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ANAIYSIS OF SPHERICAL PRESSURE VESSEL
HAVING AN ERERGY SOURCE WITHIN THE WALL

by
R. H. Chapman

ABSTRACT

A wmethod is given for determining the optimum thickness of a
spherical pressure vessel in which ther;e is an exponential heat
source contained within the vessel wall. The method has applications
in the design of certain types of nuclear reactors. It is shown how
the thermal stress may be estimated for thermal reactors and combined
with the pressure stress to obtain the total stress. The solution
to a hypothetical design problem is given to illustrate the proce-
dure. Some data are included which should be an aid in the solution

to' similar problems.




CHAPTER I
GENERAL INTRODUCTION

Frequently in the field of nuclear engineering, the design of pres-
sure vessels requires that serious consideration be given to the thermal
stress as well as to the pressure stress. The thermal stress may be
relieved by creep and plastic deformation, with no harm being done, pro-
vided it is not of a cyclic nature. However; the usual designs are sub-
Ject to some temperature cycling which could lead to failure of the vessel
if the thermal stress is excessive.

It will be shown how the thermal stress may be evaluated and
combined with the pressure stress to obtain the total stress. It is
known that the thermal stress increases with an increasse in vessel thick-
ness vhile the pressure stress decreases. Obviously their sum will give
& minimm value at a particular vessel thickness. The optimum thickness
may be of little interest in many cases as & thinner vessel may have &
total stress less than the allowable stress. It will be shown how this
optimum vessel thickness may be obtained for various design conditions
when operating in the steady state region. While the procedure presented
is for a spherical vessel, the same general procedure will apply for other
shapes.

The thermal stress considered herein is the result of nuclear
ra.diation absorption within the vessel wall. This implies an internal
heat source with an exponential distribution: While it is not the purpose

of this discussion to present a rigorous theoretical study of nuclear




shielding, a method of determining the heating due to the readiation
absorption will be included. It is hoped that one familiar with the
fundementals of nuclear engineering may take this discussion and apply
it to the particular problem being investigated.

For simplicity, only pressure stresses and thermal stresses due to
rediation absorption are considered in this analysis. No attempt will be
made to analyze the localized stresses due to outlets, supports, pressure
surges, wind load, weight of fluid, pipeline reactions, etc. These are
all dependent on the particular vessel design and are somewhat indetermi-
nate. It should be pointed out that nozzles and connecting pipes may
impose high localized stresses if insufficient flexibility is imcorporated
in the piping design. Some experimental data (1, 2)1 are availsble to
indicate the magnitude of the stresses around openings in pressure ves-
sels.

Unfortunately much of the work on thermal stresses with an internal
heat source is in the classified literature (3). Timoshenko and Goodier
(4) give the general equations for thermal stress for any given temperature
distribution. They also give the particular solution to the stress equa-
tions for a linear temperature distribution. Carter (5) presents some
general expressions for several geometries where the heat source is con-
sidered constant per unit volume. Iuster (6) discusses thermal and pres-

sure stresses in cylinders where the temperature distribution is linear.

(1) HNumbers in parentheses refer to similarly numbered
references in bibliography at end of paper.




The effect of thermal stresses is alsc given along with a method of
erriving at the optimm wall thickness for cylinders. Kent (7) considers
transient stresses in spheres and cylinders. Durham (8) presents a
method of determining heat transfer rates and thermal stresses in several
geometries. Criteria for minimizing the thermal stresses based on slab
geometry and uniform heating are given along with the corresponding ccol-
ing rates.

The discussion presented herein differs from the above cited re-
ferences in that the thermal stresses are the result of a steady state
exponentlal heat source. The equations of Timoshenko and Goodier are
applied in spherical geometry after obtaining an expression for the
temperature from the exponential heat source. A simple problem will be
worked to illustrate the procedure presented in this discussion. The
optimum vessel thickness will be determined for a particular design
condition and curves showing the stress and temperature distribution will

be given for that thickness.




CHAPTER II
HEAT PRODUCTION

In the classified literature (3) and unclassified literature
(8, 9, 10, 11, 12, 13, 14), there are numerous discussions on shielding
of reactors. However, very few of these discussions mention the heating
effect resulting from the radiation absorption. This is very important
in the design of reactors, and, as such, it should be given more promi-
nence in the shielding discussions. The following treatment is not in-
tended as a rigorous theoretical discussion of shielding, but as a prac-
tical method of obtaining the heat production within the shield. It
should be pointed out that if a more precise method is available, it
should be utilized in the determination of the heat production.

