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6

SUMMARY

This paper concerns itself with forced convection heat transfer

between parallel plates which are infinite in extent and ducting fluids

containing uniform volume heat sources; also heat is transferred uni

formly to or from the fluids through the parallel plates. Dimensionless

differences between the plate wall temperature and the mixed-mean fluid

temperature are evaluated in terms of several dimensionless moduli. These

analyses pertain to the laminar and turbulent flow regimes and liquid

metals as well as ordinary fluids. The solutions may also be used to

estimate heat transfer in annulus systems whose inner to outer radius

ratios do not differ significantly from unity.
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NOMENCLATURE

Letters

,2A cross sectional heat transfer area, ft'

a fluid thermal diffusivity, ft2/hr

B0 parameter in equation (o), ft/hr

cp fluid heat capacity, Btu/lb °F
f• parameter in equation (r), dimensionless

/ 2g gravitational force per unit mass, ft/hr

h heat transfer conductance, Btu/hr ft °F

k fluid thermal conductivity, Btu/hr ft2 (°F/ft)

/ 2fluid pressure, lbs/ft

q heat transfer rate, Btu/hr

r radial distance from centerline of parallel plate system, ft

ra radial position at which the reference temperature
t& is stipulated, ft

r half the distance between the two parallel plates, ft

t fluid temperature at position n, °F

td areference temperature at radius rd, °F

tm mixed-mean fluid temperature, °F

t0 fluid temperature at plate walls, °F

trf. fluid temperature at the parallel plate system center, °F

u fluid velocity at n, ft/hr

^ mean fluid velocity, ft/hr

p



w

x

y

y

e

P

T

To

n

nL

Nu

Pr

Re

+
u

8 -

volume heat source, Btu/hr ft5

axial distance, ft

radial distance from parallel plate walls, ft

fluid weight density, lbs/ft^

eddy diffusivity, ft2/hr

friction factor defined in equation (i) dimensionless

absolute viscosity of fluid, lb hr/ft2

fluid kinematic viscosity, ft2/hr

fluid mass density, lbs hr2/^

fluid shear stress at position n, lbs/ft

fluid shear stress at parallel plate walls, lbs/ft2

Dimensionless Moduli

= 1
Wr0 VdA^

= y/i

yi/ro

h i-i-ro/k, Nusselt Modulus

y-?ep/k, Prandtl Modulus

um krQ/ i)

u

To
\ p

y
\p



- 9 -

INTRODUCTION

The mathematical heat transfer analyses to be presented here for a

parallel plates system are accomplished much in the same manner as were those

for a pipe system presented previously in reference 1. The present analyses

as well as those given in reference 1 can be used to determine the tempera

ture structure in flowing fluids that possess internal sources of heat gener

ation. Such volume heat sources may result from nuclear or chemical reactions

or may be generated electrically.

The idealized volume-heat-source system considered in this paper is

defined by the following postulates:

1. Thermal and hydrodynamic patterns have been
established (parallel plates of infinite
extent).

2. Uniform volume heat sources exist within the
fluids.

3. Physical properties are not functions of
temperature.

k. Heat is transferred uniformly to or from the
fluid at the plate walls.

5. In the case of turbulent flow the generalized
turbulent velocity profile defines the hydro-
dynamic structure.

6. In the case of turbulent flow there exists an
analogy between heat and momentum transfer.
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LAMINAR FLOW ANALYSIS

The differential equation describing heat transfer in the parallel

plates system for the case of laminar flow is

where,

p TBI 1"© ax ar2 ye.

Uja, mean fluid velocity

t, temperature

axial distance

radial distance

thermal diffusivity

W, uniform volume heat source

y, fluid weight density

Cp, fluid heat capacity

One boundary condition is represented by the uniform wall-heat-flux

which may be positive, negative or zero,

a,

(i)

£i (r = r0
dA v °)- (&) =

Wo
-k _^ (r =rQ) (2)

where 1SL is the radial heat flux and ($3l\ is the wall heat flux. The second
&A VdA/0

boundary condition is, td, a reference temperature, such as a wall or center-

line temperature,

t(r = rd) = td (3)

Note, the mixed-mean fluid temperature may also be specified as the reference

temperature.
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Downstream from the entrance region where the thermal pattern (tempera

ture gradients) of the system has become established, the axial temperature

gradient, ___ , is uniform and equal to the mixed-mean axial fluid tempera-

ture gradient1, _*i . The latter gradient can be obtained by making the
ox

following heat rate balance. The heat generated in a lattice whose volume

is 2r0 dx (the width of the lattice being unity) plus the heat transferred

into or out of the lattice at the plate walls must all be lost from the

lattice by convection, that is,

W2r0dx-(||)02dx =2r0umycp (*£) te {k)
Hence, in the established flow region the axial temperature gradient is

x w - _L (§sh

Tx" TT" Uffl / cp K>}

Upon substituting equation (5) into equation (l), the following total differ

ential equation results:

