenuation factor
1/1 +^i is most effective for these conditions and
accordingly diminishes the error most when it needs
most to be diminished. This characteristic of the
chopper stabilized amplifier will be referred to
again in connection with explanations of operational
amplifier applications.

Figures 7 and 8 show the physical appearance of
the amplifier used in the simulator. The two tubes

in the front and the chopper in the center comprise
the stabilizing amplifier. The chopper is driven at
a 60-cps rate. The three tubes at the rear of the
chassis form the conventional, single-ended, d-c
amplifier. Characteristics of this circuit are the
following:

chopper amplifier gain 2,000

d-c amplifier gain 40,000

zero frequency gain 80,000,000

d-c amplifier frequency
response to 500 kc

chopper amplifier frequency
response 0.5 cps

drift —high frequency
components less than 0.2 mv

drift —low frequency
components less than 0.05 mv

The functional behavior of this amplifier as a
basic unit of the simulator is determined by the in
put and feedback networks employed. These net
works vary considerably from stage to stage. To
provide flexibility, neither the input nor the feed
back networks are included within the amplifier but
can be coupled to the amplifier by means of the
female, octal socket located on the front panel.
A typical plug-in unit is shown in front of the
amplifier in Fig. 7. For networks which are too
bulky to be placed in a plug-in unit such as that
shown, a jumper cable is supplied with each ampli
fier to connect this unit with the more complicated
network mounted in an adjoining chassis.

The normal signal on the input grid of a stabilized,
d-c amplifier exceeds the drift signal by a sufficient
margin to allow the drift signal to be ignored in all
but a few critical applications. In the following
discussions, e , unless specified, refers only to
the signal on the input grid which results from
normal operation of the amplifier and not from
drifts of its components. This e results from the
finite gain of the amplifier. The gain depends on
the frequency, being very high at very low frequen
cies and lower at the higher frequencies. For this
reason the value of e depends on the frequency.
Considering a single frequency component, it
follows that

(12)

where A is the gain (a complex quantity) of the







amplifier at the frequency being considered. Con
sider the circuit of Fig. 9. Let /z be defined such
that

% = /"ll (13)

The \i thus defined is the input impedance of the
operational amplifier from its grid to ground as
presented to z'n. Combining (13) and (12) yields

but

so that

P 11

11

V-> = —
A

1 /e.

V- =
A\ i

e2 » eg

for large values of A, then

= Z.

and

" = 7

(14)

(15)

(16)

(17)

(18)

(19)

(20)

Both Z. and A are complex arid it follows that,
in general, fi will be a complex impedance.

As an example, consider that both Z2 and A are
real and that

Z2 = 106 ohms

A = 4 x 104

Th en

106

4 x 104
= 25 ohms (21)

Zc

'11

UNCLASSIFIED
DWG. 22464

Fig. 9. Operational Amplifier with Coupled Feed
back.

From Fig. 6 it may be seen that the chopper
amplifiers' input circuit is connected between the
input grid and ground and is, therefore, in shunt with
iu The impedance of this circuit is 10 ohms and
has a negligibleeffecton the operational amplifiers'
normal functions. In later applications additional
shunting resistances will be considered from the
input grid to ground, and in each case the shunting
effect upon the input grid must be negligible for
accurate results. The amount of shunting which
may be tolerated is determined by the accuracy
required in the circuit and may differ from problem
to problem. In general, the shunting impedance
should be,

shunt
> 1000 —

A
(23)

Since A is complex, the phase of e2 will differ
from that of e . It is conceivable, therefore, that

gfor a particular Z„ and A the feedback would be
"in phase" instead of 180° out of phase as implied
in the preceding analysis. At such a frequency,
where "regenerative" feedback occurs, the circuit
would oscillate were the loop gain greater than
unity. The phase lag in-the amplifier increases
with frequency. The frequency at which regenera
tive feedback occurs is raised by phase correcting
networks in the amplifier. The magnitude of A de
creases with frequency. The relationship of A to
the phase shift is such that for all commonly en
countered feedback networks, the system is stable
and will not oscillate. A more detailed discussion

is available in the literature. 2'3'7'1 ,<13

11



LINEAR OPERATIONS

A d-c amplifier maintains, throughout its oper
ating range, an input voltage which is negligible
in comparison with the output. Consequently, the
potential at point A (Fig. 4) may be considered
zero. Furthermore, since input grid current of the
amplifier is vanishingly small, current z'.. is equal
in magnitude and opposite in sign to z'_. The error
introduced by these assumptions for the stabilized
d-c amplifier is less than the probable error of
the measuring equipment except for extremely
small values of e2 and for cases in which a time
derivative or integration of the input grid voltage
is involved. For the latter two cases, further
discussion of the probable error will be made. For
all other applications, this error will be ignored
in the following explanations. Thus, in general,

'11

11

11

(24)

and

(25)

It follows that

11

(26)
11

11
11

(27)

The output, e2, equals the negative of the input,
en, modified by the ratio Z^/Z^y In general,
these impedances are complex and, therefore,
frequency sensitive. When e.. is specified, e-
may be computed. A sufficient description of the
system's kinetic response for many purposes may
be obtained by specifying either a step change
or a periodic function of time for e.. and by de
scribing the behavior of e„. For arbitrary vari
ations of e.., the impedance ratio, Z-/Z.., de
notes an operation performed on e., to obtain
e2. Operations include scaling, differentiating,
integrating, and combinations of them. Oper
ational calculus is well suited for analog circuit
analysis, but only a brief description of this
method is included at the end of this section

because classical calculus is more widely used
and understood. Classical analysis will be used

12

principally to describe the operations of such
circuits. Usually this form of analysis deviates
least from that in which a problem is presented
for solution.

If, in Eq. 27, Z^ and Z2 are pure resistances,
then

R
11

11 = -^11*11 (28)

Here the output equals the input multiplied by
a scalar A^ which is equal to the ratio of the
two resistances. Such a circuit may be used for
amplifying or attenuating a function for use at
another point in the circuit. A reversal of polarity
accompanies the magnitude change. The change
in sign may be the sole purpose of such a circuit
in a computer. Since the complexity of the prob
lems which may be handled depends on the number
of amplifiers available, the number of sign re
versals should be kept low to leave as many
amplifiers as possible available for more useful
applications.

If, in the circuit shown in Fig. 4, Z_ is a
capacity while Z11 remains a resistance,

'11

11

(29)

= C,
dt

(30)

so that

11

R
-C„

11

de.

dt
(31)

or, integrating each side,

1

R11C2
f e}}dt + C} (32)

The output is equal to the time integral of the
input plus a constant of integration, C.. The RC
product is a scaling factor upon the output and
is chosen in such a manner that the output does
not exceed the voltage limit of the amplifier. The
factor RC must also conform with the level of
output required by the problem being solved. This
is an integrator circuit. High frequency noise
and signals contribute little to the output e,, thus
permitting these circuits to be used in cascade
without decreasing the signal-to-noise ratio.



There is dn error in the output of an integrator
which may cause difficulty in some applications.
To show where this arises, a more exact deri
vation of the circuit operation follows.