The sources of the heat generated within the shield are as follows:

(1) Thermal neutron capture gammas. As thermal neutrons are cap-

tured by the materials present within the active region of a reactor,
gamma radiation is released. This radiation is often referred to as the
primary or pile capture gammas. They are not to be confused with the
radioactive decay gammas of the product nuclei. Some of the thermal neu-~
trons which leak out of the active region are captured by the materials
present within the shield. Gemma radiation 1s released in this process
also. These gammas are often referred to as the secondary capture gammas.

(2) Fast neutron capture gammas. If fast neutrons are captured

by the materials present within the region under consideration, gamma

radiation will be released in a similar manner as above.
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(3) Elastic scattering of fast neutrons. In an elastic collision,

a portion of the neutron‘s kinetic energy appears as heat.

(4) Inelastic scattering of fast neutrons. In an inelastic col-

lision, a portion of the neutron‘’s kinetic energy appears as gemma rad-
iation. This may occur in the active region as well as in the shield.

(5) Prompt fission gammas. In the fission process, a small

portion of the energy released appears immediately as gamme radiation.
This radiation is sometimes referred to as the prompt gammas.

(6) Fission product gammas. Some of the fission products result-

ing from the fission process emit gamma radiation with characteristic half
lives after the fissioning takes place. This radiation is sometimes refer-
red to as the delayed gammas.

The pile gammas are attenuated through the active region before
they enter the shield which in this case is the reactor vessel. Near the
inner boundary of the vessel; the primary radiation may assume a major role
in the heat production; vwhereas, for greater thicknesses the secondary
radiation may become the more important of the two. For thermal reactors
the effects of the fast neutrons are generally negligible, hence, they
will not be included. This will not be true for intermediate or fast re-
actors where most of the fissions are due to the higher energy neutrons
and vhere most of the neutrons which enter the pressure vessel wall are
fast neutrons. The classified literature presents methods of estimating
these effects.

In order to obtain the heat production within the vessel wall, it
is necessary to know the gamma and neutron currents entering the wall.

The total primary gamme current incident on the vessel wall from all
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elements of volume is given in the case of a spherical source with self-

absorption as

R
r
-t rS - - -
Ior—E E—Eézl (R+r)Fy [ﬁ(R-iﬂ ={R-r)Fy [?(R+f] + & [E w(R-r)_o-n(Rtr) dr (1)
o
where
Io = gamma current entering the spherical shield,
7/cm2 gec.
r = radius at any point within the spherical source, cm.
R = inside radius of the spherical shell; cm.
1] = energy dependent; linear absorption coefficient of the
material in the spherical source corrected for multi-
ple scattering; ent.  See Appendix E.
s(r) - gamma source strength, 7/cmdsec.
Qo
F; [u(R-r) -y
e
= exponential integrals defined by Fl(t) =t ay.
Fy [k(R+r) i

See Appendix C. t
The derivation of equation (1) is given in Appendix A.

From the information on the size and nature of the reactor, and
with an assumed gamme source distribution; equation {1) may be integrated
graphically to give the primary gamma current for any particular photon
energy. It will be sufficient to assume that the capture and prompt gammas
are distributed in proportion to the thermal neutron flux. Inasmuch as
the fission product gammes are emitted some time after the fission, the
source distribution will depend upon the type of reactor. In a stationary
fuel reactor the source distribution will be the same as the thermal neutron
flux distribution. The fission product gemmas will be emitted uniformly

throughout the reactor in most fluid fuel reactors.




Once the gamma currents entering the vessel wall ar§ known, the
heat production may be estimated for each of the various photon energies.
In order to simplify the problem, slab geometry will be assumed for the
purpose of calculating the heat production. This will be sufficient for
the calculetions provided that the radius is large compared to the thickness.
A conservative assumption is made by treating the current, as given by equation
(1), as a collimated source as it enters the wall.
The intensity of a collimated beam of photons which has passed

through a thin ebsorber is given as

I =1 e WX (2)

where

I = intensity of gammas at x, 7/cm° sec.
I = incident gamma current, 7/cm2 asec.

My = energy dependent total absorption coefficient, cm-lo

x = thickness of absorber, cm.
For large thicknesses of absorber (2 or 3 attenuation lengths), equation
(2) should be modified to include the effect of multiple scattering or
buildup as it is commonly known. Several methods of correcting for build-
up are available to the designer. The one chosen for this discussion,
because of its mathematical simplicity,is to simply divide the total absorp-
tion coefficient by 1.2. This reduced value glves a good correlation between
the values reported in Appendix E for thin absorbers; where the scattered
radiation is negligible, and for thick absorbers where the scattered radi-
ation becomes important.

