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SUMMARY

This paper concerns itself with forced convection heat transfer
between parallel plates which are infinite in extent and ducting fluids
containing uniform volume heat sources; also heat is transferred uni-
formly to or from the fluids through the parallel plates. Dimensionless
differences betweeh the plate wall temperature and the mixed-mean fluid
temperature are evaluated in terms of several dimensionless moduli. These
analyses pertain to the laminar and turbulent flow regimes and liquid
metals as well as ordinsry fluids. The solutions may also be used to
estimate heat transfer in annulus systems whose inmer to outer radius

ratios do not differ significantly from unity.
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NOMENCLATURE

letters
A cross sectional heat transfer area, ft2
a £luid thermel diffusivity, £t°/br
Bo parameter in equation (o), ft/hr
cp fluid heat capacity, Btu/lb °F
il parameter in equa£ion (r), dimensionless
g gravitational force per unit mass, ft/hr2
h heat tremsfer conductance, Btu/hr ft° OF
k £luid thermal conductivity, Btu/hr £t2 (°F/ft)
P fluid pressure, l'bs/ft2
q heat transfer rate, Btu/hr
r radial distance from centerline of parallel plate system, ft
T3 radial position at which the reference temperature

tq is stipulated, ft

Ty half the distance between the two parallel plates, ft
t fluid temperature at position n, OF
tg a reference temperature at radius rg, °F
tm mixed-mean fluid temperature, Op
to f£luid temperature at plate walls, Op
t¢_ £1uid temperature at the parallel plate systen center, Op
u fluid velocity at m, ft/hr

Uy mean fluid velocity, ft /br



ny,
Nu

Re

-8 -

volume heat source, Btu/hr £t5

axial distance, ft

radial distance from parallel plate walls, ft

£luid weight demsity, lbs/ft>

eddy diffusivity, ft2/br

friction factor defined in equation (i) dimensionless
absolute viscosity of fluid, 1b hr/ft°

fluid kinematic viscosity, ftg/hr

£1uid mass density, lbs hr2/rth

£1luid shear stress at position n, lbs/ft?

fluid shear stress at parallel plate walls, lbs/ft2

Dimensionless Modulil

¥/7o

yl/i'o

h bro/k, Nusselt Modulus
¥y 9¢cp/k, Prandtl Modulus
um bro/ VY
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INTRODUCTION

The mathematical heat transfer analyses to be presented here for a
parallel plates system are accomplished much in the same manner as were those
for a pipe system presented previously in reference 1. The present analyses
as well as those given in reference 1 can be used to determine the tempera-
ture structure in flowing fluids that possess intermal sources of heat gener-
ation. Such volume heat sources may result from nuclear or chemical reactions
or may be generated electrically.

The idealized volume-heat-source system considered in this paper is
defined by the following postulates:

1. Thermal and hydrodynamic patterns have been
established (parallel plates of infinite

extent).

5. Uniform volume heat sources exist within the
fluids.

3, Physical properties are not functions of
temperature. :

4. Heat is transferred uniformly to or from the
fluid at the plate walls.

5. In the case of turbulent flow the generalized
turbulent velocity profile defines the hydro-
dynsmic structure.

6. In the case of turbulent flow there exists an
analogy between heat and momentum transfer.
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LAMINAR FLOW ANALYSIS

The differential equation describing heat transfer in the parallel

plates system for the case of laminar flow is

o 8
3 vl oot L 0% W
Eum[l _)]_a_x_am+ (1)

To Yep

where,
Uy, mean fluid velocity

t, temperature

X, axial distance

r, radial distance

a, thermal diffusivity

W, uniform volume heat source
Y, fluid weight density

Cp, fluid heat capacity

One boundary condition is represented by the uniform wall-heat-flux

which may be positive, negative or zero,

d _ - (dq) - . Ot (. _ \
a%-(r = 1) = (ag)o =k = (r = r5) (2)

is the wall heat flux.
o]
boundary condition is, t3, B reference temperature, such as a wall or center-

where %% is the radial heat. flux and (g%) The second

line temperature,
t(r = rg) = tg (3)
Note, the mixed-mean fluid temperature may also be specified as the reference

temperature.
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Downstream from the entrance region where the thermsl pattern (tempera-
ture gradients) of the system has become established, the axial temperature
gradient, {;&., is uniform and equal to the mixed-mean axial fluid tempera-
ture gradientl, _géﬁ - The latter gradient can be obtained by making the
following heat rate balance. The heat generated in a lattice whose volume
is 2r, dx (the width of the lattice being unity) plus the heat transferred
into or out of the lattice at the plate walls must all be lost from the

lattice by convection, that is,

d It
2ot - (i), 200 = 20 varep (532) ax )

