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THEORY OF THE PHOTOELECTRIC EFFECT. I. FORMAL ASPECTS

M. E. Rose and L. C. Biedenharn

I. INTRODUCTION

The need for an essentially exact calculation of the photoelectric

cross section has been felt for some time. The quantities of interest are:

(1) The total cross section for an adequate number of values of Z

and for energies in the region where relativistic effects cannot be neglected.

(2) The angular distribution with unpolarized radiation as a function

of Z and energy.

(3) The angular distribution with linearly polarized radiation, or

more particularly, the asymmetry ratio for a given angle of emergence of

the photoelectron and as a function of Z and energy. The asymmetry ratio

is defined as the ratio of differential cross sections for ejection in the

plane of polarization and orthogonal to that plane.

At present there are a number of approximate calculations available.

Summer visitor, Yale University. Now at Rice Institute, Houston, Texas.

1W. H. McMaster and F. L. Hereford, Phys. Rev. 95, 723 (195*0. This paper
presents the only experimental material on the polarization asymmetry of
which we are aware.

2Born Approximation, P. Sauter, Ann d. Phys. 11, 14-5*4- (1931); A. Sommerfeld,
Atombau und Spektrallinien(F. Vieweg und Sohn, Braunschweig, 1939) Vol. 2,
p. k&2. High energy limit, for the total cross section, H. Hall, Rev. Mod.
Phys. 8, 358 (1936).
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The only relativistic calculation wherein the Coulomb field is taken into

3
account was made by Hulme et al. Only the total cross section was considered

and results are given for the K-shell alone. No screening effects were allowed

for. Whether or not this is a good approximation, even for the K-shell,

remains to be seen. Experience indicates that in a very similar situation,

the internal conversion process, screening may make a difference of 10 percent

or less. For the photoelectric effect one might expect somewhat larger effects

because larger values of r are effective. This difference arises from the

circumstance that in the internal conversion outgoing waves are Involved and

these are singular at the origin while in the photoelectric effect only

standing waves enter and the origin contributes very little.

It is clear that the calculation of the photoelectric cross-section

is a formidable task even if one confines the work to the K-shell. However,

it seems that the order of magnitude of the task involved in calculating the

angular distribution is not much greater than that involved in the total cross

section. It is quite certain that it is no more difficult to include the

effect of polarization than it is to ignore it. In any event it is our

purpose in this report to exhibit the form of the cross-section in order to

provide a basis for assessing and organizing a calculational program. It

3
H. R. Hulme et al, Proc. Roy. Soc. (London) 1*49, 131 (1935).



is emphasized that this report does not contain numerical results. It is hoped

that it will be possible to present such results at a later time.

II. GENERAL FORM OF THE CROSS-SECTION

(a) The wave functions and radiation field.

For ejection from the subshell i we designate the cross-section by x" .
v i

The cross-section for all subshells will be

f =t<r± (i)
i

summed over all pertinent subshells. The cross-section (5". is found from

6" =jS r2 ^out (2)
1 Jin

where jQn^ is the current density for a Dirac electron with a direction of

propagation defined asymptotically by polar angles 3"" ,(P ; j. is the photon

flux of the incident radiation and £f implies an averaging (and/or summation)

unobserved parameters. For example, jQf will involveover

n.

- Z 0)

where n. is the number of electrons in subshell i, j. the angular momentum for

this subshell and m is the corresponding magnetic quantum number.

The outgoing current is
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where round brackets imply only a spinor sum - no integration over angles.

The construction of an electron wave function for a central field problem

where the direction of motion is asymptotically defined has been carried out

k
elsewhere. For large r this is

<;

\/f K (5)

Here W and p are the energy (including rest energy) and momentum at infinity.

The units used throughout are m = c = if = 1. In (5) as elsewhere the

angular brackets imply coordinate integration as well as spinor summation.

$ is the initial state wave function and for the final state one writes
i

I
* / - * fk^C t

I (6)

5
where f.- , g are radial functions normalized per unit energy interval.

These fulfill the differential equations (consistent with the representation

a = p, <3" and the sign in (h))

M. E. Rose, L. C Biedenharn and G. B. Arfken, Phys. Rev. 85, 5 (1952); referred
to as RBA.

5
For the Coulomb field these are given explicitly by M. E. Rose, Phys. Rev. $1,
m (1937).
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df X +1
dr r

f - (W - 1 - V)g (7a)

§= (w+ i-v)f -JL^g (7b)

where V is an arbitrary central field. Also X is a non-vanishing integer

with the total angular momentum of the electron given by

j = 1*1 -i (8)

and

Thus

<H = K for X}0 (9a)

= ->f - 1 for *<0 (9b)

C - 4 - £* (10>
where Ofc is the sign of l£ , (see Table I for particular examples). The

wave function $. . is defined as in (6) but with >f , U replaced by X } m.

