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SUMMARY

Theoretical laminar flow analyses are given for free convection in fluids

having a uniform volume heat source and for both parallel plate and cylindrical

pipe geometries. The solutions are intended to be valid in the central region

(vertically) of channels having small diameters and large lengths; that is, the

solutions do not apply to short systems or near the ends of long systems where

the velocity and temperature profiles are not yet fully established. In addi

tion, the solutions are restricted to 'systems in which the long axis is vertical

and in which the walls are uniformly cooled by a forced flow coolant flowing

vertically upward parallel to the long axis of the system.

Solutions are obtained for the parallel plate geometry by two different

techniques called "exact" and "approximate". In the "exact" method the differ

ential equations for velocity and for temperature, which are interdependent

in free convection systems, are solved simultaneously; in the "approximate"

method the form of the velocity distribution is postulated and substituted in

the temperature equation which is then integrated. Solutions by the two methods

agree -well in the range where the basic postulates are believed to be valid.

The velocity and temperature structures are functions of two new dimensionless

moduli herein designated as Nj and Njj.



INTRODUCTION

The purpose of this report is to provide a wider distribution for three

analyses performed in 1951 than was accomplished by the very limited local

distribution of References 1, 2, and 3. Originally these analyses were per

formed as the first step in a theoretical-experimental free convection research

program. At that time it was planned to withhold publication of these analyses

as a report until the experimental data were available which proved their

validity. Subsequently, other problems have diverted attention from free

convection experiments so that this research has become a part time activity

(Reference 4). This reduced experimental program is less comprehensive than

would "be required to adequately prove or disprove the validity of the basic

assumption of these analyses. Therefore the reason for delaying this publi

cation is no longer valid. It is expected that the results of the more modest

experimental program will be reported in the near future.

The basic postulates that apply to all three analyses are discussed in the

next section; following that is the "exact" solution (ideal System I) for the

parallel plate geometry. Then an "approximate" solution (ideal System II) for

the parallel plate geometry is presented. Finally, an "approximate" solution

(ideal System III) for the cylindrical pipe geometry is given which is the

cylindrical equivalent of Ideal System II.



- 6

NOMENCLATURE*

al' a2 **** constants

A =—; uniform vertical temperature gradient (9L ); also area (L2)
dz

Bi(z) -function of z in Equation (4) (L'1 T"1)

B2(z) - function of z in Equation (6)

cl>c2> •••• constants

Cp - constant pressure specific heat (FLM 0 )

C - circumference of flow channel (L)

d - separation of parallel plates or diameter of cylindrical pipe (L)

Also used as differential operator

Djj = ifA; hydraulic diameter (L)

f«/ggp °h\ fdPf\; friction factor=/2g^_Dh\/dpf\
U wSJl.dzy

where fof is the pressure gradient due to friction
dz

g - gravitational acceleration (LT )

go - dimensional constant (LMF-1 T~ )

h - heat transfer coefficient (FT L B~ )

h - height of system (L)

k - thermal conductivity (FT B~ )

L - length of fluid circuit (L)

♦The last part of the definition of each symbol will indicate its dimensions
in the force (F), mass (M), length (L), time (T), temperature (0) system;
when no dimensions are given the symbol is dimensionless.
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m = x; spatial coordinate (L)

M = JL
xi

Nj = yL/ ;aform of Grashof times Prandtl modulus

a"'Bed-'Njj = -i—ZZ—; a form of Grashof modulus
kV2

Nu = fill = :-JZx; Nusselt Modulus
k $(0)

p - pressure (FL )

Pr = &L.- Prandtl Modulus
a '

q - heat transfer rate (FLT~-*-)

q" - heat transfer rate per unit area (FL~^ T )

q1" - volume heat source term (FL-2 T )

r - radial coordinate (L)

r^ - value of r at the interface between the two free convection streams (L)

ro = —; pipe radius (L)

R = £_

w Dv,Re = —jM. ; Reynolds modulus

s = x

Sr, =

S = ±-
sO

[-2 i.1; spatial coordinate. (L)

=(f2^))(L)

t - temperature (8)

u - x component of velocity (LT-1)
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v - y component of velocity (LT-^-)

w - z component of velocity (LT_1)

Wfc - average velocity in the middle, hot, or upward flowing free

convection stream. (LT"1)

w - average velocity in the outer, cold, or downward flowing

free convection stream. (LT~^)

W = Hr_; velocity function

^h = h ; mean velocity function
l/Nn

x - spatial coordinate (L.)