Hence, in the established flow region the axial temperature gradient is

w-21 (dq
dt - a'tm= To (dA>o (5)
X 0Xx U ¥ Cp

Upon substituting equation (5) into equation (1), the following total differ-

ential equation results:

g[g F'(l - (%)2> - 1] - % (6)

1. Note, that the mixed-mean fluid temperature at any given axial position

is defined as,
.ro
/ t u dr / o
o] 1
= = tu dr
*m Tq Unlo g
S
0
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where F' = 1 - .1 (%%) - Egquation (6) can be solved upon making two
)

Wrq
integrations. The first integration plus boundary equation (2) yields,

£ E|(F-) 5] o
o

A second integration gives the desired temperature solution,

T (=) - He ) ¢

where the reference temperature is, to, the wall temperature. The tempera-
ture solution in terms of the centerline temperature rather than the wall

temperature is given by

t -t ! 2 o, B
et ) NN o
k

where t¢ 1s the centerline temperature. Equation (9) is graphed in
Figure 1 for several values of the function F'.
The difference between the plate wall temperature and mixed-mean ~luid

temperature is defined by

To
/o u(ty - t)ar

Um0

to -ty = (10)

rond
W
A

Upon substituting the laminar velocity profile relation and equation (8}

into equation (10) there results,

to - tm _ 1TF' - 1h (11)
Wro© 35
R
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TURBULENT FLOW ANALYSIS

Fluid flow in pipes and channels (parallel plates systems) under
turbulent flow conditions has been characterized in terms of a laminar
sublayer contiguous to the wall, a buffer layer, and a turbulent core by
Nikuradse, von Karman, and others. This structure has been presented in a
general fashion by the well known generalized velocity profile which was
shown together with the experimental data of Nikuradse, Reichardt, and Laufer
in reference 1. Table 1 gives some of the specific hydrodynamic relations
for the various flow layers in a parallel plates system; a discussion of some
of the details of this table can be found in Appendix 1.

The differential equation describing heat tramsfer in a parallel plates

‘system for the case of turbulent flow is

u(r) SE= 5 [(a e ) g;] . jcp (12)

where,

u(r), the turbulent velocity profile (given by
the generalized velocity profile)

€ > the eddy diffusivity? given in Table 1

Upon substituting equation (5) into equation (12) for the established thermsl

region, the following total differential equation results,

-1 (4
u(r) [ To (dA)o] oW SL'[(a‘+€ ) QE} (13)
ar dr

um YCP Y Cp

2, It is postulated that the heat and momentum transfer eddy diffusivities
are equal as proposed by Reynolds and successfully used by von Karman,
Martinelli and othens.



TABIE I

HYDRODYNAMIC RELATIONS FOR THE VARIOUS FLOW LAYERS
BETWEEN PARALLEL PLATES

GENERALIZED VELOCITY ,
REGION DISTRTBUTION SHEAR STRESS STRESS EQUATION EDDY DIFFUSIVITY
Laminar Sublayer
+ To .
oly < —_—y
Yy 5 u - P T = TO T: P %E _%___ =0
or o< ¥ < 1BL5 = > y
o Reu m——mo
ol
Buffer Layer _ _1
5 <y" <30 .
or L =-§q05+59001ny:r9 T=To T= p(0+e)5‘1—‘5 £ - 0076 ReT L .
131.5 .y _ 789 T P Wl To
22 L B2 To N
Re°9 I'o 36'9 p -
Outer Turbulent - -
Layer To '
u_ Y | —|] T=To (1 - L)1 T= e du €
89 ¥ =55+ 257 |5 o o = PE€ — —— = .0152 Re*? (1- _¥)
2oy <5 T —5 y 3 ( = :%
p - -t
Inner Turbulent -
Layer v To g
Sl <l Y - 5.5+ 2.5 1In o] T=To@- L) |T=pe £ - .0038 Re*?
To ’[E) I‘o Y D
—_— v
p -
Laminar Sublayer ____ (LLLLLS LSS LS L L L)L chammel wall
Buffer layer N 33;1
Outer Turbulent ——= 2
Layer u r To
Inner Turbulent y;"‘”"“)_ _ N _ I _ e channel center

