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COULOMB EXCITATION OF NUCLEAR LEVELS

*

L. C Biedenharn and M. E. Rose

I. INTRODUCTION

The excitation of nuclear levels by means of the Coulomb field of

incident particles has been a particularly useful tool for obtaining nuclear

information. The interpretation of the experimental information obviously

requires that properties of the probe,the electric excitation, be readily

available and clearly understood. At present, the most feasible procedure

has been to use the classical approximation to the electric excitation, i.e.,

to consider the charged particles as travelling in a definite classical Kepler

orbit, with the Coulomb field causing the nuclear transition2. This approach,

as is well known, suffers from two defects; (l) to be valid it requires that

2
Z-i ZpC

/Y) _ -=-=•— *j\ l, which is not the case in many experimental investigations
/ & v '
(where y\ may be A/2 or 3) and (2) the energy required for the nuclear

transition must be small compared to the energy of the incident particles.

k ("e
Letting (5 _!=c \_£, this condition may be expressed as 1 - 0 << 1.

^ *1 \\ I
This condition also fails in many practical cases. In fact, it is clear that

this classical approach must necessarily be invalid both for large ( 1|^l)

and small ( 0/n/ 1) bombarding energies.

Finally, it should be mentioned that deviations from the classical

approach are apparently found experimentally5. This, of course, is the over-

Summer visitor from Yale University. Now at The Rice Institute, Houston, Texas.
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nding fact and furnishes the principal motivation in the present undertaking.

The program for which the present considerations provide an initial

formulation, is to take the Coulomb field into account rigorously in a quantum

mechanical perturbation treatment. This would provide an essentially exact

result, in this connection it is of interest to note that for dipole transitions,

the problem was long ago completely solved, in effect, by Sommerfeld\ The

cases of greatest interest are, however, the quadrupole transitions, and,

after having the beautifully complete result of Sommerfeld for the dipole

problem, it is surprising how difficult and laborious this task proves to be.

In fact, it proves quite futile to proceed along the lines Sommerfeld marked

out, using the Coulomb wave functions in parabolic coordinates, and recourse to

the spherical representation is indicated.

In the following, we set up the problem in the spherical representation

and obtain a formal answer to both the total cross-section and angular distribution

problems. The principal problem involved in this formulation is the construction

of a Coulomb field wave function which asymptotically defines a definite

direction of motion. Exactly this problem was solved in another connection.5

The problem considered in reference 5 was the internal conversion process.

The differences between that situation and the one of interest in the Coulomb

excitation problem are formal. Thus, while previously a transition between a

bound state and one in the continuum was considered here the transition is
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between two continuum states. Moreover, for one of these, the final state

there is no coherent mixing of different angular momenta because (in accordance

with the usual experimental arrangement) it will be assumed that this state

is not observed - see B. below.

In this report the reduction of the problem to the task of evaluating

radial integrals is presented. This task of numerical evaluation is

formidable, to say the least. Complete discussion and a procedure for

numerical evaluation on the ORACLE will be presented in a forthcoming report.

The coding of the problem on the ORACLE is under way at present, and it is

hoped results will be available in the not too distant future.

II. FORMAL DEVELOPMENT

The problem to be discussed is the following: A (Coulomb distorted)

plane wave of particles, of wave vector k^_ and charge z^ is incident upon

nuclei of charge Zg« By means of the electrostatic coupling between the nucleus

and incident particle the nucleus undergoes a quadrupole electromagnetic

transition from a state J.jt to a state J , jtf, the incident particles emerging

at infinity as a (Coulomb distorted) plane wave of wave vector kg. Here J, %

represent the nuclear angular momentum and parity. In the sequel the explicit

assumption that the nucleus is very much heavier than the target particle will

be made.

We seek to find the total cross-section for this process, averaged over

the directions of kp, and, moreover, the angular correlation of a subsequent



nuclear radiation with the incident direction kx, similarly averaged over kg.

A. Cross-Section

Let us consider the total cross-section first. It will be assumed to

begin with that the interaction is primarily electrostatic. Hence, for the

quadrupole case, the interaction is:

R.£ Wa £ rf r-' xf (#, f±) Y2"(9-, <f) (1)

Here (r., d ., (/ .) refer to the coordinates of the i proton in the

nucleus, and (r, $~, (t )are the coordinates of the projectile. The nucleus

is considered to have negligible extension. The usual perturbation treatment

then leads to the result:

In (2) O denotes the appropriate summation over final states and averaging

over magnetic substates of the initial nuclear state (wave functions jff

and j£ respectively). Also,

f^ ^ / 2* 1} , \2 iv -r _^ J>.
l(kl>r)=(-^ c lFl(- i^i l; i(V-Vr» (3)

2
z,z0e

7** ^q- (,i)
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f2<v?> -f s,7/2 ) e+lk£ ri*i(iJi ls -' (V+ V?)) (5)
These latter wave functions are exact wave functions of a particle of

mass m and charge 3j_in the field of a fixed charge Zq&b given in detail by

Sommerfeld . They reduce to distorted plane waves at infinity, with the

appropriate out- and in-going spherical parts respectively.