The current i^ 1 is

ell - eg
Ml

jR
11

and

z2 = C2
d(e2 - eg)

It

so that

e,, — e
H g

11

= -C,

d(e2 - eg)

It

Upon integrating each side of Eq. 35,

= / en dt
J RuC2

+ C,

(33)

(34)

(35)

f-J Ru(
e dt

c2 «
eg (36)

The first two terms on the right of (36) con
stitute the desired integral, while the last two
terms on the right are errors. The last term, an
error, equals the output divided by the gain of
the amplifier. For most purposes this will be
negligible in comparison with e2 because of the
large gain (of the order of 40,000) of the amplifier.
Although the magnitude of e may be ignored,
the time integral of this term involved in the third
term on the right may become appreciable. For
short-time integrations this may be ignored, and in
many other applications involving longer periods,
the accumulation of error is resisted by feedback
in the computer.

To determine the magnitude of error, let the
input grid signal be represented as a single
frequency such that

(37)

Then,

= E cos oil
g

1 /»< _ 1 rt
E cos at dt

g

E sin at
g
RuC2a

(38)

The maximum error, E

max /?1 |C2&)

Since

e2 = -Ae
g

where

e2
= •-E 2 cos at

It follows that

E7
b

g
=

~A~

and Eq. 39 becomes

AoiRytC2

(39)

(40)

(41)

(42)

(43)

The maximum error will be, accordingly, less
than 0.1% of the output whenever

RyiC2A(o > 1000 (44)
This error term becomes significant only at very

low frequencies where the magnitude of A is in
creased by the chopper amplifier. At zero fre
quency this gain is approximately 80,000,000.

For an integrator using a l-/*fd, polystyrene,
Western Electric condenser and a 1-megohm input
resistance, the decay of the output occurs with
a time constant of 3 hr using the stabilized d-c
amplifier.

The error arises from the current through the
input resistances which is required to sustain a
voltage of e on the input grid. The feedback
capacitor, C2, furnishes this current and the
charge is decreased by its flow. Where paralleled
networks are employed in the input circuit; the
value of R.., as used in the preceding paragraphs
in describing the error, should be the effective
resistance of the entire circuit.

If in the circuit of Fig. 4, Z,, is a capacity and
Z2 a resistance, then a detailed analysis gives

lll - C11

d(eu - e )

dt
(45)

l2 =

Therefore

de
11

il
dt

11

e2 ~ eS

de

dt

(46)

i ♦ ± (47)
2 R2
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or

de

e2 = -R2C„
11

dt
+ R2C,,

rfe

dt

(48)

The first term of Eq. 48 is the derivative of the
input voltage times a scalar, RJO... The second
two terms are errors. The third term may be
neglected because it will always be negligible
in comparison to the output, for reasons which
were given in connection with the integrator. The
second term, however, requires further exami
nation.

Using Eqs. 37 and 42 to represent a single fre
quency input and resultant output yields, for the
error,

de

R2CU
dt

~ i?2Cll

d\ cos ait
\A

From this it may be seen that a differentiator's
use is restricted when accuracy is required, and,
that when used, care should be taken in de
termining the degree of accuracy obtained. Further
more, noise components appearing at the input are
amplified by the differentiator by a factor equal to
a. Consequently, cascading differentiators can
easily degrade the output signal to the point where
it is unreliable. For a limited use, therefore,

- ~R2C^^
ii

dt
(57)

Figure 10 shows a more generalized circuit em
ploying the operational amplifier. For this circuit
input networks connected to n sources provide
current common to the amplifier input which must
equal the current from the output through M parallel
paths. Thus, for the z'th input,

lz

'lz
(58)

'lz

dt

/?2C1 y*iE2
sin dit (49) anc' f°r *ne ^*n feedback

The maximum error is, accordingly,

E

RjCj y<nE2
(50)

For this error to be less than 0.1% of the output
of the amplifier,

> 1000 (51)

The error increases with frequency so that the
high gain of the amplifier at low frequencies is
not effective in reducing the error. For a gain
of 40,000 and a unity RC product, if the error is
not to exceed 0.1% of the output, then

40,000

and

thus

the

14

> 1000
a

1

(li

>
1

40

(li < 40

(li — 2nf

/ < 6.3 cps

(52)

(53)

(54)

(55)

(56)

'2*
(59)

•2k

Since the sum of all input currents must equal
the sum of all feedback currents, then

i-n k=M

fr zw rr, z2k
z = 1 "• k = \

The operations denoted by Eq. 60 may include
any linear combination of those described in the
preceding paragraphs.

z„

^2 Zo

z,13 z
22

-4--

Z. Z 2/77

(60)
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Fig. 10. Generalized Circuit Employing Oper
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For example, suppose that n equals 2 and M
iquals 1 and each is resistive. From (60),

u 12

Rn RX2
"22

(61)

or

22
R

22

Kll K12
(62)

Thus a linear combination of two inputs is ob
tained at the output in what may be called an
"adder."

If, in the above examples, Z12 were capacitive,
the result, since it is a summation of currents as
denoted by (60), is

R
22

de

11
11 R22C12

12

dt
(63)

If

(64)

the

"22

R 11
- RnnC

22 12

11

de.

dt
(65)

which is a linear, first-brder, differential equation
with e11 as a "so
constant. In other

following equation.

with en as a "source" and R22Ci2 as tne time
constant. In other words, e2 behaves as X in the

dX

dt

T =

X = Bf(t)

R22C12

R22
B = -

n

(CK

(67)

(68)

The same result may also be obtained by treating
the circuit as one with a single input and a
parallel combination of two feedback impedances
as shown in Fig. 11.

The behavior of the output as obtained in the
preceding paragraph may also be obtained with
a single input network and a single feedback
resistance such as that shown in Fig- 12. For

this circuit

rn

*11
-VWW—f

z,, = z — z
11 a c

(69)
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Fig. 11. First Order Linear System.
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Fig. 12. Alternate Form of First Order Linear
System.

'11
11

'c = C11

dec C,,/?,, diu

dt 2 dt

(70)

(71)

2(en - ec) 2eu

Ru = R ~ M, (72)
11

Upon substituting (71) and (72) in (69)

2e
11 C11R11 dl\\

" _ Ru " 2 dt

or

R11C11 rf,11 e11

'" + 4 dt R
ll

(73)

(74)
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since the input current must equal the feedback
current

'11
R

21

(75)

and if this be used in Eq. 74 to eliminate z'.., then

de-*
(76)

Rllcn li

R
21

AR
21

dt R
11

R11C11 de.
11

e2 +
dt

11

R11C11 de.

dt

"21

11
11

(77)

This is the same form as Eq. 66 if

T =
R11C11

(78)

B = -
"21

(79)
11

Two or more parallel input networks of the type
shown in Fig. 12 may be employed in a single
amplifier. Such a circuit with two parallel inputs
is shown in Fig. 13. It can be shown that the
solution for the output of this circuit is of the
following form:

(80)

L712-

=21

"11

2
-A/WW -AA/VW '>•

=L c„

12 " 12

2 2
-VWWt-MAAA '

CK

22

"21

I—vww-
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Fig. 13. Multiple First Order Linear Systems.
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de
21

dt
+ e21 = B,en («D

de
22

dt
+ e

22 B2e12 (82)

The term e2 is common to all terms on the right
side of Eq. 60 and may be factored.

k=M k=M

ife=l k=\

(83a)
'2k

The summation on the right of (83a) equals the
sum of the reciprocals of parallel impedances
which, in turn, equals the reciprocal of the ef
fective impedance of the network. Thus

k=M

^^ 2k*=1 2k

1
(83b)

Placing this in Eq. 60 and cross multiplying

z = l
'lz

lz
(84)

The term e2 is a linear combination of n inputs.
The ratio of Z2 to Z.. determines the functional
relationship of e, and e... This ratio may be
defined as the transference of the respective input
to the output.