In (6) the ^ are Pauli spin-angular spinors defined by

Xk = 2. °Uk ijj/*- -* >*) Y/_T ^ r (ii)

n-(o) • xi-C)
The C-coefficient is a vector addition coefficient and u is the magnetic

quantum number. Finally, in (5) /C is the perturbation due to the radiation,

i.e.

7f =ea-A (12)
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with A the vector potential of the radiation; A, is the phase shift

due to V. Thus,

K •* * r^oo *-k *

gk(0o) =-J| (W+l) ^ihnj^ (pr + ^) (13b)
with j-^(pr) the spherical bessel function. For the Coulomb field

Ak= Sv(z) - $%(o) (1*4)
where

0„ (Z) = T) -*y« -arg P (7 + ioZW/p) (lUa)
* '* 2 X

and

Jc + iaz/p_
2^ = arg —~ L. (lift))

I* 7^, + iaZW/p

7K =/* ""^ ' cc^ 1/137.
From (*)-) and (5) we find

Strictly speaking, Ojj (2) and hence ^~ should contain the logarithmic term
9El1 log 2pr. However, only phase differences A^ - ^^/Will be relevant and
this term drops out as usual.

(lUc)
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Using

so that

(^-^ ^r &> ="<£*"£„> ="( ^y» ^«) =(^X' ' ^r ^x} (l6a)

c |-7ti(^.lf'- -^ic ) i*i(/*'-£-* )
vVe = " S/c e (l6b)

ve find from (10) that'

*<*>'l* /*\> <v talf,> (*** -O (17)
As a check we consider the total cross-section (T . Integrating over

v , Y we have

so that

i Jin Kp ^>
as expected. This also verifies the statement made above concerning the

normalization of the final state radial wave functions.

'The difference between (17) and Eq. (25) of RBA is a factor - 2it which was
irrelevant for the purposes of that paper.

and

2 >> i(^t-^xOoP -2«i(A' - A)
r j = 2« £ £. e wt ^H' e

out -»-»/ /



-10-

The vector potential A of Eq. (12) may be written in the form

ik*r
i - _iPir j. ^ * -^

A»— J e"1P^ Ap =6e^'x (20)
N/2"

where P = t l and Ap corresponds to a pure circularly polarized wave. That

is, with k the propagation vector along the z-axis,

j± u + iPu .r* -*•
a x y i k «r ,Ap --^-*- e (21)

where ux and u^ are unit vectors along the x and y-axes respectively and the

unit polarization vector is

& = u cos P + u sin F (22)

The angle p is defined with respect to an arbitrary plane through the vector

k. One then finds immediately that

k . .

For our purpose it is necessary to expand the plane wave into multipole

solutions. In the solenoidal gauge these are

t^ - - if A o*>

See M. E. Rose, Multipole Fields, John Wiley and Sons, New York, 195*4. This
reference is designated as R.
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for a magnetic 2 pole and

tR(e) F- f- 0~ j Pl + f1^ j TM 1 (25)AL(e-> =>»*(_ JZUI JL+1 LL+1 + JzuZ JL-liLL-lJ ^}

and T; are the irreducible tensors defined by

T^ =T C(lX.Lj-m',m'+M) Y^+m' u_m, (26)I+m'

u-m

_*.
j^

uo = uz

mf

1

uti =; fi" (u* t iuy}i (26a)

No loss of generality is incurred by choosing the quantization axis

along k. Then M = P and (see R, Chapter VI)

Ap =jt Z- i J2L+1 l"AL(m) +iPAL(e) (27)

(b) The matrix elements.

We have now defined all the quantities entering in the cross section

and at this point one must calculate the matrix elements entering in (17)-

For this purpose we define reduced matrix elements Q, by

</*' ^ X« ) - C(L^^) ^ Q(* * ^L) (28)
These reduced matrix elements are now obtained by calculating the left hand

side of (28) which is

^ C(UL;-« P+M) <CK+V.Jrm) (28a)
M * '

The matrix elements needed are then
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<*H# I?,> =^2 iL+1 ^ e"±P^ ^Lj^Pm) £ p
PL A1 *^+m

X|- RL(X^) Q(-X >ti;LL) +RL(X^.) q(* j-fc^LL)