Evaluating the nuclear integral formally we have:

r -2 „/\dT NZ. AY2 <*i /i>jTf ^i sCtJ^M^Mf) (f|| 2f i) (6)

Thus:

<--*
m

kx kj&iH#fi(tf •ici»^>r-^-f-

yf4 ZK^K^lf^j2 (T)

Recourse to the spherical representation is necessary to proceed further,

as mentioned above. This uses:

£<V> • 7 nM^D t^- r, (V) B*0 (tl) t* t* <*, 6) (8)
/,m

^(k ,r) -j? lk«(2l+l) J^L-e ° D^Q (£)* J^ (?) (9)
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Here D is the 2L+1 dimensional representation of the rotation group. Thus
urn

the integral in Eq. (7) becomes:

tt-<t- I—- -=— i( <*£ -0+i( *T ' O 7 A 1 *

£t mm

C*>

<->* *<♦' f4a* 4 *f f /^ i!^> r-5 (10)
J <- J 2 £ kjT k2r

Upon using the result,

fdQY^ £ Yf = /I£ElL cU 2?;00) C(*2|;»IA) (-f^- ^ (H)
1 « J 2 o|4«(2i+l) / ^^

the integral assumes the form:

^r y^i. ^ -^ f -*>>. t«-i". c(< af;00)

c^f.,^) (-)w^ •0^,0 £) Dmf0 4). (12)

/f r"5 F^ (kxr) Fj (k2r) dr
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and finally

f^Zf fa k'Clff
2 .—

oo

ir F (kxr) F- (^r) drj

Use:

c^iioo)- ^(g+1>—
* (2jK-l)(20+3)

C2(^2je-2;00)=-^l^i)_
2(2jt-l)(2£+l)

2(2 t+l)(2X+3)

(2^41)*C2(t2^;00)

(15)

B ?W^r-VIt,)!2 8°*2
(k^r 2 l(2«-D(2i+3) lo

r^Rfkjr) R(kgr) drj-3.

fefei [['"' V*> Wv*]8*IiWsi[f*\ <v>Wv>^
Hence!
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2*2

6k.x2 m2 <zlZ2e ) 2Jf+1(T-2^ S ^V— -^(f||2//i)<
25 £ kj k2 2Ji+l

4 B^f [I -\ <*> \ <W2

B. Angular Correlation

To calculate the angular correlation between the incident projectile

beam and the direction of a subsequent 7-ray emitted by the nucleus, it is

convenient to make use of the result that if we know the 7-ray *ing»1 q,r

correlation for the nuclear transitions J. -^ J by E2 (excitation), and then

♦ L
Jf—^ Ji, by emission of 2 pole radiation, it is only necessary to multiply

the Legendre polynomials P^ (cos Q ) in this correlation by the particle

parameters b to obtain the particle - 7 correlation. This result is discussed

6
in detail elsewhere . The problem reduces then to computing the b and

standard techniques are available. In effect, the (virtual) E2 7-transition

of the nucleus, is represented by the incident projectile's transition between

Coulomb orbits. As mentioned earlier, the problem at hand is an analogue to

the internal conversion correlation problem discussed at length in reference
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(5). The calculation given below exploits this similarity, but for brevity

does not reproduce details which can be found in that reference. Since the

Coulomb excitation is (in a sense) the inverse to the internal conversion

calculation, it should be mentioned that care should be taken in interpreting

the words "initial' and final in comparing the two problems.

The particle parameters, b^ ,are the ratio of the tensor parameters

of the projectile to the tensor parameters of the E2 gamma ray, normalized

such that bQ = 1. To obtain the tensor parameters of the projectile we couple

the tensor parameters of the observed initial state and the tensor parameters

of the unobserved final state. The latter are simple, being random and,

therefore, scalar.