The energy released at any point is given by the product of the
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rediation intensity at the point; the energy released per collision and the
energy absorption coefficient. A buildup factor should be considered in
evaluating the energy released. With the buildup factor discussed herein,

the heat energy at any point is given as

H(x) = B, (u, - o) I, ¥ (3)
vhere

H(x) = heat produced per unit volume at any point,

th/cm3 sec.
E, = energy released per absorption, Mev/7y.
71 = energy dependent absorption coefficient corrected
for buildup, cm~l.
(h4-0;) = energy dependent; energy asbsorption coefficient, cm-]".
x = distance from face of shield; cm.
I, = 1incident gamma current, 7/cm® sec.

Equation (3) may be used to estimate the heat production within the vessel
wvall as a function of the thickness for each of the various photon energies.
In order to obtain the heat production from the neutron reactions,
it is necessary to have the neutron currents entering the shield. One
method often used is to obtain the thermal and fast neutron flux equations
and calculate the net leakage from them. Rather than go through the in-
volved calculations of obtaining the exact flux equations, a simpler method
will be discussed here. If one considers the reactor as & bare thermal
reactor, the leakmges may be obteined in terms of nuclear constants for

the particular reactor.
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The criticality equation for a bare homogeneous thermal reactor may

be written as
32T
bre " 2 (+)
vhere
ke:l’f = effective multiplication factor for a finite reactor.
koo = multiplication factor for an infinite reactor.

B = effective geometrical buckling of the reactor, cm <.

(Note: B2 may differ for fast and thermal neutronms).
T = Fermi age or the square of the slowing down length for
fast neutrons, cma.

2

L diffusion length for thermal neutrons, cm2.

For a finite reactor to remain just critical, keff must, of necessity,
be unity. The value of k., is fixed for any given reactor by the geo-

2
metrical and uuclear properties. The factor e™B ¥

is the probability
that a fast neutron does not leak out of a finite reactor while slowing
down to thermal energy. For these calculations the exponential may be
approximated by (1 + B2 T )"1. The factor (1 + 12 32)'1 is the fraction
of the thermalized neutrons which are absorbed as thermal neutrons or,
stated differently, the non-leakage probability of the thermal neutrons.
Let '\J be the number of fast neutrons produced per fission and p

be the probability that a fast neutron will become thermalized before
capture. This allows one to calculate the number of thermal and fast
newtrons which leak out per fission. Since 1 watt = 3.1 x 10 fissions

sec
the total fissions may be calculated from the given power level, P, in watts.
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The current may be estimated by dividing the number of neutrons_ leaking
out by the surface area of the reactor of radius R cm. Defining the fast
neutron current entering the shell as IO.,f and the thermal neutron current

as Io,t’ one may write the equations for these as

3.1 x 10°° poJ BT
To,e = RS |1+ B2 (5)

and
.1 x 1010 rn)p:] [ 128° | 6)
Iyt = ] (1 + 1282)(1 + B2T) |

As stated earlier the heat produced in thermal reactor pressure
vessels due to the fast neutron reactions is usually negligible and will be
omitted from this discussion. The heat production due to the thermal neutrons
is important and must be considered. Enlund (13) has derived an expression
for the heat production in a slab due to the capture gammas emitted upon &
thermal neutron absorption. His analysis considers the effect of the gamma
traveling some distance after the neutron collision before being absorbed.

He gives the energy absorption as
E(x) = N I—Zﬁ (g - 05) Ey F(B,pet) (7)
vhere
N = number of photons of energy E7 produced per neutron capture.
F(B,uyt) = absorption function. See Appendix D.
and other symbols have been previously defined. The above equation does
not consider gamma ray buildup. In order to take into account the buildup,

this writer chooses to replace the total absorption coefficient by the
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reduced absorption coefficient as discussed previously.* Meking this change,
equation (7) becomes

Bx) = NE, 2% (ut - o) P (ut) (8)

The function F(B,ut) 1s defined for three cases: B>1; B = 1; and B < 1.
The derivation of equation (7) and the definition of the functions are
glven in Appendix D. Curves of the function are presented in the appendix
with B as a parameter. Using equation (8) with the appropriate absorption
function, the thermal neutron heating effect may be estimated.