Xj^ - value of x at the interface between the two free convection

streams. (L.)

xQ = —; half separation of the parallel plates (L.)

X = x_
Xo

y,z, spatial coordinates (L.)

. Greek Symbols

a = ^P/* ; molecular thermal diffusivity, (L2 T"1)
k

^ - volume coefficient of expansion (0~^)

0(X), 8(R) - temperature excess above wall temperature at the

same value of z (0)
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Oc(0) = 9(0) for conduction only (9)

2
0C(O) = ^"1 d for parallel plates

2

8C(0) = q"' d for cylindrical pipe
16k

-fa'

/X - dynamic viscosity (ML- T"1)

j,/ = JL ;kinematic viscosity (L2 T"1)
P

p - mass density (ML"'5)

$ = 6 ; temperature function
ScW

A*b - mean buoyant temperature difference
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GENERAL DISCUSSION OF THE PROBLEM

Laminar flow free convection systems are described by three equations of

motion (Navier Stokes equations) and the heat conduction equation for a moving

system. These four partial differential equations are interdependent and com

prise a set one would hardly attempt to solve. It is intended here to briefly

discuss the basic postulates that permit simplification of these equations to the

quite elementary ordinary differential equations that are solved in this report.

Although the parallel plate or cartesian geometry of Figure 1 is used in this

discussion the comments are equally applicable to the cylindrical pipe geometry.

The free convection system to be studied is the fluid in the channel between

the parallel plates (Figure l) separated by a distance, d, and of height, h,

which is very long compared to d. Heat is generated uniformly throughout the

fluid and the heat is removed uniformly at the walls. Because of these factors

and because of the vertical orientation of the z axis there will be three

parallel free convection fluid streams; the warm stream in the center of the

channel will flow up and the two cool streams near the walls will flow down.

Below some critical velocity these streams should be quite stable and, in

fact, should behave much as three laminar forced flow streams separated by

physical boundaries might behave. This tendency toward stability of the flows

suggests that the flow would be one long vertical cell, not a number of small

cells or laminar eddies a few diameters in length. In forced flow heat transfer

systems in conduits the velocity and temperature distributions are observed to
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COOLANT CHANNELS

Fig.1. Configuration of Ideal System I (Paral lei
Plates) and the Accompanying Coolant Channels
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become fully established or reach a stable form some diameters beyond the entrance.

Beyond this entrance region the velocity and temperature distributions no longer

change as one proceeds down the pipe. The similarity of the flow in the free

convection system and the forced flow system above suggests that beyond some

entrance region, near the ends of the present system, the velocity and tempera

ture profiles may also become fully established. These are the two basic

postulates of the systems analysed in this report and are stated more incisively

as follows:

Postulate 1: w = f(x)

Postulate 2: §£ = A, where A is a positive constant and
dz

uniform for the entire system

Other postulates that are necessary to describe the three ideal systems

to be analysed are:

Postulate 3J The volume heat source term, q'", is uniform

throughout the system and constant with time.

Postulate 4: The height to diameter ratio, h/d, is very large.

Postulate 5^ The flow is laminar and steady (i.e., constant

with time).

Postulate 6: The flow is two dimensional (i.e., the y component

of velocity, v, is zero).

Postulate 7: All fluid properties except density are constants.