ANALYSIS BY OPERATIONAL CALCULUS

Operational calculus allows these transferences
to be stated in a simplified form. 2'4'6',0''' As
previously explained, the classical method will
be employed in this report, but a brief discussion
of the transforms equivalent to the transferences
of the circuits discussed in this section will
follow. Only those transforms relevant to a single
input will be discussed, since multiple inputs
involve only linear combinations of them.

Each impedance may be placed in its equivalent
operational form. Thus, for R, the operational
form is R, while for C, the operational form is
\/cp where p is an operator. Inductance is not
used in practical operational amplifiers because
of the difficulty of obtaining inductors with suf
ficiently high q; if it were used, it would be repre
sented by Lp. If the impedances comprising the



input and feedback networks are given values
corresponding to the operational form and if each
network is reduced to a single complex quantity
by the conventional rules of combining series and
parallel impedances, then a ratio of the feedback,
Z2, to the input, Z.., may be obtained, involving
the operator p. By this means the following
transfer operators are obtained.
Scalar:

Integrator:

ZU = Rll

Z2 - R2

11 11

'11 11

Z2 c2p

Z2 1

Zll RuC2p

Differentiator:

Zll =

1

CUP

z. = R,

— = R2C}}p
11

(85)

(86)

(87a)

To extend this approach to a more complex
system, consider the circuit shown in Fig. 11.
For this circuit

11 11

<R„>
C21? '22

R22 + 1 R22C21^ + ]
C2}P

Z2 R22 1

Zll Rll \R22C21? + 1

For the equation

dx
T — + X = By

dt

(87b)

(88)

where the operator p is used to represent the
operation d/dt,

(Tp + 1)X = -By (89)

or

B
X =

22

Tp + 1

From (90), the transference of y to X equals that
denoted by (87) if

Rll VR22C21? + ^ Tp + ]
where

22

11

T = R22C2}

(90)

(91)

(92)

(93)

These are the same requirements as those ob
tained earlier for equivalence between the differ
ential equation and the electrical circuit of Fig.
11.
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MULTIPLICATION

GENERAL

As shown in the section on the Operational
Amplifier, a scalar relates the output to the input
for an operational amplifier employing pure re
sistance in the input and feedback circuits.
Furthermore, a scaling factor accompanies each of
the linear operations described and this scalar
depends upon the circuit parameters. A product of
a time dependentvariable times a scalar is inherent
in all operational amplifier applications. Each of
these scalars is the result of a choice of circuit
parameters and is a fixed quantity, that is, a
circuit and problem constant. A change of its
value requires a change in the value of one or
several of the circuit parameters.

Multiplication, as considered in this section,
deals with those products in which both the multi
plier and the multiplicand are time dependent and
will vary during the course of a single problem. A
time dependent variation of the scalar mentioned in
the preceding paragraph is implied in such a
multiplication. The manner by which this variation
may be accomplished depends upon the nature of
this time behavior. A step change in the scalar may
be made byopening or closing a switch appropriately
located in the circuit. Certain arbitrary variations
may be provided by manually manipulating a po
tentiometer setting or a capacitor value. Such
methods are frequently used for determining the
behavior of a system which is operator-controlled.
But in general, much more extensive control over
this scalar must be exercised than that which the

human operator is capable of inserting manually.
Servo control of the circuit elements extends the

range of multiplication beyond that provided by
manual operation. Servo mechanisms convert
analog quantities to shaft rotations which, in turn,
alter the value of circuit parameters. The response
times of these systems are m.uch shorter than those
of a human operator; yet the motion of mass in such
systems limits their ultimate response times also.

For even shorter response times an electronic
system of multiplication must be employed. Several
such systems have been developed. For some of
these the inherent nonlinearities of circuit elements,
such as vacuum tubes, are utilized; for others the
effective value of the elements is modified by
"gating" methods. Use of each of these methods
might be considered a direct approach. There are
other electronic means for multiplying two time
dependent variables. One example is commonly
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referred to as a pulse-time multiplier. Another
example is represented by an amplitude-frequency
multiplier.. The method of multiplication by one
of the latter devices may be considered as an
indirect approach to the solution of the problem.

In the following discussion only those methods of
obtaining a product which are employed in the
simulator and described in this report will be
considered. A description of other methods will
be referred to in the bibliography.'•' ''1i!

MANUAL AND SERVO

The schematic diagram, Fig. 14, illustrates
electromechanical means for multiplying two time
varying functions. For this circuit,

(94)- z2lR21

'21 (95)

If i?n and R, are fixed, then z, is directly
proportional to en, and e2 will be directly and in
dependently proportional to both e,, and R2,; the
output, e2, will be proportional to the negative•2<

product of en and the value of R2V R21 is
proportional to the gain factor of the operational
amplifier. Hence time variation of the gain factor
can be provided by means of a time variation in the
feedback impedance, R2y

Next, in Fig. 14, let i?21 and R,, be fixed and
i?1 be varied in some predetermined fashion. For
the purpose of this discussion let

(96)

(97)

R, = R
11

so that

11

Ml
R

11

to within the limits of the precision desired. For
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Fig. 14. General Scaling Circuit.



this' case, the current delivered to the sliding
contact of R; may be considered to be independent .
of the position of the sliding contact and a function
of only e, since R,, is fixed. Furthermore,

z21 = -,', (98)

so that the output will be a direct function of z',.
The point A in Fig. 14 will maintain nearly zero

potential with reference to ground through the
action of the coupled amplifier so that the equivalent
circuit of Fig. 15 may be used to represent the
resistance R,. The impedance to ground at the
sliding contact appears as the parallel combination
of the two sides of the potentiometer. Thus,

(1 - a)R} (aRj a(l - a)R*
R

,ff (1 - a)R^ + aR,

= a(l -a)R, (99)

This has a minimum value when a is zero or one

and a maximum value when a is one-half. For a

maximum,

R
R

eff
(100)

And, for the conditions imposed at the start to
apply, this must be small in comparison to R^.

The voltage developed across this network will
be

but

so

el = MlReff =z'll a(1 ~a)R1

1 (l-a)R,

zn a(l - a)R}

O-ajR,

Since the output of the amplifier is directly

(101)

(102)

(103)

UNCLASSIFIED
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Fig. 15. Input Potentiometer.

proportional to z',, then it is a function of both e,
(which determines z',,) and also of a. Generalizing,
Eq. 103, to include all elements of the input
circuit,

:11

11

(104)

it may be seen that varying fi,, provides means for
multiplying. In this case the multiplying or gain
factor is proportional to the reciprocal of R^y The
unit function symbol, Eq. 104, represents the switch
shown in Fig. 14 and indicates that z, may be
"step-changed" by its closure. Each of these
variations modifies the input circuit of the amplifier
and, in general, can be classified as a means for
multiplying by variation of the input conductance,
or admittance.

.A potentiometer between point A and ground can
likewise be employed in the feedback circuit. If
the attenuation of the current z'21 is B, then for the
general circuit,

(105)

and a product between e^ and another factor may
be obtained by servo or manual control of any of the
elements shown within the parentheses.

From Eq. 105 it follows that the effective input
resistance is Ry^/a. The conditions for which
Eq. 105 holds require R, to be small but not small
enough to cause malfunction of the amplifier.
Common values of R, range from 20K to 100K ohms.
This range of resistance values permits use of a
low resistance, high precision potentiometer for
varying the effective resistance over very wide
limits.