The various heating effects may be plotted on semi-log paper and
added to give the total heat production as a function of the thickness.
The total heating curve may then be approximated by a single exponential;
or more exponentials if greater accuracy is desired. The slope and inter-
cept of the exponentials are obtainable from the plot on semi-log paper.

For the time being let it be assumed that the total heating is glven by

H(x) = B e™ (9)
where
H(x) = heat production at any point, Mev/cmd sec.
H, = heat production at face of slab, th/cm3 sec.
m = slope of the assumed exponential, 1.
x = distance from face of the slab, cm.

It will be shown later how corrections may be mede if more than one ex-

ponential is needed to approximate the total heat production curve.

* Since this memorandum was issued, Alexander (17) has issued a
memorandum on the application of the NDA Build-up Factors. An equation
for the heating is given in terms of build-up factors.




CHAPTER III
TEMPERATURE DISTRIBUTION

A method for estimating the heat production per unit volume within
the vessel wall due to nuclear radiation absorption was given in the
previous section. Slab geometry was employed in arriving at the ex-
pression for the heat production, but, for the' remainder of this discus-
sion, spherical geometry will be employed as the basic geometrical con-

sideration. Define the radius at any point within the vessel wall by

reR+x (10)
then equation (9) may be written as
B(r) = By e-m(r - R) (11)
The differential equation for steady state heat conduction with an
internal heat source is given (15) in spherical coordinates as

= -H(r (12)
k

e
oD
B8

vhere
T = temperature at any point, degrees F.
r = radius at any point defined by equation (10), cm.
H(r) = heat production per unit volume at any point defined
by equation (11),. Mev/cm3 see.
k = thermal conductivity of the vessel material assumed to be

constant and expressed in consistent units, Mev/cm sec F.
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The temperature distribution within the vessel wall is obtained
by substituting equation (11) into equation (12) and integrating. The

resulting expression is

T(r) = - z% <m” : 2 )e-m(r -R) . ‘i_l + Cp (13)

where Cl and 02 are constants of integration to be evaluated from the
boundary conditions. The integration of equation (12) and the evaluation
of the constants are given in Appendix B.

Three sets of boundary conditions have been used to evaluate the
constants:

Case I. The outside surface of the vessel is considered as &
heat barrier and the inside surface is at some equilibrium temperature.

Case II. The inside surface of the vessel is considered as a
heat barrier and the outside surface is at some equilibrium temperature.

Case III. The inside surface and the outside surface are at some
equilibrium temperatures which may or may not be the same.

Some comments on the boundary conditions may be of value in deter-
mining which case applies to the problem being investigated. Case I
considers that all the heat generated within the vessel wall is conducted
to the inside surface where it is dissipated by some convenient heat
transfer mechanism to the adjoining medium. This condition would be em-
Ployed where heat losses are important and need to be kept at a minimum.
Case II considers the reverse of Case I, i.e. » 8l the heat generated is

conducted to the outside surface and dissipated by some convenient
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mechanism of heat transfer. This condition would be used for an unin-
sulated vessel with a large amount of cooling on the outside, or for
a vessel insulated on the inside. Case III considers part of the heat
generated within the vessel wall as belng conducted to both surfaces
where 1t is dissipated by some convenient heat transfer mechanism. A
special case of interest 1s when both surfaces are at the same temperature.
However, the practical value of this special case may be limited due to
the problem of keeping both surfaces at the same temperature. It sﬁould
be pointed out that this special case describes the temperature distri-
bution in a thermal shield which may be placed within the vessel in such
a manner as to have the same medium cool both sides of the shield.

The various temperature distributions are:

Cage I.
o(r) = n;if: h . ' %[Bl - (mr + 2)eB(T - R)]} (1)
where
m(a - R)

(ma + 2)e”
(m2b2 + 2mb + 2)e'm'(b - R)

T(a) = 0 as a datum

hy

By

_q_'Il
dr

i)

0

r=b

Case II.

P(r) = iﬁi{i{;‘ﬁ - [32 (ur + 2)e-ulT - Rﬂ} (15)
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where
A, = (b + 2)end - R)
B, = (2?82 + 2ma + 2)e (s - R)

®(b) = 0 as adatum

ar =0
AT | e
Case_III. .

