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ON SOLVING LINEAR ALGEBRAIC SYSTEMS 

Most methods of solving a linear algebraic system of equations 

(1) A x = Y 

fall into two broad classes, generally called iterative and direct. An 

iterative method, as the term is used here, defines an infinite sequence 

of vectors xi which converge to the solution x, while a direct method 

leads in principle to the true solution after a finite number of steps. 

Ordinarily this is true in principle only, since errors generated in the 

course of the computation (due to rounding) will contaminate the result, 

SO that the method may be expected to yield only an approximation that 

mayor may not be sufficiently close in any given case. 

An iterative method usually has two advantages over any direct 

method. These are, first, that each term in the sequence is obtainable 

in a relatively simple manner. For programming on an automatic computer, 

the simplicity of the program may be an important consideration. The 

second advantage is in part a consequence of the first and is this, that 

the generated error may be reducible to a minimum. This is true in 

particular in case each term x is obtained as an uimprovement" over p 

the preceding by operating upon it alone. In assessing the precisionxp-l 

that is achievable by such a method, it is sufficient to ask under what 

circumstances one is assured that the result of an iteration x * , after 
p 

having been rounded from x , will still be better than the x _p p l 



previously at hand. How x 1 had been obtained (presumably by roundingp-

after a previous iteration) is irrelevant. 

The two advantages just mentioned may, of course, be partially 

or completely offset by slow convergence. To handle the most recalcitrant 

cases, therefore, one might need to apply first a direct method for 

obtaining rapidly a reasonably close but possibly not adequate first 

approximation, and then to improve this by a few iterative cyeles to 

eliminate the worst of the generated error. But if this is to be done one 

would like the iterative and direct methods employed to be in some manner 

related. 

Supposing the matrix A to be arbitrary, the equations to be 

solved may be interpreted as requiring that the vector y be resolved along 

the vectors represented by the columns of A, the elements of x providing 

the coefficients. If is any approximate set of multipliers, and 

(2) = 

represents the discrepancy, a better approximation can be had by projecting 

r O upon any vector ul of the form ul = A vl • One determines AI' 

that is, so that the vector 

= 

represents a new approximation whose residual 

(4) = r ­o 
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is orthogonal to ~ " Since is thus resolved into components 

and. ,unless r is itself orthogonal to u the step leads to anul O 1 

actual improvement in the sense that N(rl ) < N(r ) , Where, by definition,o

T 1/2
N(x) = (x x) 

for any	 x (the notation throughout is that of Householder, 1953). But if 

it is not	 necessarily the case that N(sl) < N(sO) " 

The expression for A which satisfies the given requirements
l 

is simply 

If one proceeds, now, to select vectors v , v ' v4 ' ••• , in sequence,2 3 

obtaining therefrom the sequence x2 ' x ' x4 ' •• " the sequence will
3 

converge in general, so long as the v's are not subject to rather obvious 

pathological restrictions. 

If the v's are selected arbitrarily, except for not satisfying 

the pathological restrictions, then part of the information available from 

preceding steps is ignored" Thus, since was made orthogonal to 'r l ul 

it follows that the best selection of u2 = A v2 will necessarily lie in 

the space orthogonal to u • If such a selection is made, then willr 2l 
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be orthogonal to u as well as u • Hence is best takenl 2 

orthogonal to both and But, in following this process, if A~. 

is nonsingular, one will arrive eventually at r = Ofo!' some m < n,m 

since r would be orthogonal to the n mutually orthogonal, and hence 
n 

linearly independent, vectors ul ' u2 ' ••• , un • 

To describe the process in quite general terms, let 

(6) 

be a nonsingular matrix, and let 

(7) Q = A P = (ql'~' ••• , ~) • 

One can determine a unit upper triangular matrix M such that 

( 8) P =: V M , Q = U M , 

where D is a nonsingular diagonal matrix. An induction will both 

demonstrate the theorem and show how M , V and U are to be computed. 