+1P I" j^fel (RL+1( **i} ^"X^i^1 L) -¥L+l( **i) Q(^,-^iiL+l L))

(RL_1(XX.) q(-*,*.;L-1 L) -S^HX.) Q(X,-K.;L-1 L))J((29)L+l

+ J2L+1

with"
oo

i
o

?
drV**i> =|r2gx j^f^

To calculate the (angular bracket) matrix element in (28a) we write it

in the form, see Eq. (11),

9
If comparison is made with the closely associated problem of internal conversion,
M. E. Rose, G. H. Goertzel, B. I. Spinrad, J. Harr and P. Strong, Phys. Rev.
83, 79 (1951), it is seen that the latter involves radial integrals with fy, fx.
and g^ g . The distinction lies in the gauge. While any gauge is suitable

the most convenient gauge in the internal conversion is the non-solenoidal one
with the T,. , ^ terms absent. This is connected with the important distinction
that in internal conversion outgoing and not standing waves are necessary,
see R. Chap. V.
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.H

<^X, <+Mfr_M^) -I CtfiV-T T)C(^jV?,t)
XX

*«\ ><•* $ < *r -$* *i* >
Here <. I ZK , £ =-Kr J 0= Jx and j = j- . Using the result (R, Eq. (2.33))

/ A'T p+M „_t v
\ e ' * f /

f(2X+l)(2r+iy . -. . , T « —v P

and

Wjl ><TM #1 ) =(-)M /3 C(| li;T-M,M) J -
2 _w 2 T , X

We find after two straightforward Racah recouplings

<(^<+V.M^) =fh (2^l)(2i-+l)(2T+l) (-)^-i

XC(\i^;00) J /2s+l W(\Jji;£s) W(j|s|;£l)
s

X C(Xsj;P+M,m-M) C(jls;m,-M)

From (28a) another Racah recoupling permits the M summation to be

carried out yielding

See RBA, Appendix B, Eq. (B.3)-

•M

10
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Q(*X;XL) =J-jL (2L+l)(2X+l)(2/+l)(2j*+l) (_)^+J-*"J c(\H ;00)

x X (Ljj;\j0 ;L§ £) (30)

11
wherein the X-coefficient defined by

«r

X(abc;def;ghi) = (-) T (2s+l) W(bdcg;sa) W(dbfh;se) W(gchf;si)

0"=a + b + c + d + e + f + g + h + i

has been introduced. Actually this X-coefficient which, incidentally, defines

the recoupling from j-j to L-S coupling schemes for two particles of intrinsic

spin \,constitutes a degenerate case. That is, it can be rather simply expressed

in terms of a single Racah coefficient. This is demonstrated in the

appendix. The results given there show that

X(LjT;LjTil \ i )=(-)J 2(* -_X_) w(£j7j.£l) (31a)
^6L(L+1)(2L+1)

C(Lfl,?J;00) X(LJJjI*l*Zjl&) -(-)J+ ^ (?+* +^) C(L It^OO)
J6(L+l)(2L+l)(2L+3)

XW(/j*i_K jj^L) (31b)

U. Fano and G. Racah, unpublished. See also U. Fano, Nat. Bur. of Stand.
Report No. 121*4, p. k8.
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Hf.-i
C(L-1 I ^;00) W(Ljj;L-l^ i*;l|i) =("} + ^(* +JL±1 C(L Ji-^OO)

^6L(2L+1)(2L-1)

XW(fjAxJ;iL) (31c)
All these Racah coefficients can be written in elementary form, once the signs

of j -I and "j -£ are fixed. The C-coefficients are evaluated from

Eq. (5) of BBR.

Note that C(q07;OO) = 0 unless a + P + y is an even integer. This parity

rule plays an important role in the following.

(c) The cross-section.

It is now convenient to introduce the magnetic and electric matrix

elements according to

MjXU J2L+1 U RL(X) Q(-*,X.;LL) +\(X) Q(* ,-tf^LL)] (32)
and

EL(7C)= -\JT IRl+1(X) Q(" aC/iiL+l L) -\fl(X) Q(X,-tf.;L+l L)|

+ vfL+a (r (x.) Q(- XX ;L-l L) -R (X) Q(X,--X.;L-l L) (33)
L L-l > i L-l i -J

where, in the interest of simplicity, the 7t i argument has been suppressed

12L. C Biedenharn, J. M. Blatt and M. E. Rose, Rev. Mod. Phys. 2k, 2*49 (1952).
See especially Table I on p. 253- This reference is designated as BBR.
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in the radial matrix elements R and R as well as in Mr and Et. Then the cross-

section becomes

rr k«3® ni T Y iA**'C C %*!{(*'-£*) i(p<-p)£
k 2ji+1 LL1 X*-'

XiL"L' LML^) +ipEL(X)] f ML<(*') " iP'Ej.'CX7) ^" ^,C(Lj.j;PmyU/)
V vAC(L'JiJ'jP'my(t')( Xx/, /^ ) (3*4)

We have further abbreviated the notation by defining

and the conservation rules for the magnetic quantum numbers (P+m = /£, ,

P'+m = lo ) are expressed by writing C-coefficients with three magnetic

quantum numbers.