It is worth noting that in multipliers utilizing
admittance variations the input current to the
amplifier is proportional to the product. Conse
quently, a fixed feedback network can be used to
integrate this product or operate upon it in some
other manner without affecting the process of
multiplication. Likewise, the product of one input
network may be independent of the operations
occurring in other parallel inputs so that two or
more different products may be simultaneously
performed in a single stage. The combinations and
permutations of operations are quite extensive in
the use of operational amplifiers.

Descriptions and theory given above have to do
only with the variations required on certain com
ponent parameters to provide an electromechanical

19



multiplier. Means for varying these parameters will
be given no further consideration than an indication
that they may be either manual, by relays, or by
servo mechanism. A discussion of such means will

be found in the literature of the bibliography.4'6

ELECTRONIC - DIGITAL-ANALOG MULTIPLIER

In the preceding section, both quantities, the
multiplier and the multiplicand, did not necessarily
appear as electrical magnitudes. Actually, in
forming the product, one of these two variables
entered as a shaft rotation or a change in value of
a resistance. A shaft rotation or a switch motion
may have been the sole representation of one
quantity. In an electronic multiplier each of these
two quantities appears as an electrical magnitude.
Thus an electronic multiplier is a circuit receiving
two electrical inputs and delivering an electrical
output which is proportional to the product of the
two inputs. As has been previously indicated, one
method of accomplishing this is by electronically
varying the gain of an amplifier according to the
magnitude of one input and amplifying the other
input with the controlled amplifier. It has been
shown that varying the admittance to such an
amplifier rather than the gain is equally effective
as a means for multiplying. In the case of the
electronic multiplier described on the following
pages, one input signal varies the input admittance
to an operational amplifier through which the other
input is coupled.

If one of the inputs is en and the other e}2, then
the desired output, e2, is

e2 = -Bene]2 (106)

where B is any preassigned scalar to prevent the
operating range of the circuit from being exceeded.
In practice

B- ± (.07)
since 100 volts is the full output voltage of any one
operational amplifier; this value of B limits the
maximum possible product to 100 volts.

The quantity Be]2 when converted to a binary,
digital representation can berepresented as follows:

N
12

12

100
0.aya2a3aAas ... a{ ... aVi (108)

Eleven binary digits are used to represent /V]2,
and a. in Eq. 108 represents the binary digit in
each position. Each a., therefore, is either zero or
one. Since e}2 is restrained to lie below 100, then
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iV12 is accordingly restrained to lie below unity
and, in Eq. 108, the rodex point is placed in front
of ay In series form, then,

",2=°i(y) +«2(j)+«3(y

eMiV,2 = a,

. a

v27 \ 2048

The product of N} 2 with e,. yields

11

11

1
(109)

+ a.
8

'11

11

2048.
(110)

For a truncated series such as Eq. 110, the
product of e^Nyj, is represented to a reasonable
approximation by the summation of 11 terms. The
a. denotes a "yes" or "no" for the z'th term of the
series. The "granularity" of the product is a
function of the term of the series denoted by the
highest value of z. For 11 digits this has a maximum
value of 48 mv when en is equal to 100 volts.

By conversion of the input to digital form, the
nonlinear" process of multiplication indicated by

Eq. 106 has been "linearized" as indicated by
Eq. 110 and has been put in such a form that it
may be carried out by means of the linear operation
of summation previously described. Figure 16
shows a suitable circuit for this summation; e,. is
coupled to 11 parallel input networks. In series
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Fig. 16. Input Gating Block Diagram.



with each input is a gate. Each gate blocks the
flow of current into the input grid line of the
operational amplifier when the a. is unity, and adds
nothing to the output when a. is zero. The effective

on combination of inputs in parallel determines
the input admittance of the circuit. Modification of
the a., and hence the parallel gating ensemble,
provides modification of the product.

For practical reasons the gates are not all
included in the input of a single operational
amplifier but are divided between two such ampli
fiers. The first amplifier contains the first six
significant digits, the second the last five signifi
cant digits. Figure 17 shows this arrangement.
The number appearing with each resistor indicates
the magnitude of its resistance in arbitrary units.
A unit of resistance of 50K is used in the circuit.

By splitting the input into two circuits, the re
sistance levels in the last five significant positions
are decreased. This reduces the time constant of

the system and permits a faster response rate. To
form the complete product, e2- must be added to
e22 but this addition need not be made until the
product is applied to the input of some other
operational amplifier. The addition may, therefore,
be performed in conjunction with some other
process.

-AAAAAA^-

4
-^VWVW-

-VWWV-

16
-VWWV-

32

-AAA/Wv-

64
-VWVW-

-AAAAA/V-

4
-AA/WW-

-'WWvV-

16
f vvvwv-

32
-1\AAAAA/-

G-,

<?ll
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Fig. 17. Complete Block of Analog-Digital Multi
plier.

Diodes are used for gating as shown in Fig. 18.
The gating voltages, a., are applied to lines 1 and
2. A negative voltage on line 1 and a positive
voltage on line 2 causes V3 and V. to conduct.
This holds point A sufficiently negative to prevent
conduction in V, and holds point B sufficiently
positive to prevent conduction in V2> Under these
conditions no current flows to the output, or z. . is
zero and the gate is "off." Reversing the po
tentials on line 1 and 2 keeps V- and V. from con
ducting and allows V, and V2 to conduct. Since
the output line is coupled to the input grid of an
operational amplifier, the potential of this input
grid will be held at zero, and the potential at point
A will swing but slightly toward the value of e...
The value of the potential at point A will equal the
drop across Vy At point B the drop across W~ will
appear. These potentials are small; therefore the
required potential variation necessary for gating on
lines 1 and 2 is small. In actual operation of the
present multiplier these potentials swing from -4
volts to +4 volts.

When "on," that is, a. = 1, two currents, z. and
z'2, exist and combine algebraically to produce z. ..
These currents are

ell + vD}
(HI)

11

D2

(112)
11

The current z'j . should be directly proportional to
e^, so that

11

'11
n

GAIN

ZERO

H V,

1 L

1 I

(113)
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Fig. 18. Balanced Diode Gate.
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where r,. is the effective input resistance and
differs slightly from R,j as used in Eqs. Ill and
112; z'j and z'2 are functions of VD1 and VD2 in
addition to the input e11# VD1 and VD2 tend to
cause three principal errors. First, the effective
input resistance is increased. This may be com
pensated for by decreasing Rj, proportionately.
Second, the effective input resistance is no longer
constant but becomes a function of e,,. This may
not be eliminated but may be minimized. Third, an
extraneous voltage, and resultant current, is
introduced in the input circuit. The balanced
arrangement of the diodes minimizes this effect.
Each of these effects is described in more detail

in the following paragraphs.
The potential developed across a thermionic diode

depends upon the temperature of the emitting surface
and upon the space current. Figure 19 illustrates
the relationship of anode current to anode potential
for a typical diode. An increase of temperature will
shift the curve to the left, while a decrease will
shift it to the right. The kinetic energy of the
emitted electrons produces a finite current at zero
volts, and a sufficient negative potential must be
applied to overcome this "velocity" in order to
decrease the current to zero. The currents en

countered in the diodes of the multiplier result in
negative anode potentials. It can be shown that for
this region the current may be expressed as

K,e
K„V

2' D (114)

where K. and K2 are constants. Both are a function
of the cathode temperature. A power series ex
pansion of Eq. 114 yields

i = K, + KyK2VD

«i«22V
2.