First one takes 

Next, suppose 

-4­



with Qi ' Vi ' and Ui similarly defined, and suppose 

Pi = Vi M ' i 

The first two of these relations are equivalent. It is required now to 

form a bordering vector m so thati 

and 

D~. 0)
o 'il

i+ ~ 
This requires that 

The first two of these three relations give 

2= D m m. 1i 1+1' . 1+ 

-5­



2
Knowing mi +1 ' one can now form u i +1 ' vi +1 and 5i +1 

As a byp~oduct of these operations, note that U D-
1 is an 

orthogonal matrix: 

Hence 

Since 

U = A V , 

therefore 

:;::I = 

-1
A 

Successive steps of the process give approximations xi that are 

progressively Ubetter U in the sense described above. One has 

, 
(10) 
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The improvement brought about in any step is measured by 

T
(11) r. 1 r. 1 = = 

~- 2­

A convenient and natural choice for the matrix P is the identity. 

Then (8) becomes 

(12) I = V M , A = U M , 

and the columns of U are the orthogonalized columns of A. 

If' there are only m < n columns in A but these are linearly 

independent, the same process leads to an r which is orthogonal to all m 

the columns of' A, and hence to a solution of the least squares problem. 

To return to the case m = n (the more general case differs only 

trivially), one will find, on reaching r , that it does not vanish strictlyn 

but remains of a magnitude that mayor may not be considered a serious 

deviation. The principal purpose of the present note, however, is to point 

out, first, that one has now readily available the framework for rapid 

improvement, and, second, to develop a formula that can be utilized to 

show at what stage any further "improvements ft become submerged in the 

error that is generated in the course of computing them. 

The method one uses to improve upon the x is simply this, that 
n 

one utilizes the already available and associated 

••• , in the simple iterative process. The fact that the vectors are 

nearly orthogonal (but not strictly 80 because of the presence of generated 

errors), is advantageous for convergence. The fact that they are not 
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strictly orthogonal means merely that the exact solution cannot be achieved 

in n stepse 

Now consider any u = A v, which mayor may not be one of the ui 

of the orthogonal set. Let x be any digital vector, regarded as an 
:P 

approximation to the true solution. How it may have been obtained is at 

present irrelevant. We wish to form 

= + ).v ,xp+l 

by selecting ). so that and u are orthogonal. Actually we shallr p+l 

form 

* 
x * = x + ( ). * v)p+l P 

Under what circumstances can we be assured that x * , the vector we shallp+l 

actually form, will be a better approximation than x ? The approximation
p 

will be better in fact, by the criterion being used here, when 

(13) 

where 

• 

However, we have available neither r p ' nor r l' but only
P+ 
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* (14) 

and 

* 
(15) r * = Y - (A x * 1)p+l p+
 

Since, for any x and y,
 

N(Y) ~ N(x) - N(x - y) , 

it follows that (13) is assured if 

*> + N(rp+1 

Upper bounds for N(r* - r ) are the same and are 
p p 

fixed by the routine for carrying out the computations (14), and (15). 

If all elements of A and of both XIS are digital, and each multiplication 

is rounded off, then 

and likewise for the next residuals. In this event (13) will be assured by 

(16) N(r*)p > 

If complete products are accumulated and only the sums rounded the factor 
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1/2can be replaced by n • 

This is a test that can be applied to the two computed residuals 

after they have been computed, but they give no indication as to when one 

might expect the relation to hold. 

To consider this we note first that 

(17) (uT r)
p 

2/uT u 

is the amount that the squared norms of the residuals should differ if 

the strict arithmetic operation were carried out. Consider, then, the 

amount by which the generated error can affect this. This is simply 

where 

* 
x * - x ::: (A - A*)v + A* v - ( A* v) •p+l p+l 

Let 

* r ::: y - A xp+l p+1 

represent the true residual corresponding to the computed x *+1 • Then 
P 

(18) , 
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where }1(A) is the square root of the largest proper value of AT A 

An upper bound for the proper value is provided by any norm of AT A 

[Householder, 19541. We ~assured of .! real improvement if v is 

such ~ the square root of the expression (17) exceeds twice the right 

member of (18). 