W

k H-m-i A (6)dr^

1. Note, that the mixed-mean fluid temperature at any given axial position
is defined as,

/-ro
/ t u

v-/0

** = -^ ~" 5"=~ J ±u drJo "hFo w0
u dr

o

dr / r°
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where F1 =1--i_ f|SLJ . Equation (6) can be solved upon making two
integrations. The first integration plus boundary equation (2) yields,

dt _ W

dr ~ k (¥'-) F' r5
-2 r

2r

A second integration gives the desired temperature solution,

t - t,

Wr, !2Twro_-

k
I^HesH-teM

(7)

(8)

where the reference temperature is, t0, the wall temperature. The tempera

ture solution in terms of the centerline temperature rather than the wall

temperature is given by

t - t,

WTj
k

"2" (r-ife)2-!'©! (9)

where t<£ is the centerline temperature. Equation (9) is graphed in

Figure 1 for several values of the function F1 .

The difference between the plate wall temperature and mixed-mean .'luid

temperature is defined by

*o ~ ^m

u(t0 - t)dr

UfflTo
(10)

Upon substituting the laminar velocity profile relationAand equation (8)

into equation (10) there results,

to - % _ 17P1 - Ik
Wr02 35

(11)

l'i •• V
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Fig. \. Dimensionless Radial Temperature Distributions in a Parallel Plates System for
Laminar Flow (Equation 9)
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TURBULENT FLOW ANALYSIS

Fluid flow in pipes and channels (parallel plates systems) under

turbulent flow conditions has been characterized in terms of a laminar

sublayer contiguous to the wall, a buffer layer, and a turbulent core by

Nikuradse, von Karman, and others. This structure has been presented in a

general fashion by the well known generalized velocity profile which was

shown together with the experimental data of Nikuradse, Reichardt, and Laufer

in reference 1. Table 1 gives some of the specific hydrodynamic relations

for the various flow layers in a parallel plates system; a discussion of some

of the details of this table can be found in Appendix 1.

The differential equation describing heat transfer in a parallel plates

system for the case of turbulent flow is

, v <)t _ 6

where,

(a+e )41
0 r

W

ycT

(12)

u(r), the turbulent velocity profile (given by
the generalized velocity profile)

2
e , the eddy diffusivity given in Table 1

Upon substituting equation (5) into equation (12) for the established thermal

region, the following total differential equation results,

u(r)
w - i m

ro ^te-'o. W _ d

um Vcp vo. dr
(a+€)g (13)

2. It is postulated that the heat and momentum transfer eddy diffusivities
are equal as proposed by Reynolds and successfully used by von Karman,
Martinelli and others.



REGION

Laminar Sublayer

o<y+<5

or o<y-<i2i^
o9"o Re

Buffer Layer

5<y+<30
or

131.5 c y < 789
Re'9 rD Re-9

Outer Turbulent

Layer

^o<^<.5
Re •9^r,

Inner Turbulent

Layer

,5<JL<i

TABLE I

HYDRODYNAMIC RELATIONS FOR THE VARIOUS FLOW LAYERS
BETWEEN PARALLEL PLATES

GENERALIZED VELOCITY

DISTRIBUTION

u

1°
P

u

3°
p

u

To

P

u

3k.
p

To

i>,

= - 3°05 + 5.00 in y
%

p

-0

5«5 + 2.5 In

= 5.5 + 2»5 In

y
> p

-1)

y Jo
p

1)

SHEAR STRESS

T=Tr

T=Tr

T=T0 (1 -X)
To

T =T0(i - X)

STRESS EQUATION

T=pn)|E
ay

T=P(^e)|

T= pe^i
<iy

T pe
du

ay

Laminar Sublayer _^ U / / LI // /////////// / / / / / ?7 /7 £ZZZ channel wall
Buffer Layer— ». | \ | | yi

Outer Turbulent —

Layer

Inner Turbulent--""

Layer

EDDY DIFFUSIVITY

1)
= 0

4- = -0076 Re"9X _1
i> rQ

•9— = .0152 Ee-y (1- _Z) y

X_ = .0038 Re*9

channel center

H
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The boundary conditions are given by equations (2) and (3). As was done

in the case of the pipe system (reference l) the boundary value problem

denoted by equations (13), (2) and (3) was separated into two somewhat

simpler boundary value problems whose solutions can be superposed to yield

the solution of the original problem. The two boundary value problems

to be considered are,

u(r)W W

vc.