(115)

By neglecting terms in the above series which
contain the second or higher powers of VD,

= K, + K}K2VD (116)

This is a straight line approximation for the
curve in Fig. 19. The straight line may be chosen
such that it intersects the VD - i curve at any two
points. The conclusions reached in the following
will be valid at the point of intersection, and
further mention will be made of the points in be
tween. Equation 116 is the general form used
below to represent the current in each of the two
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Fig. 19. Plate Characteristic of Vacuum Diode.

diodes. Since the values of K. and K. depend
upon the individual diode, let new constants be
defined such that

«, = B, + B2VD}

'2 = B3 + B4VD2

From 111 and 117,

en + vd:
= B, + B2VD}

R
11

or, solving for Vn->i

Dl

Using 120 in 111

e11 ~ R11B1

R11B2 ~ !

11

z, = eu +
R11B2 ~ !

B,

R11B2 -

In a like manner

B3

l' = " R„B4 ~ 1

(117)

(118)

(119)

(120)

(121)

(122)



Combining 121 and 122 algebraically yields

Bn

RUB2 - 1

RUB2 1 R11B4 - ]
(123)

The modification of the input resistance, an error
described earlier, may be corrected by adjusting
R1j to such a value that

R11B2 - !
1 1

(124)

The third error, extraneous signals in the input
circuit, results from the second two terms on the
right side of.Eq. 123. Rf. may be adjusted such
that

B

R11B2 - ] RilB4 - ]
(125)

The nonlinearity of the effective input resistance,
the second error, results from the terms neglected
in Eq. 115. These represent the difference between
the actual VD - i curve of Fig. 19 and the straight
line approximation. As previously pointed out, the
straight line approximation crosses the curve at
two points. Proper choice of the points of inter
section will minimize the errors due to nonlinear

ity. The two points used in the simulator for
calibration are zero for e.. and 100 volts for e^.
Rfl is adjusted at zero and R,, at 100.

It can be shown5 that B3 and B, are proportional
to the square of the emitter temperature, while B2
and B4 are proportional to the first power of the
emitter temperature. By making V1 and V2 twin
diodes in a common envelope with a common heater,
the variations in the emitter temperatures will tend
to be the same. Thus, as the temperatures vary,
the equality of Eq. 125 will tend to continue.
Temperature does not affect the equality of Eq.
124 to an appreciable extent.

For the following descriptions and explanations
a block with a multiplication sign enclosed repre
sents the system of eleven gated inputs described
above, with the three operational amplifiers neces
sary to furnish a single output. The digital input,
a set of 22 gating lines, is denoted by the letter N,

while the analog, or voltage input and output, is
given in conventional notation.

Figure 20 shows a functional block diagram of
the entire electronic multiplier. This contains two
systems such as that referred to above. In fact,
two systems are necessary. X2 furnishes the pro
duct of the analog quantity e,, and the digital
quantity e-2 system.

The multiplier Xl is a component of the analog-
digital information loop consisting of Xl, opera
tional amplifier 1, and the unit designated as
"converter" in the diagram of Fig. 20. The con
verter unit, at intervals of approximately k msec
as determined and controlled by the "cycling unit,"
opens and/or closes a suitable number of the 22
gates mentioned above in such a manner that the
magnitude of the output of operational amplifier
"1" is reduced to a minimum, that is, approxi
mately zero. At intervals of approximately 72 msec,
then, the analog quantity e]2/100 is accurately
represented by the digital quantity N.. Accord
ingly, the sampling rate for e,2 is approximately
2000 times per second.

The analog-digital information loop described
above is essentially nothing more than a control
loop with an error signal of e,2 —100 Ny The
converter and Xl constitute a device for generating
some quantity —100 N,. The high gain operational
amplifier 1 in the control loop, with .the feedback
connection between the output of amplifier 1 and
the converter input, provides a system for reducing
this error signal to a minimum. Just as is the case
for any such control loop, high gain in the amplifier
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Fig. 20. Block Diagram of Analog to Digital
Converter and Multiplier.
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gives a small error, and the time required to
generate —100/Vj must be kept small to provide a
stable system. Accordingly, a scheme for generating
N1 must beselected which will provide this quantity
promptly at each /j-msec interval.

If /V, is taken as any digital input to Xl and if
100 volts is the analog input, the output of Xl will
be -100 Ny The sign of the output indicates that
a reversal of polarity has occurred in the multiplier.
The sum of -100 /V1 and +e,2 (the analog input to
be converted to digital form) determines the input
to amplifier 1. A clipper and any stray capacities
comprise the feedback impedance of amplifier 1.
The clipper is set to conduct only if the voltage
across it is positive or if this voltage is less than
-6 volts. Thus, the circuit exhibits a "flip-flop"
response between these limits, being -6 volts in
the output if the resultant input current is positive
and zero volts output if the resultant input current
is negative. The A*, Fig. 20, represents this
operation on (100 A/] - e12). From this it may be
seen that the output is zero if

el2
(126)N, >

and negative by 6 volts if

N, <

12

Too

c12

100
(127)

The equality is included with Eq. 126 since a
zero resultant input will yield a zero output be
cause of a decay of charge on the circuit capaci
ties. The output voltage of amplifier 1 couples to
the converter and carries the information stated in

Eqs. 126 and 127. The converter unit utilizes this
as a control voltage for gates to modify Af. in such
a manner as to cause

or to make

100 N, - e]2 = 0

c12
N, = —

1 100

(128)

(129)

The converter determines the proper N, to repre
sent e]2 in a periodic, or cyclic, fashion. At the
start of each cycle, N. equals zero. During the
cycle the converter selects, by successive approxi
mations, an A/, proportional to e-2, and then a
transfer of the result occurs from the converter to

to the storage unit. Following the transfer, the

24

converter resets itself to zero and starts a new

cycle. The number in storage corresponds to the
value through which e12 passed during the preceding
cycle of the converter, and this number is modified,
stepwise, at the conclusion of each cycle. There
appears, therefore, a delay equal to the cycle time
between the number in storage and the value of
e12- ^2 9a*es *ne input circuits of X2 and is the
multiplier of e.,. The product of e,, by e.2 appears
at the output of X2. Since the cycle of conversion
requires /2 msec, this time is the inherent delay
between eJ2 and N2. The rate of change of e.2 for
a continuous function should be small during this
interval of time for accurate results. This is the

reason for selecting, in practice, the function with
the lowest time rates of change as the one to
convert to digital form.

The successive approximations made by the con
verter cause A/, to converge upon e]2/100. Figure
21 illustrates the process of convergence. Prior
to time tQ, N} is zero. At time tQ, a} becomes 1
and no change occurs in a2 through a..; 100 a,
equals 50 volts. From Fig. 21, eyi exceeds this
value, so the output of amplifier 1 of Fig. 20 be
comes minus. At time t}, the sign of the output of
amplifier 1 prevents the return of a. to zero, while
at the same time, a2 becomes unity. Thus, at time t.

N, = 0.11000000000 (130)
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The product 100 N, now equals 75 volts, which
exceeds e.-. The signal from amplifier 1 to the
converter is zero, which causes a2 to return to 0 at
£, at the same time that a, is made 1. Thus, at t0,

A/, - 0.10100000000 (131)

e-2 exceeds the 62.5 volts representing Eq. 131,
preventing the return of a, to 0 at time t.. This
process continues until the value of each a. is
determined. The process proceeds from the most
significant toward the least significant digit, and
for each step the next digit in the series is made 1
and the digit immediately preceding it is determined
by the output of amplifier 1. The time required to
establish all the as is less than L msec. Follow

ing the eleventh step A/,, thus formed, is transferred
to storage and the converter is reset.