In (18) the bound for IA - 1*1 depends upon the vector 

and upon the routine for calculating 1 • Since 

we may assume that r p is small compared to u and that < 1" 

For one possible routine the difference 1 - 1 * may be written 

T *T * 
(u - u )u* T1 - 1 == u r +p (uTu*)(u*T u*) 

T *T * *T * 
(u - U ) r + u r p p

(19)	 + 

l 
* T	 T ** (u* r*) (u* r*) 

+ 
*T *

p p 

* 
(u u)	 (u* u*) 

*	 T J 
If N(u)* differs only negligibly from N(u), by comparison 

with N(u), this implies 

-11­
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If N(r ) is small by comparison with N( u) , then approximatelyp

and one of the two first terms may be expected to dominate. 

In (20) and (21) it is presupposed that in forming scalar products 

of vectors, each product of elements is rounded. If complete products are 

accumulated and only the sums are rounded, then the factor n can be 

3/2 1/2dropped and n replaced by n 0 

When the matrix A is of rank n, and not too badly conditioned, 

the vectors of the sequence and the scalars A should have become 

small before the magnitude of 11 - 1*1 becomes a factor to consider. 

Hence a further reduction in this quantity can be had at the expense of 

more programming. This is by computing (2~ r 
p 

)* , for suitable ~ 

[Cf. Householder, 19521' and thence obtaining (2(31) -1(­ • 

Ultimately one is interested in estimates of the magnitude of 

sp , rather than of r But for any definition of norm, the norm of p 
-1 

s can be bounded knowing the norm of r and the norm of A , and 
p p 

-1this can, in turn, be estimated from any approximation to A 

Householder, 1954J . 

The method developed above makes particular use of the column 

vectors of A. In fact, each x. is obtained by projecting upon the 
J. 

space of the column vectors al , a2 ' ••• , ai ' so that the new residual 
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is orthogo~al to this space. It should be noted that if X = 0, and oneo 
takes P = I, Q = A in equations (6) and (7), then only the first i 

elements of xi are non-null, and, in fact, xi represents the least 

squares solution of the equations from which the last n - i terms are 

left out. 

Consider now only the case when A is nonsingular, and let the 

adjoint system be written 

(22) = w 

The results of the previous computations yield almost immediately the solution 

of the- adjoint system (22). Otherwise put, if the system to be solved is 

expressed in the form (22), one may orthogonalize the rows of the matrix 

(thought of now as a transpose) instead of its columns. 

In terms of the geometry of the system (22), one proceeds as 

follows: Given any initial approximation Zo to the solution z, and a 

vector VI of multipliers, one projects the point Zo orthogonally upon 

the plane 

This plane contains the point z satisfying (22). The projection is 

expressible as 

(24) 

-13­



where is chosen so that satisfies (23):J.Ll 

T:; w - A Zo 

The new residual 

T(26) = w - A zl = 

is the projection of to ' the initial residual, upon the plane (23), and 

is therefore not longer than to ' and can be equal only if Zo itself is 

in the plane (23). 

One could select arbitrarily, project zl orthogonallyv2 

upon the plane 

:= 

and continue forming an infinite converging sequence of vectors zp But 

the plane (23) is known to contain both points z and Hence if 

is orthogonal to u ' z2 will also lie in this plane. Thus by using thel 

orthogonal set u the iteration converges to the true solution in at mosti 

n steps. 

Again, however, the zn actually obtained will not be the 

strictly correct z, nor will the vectors u be strictly orthogonal.i 

Nevertheless, using z as Zo ' one can proceed with the now available,n 

nearly orthogonal ui ' carrying out an iteration that should converge with 

some rapidity. 
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In this iteration the effectiveness of a given step is measured by 

T T 2 T 2
(27) = u T A A u (v t ) I(u u)p 

*If zp is any approximation (digital), and zp+l the digital iterate 

obtained by use of the vector v, then 

T * t - t = (w - AT
z (w - A Z 1)p+l p+l p+1) 