_d_
dr

dq

dA
(r = r0) = 0

t(r = rd) = tdl

u(r) A. (%k)
umVcp

A
dr

dA U " r°j \dA/.

(a + e)

(a + e)

dt

dr

dt

dr

t(r = ra) = td2

Equations (1^) represent a flow system with a volume heat source but with no

plate-wall heat flux, and equations (15) represent a flow system without a

volume heat source but with a uniform plate-wall heat flux. The superposition

of the solutions of (1^) and (15) yields the solution of the problem defined

(1*0

(15)
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by equations (13), (2) and (3) ,the sum of reference temperatures tdl and

td2 being equal to the reference temperature td5. The problem defined by
equations (15) has already been analyzed by others (see Martinelli,

reference 2). The solution of equations {lk) is outlined and evaluated in

the following paragraphs.

The first integration of equations (l^) expressed in terms of the

radial heat flow yields,

M =Wr0 / JL dn -Wrcn (16)
dA

where n =I. The evaluation of the integral in equation (l6) is presented
*o

in Appendix 2; the radial heat flow profiles for various Reynolds moduli are

graphed in Figure 2.

The second integration of the differential equation of (1*0, yielding

the desired temperature solution, was accomplished layer by layer,utilizing

the hydrodynamic relations listed in Table 1 and the radial heat flow

expressions developed in Appendix 2. The details of the procedure were

presented in the previous analysis for the pipe system (reference l). The

resulting radial temperature profiles expressed in dimensionless form were

determined as functions of Reynolds and Prandtl moduli; some typical radial

temperature profiles are given in Figures 3 and k.

3. Note, in the superposition process, all temperatures are
expressed as differences.
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Fig. 2. Dimensionless Radial Heat Flow Profiles in a Parallel Plates System with no Wall
Heat Transfer
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Fig. 3. Dimensionless Radial Temperature Distributions Within a Fluid Flowing Between
Parallel Plates with Insulated Plates for Several Prandtl Moduli and Re =10,000
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Fig. 4. Dimensionless Radial Temperature Distributions Within a Fluid Flowing Between
Parallel Plates with Insulated Plates for Several Reynolds Moduli and Pr=0.01



21 -

The difference between the plate wall temperature and the mixed-mean

fluid temperature was obtained by evaluating the integral
1

(k) ^

The dimensionless temperature difference, to "** ,is graphed as a function
WrQ2

of Reynolds and Prandtl moduli in Figure 5.

The superposition of solutions of the boundary value problems (Ik) and

(15) yields the more general boundary value problem defined by equations (13),

(2) and (3). In the superposition process, all temperatures are expressed

as temperature increments above datum temperatures. The radial temperature

distribution above the wall temperature, centerline temperature, or mixed-

mean fluid temperature for the composite boundary value problem defined by

(13), (2), and (3) is obtained by adding the radial temperature distributions

above the wall temperatures, centerline temperatures, or mixed-mean fluid

temperatures, respectively of boundary value problems (1*0 and (15). Also,

the rise in mixed-mean fluid temperature, at some point in the established

flow region of the parallel plates system, above its value at the entrance

for the problem defined by (13), (2) and (3) is obtained by adding the

corresponding temperature rises for problems (ik) and (15). The solution of

boundary value problem (15) expressed in terms of Nusselt, Reynolds, and

Prandtl moduli as developed by Martinelli is presented in Appendix 3-
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Fig. 5. Dimensionless Differences Between the Wall and Mixed-Mean Fluid Temperatures as
Functions of Reynolds and Prandtl Moduli for Parallel Plate System (Walls Insulated).
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DISCUSSION

The forced convection analyses presented here pertain to the parallel

plates system. These analyses may also be used to estimate heat transfer in

annulus systems where the inner to outer wall radius ratio does not differ

significantly from unity; under such circumstances, the annulus satisfactorily

approximates a parallel plates system.

The present report is the second one in a planned series which are to

explore the experimental as well as theoretical aspects of volume-heat-source

forced convection. Two specific research activities have almost been com

pleted and are to be reported in the near future. One activity involves an

experimental study of volume-heat-source forced convection in a pipe system

in the laminar and turbulent flow regimes; comparisons are made with the

previously developed theory. Another activity is a mathematical study of

volume-heat-source forced convection in the laminar regime including a

temperature dependent fluid viscosity.
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APPENDIX 1

HYDRODYNAMIC RELATIONS FOR TURBULENT FLOW

IN A SMOOTH PARALLEL PLATES SYSTEM

The hydrodynamic relations given in Table I characterize turbulent

flow in a smooth channel (parallel plates system). The manner in which this

table was developed is illustrated below for the buffer layer.