Layer

- 6T -
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The boundary conditions are given by equations (2) and (3). As was done
in the case of the pipe system (reference 1) the boundary value problem
denoted by equations (13), (2) and (3) was separated into two somewhat
simpler boundary value problems whose solutions can be superposed to yield
the solution of the original problem. The two boundary value problems

to be considered are,

(W WP =(-;-11-: [(a+e) %}

v c Yye
d
a—% (r =15) =0 (1)

t(r = rq) = tdl

u(r) L (9_‘_1.>

- ro da = —(-i- lj(a + G) .q_t_]
uchp dr dr

(15)
)

]
N
35

dg
7 (r = 15)

t(r = rq) = tdp
Equations (14) represent a flow system with a volume heat source but with no
plate~wall heat flux, and equations (15) represent a flow system without a
volume heat source but with a uniform plate-wall heat flux. The superposition

of the solutions of (1k4) and (15) yields the solution of the problem defined
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by equations (13), (2) and (3), the sum of reference temperatures tq) and
tdo being equal to the reference temperature tda. The problem defined by
equations (15) has already been analyzed by others (see Martinelli,
reference 2). The solution of equations (14) is outlined and evaluated in
the following paragraphs.

The first }ggggration of equations (14) expressed in terms of the

radial heat flow yields,

21

= Wro 2 dn - Wren (16)

where n £ ;Z . The evaluation of the integral in equation (16) is presented
in Appendixo2; the radial heat flow profiles for various Beynolds moduli are
graphed in Figure 2.

The second integration of the differential equation of (14), yielding
the desired temperature solution, was accomplished layer by layer;utilizing
the hydrodynamic relations listed in Table 1 and the radial heat flow
expressions developed in Appendix 2. The details of the procedure were
presented in the previous analysis for the pipe system (reference 1). The
resulting radial temperature profiles expressed in dimensionless form were

determined as functions of Reynolds and Prandtl moduli; some typical radial

temperature profiles are given in Figures 3 and 4.

3, Note, in the superposition process, all temperatures are
expressed as differences.
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The difference between the plate wall temperature and the mixed-mean

fluid temperature was obtained by evaluating the integral

) e ® e

R A A ‘ %
4 ; \Yii o - ;
< | ‘,!-, ),*“

{3} L

5 »
The dimensionless temperature difference, to - tm , is graphed as a function

Wr02

of Reynolds and Prandtl moduli in Figure 5. k

The superposition of solutions of the boundary value problems (14) and
(15) yields the more general boundary value problem defined by equations (13),
(2) and (3). 1In the superposition process, all temperatures are expressed
as tempefature increments above datum temperatures. The radial temperature
distribution above the wall temperature, centerline temperature, or mixed-
mean fluid temperature for the composite boundary value problem defined by
(13), (2), and (3) is obtained by adding the radial temperature distributions
above the wall tempefatures, centerline temperatures, or mixed-mean fluid
temperatures, respectively of boundary value problems (14) and (15). Also,
the rise in mixed-mean fluid temperature, at some point in the esﬁablished
flow region of the parallel plates system, above its value at the entrance
for the problem defined by (13), (2) and (3) is obtained by adding the
corresponding temperature rises for problems (14) and (15). The solution of
boundary vaelue problem (15) expressed in terms of Nusselt, Reynolds, and

Prandtl moduli as developed by Martinelli is presented in Appendix 3.
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DISCUSSION

The forced convection analyses presented here pertain to the parallel
plates system. These analyses may also be used to estimate heat transfer in
annulus systems where the inner to outer wall radius ratio does not differ
significantly from unity; under such circumstances, the annulus satisfactorily
approximates a parallel plates system.

The present report is the second one in a Planned series which are to
explore the experimental as well as theoretical aspects of volume-heat-source
forced convection. Two specific research activities have almost been com-
Pleted and are to be reported in the near future. One activity involves an
experimental study of volume-heat-source forced convection in a pipe system
in the laminar and turbulent flow regimes; comparisons are made with the
previously developed theory. Another activity is a mathematical study of
volume -heat-source forced convection in the laminsar regime including a

temperature dependent fluid viscosity.
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APPENDIX 1

HYDRODYNAMIC RELATIONS FOR TURBULENT FLOW
IN A SMOOTH PARALIEL PLATES SYSTEM

The hydrodynamic relations given in Table I characterize turbulent
flow in a smooth channel (parallel plates system). The manner in which this
table was developed is illustrated below for the buffer layer.