(r) = %{a T,(:—:E +b -rb(:%:) + %;[A;(:—:-E) + B£—:—E)-(mr + 2)e-n(r- ]}(16)

vhere
Ay = (ma + 2)e“m(‘ - R)
By = (ub + 2)e-n(b - R)
T™a) = T,

T(b) = T,

Case III. (Special Case)

2(r) - zi}k{ (:ib)(b - (:Lb)(_*)(“: ? el - R>} (a7)

-

where

T(a) =T(b) =0 as a datum

The heat removal per square ft of surface area may be estimated by eval-
uating the temperature gradient at the appropriate surface and multiply-

ing by the thermal conductivity.




CHAPTER IV
STRESSES

It was pointed out in an earlier chapter that only pressure
stresses and thermal stresses due to radlation absorption would be con-
sidered. Only the maximum tangential stresses are necessary in determi-
ning the optimum vessel thickness for any given design, and these stresses
will occur at either or both of the boundaries. This assumes that the
three-dimensional stress system may be treated as a two-dimensional or
Plane stress problem. Once the optimum thickness has been determined,
the three-dimensional stress distribution may be calculated from the
equations presented. The stress distribution is mostly of academic
interest as the maximum stress may be used as a conservative design cri-
teria in pressure vessels. The value of the maximum allowable stress is
given in the various codes under whose Jurisdiction the vessel design
may fall.

Timoshenko and Goodier (4) give the equations for stresses in thick

spheres due to internal pressure as

Py a3 [ or3 + b3 18)
O:t,Pi = 3 - a3 or3 1
and —
Py a3 r3 - b3
o = 19)
r,Pi b3 - 33 L r3 (

a7
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where
O%;Pi = tangential stress due to internal pressure, psi.
o-r'Pi = radial stress due to internal pressure, psi.
Py = internal pressure, psi.
a = inside radius of sphere, cm.
b = outside radius of sphere, cm.
r = radius of any point in vessel wall, cm.

Obviously the pressure stresses are principal stresses by virtue of
symmetry. It is easily seen that as the vessel thickmness 1increases,

the tangential stresses decrease. When the thickness of the vessel

is small compared to the radius (ratio of 1 to 10), the vessel may be
treated by the membrane theory or the so-called thin sphere equation.
This.assumes that the vessel acts as a membrane; therefore,the tangential
stress is constant across the vessel wall and is given as

Pia

ik Sl (20)
2(b-a)

o.t,Pi =

Timoshenko and Goodier (4) give the equations for thermal stresses

in hollow spheres for any temperature distribution as

2B | 2r3 + &3 24 4 1 1
Thyeh = 19 33 T(r)rdr + =3 T(r)r2 dar + 5 ()l (21)

and
b

20E r3 - a3 -1
%th = 1 __(b3-a3)r3 T(r)r ar = T(r)r2 ar (22)

a a
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where

O%,th = tangential thermal stress, psi.

°§,th = radial thermal stress, psi.

a = linear coefficient for thermal expansion, in./in. F.
E = modulus of elasticity, psi.

V = Poisson's ratio.

T(r) = temperature distribution as a function of r, degrees F.

a,b,r = radii as defined in equations (18) and (19).
These stresses are also principal stresses by virtue of symmetry. This
fact allows them to be added algebraically to the pressure stresses with-
out using combined stress theory. As the vessel thickness increases, the
thermal stresses increase due to the greater temperature gradient required
to conduct the heat through the vessel.

The total stress at any point is given as

% = ot,p, * %,th (23)

and
9 = %,P; * Of,th. (24)

Equation (23) has a minimum value for some particular thickness which will
provide the optimum stress condition for vessels which have thermal as
well as pressure stresses. The usual method of obtaining the maximum or
minimum of an equation is too complicated to employ where the stress
distribution has both exponential and power terms as is being considered
herein. Instead,a graphical method will be used to obtain the minimum.
The maximum tangential stress due to internal pressure is at the
inside surface while the maximum tangential thermal stress will occur

at the surface which has the lowest temperature. These maximum stresses
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may be calculated from the equations presented and their sum plotted
versus shell thickness. 'The opiimum shell thickness may bé read
d.:lr;ctly from the curve at the particular thickness where the total
stress has its minimm value.