To carry out the sums over m, U and U, we use

f 7* Yh.\ ( y+i+V+J+J' I(2j+l)(2j'+l)(2£+l)(2i/+lT
(V **'' =(_) J W(2V+1)

X^JZiJU' V;00) C(jj'j/;^,-^) W(/Z/jj';i/i) Y (fy)
y

which is obtained from (11), the coupling rule (28b) and a Racah recoupling.

We now have the sum

2"(-)m+2~ C(Lj.j;Pm) C(L'j£ j';P'm) C(jjV ;P+m, -P1 -m)
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to perform. This again involves a simple Racah recoupling. The result

inserted in (3*4) gives

(J k A* ni , sJi+i V Y y i ^x'C c

k 2ji+1 LL' >> PP'

§*!(<£„/ -iyt) i(P'-P)P iL-L' r- -, p , -j
e IMj* )+iPEL(* )J /M^C*-) -iP'EL,(X )\2

X e

(2J+l)(2j'+l) (2)^^>)>(2^+l) cUl'y-,00) C(LL'yjP-P') W(i|'jj';^) W(LL< jj'; >, j.)
N 4jt(2V/+l) 1

^ **;*' Of) C5)
The next step is to carry out the P, P' summation. This involves only

four terms and is done explicitly. The result is

1
Ji+22 / v°i

(T -*ani(-) y- r- v ^kx' C 0 hH^X'- ^x).L-L'
i ~7T^ 7^ £- 2, A e ^* v}*/ e x

k(2j +1) ll' -xx' y

X(2j+l)(2j'+l) )/(2l+l)(2e,+l) C(ll')> ;00) W(^'jj <; V|) W(LL'jj '; l> j±)

X^C(LL')/;1-1) [(l^+iEL)(ML,-iEL,) +(-)UL'+i' c.cjp

+J(£t)7 C^LL?^11) K^l)^.^-) ^ +(-)I*L'+" —Jc.c.j p2 (36)

Here

and, whereas the first term (multiplying the Legendre polynomial P ) in the
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curly bracket of (36) represents the polarization-independent part *, the

second term (multiplying the associated Legendre polynomial P2 ) is polarization

sensitive. Obviously only the difference angle measuring the separation

between the electric field and the projection of the electron propagation

vector in the plane perpendicular to k enters. The asymmetry is the ratio

of G± for p = 0 to (S'. for £ = it/2.

In (36) we have momentarily dropped the %,% arguments from M. etc.

No confusion should result. Also c.c. in each line of the curly bracket is

the complex conjugate of the matrix element combination immediately to the

left.

We introduce

XXXL' = ^**'+ f(l*' - 4 +L"L? )

13-'This part arises from P = P' = ± 1. if we consider circularly polarized
radiation the result for the cross-section is obtained from (35) by setting
P = P' = 1 for left circular polarization (or - 1 for right circular
polarization) and multiplying by 2 (to remove the factor l/^2*in Eq. (20)).
It is then fairly evident that the cross-section for circular polarization
is exactly the same as for unpolarized radiation: (see discussion leading
to Eq. (38) below). This result is to be expected and implies that the
detection of circular polarization requires that a direction in space be
preferred by polarizing the electron spin in the initial state.
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and note that in (36) we may enterchange the summation letters ?< and X as

well as L and L'. Adding the result to (36) and dividing by 2, we find

2 Ji+2

^i =*J!ixl ^ Z ZZ (2j+l)(2j'+l) VT2^+1)(2^/+1) ScS^C(^^V;00)

>W(^j0'jj';^|) W(LL'jj';^j.) £ J (37)
where the square bracket is

L ]= C(LL'V;1-1) P fcos j) (MLML, +ELEL,)(1 +(-)L+L'+̂ )

-sin^ (ELML, -EL,ML)(1 -(-)L+L'+>>)j

+l{v^jT c(LL'y ;11) py {(W< "elel'} r°os (̂ +2p) +(~^L'+y cos(f -2pJ
-(ElMl,+ M^,) [sin (f +20) -(_)L+L'+^ sin ( f - 20)] t (37a)

For convenience the subscripts on Q> are suppressed. The cross-section

is now explicitly real.