The turbulent shear stress equation is expressed as

T=(n) +6)du (a)
p ay

In the buffer layer, the shear stress is very closely equal to the wall

shear stress, T0, and the velocity distribution is given by,

u+ = -3-05 + 5-00 In y+ (b)

Upon differentiating equation (b) it can be shown that

du

To_
P

<ly " y

Upon substituting equation (c) and the wall shear stress in equation (a) and

solving for the eddy diffusivity, there results,

To

(c)

i- =-V- -1 (*)
-0 5-i>
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Two relations describing the pressure drop and wall shear stress in the

parallel plates system are,

ax kx0 2~g~ (e)

and

'o Ax o (f)

where the quantity, krQ} is sometimes called the equivalent duct diameter

and, 5 , is the friction factor which is uniquely related to the Reynolds

modulus. Upon substituting equation (e) into equation (f) there results,

Is.
p

5
(g)

The Reynolds modulus for the parallel plates system (based on the equivalent

diameter) and the friction factor relation are expressed as,

k roUja

and

Re =

5

~8
^? for 5 x 105<Re<106

Re .2

Upon substituting equations (g), (h), and (i) into equation (d) and

simplifying, there results,

-|- =0.0076 Re'9n-1
where n = _Z_

(h)

(i)

U)
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The thickness of the buffer layer can be obtained from the defining y+

relation,

+ y
y+ = -

T0

Upon substituting equations (g), (h), and (i) into equation (k) and

simplifying, there results,

26.3 y+

The buffer layer thus extends from n=1^1^ (corresponding to y+ =5)
78Q Eeto n = 122. (corresponding to y+ = 30).
Re-9
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APPENDIX 2

RADIAL HEAT FLOW RELATIONS

The turbulent velocity profile in the radial heat flow expression,

equation (16) may be represented satisfactorily by two layers (a laminar

layer and a turbulent core) rather than the four layers which are used in

the temperature analysis. The laminar layer, which is postulated to extend

to y+ = 12, is represented by the linear velocity expression,

u+ = y+ (m)

or u = 0.00575 um Re*8 n for 0<n<r^i^ (n)
Re'9

Equation (m) was reduced to equation (n), with the aid of equations (g),

(h), and (i). The turbulent layer, which is postulated to extend from

y+ = 12 to the channel center, is represented by the one seventh power law-

expression,

u-B0nl/7 (o)

where B0 is related to the mean velocity on the basis that the sum of the

volumetric flow rates in the laminar layer and the turbulent core is equal to

the total volumetric flow rate; this relation is obtained as follows:



or

Thus Bn =

16 -

2 r0 1 % = 2/ u 1 dr +

XB8 B°
8/71 -nL

(1 -0.00575 Re'8 2L2] un
JU"»L8/r) ? = *'%

u 1 dr (P)

rL

+ 0.00575 UmRe*8 St (q)
2

(r)

where nj, is the dimensionless thickness of the laminar layer equivalent

to y+ = 12.

The radial heat flow in the laminar layer is obtained by substituting

equation (n) into equation (l6) and integrating,

dA

WrQ

2

n

0.00575 Re*8 ndn -2n

0.0115 r> .8 2 o—5—— Re*w n^ - 2n (s)
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The radial heat flow in the turbulent layer is obtained by substituting

equations (o) and (r) into amodified form of equation (l6) (limits are nL
to n),

IdAy/
5

WrQ

2

x. 0^525. He.8nL2

(1 -nL8A)

n8/7 -n*tinL - 2(n-nL) (t)

Equations (s) and (t) are graphed in Figure 2 as functions of Reynolds

modulus.
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APPENDIX 3

TURBULENT FORCED CONVECTION IN A PARALLEL PLATES
SYSTEM WITH A UNIFORM WALL-HEAT-FLUX BUT NO

VOLUME HEAT SOURCES WITHIN THE FLUID

A list of some of the heat and momentum transfer analogy solutions given

in the literature can be found in reference 1. Martinelli's solution for a

parallel plates system is graphed in Figure 6 in terms of Nusselt, Reynolds,

and Prandtl moduli. The Nusselt modulus can be expressed in terms of the

wall-fluid temperature difference and the wall heat flux (these quantities

arise in boundary value problem (15) ),

nu =h^r° = vajJo (u)
k (t0 -tm)k

where h is the heat transfer conductance or coefficient.



-31 -

UNCLASSIFIED
ORNL-LR-DWG. 181

r

Fig. 6. Nusselt Modulus as a Function of Reynolds Modulus for Turbulent Heat Transfer
Between Parallel Plates for Several Prandtl Moduli.
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