Equations (21) and (22) must be integrated for each of the known
temperature d;stributibns as given in Chapter III before the thermal
stresses may be evaluated. The results of tl;ese integrations will be

given for each set of boundary conditiohs:

Case 1:

T(r) = _il!! A - B + 1 l:Bl - (or + 2) e—m(r-REl
m’k a r
T(a) = 0 (as a datum); = =0

dar|{r=05%

Ay = (ma +2) em(aB); 5 - (a2 + 2ub + 2) -u(b-R)

and

f’r(r) r2 ar = _:HB_ (ﬁl‘._'_nl) r3 + By 72 + (mr + 2>2e-m(;'-R)

m3k a 3 2 n

Substituting the above expressions in equations (21) and (22) gives the

tangential thermdal stress as




/2r3+a3

m

+ 1

(b3 - a3)r3

- By

s

+ 2)2 e-m(a.-R)
m

(R entom (=

2

3

[(Al

(1-V)m3k

Ot,th =

and the radial stress as

/1.3 _a3

a /

r

- Bl\

r3 - 8,3 r2 - 32
( + Bl
3 2

. (mr + 2)2 e-m(r-R) _
m

I e N N R g:_;_+_g) en(r-R)
N ’

e-m( a-REI

==

A
_a>

’

/

(b3 - 33)1‘3

20E Hy
(1V)m3k i

Sr,th =

a

<1

N (:-“_2)2 e-u(b-R) _ <m_=___

+

2)2 e-m( a-RE|

m

<Al

- L
3

.

2 (£

+ (mr ; 2)2 e-m(r-R) _ (ma. + 2)2 e-m(a-R)

- a3 (1'2-&2)
+ B
) e

3

_/
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(25)

(26)
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The maximum tangential thermal stress for this case is at the

inside radius and is given as

_ 3aE HR A] - B - a3
“t,th max” (1-V)m3k(b3-a3) ( ) ( ) ( )

. (mb + 2)2 e-m(b-R) _ Qna + 2)2 e-(a-R) (27)
m m
Case II:
T(r) = iR )2 -B2, [ (mr + 2) ealr- ]}
m3k b
T(b) = 0 (as a datum); ar =
r=a
A, = (mb+ 2) e'm(b'R)
B, = (nPa2 + oma + 2) e-m(a-R)

and
/T(r) 2 ar = IR (ﬁg_jg) .1.'3 . By r@ L (= 2 ae-m(r-R)
m3k b 3 2 m




23

Substituting the above expressions in equations (21) and (22)

gives the tangential thermal stress as

(b3 - a3)r3

v /\ 3

aEH
Ot,th = R
(1-V)m3k

+v (ﬂ%ﬂ)ae-m(b-l?) . (E_;_E)ee-m(a-R):'
5| ws )
+ (;{r_%g)ze-m(r-R) - <ma_;2)2e-m(a-R)]

-[A2'B2+§g-

\ b r

oooooo

and the radial stress as

| eon - ooy o)
|- 2 lee;Bz)(rs';as) s, (re;az)

(e[ )

- E e -5 (J Y,

ooooooo

/o34 a3 KAQ-BQ\ 3-a3>+32<be;§

(E_:_z_ ) e-m(r-Rﬂ /

N

N
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The maximum tangential thermal stress for this case is at the

outside radius and is given as

(o [ RN

(1<) (b3-a3)m3k mb + 2\2_ ., (b-R)  [ma + 2\2__m(a-R)
(Er et n . [y 2 et

%%, th max

...... (30)
Cage III:
=D a-r
I e A

% ) a0 o]

T{(a) = Ty, 5 T(b) =T

A3 = (ma + 2) e'm(a'R) H B3 = (mb + 2) e.m(b"R)

R ((___Tg)_s_ e (a2 h

Substituting the above expressions in equations (21) and (22)

gives the tangential thermal stress as




2r3+a3

(b3-a3)r
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(AZ :3) ( ) (bA = ( 32)
E (Ew_m_g)Ee.m(r.R) ) (mgﬁg)ae-m(a.n)}

() (2529

e e
_+ (@;2)2e-m(b-R) _ (n;aig)ae-m(a-R)}
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and the radial stress as \

4 (aTa - bl},)ilb3 - a3) N 'I'b) w2 . o

a-b \ 3
r3-a3 By |[Aq-B;)[b3-a3 - aB,) [v2-a®

~r -8 3773 3 3

(b3-a3)r3 | T ok {( ad > 3 )’(M a-b ( 2

+ (mb+2>2 o-1(b-R) _ (ma.___+2\2 e-m(a-R}
n =) _

L J

The maximum tangential stress will be at the surface which has
the lowest temperature. If this occurs at the inside surface, the

maximum stress is given as

_ 3aERg A3-B\ fb3-a3\ /bAq-aB.\ /b2-a2
%, th max = (T3] w3k (63-a3) ab )\ 3 | \ a-b 2
+ <.nlb£)2 e-m(b-R) - (E"l*f.)a e-m(a-R)]
m m
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If the lowest temperature, is at the outside surface, the maximum stress