The tensor parameters of the initial.state are:

XtWv tl*) -** [(2£+i)(2i/+i)]* (-)i_q ctffcV ;ooo)
i(<£ "fy> • ,Cs (15)* Dq,0 (kl) [ >}

The tensor parameters of the final state are simply

M^- Ky S<* (16)
Defining the reduced matrix elements, oil , c ), for the transition

between Coulomb states by:

^jm\r-3 Y^ \l*yS Q(-U) o(t2^n) (17)
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one then obtains for the coupled tensor parameters,

R(v><i) -X tf-fr) Q*(I/;) '\/(2je+i)(2jtyr+i)

• V{ll»2;2lf) XiWvW). (18)
Now the matrix elements Q( ££ ) can be simplified further:

Q{ '̂* *=k^ Jr"3 F/(V> ^ (V^ •/fe C(/2 J;000) (19)
Using this, and discarding irrelevant constants, we get:

R(^q)^ 7 (2g+l)(2^+l) (-)^_<1C(^V;000) C(^2f,-000) crf^OOO)
i(^£ -(^/) Tr 3 7 r r 7

/e U Ff(k2r) Vkir) r ^J [ J F/(*2r) Vkir>r"3 <* I

Ywrf|y2;2'i)Dj0(^) (20)
Since the tensor parameters of the E2 7-transition are,

Ry(v>q)^(-)q+1 c(22yji-i)D^ (?) (21)
one then obtains for the unnormalized particle parameters,
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"b^ =-C_1(22 *>;!-!)

x 7(2£+l)(2/'+l) <C(€2i;00) C^/jOO)

' Jf- (kgr) F^ (y) r"5 drjl J F- (k^r) J, (y) r"3 drj

1(0} -<$},)

X ¥(/Jn/2;2i) •(-) C(iiV;00) (22)

By virtue of the triangular relationship which must exist between the first three

arguments of the C coefficients it is clear that for a given value of </ > JL

and* are restricted to the values *- and JL - 2. Hence in the triple sum

over * , * and * only one of these (over * say) is an infinite summation.

The other two are three-fold sums. As a consequence, it follows that for both

the total cross section, (cf. Eq. (1*0), «** **» angular correlation the primary

task is the computation of essentially the same radial integrals so that the

latter is, for all practical purposes, no more difficult to obtain than the

former.

For ¥ = 0 the W coefficient vanishes unless £ = £. . That is

W(£Jfo2;2^) = SHt I
\/5(.2£+l)

Also;

J(£/'ojOO) = (£/'(-) /J2JI+L
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Hence:

*o -Z- (2/+1) C2(/2j;000) ] p (k_r) F (Lr) r*5 dr f
£l* Lo * * J

which is seen to agree, to within a factor independent of {, and / ,with the

result for the total cross section (cf. Eq. (lU)), as it must, of course.

It is customary to normalize the particle parameters so that bQ = 1.

Thus one finds that the quantities of interest are:

by =̂ /V (2*0
It is more convenient to perform this normalization at the end.

III. CONCLUDING REMARKS

As developed above the calculation of the total cross section and the

b as well reduces to the computation of the integrals:

I(i,/,;k1,k2)5 f r^F^r) ^/(kgr) dr

(23)

(where £/ =/, £ t 2). One of the major difficulties is that, unlike the

internal conversion problem, the number of Jt *s that enter is unrestricted.

In practice the summation to be carried out must be a finite one. It is essential,

therefore, to get an idea of how many Jl 's can enter in a significant way.

To a sufficient approximation this can be done as follows. For large

values of £, ,the magnitude of F. at the turning point (that is, kr ^ IL )
/ 7

is a constant times J£ 1/b. Crudely one can say that the magnitude is the same
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for all I (say unity). Inside the turning point, the F functions behave
like (r/ji)l+1* Thus the contribution from r<; | is of the order of /
Outside the turning point, the F> fs oscillate and an over-estimate is to

neglect the phase difference between the two F *s and take their product to

be of the order of unity everywhere. Thus, the outside contribution is of the

order of J/ ,and one gets as a rough estimate that I^y £ ~ , in general.

We have evaluated some special cases exactly and this estimate is found to be

quite precise.

Using this estimate in the summation for the total cross-section, it

is clear that the sum will involve, in the limit of large £ >a summation

over terms that behave like j£ , and thus this part of the sum will be of the

order of (,~ • For reasonable accuracy one should expect something like one

hundred A's to occur. The computation of the b . is clearly a sizeable task,

and it is essential to simplify the work as far as possible. As a computational

procedure, it would appear quite inadvisable to compute the F. 's first and

then perform the integration numerically since the functions oscillate and a

great many oscillations must be integrated before asymptotic formulae are

applicable. Rather it seems more feasible to use the properties of the F/ 's

to cast the required integrals in a more tractable form. Since the steps

involved are not completely trivial (the integrals are apparently discontinuous

functions of the parameters, for example) we shall present the work in some detail

in a subsequent report which, it is to be hoped, will contain numerical results.
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