The entire cycle consists of sixteen steps. A
four-stage, binary counter produces the gating
pulses required for each step in the converter and,
witri appropriate decoding networks for the number
in the counter, is called the cycling unit. The
repetition rate of the pulses to the binary counter

controls the cycle time. In the simulator, an oscil
lator synchronizes the pulse source, and this cycle
time may be modified to meet specific requirements;
L msec is the minimum time usable because of the

time constants in the gating circuits and amplifier 1.
The schematic diagram (Fig. 22) shows a typical

stage in the converter. It consists of a conven
tional, Eccles-Jordan flip-flop circuit coupled to
two pentode gates. Gating outputs, a., lines 1 and
2, follow the cathode potentials of the flip-flop and
swing between —6 volts and +4 volts. These con
trol the appropriate diode gate in the multiplier as
previously described in this section. When the
right section of the FF conducts, the diode gate to
which the circuit is coupled conducts and the stage
is in the 1 state. A pulse through G2 triggers the
stage to this state. A pulse through Gl returns it
to the 0 state. All pulses are supplied to the con
trol grid of each gate, and the potential applied to
the suppressor permits or inhibits the triggering of
the FF. A negative potential on either line a or b
or both inhibits the return to 0, while a negative
potential on line c inhibits the triggering to 1.
Amplifier 1 of Fig. 20 determines the potential of
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Fig. 22. Typical Flip-Flop Circuit Employed in Multiplier.
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heat generated by nuclear processes is transferred
to the load and upon how the reactor is controlled
in accordance with the load demand. To represent
these properties, the circuits employed in the
simulator will be basically different and it is these
circuits which the control engineer must design.

In the following section those feedback circuits
which are permanently available in the computer
will be described and, in addition, a typical reactor
will be described to illustrate the thermodynamic
properties of a system. These circuits are not
unique. There exist many others with which the
same results may be achieved. The examples are
intended only as an aid to acquaint the engineer
with design principles.

The same set of equations describes the func
tional behavior of both the simulator and the

system being simulated. An exact determination
of the kinetics of a reactor and load is not possi
ble. First, many of the functions necessary for an
exact solution are unknown prior to actual oper
ation of the reactor, and second, space and time
variables are not generally suitable for analog
solutions. Thus, the system simulated differs
from the actual reactor and is a simplified model.
Mean values replace space variables. Transport
lags are replaced by linear approximations. The
degree of correlation between the simulator results
and the reactor kinetics depends upon the severity
of the assumptions and they must be analyzed with
care in each system.

The design of a network of operational amplifiers
may accompany or follow the formulation of a set
of equations which describe its behavior. In the
first case a circuit is "formulated" in the same
way that an equation is "formulated. It is this
method that will be employed in the following
examples, except for the nuclear kinetics. The
second approach deals with the simulator as a
computer for the solution of a set of equations.

A. ANALYSIS OF A SERVO SYSTEM

The following analysis of a servo system illus
trates the method of "formulating a circuit." As
a simplified model, it is assumed that all inertia
and mass in the system may be combined as a
single unit. This mass, perhaps a control rod,
moves under the influence of an accelerating force
composed of three parts. First, an error in the
position or velocity of this mass is amplified and
applied as a force. Second, a frictional force
which is proportional to the velocity of the mass,
retards its motion, and third, a restoring force

which is a function of its deviation from equi
librium may act upon the system. The total force
acting upon the mass is the sum of these three
components. The ratio of total force to mass
equals acceleration so that

A =
M

F(E)

M

B5V

M

BA

M
(s - Sn)

(132)
where

A - acceleration of mass M

F = total force acting upon mass M
F(E) = component of force derived from system

error

B5 = coefficient of friction
V = velocity of mass

B, = stiffness coefficient

S = position of mass
Sq = equilibrium position of mass

As shown in Fig. 31, a circuit with three inputs,
each associated with one of the terms on the right
of Eq. 132, supplies a current to the input grid of
amplifier 1 which is proportional to the total
acceleration of the mass, M. The reciprocal of the
coefficient in Eq. 132 equals the resistance of the
input circuit and the variables equal to the input
voltages.

Since

V ( a dt (133)

an integrater circuit, integrating the input current
of the circuit of Fig. 31, produces an output pro
portional to velocity. Thus,

= ~V = -/ a dt . (134)

Due to the polarity reversal of the amplifier, the
output is proportional to the negative of the ve
locity. This is just the value of voltage required

T"

-V L

F(E)-

~(S-S0)-

M_

-AA/WV

M

AAAAAr-
M

se
-A/WW

Fig. 31. Force Integrator.
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for one of the inputs; so, as shown by the dotted
line in Fig. 31, the output may be coupled to the
input.

A current of one unit flows in a resistance of

one unit when 1 volt is applied across it. Further,
a unit current results in a circuit containing a unit
capacity when a rate of change of 1 volt per
second is applied across it. The practical units
of current, resistance, and capacity are not the
most convenient to use in analog circuits. Currents
encountered are normally measured in microamperes.
If 1 fia is defined as the unit of current, it follows
that 1 megohm is the unit of resistance and 1 fii is
the unit of capacity. This establishes the ohmic
and faradic values appearing in Fig. 31 and in
subsequent circuits to be described. It is not
necessary that the microampere be chosen as the
unit of current. Many cases occur in which this
unit of current leads to impractical resistance and
capacity values. In such cases some other unit
of current may be defined and the unit of capacity
and resistance scaled accordingly. Furthermore,
the unit of voltage used above was 1 volt, and it
was tacitly implied that 1 volt was in 1:1 corre
spondence with the function it represents. Since
this frequently does not. occur, it may become
necessary to redefine the unit of voltage to agree
with the functions represented. This modifies the
unit of resistance and capacity, as does the current.
The units employed in one amplifier for current,
resistance, and capacity do not affect the choice of
units in the other amplifiers. The unit of voltage,
however, does affect the other amplifiers since it
is via this quantity that the amplifiers are coupled.

Since the output of the circuit of Fig. 31 equals
the velocity of the mass M, integration of this out
put yields the displacement, S. Figure 32 shows
the addition of an integrator to the circuit of Fig. 31.

In Fig. 33, an adder follows the integrator for the
purpose of obtaining the difference between S and
some equilibrium value of position, SQ. A negative

M
F{E)—MAA/V-

~{S-S0)—lAAAAAr-

Hl "
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Fig. 32. Force and Velocity Integrators.
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Fig. 33. Servo Simulator.

SQ causes the difference between S and 5- to appear
at the output of amplifier 3. This difference equals
the third input to amplifier 1, and may be so
connected, as shown in Fig. 33, by a dotted line.
Amplifier 4 is a differentiator circuit added to
obtain the acceleration of the body being simulated.

Although no equation of motion was employed
directly in the description of the circuit in the
preceding paragraphs, it follows from Eqs. 132
and 133 that

d2S
M

dt

dS

+ Bsir+ B<>{s ~So) = F(£)
(135)

and this is the equation which relates the model
and the simulator. The same result could be ob*

tained by starting with the model, formulating
Eq. 135, and designing an analog circuit for its
solution. This may, perhaps, prove useful where
an artificial time base is to be employed.