Second
The curly bracket of (37a) can be rewritten as

A

=- sin 20 [(M^, - ELEL,)(1 - (-)3>L'+>') sin j>
+(BlMl, +MLEL,)(1 +(-)L+L'+^) cos^j

+cos 20 [(MlMl, -ELELt)(l +(-)lH-L,+ )> )cos /•
- (ElMl, +MLEL,)(1 - (-)UL'+^) sin <f>J (37b)



-20-

Remembering the definitions (32) and (33) of M^ and EL, reference to (30) shows

that E_ vanishes unless X+ £^ + ^~K ~ ° (mo<3- 2) wi'th X=Lt1 and M.

vanishes unless X+ £-. + JL-yi - ° (m0<l 2) with X=L. Hence
i

Also

This implies

*. + (x + ^-y 50(mod 2)

X' + I + ^-vv S° tmod 2)

X + X« = A, + 7 ,= y (mod 2)

where the last congruence follows from the parity property of the C-coefficient

in (37)- We also note that for the self-terms (MrMr. and EjEjt) X+X'H L+L'

(mod 2) while for the interference terms (MtEtt etc.) X+X' 5- L+L'+l (mod 2).

It then follows that (_)L+L'+V =± for the seif-terms and = -1 for the

interference terms. Hence, all terms in sin 20 in (37b), and therefore in

the cross-section, vanish identically. Thus, the cross section is independent

of the sign of 0. That is, looking along the direction of propagation k, it

does not matter whether the electron is ejected to the left or to the right of

the plane of polarization.

L+L'+ )?
With the preceding result we can write 1 1 (-) =2 in the

surviving terms; i.e., those multiplying cos 20. Collecting results from (37)

and (37b) "the cross ^ection is
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/-• 2jt an. (-) __ —. . • n .
0.= 1 ]T ZI (2J+D(2j'+1) J(2*+l)(2i'+l) S„SH,C(£t S;00)

k(2ji+l) LL« V XX'

/W(££'jj'; y^) W(LL'jj«; Vj.) JC(LL'V;1-1) Py ^cos </> (M^, +E^,)

sxn

f^+2)'i C(LL, y^H) p2 cos 2P cos ^ (Ml^, -ELEL,)

-sin j) (ELML, +EL,ML)J t (38)

The total cross section is readily obtained by integrating over V* , 0.

The polarization sensitive part obviously makes no contribution and since

only ),? = 0 contributes, L = L' and % = %' are the only surviving terms.

Then one finds

gt- [s. aa=8'5mi 2- sj±i (M? +E?) (39)
J k(2ji+l) LX 2L+1

The results given by (38) and (39) represent the final results for the general

form of the cross-section. To simplify further,special cases must be considered.

This is done in the next section.

III. THE CASE OF s^ ELECTRONS
2

The case of greatest interest is the K-shell. Our formal results make

no distinction between the K-shell and any other s_i electron. This distinction
2

appears only when the precise form of the radial integrals is considered. Thus

k
the following would apply to MT, NT etc. electrons.

A I 1
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For s_i electrons J( . = - 1, 0 = 0, j. = \. The pertinent X, j,
i

^ and /.K values are found in Table I. For completeness this table also

gives the corresponding information for X. = 1, t 2, -3 so that all subshells

through Ny are represented.

The sum over ~)C and X is now carried out for a fixed pair L, L'. The

full notation in which the ye dependence of M^ etc. appears explicitly must

1*4
now be restored. We define the functions

®+- (#0;ll>) =p^ ±SS. cavy-M p2 cos
y y V(V+2)! C(LL«y;l-l) "

In the self terms where /-t- L + L' is even one has

C(LL' /ill) /(^-2)I £l(L4-1)+L'(L'+1)1 V(^+l)- (l(L^I)-L' (L'+lf) ,,,_*
C(LL' j/jl-1) J(^+2)I y(y+l) -L(L+1) -L»(L'+1) ^ '

and in the interference terms where V + L + L' is odd, the C-coefficient ratio

is

"MbWh- S a--L,(L. +L+l, (*»,
The cross section now becomes

1*4
Compare L. C. Biedenharn and M. E. Rose, Rev. Mod. Phys. 25, 729 (1953) -
especially Eq. (73c).
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TABLE I. Final State Angular Momentum Parameters