Postulate 8: The density is constant in the heat equation and is

a linear function of temperature in the dynamic

equation.
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As a consequence of Postulate 1 one can prove that the x component of

velocity, u, and the transverse pressure gradient _fi£ vanish and that SlE.
dx dz

is uniform with x. Thus, two of the dynamic equations are eliminated and the

third is greatly simplified to:

§=M&+pt) (1)
As a result of Postulate 2 one can prove that the heat flux at the wall

is uniform and therefore known; that is, each element of width, d, and height,

dz, loses through its own bounding wall surface exactly the amount of heat

generated within that element. Thus, no net heat loss occurs in the z direction

for such an element. An additional consequence of Postulate 2 is that the use

of the temperature function, 0, eliminates z as a variable and the equations

involve only one Independent variable, x. The heat conduction equation is then

simplified to:

g-4*-Sr" • <2>
By definition p(t) =p(tQ) fl - p(t - t0)) (3)

Employing the function, 9, and Equation (3), Equation (l) becomes:

~| - - U 9(x) +Bx(z) (4)
dx w

Note that the function B^(z) is independent of x.
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The heat conduction and dynamic equations that result from employing

dimensionless functions in Equation (2) and (4) are:

d2*lX) =2Nt W(X) -2 (5)
dX2

^ffi. --1 *(X) +B2(z) (6)
AYd 52dXe

Equations (5) and (6) together with the accompanying boundary conditions

define the parallel plate system to be analysed.

The equivalent set for a cylindrical pipe is:

**(»s3sl)--ff,<B> +,tfi) ™

ff&C-TSr2)-**•<»>-* (8)
The boundary conditions and auxiliary information that go with the

differential equations to complete the boundary value problem are given here.

Due to the definition of the temperature function $:

*(D =0 (9)

It is evident from inspection that both the velocity and temperature

functions are symmetrical, thus:

W(-X) = W(X) (lOp)

W(-R) = W(R) (10c)
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and

•(-X) = #(X) (lip)

»(-R) = *(R) (He)

The velocity at the walls is zero, thus:

W(l) =0 (12)

No net flow occurs, therefore

-1

W(X) dX = 0 (13p)
'o

•1

W(R) RdR = 0 (13c)
'o

No net heat transfer occurs in the z direction so the heat generated at a

given level must transfer to the walls at that level; thus:

S*lil = SfiiiL = -2 (14)
dX dR v '

Equations (5) to (14), inclusive, define the systems to be solved.
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IDEAL SYSTEM I (PARALLEL PLATES)

The geometry was previously described in Figure 1 and the differential

equations and boundary conditions were adequately discussed in the previous

section. It is sufficient here to define the system mathematically and then to

obtain the solution.

The differential equations to be solved are:

£$&- =2NJ W(X) -2 (5)
dXtf

^-=-^*(X)+B2(z) (6)

The boundary conditions to be employed are:

W(-X) =W(X) (I0p)

W(l) = 0 (12)

-1

W(X) dX = 0 (I3p)
'o

^-o Cixp)

*(D - 0 (9)
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Velocity Solution:

Eliminating the temperature from Equations (5) and (6) one gets the

velocity equation:

^♦S-w-fe Cl5)
The general solution to (15) is:

W(X) = ±_ (1 + ai sin XX sinh XX + a0 cos XX cosh XX
Nj x 2

_/Ni
-1st

+ a* sin XX cosh XX + ai^ cos XX sinh XX) . . . (l6)

where X*\&) (l?)
By successive application of boundary conditions (lOp), (12), and (l3p) one

obtains:

a5 = a^ = 0 (18)

a _ (sink cosh X+ cos X sinh X -2 X cos X cosh Xj ,1Q\
1 \ sinh X cosh X -sin X cos X J ' ' '

/sin X cosh X -cos X sinh X -2 X sin X sinh X^ .., (20)
2 I sinh X cosh X - sin X cos X /

Thus, the velocity solution, plotted in Figure 2, is given by:

Nj W(X) = 1 + &± sin XX sinh XX + a2 cos XX cosh XX . . . (l6a)

The Reynolds modulus for the central or hot stream is:

•Xi

Reh = **, Ai WC «2Nn / W(x)dX (21)4 X^ V„

'o
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1 I 1 1 1

0.0004
103 \[ -N,= 1 m A^d4

NT =
1 a v
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w - ,
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0
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0.0002
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0.0006 I 1 1 1 1
0.2 0.4 0.6

X
0.8 1.0

Fig.2. Dimensionless Velocity Function, W, for Ideal System I (Parallel
Plates)
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Because the values of Re^ computed by the numerical integration of Figure 2

disagreed by less than five percent with the equation obtained in Ideal System

IIj that equation will be employed to display these results.