Figure 34 shows the feedback circuits for an
idealized servo system which the simulator pro
vides. The circuit is the same as that shown in

Fig. 33, with the addition of means to vary the
effective values of each of the parameters. Selector
switches, toggle switches, and potentiometers
provide the means of altering the parameters.

Symbols used in the schematic diagram of Fig. 34
are the same as those used on the front panel of
the unit employed in the computer. The panel
below the top three operational amplifiers, in the
photograph of Fig. 35, contains the servo simulator
circuits. From left to right, the upper three ampli

fiers perform the functions described in the pre
ceding paragraphs for amplifiers 1 through 3.
Amplifier 4 is the amplifier appearing on the left
of the third panel from the top.

Figure 36 shows three typical solutions obtained
from the simulator using the circuit of Fig. 34. No
F(E) was used and the response of the system is
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Fig. 34. Schematic Diagram of Servo Simulator.





may be varied over wide limits. The upper limit of
simulator frequency response exceeds that possible
at the present state of the servo control art.

B. ANALYSIS OF A REACTOR

The nuclear kinetic equations commonly employed
to describe a reactor may be written as follows:

(1 - B)kP - P + Z
z=l

A.X. + S

(137)

dp
I* — =

dt
= (1 -

dX.
t

dt

where

-A.X. + /3-a. kP (138-143)

/* = mean lifetime of neutrons from generation
to absorption

P = neutron concentration

k = effective multiplication factor
X. = z'th delayed neutron emitter concentration

times I

A. = decay rate of z'th delayed neutron emitter
S = neutron source in neutrons per / seconds

j8. = fraction of total neutron production which
is delayed by the z'th delay group

B = total fraction of neutron production which
is delayed by all delay groups

a. = factor employed to account for the reduction
of the effective concentration of delayed
neutrons due to fuel circulation.

Although the variables employed in Eqs. 137 to
143 were defined in terms of neutron concentration,
little error results from the assumption that the
power produced by the reactor is directly propor
tional to the neutron level. Thus P may be con
sidered as the power production in British thermal
units per second and X{ would be the potential
power stored in the delayed neutron emitter. The
definition of units and terms depends upon the
purpose of the reactor. For research reactors the
neutron flux is important and the terms would be
as defined. For power producing reactors, units of
heat production are more conveniently employed.
Since power reactors will be described in the
following paragraphs, the units employed will be
power units.

Since, for the circuit of Fig. 37,

i, + z2 = 0 (144)

and

dP

dt
(145)

then it follows that

-/*
dP

~dt
(146)

Current z. may be produced by multiple inputs to
amplifier 1. Each input equals the negative of
one term on the right side of Eq. 137. Three input
currents may be produced directly and are shown in
Fig. 38. Since P is both an input and an output,
the dotted connection may be used to couple them.

The currents proportional to the delayed emitters
require further consideration. It is required that
currents be produced at the input to amplifier 1 which
equal A.X. This involves six inputs, since six
classes of delayed emitters are utilized in the simu
lator. The current, or contribution, from each group
is described by Eqs. 138 through 143. A "steady-
state" solution of these equations yields

A.X.Q = piaikPQ (147-152)

These are proportional to kP«. During transient
conditions, however, each current differs from that
of Eq. 147-152 and is delayed by a time constant
equal to 1/A-. The source term, or driving function,
in Eqs. 138 through 143 is proportional to kP.

The input circuit shown in Fig. 39 was described
previously. The input current, here denoted by
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Fig. 37. Power Integrator Feedback Circuit.
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Fig. 39. First Order Delay in Input Circuit.

D., may be described by the following:

C.

d(2RiDt)

It
+ D.

i

en-2R.D.

2*T
(153)

or, by rearranging,

D.

From Fig. 39

D, +
11

RC
i i 4R2C

;H = Yikp

(154)

(155)

where y. = gain of input potentiometer. Then,
Eq. 154 becomes

D. = -
R.C ~l

i y,-
D, + *P (156)

4R2C.

The necessary input current to amplifier 1 equals
A^.. Therefore, let

D. = A.X.
Z I I

(157)

Substituting this in Eqs. 138-143 yields

£>z. = -X.D. + /3-a.A.^P (158-163)

These equal (156) if

1

and

A. =
R.C.

i i

??i = 4R.

(164-169)

(170-175)

Figure 40 shows the circuit of Fig. 38 after six
networks were added to furnish the necessary
delayed contribution. Amplifier 2 performs as a
scalar to produce —kP and closes the loop. The
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Fig. 40. Nuclear Kinetic Simulator.

scalar will be described in more detail near the
conclusion of this section.

A schematic diagram, Fig. 41, shows the feed
back network of amplifier 1 as employed in the
simulator. This functions in the manner described
in the preceding paragraphs and provides, in addi
tion to means of varying appropriate coefficients,
a way of setting the initial level of each group of
of delayed emitters. The unit of current employed
is 2 ftamp so that the unit of resistance becomes
500K and the unit of capacity is 2 fii.

Table 1 lists the controls which are located on
the front panel and the range of values obtainable
with each. Variable components at appropriate
points permit modification of all coefficients

except the Xi values. The A; values are associated
with the decay rates of nuclear fission products and
are the same in all reactors.

Figure 42 illustrates in a more complete manner
the reactor nuclear loop. The feedback circuits
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TABLE 1. PANEL CONTROLS

CONTROL NUMBER COEFFICIENT MEANS OF ADJUSTMENT RANGE

1-6

7

8

9-14

0ft
/*

S

A.X .. (initial condition)

Potentiometer

Plug in condenser

Potentiometer

Potentiometer

0 -0.01

10-5 sec

Uncalibrated

o -o.oip0

-kP CIRCUITS

OF AMP I

ANALOG

MULTIPLIER
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Fig. 42. Nuclear Kinetic Simulator Circuit with Means of Controlling k.

associated with amplifier 1 of Fig. 40 are repre
sented as a single block. The circuit shows the
means of generating -kP from P; k is the effective
multiplication factor and is variable. It equals the
effective scalar product of P when comparing the
output of amplifier 2 with amplifier 1. Six inputs
furnish current to amplifier 2. Each current is
proportional to P, and the output of amplifier 2 is
proportional to the sum of all input currents. Con
sider, therefore, each input separately.

The upper three inputs furnish currents which are

iu = 0.95P

?12 = 0.10P/3,

38

(176)

(177)

'13 = 0.05PB2f (178)
The currents z]2 and z']3 may be controlled

manually by potentiometers. The "unit function"
symbol in Eq. 178 indicates that closure of SI
permits application of z']3 as a "step."

B5 is the attenuation of P through an external
potentiometer. This potentiometer, when employed,
may be either manually or servo controlled as
desired. The current is, therefore,

'u = O-'PsrV (179)

The input, d, to the analog-digital multiplier
includes all other factors which affect the value of



k. Two outputs are shown from the multiplier. The
sum of these two outputs equals the product, as was
explained in the prior description of the multiplier.
Thus,'

'15 + z16

P0B3

1000

The sum of all input currents is, therefore,

sl = 0.95P +0.10P/3, +0.05PB2j

+ 0.10P/S3j85 - 0.00lP6>/33

total

(180)

(181)

Factoring out P from the terms on the right side
of 181 yields k.

0.95 + 0.10)6, + 0.05/32 /

+ 0.10/S3/85 - 0.001<9/33 (182)

A schematic diagram of the circuits of amplidier 2
is shown in Fig. 43.