2 x lf V =°' £*. =X' Ji =*

X = L X = L t 1

X L+l -L -L-l L

j L+l/2 L-l/2 L+l/2 L-l/2

% L+l L-l L L

'-«
L L L+l L-l

\- Xi = X> I* =!> £*. =°> *l =x/2

X == L X = L t 1

X L -L-l -L L+l

j L-l/2 L+l/2 L-l/2 L+l/2

L

L-l

L

L+l

L-l

L

L+l

L

?5/2: *. = -2, / « i, / =2, j. =3/2
1 l

X = L X = L t 1

X, L+2 -L-l L -L+l -L-2 L+l -L L-l

j L+3/2 L+l/2 L-l/2 L-3/2 L+3/2 L+l/2 L-l/2 L-3/2

i* L+2 L L L-2 L+l L+l L-l L-l

*-*
L+l L+l L-l L-l L+2 L L L-2
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TABLE I. (continued)

h/2: 2, fX =2, ^* = 1, Ji = 3/2

X = L X = L + 1

X -L-2 L+l -L L-l L+2 -L-l L -L+l

j L+3/2 L+l/2 L-l/2 L-3/2 L+3/2 L+l/2 L-l/2 L-3/2

*« L+l L+l L-l L-l L+2 L L L-2

/-< L+2 L L L-2 L+l L+l L-l L-l

5/2= X\ =-3, /„ =2, {v =3, Ji =5/2

X L+3 -L-2 L+l -L L-l -L+2

j L+5/2 L+3/2 L+l/2 L-l/2 L-3/2 L-5/2

/^ L+3 L+l L+l L-l L-l L-3

L+2 L+2 L-2 L-2

Ll 1

-L-3 L+2 -L-l L -L+l L-2

L+5/2 L+3/2 L+l/2 L-l/2 L-3/2 L-5/2

L+2 L+2 L L L-2 L-2

L+3 L+l L+l L-l L-l L-3
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2 ^__

i -•^ L e(ix. v«i-D{6>; [a ,(ll.) -^(ll.)J
+g" JB^ttL') +C^ (LL')] (41)

A (LL') = X (2j+l)(2j'+l) \/(2^ +1)(2 ^,+1) $,< S*/C(£n ix< VjOO)
v *X'

W(^K j ^/j';i^WLjL'j';iy) Mj*) ML,(X/) c°s^Kl<.,^/ (*^2)

with X = L + 1> - L and y'= L' + 1, - L'. The remaining quantities are

defined as follows:

B (LL'): In (1+2) replace ML(?< ) ^{xf) by EL(x ) EL,(x'). Also
y(_ = - L - 1, L and *' = - L' - 1, L'.

C (LL'): In (1+2) replace M^X ) M^fx') cos j> by MTj(X ) E^, (*') sin^
and the permissible values of X , X are: 3f = L + 1, - L;

X' = - L* - 1, L'.

"c"^(LL'): In (1+2) replace MTj( X) ^.(x') cos d> by E^tf) M^X) sin ^
with X = - L - 1, L and )t/= L' + 1, - L1.

In evaluating the quantities Ay , By , C^ and Cy use is made of Table I

of BBR to obtain the Racah coefficients and of Eq. (5) of BBR to evaluate ratios

of vector addition coefficients. For example, one uses

v . /(L+L'+1/+2)(L+L'-L/+1)C(L+1, L«+1,^;00) =- C(LL'P;00) j\^+Vy+3)(j^, _j,+2)
and



-26-

CfL-1 L' y-00) --C(L+1 L' V-00) /(L+L'+V>+2)(L+L'-)/+l)(L'+^-L)(L-L'+^+l)C(L 1L |/,00) _ C(L+1,L ,V,00)J (LfL'+//+l)(L+L'-^)(li/-Lfl)(l-L«+̂ )

Inserting the results for A^, By, , C^ and C^ in (*4l) gives
2 ,

<T =-%aa± Y^ C(LL' •;!-!)
1 k LL'V 7(2L+1)(2L'+1)

/<(?,+ C(LL'V;00) |(L+L'+y+2)(L+L'-^+l) M^L+l) ^.(L'+l) cosA^^,^
+(L+L'+V+1)(L+L'-J/) ML(-L) ^.(-L') cos ^ _l

+ (L-L'+y+l)(L'-L+V) ML(L+1) M^-L') cos A^, L,

+(L'-L+^+l)(L-L'+v') ML(-L) MLt(L'+l) cos A.T^L'+ll

+(^ C(LL'y;00) ^(L+L'+j;+l)(L+L*-^) EjL) E^L') cos ALL,
+ (L+L'+|/+2)(L+L,+1- l>) EL(-L-1) E^-L'-l) cos A ^^ _x

- (l-l,+ //)(l,-l+|/+i) el(l) el,(-l«-i) cos Al _l,_1

-(L'-L+j/KL-L'+y+i) el(-l-i) el,(l1) cos A_L-1 L,"l

+28^" C(L+1,L', 1>;00) J(L+L'+y+2)(L+L,-J/+l)();+L*-L)(|/+l+L-L!)