The turbulent shear stress equation is expressed as

T a
?; = (0 +€) a% (a)

In the buffer layer, the shear stress is very closely equal to the wall

shear stress, ”Fo, and the velocity distribution is given by,
uwt = -3.05 + 5.00 1n y* (b)
Upon differentiating equation (b) it can be shown that

o
X P (c)

y

&l

Upon substituting equation (c) and the wall shear stress in equation (a) and

solving for the eddy diffusivity, there results,

T
;Izéi -1 (a)

J

<

64 ™
i
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Two relations describing the pressure drop and wall shear stress in the

parallel plates system are,

L8P _SY u?m

ax " Ir, 2§ (e)
and AD

To = A% To ()

where the quantity, hro, is sometimes called the equivalent duct diameter
and, § , is the friction factor which is uniquely related to the Reynolds

modulus. Upon substituting equation (e) into equation (f) there results,

J?=J§um (g)

The Reynolds modulus for the parallel plates system (based on the equivalent

diameter) and the friction factor relation are expressed as,

_Ll-rou.m
0,

Re (h)

923 for 5 x 107 <Re < 10° (1)
2o 2

3
8
Upon substituting equatioms (g), (h), and (i) into equation (d) and
simplifying, there results,

—g- = 0.0076 Re"7n-1 (3)

where n = L
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The thickness of the buffer layer can be obtained from the defining y*

relation,
v To
e =B (k)

Upon substituting equations (g), (h), and (i) into equation (k) and

simplifying, there results,

n o 2635 )

Re'9

The buffer layer thus extends from n = l'él--'-g--(corresponding to ¥ = 5)
Re*
to n = 199 (corresponding to y* = 30).
Re*?
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APPENDIX 2

RADJAL HEAT FLOW RELATIONS

The turbulemt velocity profile in the radial heat flow expression,
equation (16) may be represented satisfactorily by two layers (a laminar
layer and a turbulent core) rather than the four layers which are used in
the temperature analysis. The laminar layer, which is postulated to extend

to y* = 12, is represented by the linear velocity expression,
ut =yt (m)

or u = 0.00575 up Re*8 n for 0 <n< 21—69 (n)
Re*
Equation (m) was reduced to equation (n), with the aid of equations (g),
(h), and (i). The turbulent layer, which is postulated to extend from
yt = 12 to the channel center, is represented by the one seventh power law

expression,

1/7 (0)

u = Bgyn

where By is related to the mean velocity on the basis that the sum of the
volumetric flow rates in the laminar layer and the turbulent core is equal to

the total volumetric flow rate; this relation is obtained as follows:
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'L To
2rg lug=2 uladr+ 2 uladr (p)
o T1,
or 1 ny,
um=fu dn + u dn
ny, o]

L g, [1 - nL8/7] + 0.00575 up Re'S Eef (q)

_ .8 nLe)
Thus Bo - (1 0.00575 Re"® L")

. = fluy (r)
.g. (l - nL8/7)

where ny, is the dimensionless thickness of the laminar layer equivalent
to y* = 12.
The radial heat flow in the laminar layer is obtained by substituting

equation (n) into equation (16) and integrating,

n

=y

2/ 0.00575 Re'Ondan-eon

=
r\)O

0.0115 o .8 2 _ o
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The radial heat flow in the turbulent layer is obtained by substituting

equations (o) and (r) into a modified form of equation (16) (limits are ng,

to n),
3 i‘l
‘d% - dA - 2(n - nL)
Wro
2
(Qq,) [ 005 8 2 |
dA Re n
, L] [ 8/7 . ng /7] - olaeng) (&)

=
H
(o]

(l - nL8/7)

)

Equations (s) and (t) are graphed in Figure 2 as functions of Reynolds

modulus.
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APPENDIX 3
TURBULENT FORCED CONVECTION IN A PARALIEL PLATES

SYSTEM WITH A UNIFORM WALL-HEAT-FIUX BUT NO
VOLUME HEAT SOURCES WITHIN THE FIUID

A list of some of the heat and momentum transfer analogy solutions given
in the literature can be found in reference 1. Martinelli's solution for a
parallel plates system is graphed in Figure 6 in terms of Nusselt, Reynolds,
and Prandtl moduli. The Nusselt modulus can be expressed in terms of the

wall-fluid temperature difference and the wall heat flux (these quantities

arise in boundary value problem (15) ),

day
Nu = h hro - (dA)o to (u)
k (to - tm)k

vwhere h is the heat transfer conductance or coefficient.
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