Figure 44 shows a photograph of the portion of
the computer containing the nuclear circuits de
scribed above. The top panel contains the circuits
associated with amplifier 1. The upper row of

BNC
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dials of this panel controls the initial level of
each group of delayed emitters. The /3 a. for each
group is controlled by the second row of poten
tiometers. The meter shown on this panel indicates
the level of the output of amplifier 1. The middle
d-c amplifier in the second panel from the top is
amplifier 1. The right amplifier is amplifier 2.
The panel below these two amplifiers contains the
circuits associated with amplifier 2.

At the bottom of the rack are additional d-c

amplifiers which are employed to simulate the
thermodynamic properties of the system. The unit
marked "ARE" in the photograph is removable and
replaceable by another network suitable for another
reactor system.

C. ANALYSIS OF A THERMAL SYSTEM

The energy released by the nuclear processes of
a reactor appears as heat. This heat energy must
be extracted from the reactor and transformed into

the form of energy required by the load. Extraction
of heat from the reactor may be accomplished by;
circulating the nuclear fuel through the reactor and
then through an external heat exchanger; passing a
coolant over the fuel plates within a reactor and

1M 1%
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fuel. Thus,

7
(183)

7

By an integrator, such as that shown in Fig. 46,
Pq determines 6, according to Eq. 183. The nega
tive sign is due to the polarity reversal of amplifier
1. Without cooling, however, the fuel would melt.
Heat is removed from the fuel at a rate proportional
to the difference in temperature between the fuel
and the coolant and is a function of the geometry
of the physical system. At design point, however,
Z. degrees exist between the two means, and this,
by definition, is the difference required to transfer
heat from the fuel to the coolant at the rate at

at which it is produced. Coolant flow removes
heat from the reactor at this rate so that at design
point the coolant mean temperature, 6 , is constant.

Figure 47 shows the circuit of Fig. 46 with the
addition of two inputs which are proportional to
the difference between the fuel and coolant mean

temperatures. The dotted lines denote the connec
tion of the output of amplifier 1 to one of these two
inputs.

Since the mean fuel temperature is constant at
design point power, P., the sum of all input currents
to amplifier 1 must be zero at this power. There
fore,

-nAAAAAt-

Fig. 46. Heat Integrator.
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Fig. 47. Fuel Temperature Integrator with Heat
Extraction.

but

so that

therefore.

C,
•= 0

Q, - 6 = Z.
/ c 1

P0 Zl

R =

Z]Cf

(184)

(185)

(186)

(187)

The difference between the power introduced and
the power removed from the coolant, within the
reactor, determines the time behavior of the mean
coolant temperature. Power is removed by the
circulation of a coolant. The net heat flow causes

the coolant to leave the reactor at a higher tempera
ture than its entrance temperature. The difference
between the inlet temperature, 0. , and the outlet
temperature, Q2 , is proportional to the power
extracted, P v.._ In general __

PX = VCC(62c ~ V (188)

where

V - volume flow of coolant per second
C = heat capacity of coolant per unit volume
Power insertion into the coolant is proportional

to the difference between the fuel and the coolant

mean temperatures. The input power raises the
coolant temperature at a rate determined by the
total heat capacity of coolant within the reactor.
Proceeding as with the fuel, let the integrator of
Fig. 48 be used to generate an output proportional
to 6 . The upper two inputs are proportional to
the power inserted and the lower two proportional
to the power extracted. In the absence of coolant

POWER J
INPUT j_

POWER

OUTPUT

-VWIMr
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Fig. 48. Coolant Mean Temperature Integrator.
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flow, all the power input will be utilized to raise
the coolant temperature. The rate of rise, 0.., at
design point may be computed as the ratio of de-
sigr point power to the total coolant heat capacity
within the reactor. Since Z. is the design point
difference between 6 and 6,, it follows that

6
10

V C
TC C

(189)

where Vfc = volume of coolant within the reactor.
When coolant flow exists at design point, the

temperature of each elementary volume of the
coolant rises as it passes through the reactor.
The mean rate of rise, during the time spent in the
reactor, equals the rate given in Eq. 189. The
total rise in temperature, Z2, equals the product of
the time spent in the reactor and the mean rate of
rise in temperature. Thus

Z2 = 0,OT, =
P0T1

V c
re c

where t. = mean transit time of coolant

reactor. It follows from (189) and (190) that

R, =
T]Z]

(190)

the

(191).

At design point, with coolant flow, 6Q is constant.
From the circuit of Fig. 48, it follows that, for
6 to be constant,

'1

fi,
1 "2

Combining (191) and (192) yields

R.

R2 =

= 0 (192)

l (193)

The external heat exchanger determines the inlet
coolant temperature to the reactor. During the
passage of the coolant through the reactor, heat is
added and the temperature raised. The outlet
temperature of the coolant leaving the reactor
depends upon the inlet temperature at a time pre
ceding the outlet time by the transit time of the
coolant through the reactor. Furthermore, the heat
added during its passage may vary in level so that
the total heat depends upon a time integral of the
heat transferred over the transit time. Linear ap
proximations may be used to represent each of
these effects.

The transport lag of the coolant is approximated
by cascading two linear first-order delays. This
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may be mathematically expressed as

(1-/2)0, + 0, = 6j

<V2)fl2c + *2c -*,

(194)

(195)

where T, = transit time of coolant through the
reactor.

As was explained in the section on linear opera
tions of this report, a solution of Eqs. 194 and 195
may be obtained by the circuit of Fig. 49. The
upper two inputs in the figure represent the heat
added during the passage and are delayed by the
feedback network only. The delay equals r/2.

Since Z2 is the design point rise of temperature
of the coolant as it passes through the reactor and
Z, is the design point difference of temperature
between the fuel and the coolant temperature, it
follows that, in Fig. 49,

r/2
(196)

R =
Tlzl

2Z_
(197)

The external loop is simulated, step by step, in
a manner similar to that just described for the re
actor. Design point conditions of temperature and
flow rates determine the resistance and capacity
values of the input and feedback networks. Com
pletion of the individual amplifier circuits permits
each to be connected, as denoted by like symbols,
and the resulting simulator network is shown in
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Fig. 49. Coolant Outlet Temperature.
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Fig. 50. Two inputs drive this network. These
are the nuclear power developed in the fuel of the
reactor and the gas inlet temperature of the external
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P = Nuclear power level.

C, = Total heat capacity of fuel.

0^ = Fuel mean temperature.

0 = Coolant mean temperature in reactor.

Zy = Design point difference in mean temperatures
of fuel and coolant in reactor.

Z2 = Design point difference between outlet and
inlet coolant temperatures; this equals the
rise in the reactor and drop in the external
heat exchanger.

r. = Meantrans it time of coolant through reactor.

0, = Coolant inlet temperature to reactor, also
coolant outlet temperature from heat ex
changer.

heat exchanger. The power may be obtained from
the output of amplifier 1 of the nuclear kinetic
simulator described in part B of this section.
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REACTOR ' EXTERNAL HEAT EXCHANGER

Fig. 50. Reactor Thermodynamic Simulator.
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/>-,,

02c = Coolant outlet temperature from reactor, also
inlet coolant temperature to heat exchanger.

z"2 = Mean coolant transit time through heat ex
changer.

t. - Mean gas transit time through heat exchanger.

Z- = Difference between coolant and gas mean
temperature at design point.

Z. = Design point difference between gas mean
and inlet temperatures.

PQ = Design power level.
0 = Coolant mean temperature in exchanger.

(f> = Gas mean temperature in exchanger.

<f>l = Gas inlet temperature to exchanger.
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