NttReh = £ (37a)
3460 + 0.786 Hj

The critical value of Re^ above which the flow is no longer laminar must be

determined by experiment. Experiments in Reference (5) indicated that the

critical value of Reynolds modulus for non-isothermal flow varies in a very com

plex manner and is not the same as for the isothermal flow case.

Temperature Solution:

At least three methods may be used to obtain the temperature solution; the

method employed here is to substitute the velocity from Equation (l6a) into the

temperature Equation (5) and integrate using the boundary conditions (9) and

(lip).

r r*(X) = / dX / (2Nj W(X) -2) X dX . . .. (22)

Putting W(X) from Equation (l6a) in Equation (22) and performing the

integrations one obtains:

$(X) = ~ la^cos X cosh X - cos XX cosh XX) +
X V

-s^sin X sinh X -sin XX sinh XX)1 .. (22a)

and $(0) =-=3- (ai(cos X cosh X -l) -a2 sin X sinh Xj. (23)
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A Nusselt modulus may be defined as follows:

Nu - <l"d _ k
kflToX " 5To

(24)

The dimensionless temperature function, $(X) is shown in Figure 3 as a

function of X and Nj. The value of Nj = 0 corresponds to the case of pure con

duction. The variation of Nusselt modulus with Nj is given in Figure 4. It is

interesting to note the similarity in shape of this curve with conventional

Nusselt modulus versus Grashof times Prandtl moduli plots for systems having no

volume heat source.
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103

.. A£gd«
x a v
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0.6
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Fig. 3. Dimensionless Temperature Function,<J>, for Ideal
System I (Parallel Plates)
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—

10 10' 10- 10 10'
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Fig.4. Nusselt Modulus for Ideal System I (Parallel Plates)
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IDEAL SYSTEM II (PARALLEL PLATES - APPROXIMATE)

This solution is an approximate method for obtaining an answer to the

problem described by Ideal System I. If the two solutions agree satisfactorily

the "approximate" method offers the two advantages of presenting a less diffi

cult boundary value problem and of requiring less time to perform the numerical

calculations. The technique depends upon the judicious postulation of the form

of the velocity distribution to be substituted into Equation (5).

Velocity Solution:

Let the real flow system of Ideal System I be replaced by a counter-current

heat exchanger system such as that depicted in Figure 5* To emphasize the

method used, the X coordinate is replaced by the coordinate, M, in the hot upward

flowing stream, and by the coordinate, S, in the cold, downward flowing stream.

One can think of these streams as separated by parallel plates inserted at

+ X^ (or H = + l). The velocity distribution in each region is given by the

equations with Figure 5; this is the familar parabolic expression for established

isothermal, laminar, forced flow between parallel plates. Since there is no net

flow:

Xi wh = 2s0 wc (25)

To satisfy static equilibrium at the interface, Xjt, the shear stress must be

the same, or:

aw(xj) =<Jv(xj,) (26)
dm ds
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-*- =-| (1-M2) for -1i M< 1 where M= -
v»h £

— =•%- (S2-1) for -1 <S_<1 where S =
wc 2
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(1 - X.)

UNCLASSIFIED
ORNL-LR-DWG 3562

d+Xj)

d -x,)

Fig.5. Coordinate System and Postulated Velocity Distribution
for Ideal System n (Parallel Plates)
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Equations (25) and (26) require that:

Xi =p" -1 and wh = /2" wc (27)

The pressure drop due to friction around the fluid circuit of length,

L, must be equal to the pressure rise due to the difference in the average

density of the two streams; that is:

i/p-./J„.(!§£) +fo!) ...... <->
-1 o / v 'hot v /cold

The friction factor for established, isothermal, laminar flow between parallel

plates will be used:

f = 26 (29)
Re

The left member of Equation (28) may be expressed in terms of a mean

buoyant temperature difference,A$b, defined as follows:

A*b = / WM -I / *dS (30)

Employing Equations (3), (27), (29), and (30) Equation (28) maybe expressed

as:

A\ = 96(7 + 5 1&) Wh (3D

The velocity structure is now completely defined in terms of constants and

A*b w^icn must be obtained from the temperature solution.
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Temperature Solution:

The temperature solution will again be obtained by substituting the

velocity solution into Equation (5) and performing the integrations.

d^(X^ =2Nt W(X) -2 (5)
dX^

The forms of Equation (5) that will be used here in the hot and cold stream

regions, respectively, are:

saga. «,* ** (x). ai* <5«>

The temperature in the cold stream is obtained by integrating Equation (5S).

f -s

IdXj 2

Integrating, one gets

.2•(S) =Xi(l -^.NiWh)(l -S) +\- (1 +X^ NiWh)(i _s2) +

_^Lfi_NlWh (1 - Sk) (33S)
16
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From Equation (33S) the temperature at the interface between the two streams

may be computed for use as the boundary temperature in Equation (32M).

$(-1) =2X± -V^Xi2 NxWh (34)

For the hot stream:

mI d(af] =2Xi2 / m/ (l^hd-M2) - lj dM . . (32M)
"*(l) -^ 1 o

Integrating, one gets:

*(M) =2Xi -fi?X±2 %Wh +Xi2 (1 -INjWhXl-M2) +NjWk (l -M^) .. (33M)

and $(0) =1-(Sl£zJ:) N^ (35)
Also, recall

Nu = •**•• (24)

From Equations (30), (33M), and (33S) the mean buoyant temperature difference

is computed as:

A*> -f-f1^) "ft. <*>
Eliminating A% between Equations (31) and (36) get:

Wh = (37)
144(10 + 7 V^) + J. (5 - 2 f2) NT

10
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The Reynolds modulus of the hot stream may be obtained from Equation (37).

Re, = aCiNTTWv = S (37a)
h Xllh 3460 + O.786 Nt.

The temperature for Ideal System II was computed from Equations (33M),

(33S), and (37) for various values of Nj and plotted in Figure 6 for comparison

with the results of Ideal System I. The two solutions are in excellent agree

ment for values of Nj up to 104. Above this value the solutions diverge

rapidly so that for Nj equal to 10^ the approximate solution yields tempera

tures that are too high.
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Fig. 6. Comparison of Dimensionless Temperatures for Ideal
Systems I and n (Parallel Plates)
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IDEAL SYSTEM III (CYLINDRICAL PIPE - APPROXIMATE)

The excellent agreement of Ideal Systems I and II for values of Nj up

to 10* supports the validity of the approximate method. Since the solution to

be presented here is identical with Ideal System II, except for geometry, the

accompanying discussion will be reduced to a minimum. The "exact" solution of

Equations (7) and (8) is not difficult; it is an uncommon form of Bessel's

equation. The disadvantage of the "exact" solution in this case is the labor

involved in the numerical calculations of the solutions.

Velocity Solution:

The postulated velocity distribution given in Figure 7 was obtained in the

same manner as was used in Ideal System II; in this case the two regions are

dynamically characteristic of isothermal, laminar, established forced flow in a

pipe (for the hot stream) and in a circular annulus (for the cold stream).

Since there is no net flow:

Wh Ri2 - wc(l -RjS) (38)

To satisfy static equilibrium at the interface:

dw(Ri-)_ dw(Ri+) , ,
dR - dR (59)

Equations (38) and (39) require that:

Ri2 « 0.316198 (40)

and wh = 2.16258 wc (41)
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R = 0 R = R|

— =2(1-CiR2) for 0± R <_Rj

-— =2C2d-R +C3lnR) for Rj <. R ±. 1
w

C, =Rf2; C3= -d-R,2) (InRj)-1

C2= d +Rf-C3}"1; C4= C2(C,- 1)-1

R = 1

Fig. 7. Coordinate System and Postulated Velocity
Distribution for Ideal System HI (Cylindrical Pipes)
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Again, the buoyant force must be equal to the pressure drop due to friction.