is given as

3 2 .2
AgBy\o-ad)  [bAy-ans)/v"-e
3 3 EHR a-b 3 a-b 2
%%,th max = (1-2)m3k(b3-a3 |
’ ( 7))111 ( a3) +(mb+2)2 e-m(b-R) - (ma+2)2 e.m(a-R)
m m

i '2 - a2
+§fﬂ$ ia:bi 1- % b <:3-a;3> <Ta'Tb

It is seen that equations (33) and (34) contain one term which
depends upon heat generation within the vessel wall and one term which
depends upon the difference in surface temperatures. The heat generation
term is identical in both equations whereas the surface temperature de-
pendent term is not. It should be noted that the latter term appears as
a linear function of the surface temperature difference. Equations (33]
and (34) are for the general case where 1t will be necessary to obtain
the surface temperatures in terms of heat transferred and film coefficilents.

To prove that the maximum tangential thermal stress has a minimum
value when both surfaces are at the seme temperature, it 1s necessary to
prdve that the term containing the surface temperature difference is
greater than zero for all other cases. For the case where Ta< T,
equation (33) applies. Since (a-b)<0, (1-2) >0, and (Tq-T,)< O, it
i1s necessary to show that §'> a (%;EE;) in order for the surface tempera-

ture term to be greater than zero. This may be shown by inequalities in

the following manner:

2_7 a b2-e.2 = e.b+e.2
3 b3-a3/ b2ab+a?
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Reversing the inequality by inverting both sides and breaking the right
side into two fractions, one obtains the inequality
b2

a.2+ ad

n =

Fow b > a, b° > a.a; ab > a2, and 2b2 > (».2 + ab). Dividing this in-
b2 1
2+a0 7 2

Therefore, it is concluded that for the case where Ta. < Ty, the term

equality by 2(&2 + &b), one obtains the inequality that

containing the surface temperature difference is greater than zero. For
the case where T, < T,, equation (34) applies. Since (a - b) < 0,
2 b2 - a
(1 -ﬂ) > 0, and (T, - T,) > 0, it is necessary to show 3 < b(b—_g—:ﬁ.‘—zj)
in order for the surface temperature term to be greater than zero. This
mway be shown in the following manner:
g<bb2-a2 . _Y+ap
3 b3 - ad b2 + ab + a2

Reversing the inequality by inverting both sides and breaking the right

side into two fractions, one cbtains the inequality

2
1 a

2 7 %2+ ab
Nov b 2 2 2 2 2
> a,b > a% ab > a% and (b + ab) > 28, Dividing this in-
2
a
b2 + ab
Therefore, it is concluded that for the case vhere o < Tys the term

equality by 2(1)2 + ab), one obtains the inequality that -;— >

containing the surface temperature difference is greater than zero. For
the case vhere T, = T, both equations (33) and (34) give zero for the

term containing the surface temperature difference.
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It is obvious from the foregoing that the maximum thermal stress

is equal to the thermal stress due to the intermsal heat generation plus
the thermal stress due to the difference in surface temperatures which,

in itself, will be equal to or greater than zero. Therefore, it is con-
cluded that the maximum tangential thermal stress will have its minimum
value when both surfaces are at the same temperature. Thus, for this

cese and a given inside diameter, the optimum vessel thickness is found
from the following expression which gives the minimum value of the maxi-

mum tangential stress &s

3 3 3 3
P, | 223 + b 32 E H Ay - b -a
Min. of max = -+ + R 3 3

t 2 | b3 -e3 (1-7/) ok (b3-e3) <a-b 3

() o (2 i

The usual method of obtaining the minimum value of an expression is
too complicated to apply to equation (35). Instead, it is recommended
that the expression be plotted as a function of vessel thickness, and
the particular value of the thickness vhich gives & minimum value for
the total stress be read directly from the curve.