/[mJ-L) EL,(-L*-1) cos A _L>_L<_i "^(L+l) EL,(L') cos A^^

+ML(-L) EL,(L«) cos A_LjLr -ML(L+1) ^.(-L'-l) cos At^.^,.].! I
Here we have made use of the fact that

C^(LL«) =-C^L'L)

(*43)
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and for L + L' + )) odd

®l(LL,) =SJ <L'L>
while, in general,

C(LL'JJjl-1) = C(L'L^jl-l)

It will be noted that, as expressed above, the self terms involving

MjJX )ML,(x') and EL (x )ELi(x) are separately symmetric in L, L'. Therefore

the sum over L and L' can be replaced as usual by:

LL' L=L» L^L'

Since there will be a value of L (or L') beyond which the contribution to the

cross section is very small, ^ the sums are to be regarded as finite ones and the

number of terms involved is/vi L . The interference term can be treated in
^ max

the same way if the G> and C^ terms are not combined. These interference

terms then become

This is clear since the radial matrix elements involve the standing wave cylinder

functions, j^(kr). For increasing L both X and /Xj increase and the indicial
— X+rx +7^

behavior of the integrands of R , R is r i. For sufficiently large L,
this centrifugal repulsion effect suppresses the contribution from the only
region which can contribute effectively: i.e., r not much larger than the
radius of the subshell in question.
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C(L+1,L', J/;00) 7(L+L'+|/+2)(L+L,-/+1)( y+L'-L)(j/+l+L-L»)

*[5/ (Ml("L) El-(-L'-1) cos A.l^l,.! -ML(L) EL,(L') cos A^.

+Mj-L) EL,(L') cos A _L,L,- Mj-(L+1) EL,(-L'-1) cos A^^)

+(^(eJ-L-I) ML,(-L') cos &_L_lf_L, -EL(L) M^L'U) cos ALjL1+1

+EL(L) M^-L') cos A^_L, -EL(-L-1) M^L'+l) cos A_L_1}L,+1jj
To make the matrix elements Mr(X ) etc. more explicit the Q-quantities, see

Eqs. (32) and (33), may be evaluated. The results are given in Table II. The

following relations, which are easily established from the definitions given

in Il(b), are useful as checks. These relations are valid for all % values.

For X = L

Q(* 1X2;LL) =- Q(-X1-^;LL)

(L+i-X1-X2) Q(X1ae2;L+i L) = (l+i+*i+X2) q(-X1-X2;L+i l)

- (Xx+X2+L) Q(X1X2>1-1 L) = (X^X^L) Q(-X1-«2;L-1 L)

Jl+T (*1+V2-l) q(x1^2;l+i l) = /To^+Xg+L+i) q(* 1%2;l-i l)

Further progress depends on the evaluation of the radial integrals.

This phase of the calculation will involve the use of the high speed digital

computer and discussion of the attendant problems is deferred. The phase

shift differences ^«,V' als0 depend on the radial functions and on the
a x



Magnetic X = L:

X = L+l

X= - L

Electric X = L+l:

X = - L-l

X = L

Electric X = L-l:

X = - L-l

X = L
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TABLE II. Q's for s^ electrons. (<X. = - l)
2" i

q(-x, ^i;xl)

*43t(L+l)

L+l

/
2L+1

*4«(L+1)

Q(X,- X±;XL)

*4tf(L+l)

*4jtL

J *4rt(L+.

I

*4jt(L+l)(2L+l)

*4jt(2L+l)

/
l4«(2L+l)

*4jtL(2L+l)
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potential V.

The total cross section for an s, electron is

1 ~~ 2L+1

2

\T. = i ^ — (L+l) M£(L+1) +LMl(-L)
2L+1 L

+(L+l) E2(-L-l) +LeI(L)J (1+1+)
It will be seen that not only in the case of an s_i electron but also in

general the matrix elements and radial integrals involved in the polarization-

independent and polarization-sensitive parts of the cross-section are the same.