Ri ^l

where ^ =if? / *RdE "J^ J *R*R (*3>
•^ 'Ri

The friction factors are:

fc)v 'hot

= 64^wh
5^ <*>

From Equations (42), (44), and (45) get

A*b = l6c5 Wh (k6)

c5 = 32(cx + c^)

Temperature Solution:

The temperature solution is obtained by substituting the velocity equations

from Figure 7 into Equation (7) and then performing the integrations.

d(R <j|) =(NiWh JL -1) 4RdR (7)
an wjj
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For the cold stream region, Ri<R<l >

dR

R

-2 1 'l

'• /R — ^R R' dR '* 'R

d(Rl)=-/ f/ (1+2c2^(l-R2+c5lnR)) 4RdR .. (47c)

which, when integrated, becomes:

*-l-R2-c4 NjWh f|+2(c5-l)(l-R2+inR) .R_ +2c^ ^-^ ## (^8c)

and *(Ri) =1-Ri2 -c6 NzWh (49)

where eg =c^ f1~gRi +2(c5-l)(l -R-J2 +InRi) +c^2 In R^J

For the hot stream region 0<R<Ri

d(R "J =/ « / ^iW^l-cxR2)-!) 4RdR .... (47h)
(Ri) yo R± -o

dR

R

which, when integrated, becomes:

*=1-R2 -NTWh(c7 -2R2 +^L r*) (48h)

and *(0) = 1 -c? NiWh (50)

where Cy = 1.5 R^ + c,-
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The Nusselt modulus expression is the same as for the previous systems:

Hu - m • • (51)
Using the temperature solution, Equations (47c) and (47h), in Equation

(43) the mean buoyant temperature difference may be computed:

A*b =\ -c8 NiWh (52)

where c8 =c6 +| Rj2 -2| ^4-3 c5(l +5R±2) +(34 - |Jt) r.2 +10 r^)

Equations (46) and (52) yield:

\ = i (53)
a 32 c7 + 2 c8 Nj

The Reynolds modulus of the hot stream may be computed from Equation (53)

since:

Reh = Ntj Ri Wh (54)

The important equations are given here with the constants eliminated:

for 0 < R< Ri

•(R) =1-R2 -(0-6838 -2R2 T1.581 R*) Nx
(6930 + 0.742 Nt.)
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for R.<R<1

•(R) =1-R2 - (3.13g-R2(l-352 +1-8R2 - k.Zj6 In R2) +O.676 lnR*) NT _ ^c)
(6930 + 0.742 Ni)

4(0) = 1 ( a —) (56)
Vio,i3o + 1.085 Hi/

Equations (55c) and (55h) are plotted in Figure 8; the temperature curves

are similar to those given in the parallel plates analyses. In Figure 9 the

Nusselt modulus as computed from Equation (56) is shown as a function of Nj.
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Fig.8. Dimensionless Temperature Function,<£, for Ideal System HI
(Cylindrical Pipe)
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Fig. 9. Nusselt Modulus for Ideal System DI (Cylindrical Pipe)
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DISCUSSION

In the range where the basic postulates are believed to be valid, that is,

for 0<Nj<10 , the approximate method, Ideal System II, and the exact method,

Ideal System I, yield temperature solutions that are in good agreement. Up to

Nj equal to lo3 the two velocity distributions are in close agreement so that one

is not surprised at the good agreement of the temperature solutions in this range.

Above Nj equal to 10* the value of Xi in the exact solution becomes greater; that

is, the interface between the hot and cold streams moves nearer to the wall.

Above a value of Ni of 10 the difference in velocity structure is sufficient to

cause a marked difference in the two temperature solutions. It is interesting

that the approximate solution is always in error by giving a temperature that is

too high.

For the systems analyzed here, it appears that the reduction in tempera

ture due to laminar free convection is of the order of one half.

Some of the postulates upon which these analyses are based must yet be

verified by free convection experiments in volume heat source channel systems.
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