P+ 

, 

with 

* 
Z = * ~ ** u)Z - * (~ - ~ *) u + u(u - * ) + ~ u - (~** 

p+l p+l 

lIence 

Ngf * * ­+ u 

If each product is rounded, then 

N IIl * u * - (Il'* u)'* J~ n1/2 
€ , 

N(u - u)'* <. 
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Hence 

The factor ~ - ~ *	 can be decomposed 

T *T T * (v t p )(u - u )u 
+ 

T * T	 * (u u )(u* u) 
* 

~ - ~ 

+ 

T * T * v (t - t ) + v t ­p p p
+ 

*	 * 
(vT t*)	 T t;lp [ (v 

+ 
*T * * *T * * 

, 
(u u) (u u) r 

which leads to 

(30)	 I~ - ~* I <; € N-4(u) [n LN(V) N(tp ) + if'(ul] 

3/
2 4

+ n J1( u) N( v) [ 2lI( t ) + N( u) ] + 2N ( uJp 

If N(t ) can be neglected, thenp
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When this is substituted into the right of (29) the result is to be compared 

with the square root of the right member of (27): 

Finally, when z is accepted as an adequate approximation, one can, if 
l' 

necessary, use the relation 

, 

valid for any consistent norms whatever [Householder, 1954] to estimate the 

magnitude of z - z
l' 

At the possible risk of belaboring the obvious, a final \vord may 

be appended with respect to the criterion for terminating the iteration. 

This criterion relates to N(r ) or N(t ) as the case may beo On the p p

other hand, the real objective is an xl' or a zl' for which N(x - Xl') 

or N(z - z)
l' 

is as small as possible. It is known that the case 

N(x - xp+1) > N(x - x p ) 

can arise, even though always 

N(r )
l' 

-17­



The fact, however, that this case can arise is entirely irrelevant, 

because its occurence can never be recognized in a given instance unless 

one has more information than is here presupposed. If such additional 

information were at hand, then another method of solution would probably 

be indicated. Lacking it, one can only estimate the error in z or in x 

by a relation such as (32), by using the t (or the r ) which is in p p 

fact at hand. 

Following the terminology of Hestenes and Stiefel (1952) the 

methods that yield x and zn may be called "Methods of Orthogonaln 

Directions", since they constitute natural extensions to more general 

matrices the methods for positive definite matrices which they call 

IlMethods of Conjugate Directions". The point of view here proposed toward 

the subsequent iteration, and toward the assessment of the iterates, 

is different. In particular, deviations of the uls from strict orthogonality 

is of no great concern, nor does it require consideration in the analysis 

of errors. 

These methods lead to two distinct generalizations of the 

method of conjugate gradients, one given by Hestenes and Stiefel and one 

not. The generalizations may be called Methods of Orthogonal Gradients, 

and presentation of both in the present geometric setting may be of 

interest. 

For the first method, let 

cp(x) = (y - A x) T (y - A x) = r 
T 

r • 
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-1This function is essentially positive and vanishes only for x= A Yo 

Its gradient is 

T - 2 A rCPx = 

The method of steepest deseent applied to this problem takes 

x = x + A v ,p+l P 1> P 

ATv = r 0 

p p 

This is a simple iterative method (non terminating)~ The method of 

orthogonal gradients would take for the matrix P of equation (6) and 

following 

'\ 

T = A r .. 1 
~-

This is the method described by Hestenes and StiefeL The special advantage 

in this choice of the vectors Pi lies in the fact that the recursion for 

the orthogonalized ui has the very simple form 

,= + f3. 1 u. 1J-- J-­

all other terms dropping out and leaving only the single parameter f3 i - to 

be determinedo That is to say, the matrix M in (8) has non-null elements 

along and just above the main diagonal, but nowhere elseo 

-19­

l 



The other method of orthogonal gradients would make.use of the 

adjoint. Let 

.. 
T T T T

'It (z) = (w - A z) (w - A z) =t t, 

,I, = -2At.'t'z 

For the recursion which starts with (24), one takes 

= t.J.- 1 

The matrix M takes on the same simple form as in the other case. 
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