Therefore, it is no more difficult to include the polarization than it is to

omit it. Nevertheless the computational problem for angular distribution (with

or without polarization) is rather formidable unless the radiation energy is

low. For all but low energies the effective maximum L will be a fairly large

number (say, for one percent accuracy in 0". ) and a double series (LL' summation)

is involved. The sum over )/ is from 0 (or 2) to 2 Lmax in the self terms

and from 1 to 2 Lmax - 1 in the interference terms. From the expectation of

a strong forward peak for the emitted electrons it appears that fairly large

values of ]/ will be effective. Thus there is a three-fold series to consider.

The requirement that p , L and L' form a triangle will restrict the number

of terms. Thus if we assume L, L' ^ 1^ the number of terms in the triple sum

1 3is of order •=• L . However it is important to note that the )J dependence of
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the summand is comparatively simple in that no radial integrals are involved.

For the total cross section 0" the situation is much simpler. Only
i

a single sum is involved. If in this sum L ^L the number of radial integrals

involved is 2(21^+3)^ *4Lm.
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APPENDIX

Reduction of the Degenerate X-coefficient

The X-coefficient which appears in (30) arises quite frequently wherever

the spin coupling of two ^-spin particles are involved. The appearance of

this coefficient in the reduced matrix elements of the Gamow-Teller interaction

16
in 0-decay may be noted. Explicit results for this X-coefficient were given

in this reference 16 for X = L and X = L - 1 and these results could easily

be extended to the case X = L + 1. However, it is of greater interest to

note that this X-coefficient is directly proportional to the simplest non-

trivial Racah coefficient. From the result to be obtained here (Eqs. (31))

the values of the X-coefficient are most readily obtained.

The method of reduction of X(LjJ;Xi I ;1§^) is to recall that this

coefficient appeared as the factor of the (reduced) matrix element of the

tensor <f. T ; viz
LX

^M |ft/M , »J+J+ l + l /3<(%£ f<7-TLX Iy~)= (") >/27 (2X+l)(2L+l)(2/+l)(2j+l)

)< C{xii jOO) X(LjJjXiI ;lM) C(Ljj;M^ M- ). (A.l)

16.
M. E. Rose, Phys. Rev. 93, 1326 (195*4). Note that the notation of this reference
interchanges X and L as compared to that used here.
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Now it is of interest to note that the set of three tensors TT.. (X = L,
LX

L t l) can be expressed in another form:

(A.2)•y = - L vM
LL \|l(l+i) l

•^M r X] YM - (L+l)^ Y^
L L+l

J(L+1)(2L+1)

•^M
rVyf+L^yf

lL L-l =

=|2(-»Mm M -*
'" YT u

ij -m
m

m

/L , , v M+m -* 1

(A.3)

(A.*4)
^L(2L+1)

and L = - i r y y is the orbital angular momentum operator and r is the

unit radial vector. The relation between the two representations of the

irreducible tensors is discussed at length in R, Chaps. II and III. The proof

of (A.2) .. (A.*4) is fairly straightforward. We illustrate by considering

AM ^ . .m r js, MrYL =^ (") f u_ffi YL
m



.-31+-

wherein R—(2.33) and

C(L1L+1;00) = I L+l

2L+1

C(L1L-1;00) =-J-1— (A.5)

have been used. Using the symmetry relations of the C-coefficients (RBA,

Appendix B) one obtains directly

£ Y? =- 04 > T. + G^ > Tn (A.6)L |2L+1 L,L+1 V2L+1 L,L-1 v '

From R, Eq. (2.58) we obtain

*V%•LJH ^;L+1 ♦ (L+l) ,£^ (A-7)
and (A.3) and (A.*4) follow immediately. (A.2) is easily obtained using the

well-known result

Lm ^L =(")m X^L(L+1) C(LlL;m+M,-m) Y^+m (A.8)

We now calculate the matrix elements of "7^"*L Yl\ r 0" •V YV and 6" YL\
L L r L

Thus
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where g. L Y =-(x +1)X^ nas been used. With the identity

r<T. 7 = <T (r ^- - ^.L) (A.10)

and 6" X = -/ one finds

- <*>•£ $ Ir5"> -<*♦ *><*£ | *!! I**> u.xD
<CK^I^>--<^,KIO <*•*>
Using the standard procedure for coupling of spherical harmonics and a

Racah recoupling we find

<K[%\X9> -R^ C(L^00)c(lJj;M^ )

X* W(L/j|;^j) (A.13)

Substituting (A.9), (A.ll) and (A.12) into (A.2), (A.3) and (A.*4), using (A.13)

and comparing with (A.l) yields the results (31a), (31b) and (31c).
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