The thermal stress distribution for the case where both surfaces
are at the same tempersture is obtained from equations (31) and (32) vy
letting T, = 'l'b = O as a datum. Making that substitution the equations

may be written as
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( ordral (Aa-B:) <b3_a3) i (}:A3-a133> (be_aa‘\
(b3-3.3)r3 a=b 3 a-b 2
+ (W._a)ae'm(b'n) - (m_"'2>23-m(a-R)J
m m

HE SRS
@ E Hy y r3 |\ a-b 3 a-b 2 >
(1-V)m3x’

+ (’E*m_a)a e-m(r-R) _ (E;_e)a e'm(a-R):]

Ct,th =

= ( r3-a3 <A3'B3) [ b3-a.3) <hA3-aB3) (be-a2>

(b3-a3)r3l— -b \ 3 a-b 2

+ [mb+2 2 e-m(b-R) _ [mat+2 e.m(a-nj

_ 20 E Hy 4 ( - ) ( m )2 }A
Or,th = ———(1_ B

_ L (‘*3-33 +3.a3 3-aB3 (re-ae

r3 a-b a-b 2

k+ (F—-f>2e'm(r-3) - (‘La‘;_afe-m(a-R):] J

Throughout the previous derivations of the thermal stress

equations, it has been assumed that the total heat production function

could be approximated by a single exponential expression. If more than




31
one exponential is necessary in order to get a closer approximation to
the heat production function, the same equations will apply by simply
evaluating the thermal stress for each exponential, separately, and
adding or subtracting them as the case may be. The only limitation to
adding the various solutions is when the surface temperatures are speci-
fied as T, and Ty, The effect of the surface temperatures can only be
added for one solution in order to maintain the proper boundary conditions.
In this manner ‘the thermal stress may be obtained for any particular
internal heat source. Generally, two, and seldom more than three, expo-
nentials are required to give a close approximation to the heat production
function.

If the value of the total stress as calculated by the appropriate
equation given herein exceeds the permissible allowable stress for the
given vessel material, some means of lowering the thermal stress becomes
necessary. This may be achieved by adding a so-called "thermal shield"
within the vessel to absorb the radiation before it strikes the pressure
vessel. The equations presented will still apply to the problem with
some minor assumptions. It is convenient to assume that the inside
radius of the thermal shield is the boundary of the reactor described
by R throughout this discussion and that the coolant channel between
the thermal shield and vessel wall absorbs a negligible amount of the
radiation leakage. This means that the pressure stress will go wp
slightly due to the increased diameter, and the thermal stress will de-~
crease as the actual metal thickness appears as & negative exponential
in the thermal stress equations. The thickness of the coolant is

neglected in the exponential function. The above procedure will be
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demonstrated in a later section.
If it is impractical to maintain both surfaces of the vessel
at the same temperature, an optimum vessel thickness may be obtained
for the particular boundary conditions imposed upon the vessel. It
becomes necessary to apply the appropriate equations as presented herein
to arrive at the optimum for the desired conditions in the same manner

as outlined for the case where both surfaces are at the same temperature.




CHAPTER V

APPLICATION OF METHOD

The procedure to be followed in the solution to & problem may

be outlined as follows:

1.

2.

Obtain the radiation leakages incident on the vessel wall by
some acceptable manner.

Convert the absorbed radiation into heat energy as a function
of distance from the face of the shield. Add all the various
heat sources and approximate the total heat production by
simple exponential functions.

Calculate the maximum tangential thermal stress for the par-
ticular boundary temperature conditions selected. This should
be done for several thickness of pracf:l.cal interest while
keeping the inside diameter of the vessel constant.

Calculate the maximum tangential stress due to internal pres-
sure for the same thicknesses as the thermml stress was calcu-
lated.

The above stresses are added and their sum plotted versus
shell thickness. The optimum thickness may be read directly
from the curve of total stress versus shell thickness.

If the total stress for the optimum thickness exceeds the
alloweble stress, a radiation shield thickness may be employed
as a parameter whereby several total stress curves are

obtained.
33
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The above outlined procedure will be demonstrated by the solution
to a simple problem. The optimum shell thickness will be found for a
vessel which has both surfaces at the same temperature. Once the parti-
cular thickness is determined, the stress and temperature distribution
may be calculated. The values of the various nuclear constants used in
the problem are unclassified and may not represent the most accurate data.

The problem solved here is not a design nor is it contemplated as
the design for a reactor. For the purpose of illustrating the method,
assume a reactor of the following general description. It shall consist
of a 6 ft. inside diameter steel sphere operating at 1000 psia and TO
degrees F. The fuel and moderator is a dilute homogeneous, circulating,
solution of pure U235 and D20. The power level of the reactor is taken
to be 100,000 kilowatts.

For the purpose of calculeting the thermal neutron leakage of this
reactor, it may be assumed that the reactor is a so-called bare reactor.

The criticality equation may be written as

€ pf
Kk . = 5P

= =1
eff (1 + 198%) (1 + B°T) (38)

vhere
Y\ = the average number of fast fission neutrons produced per
absorption in fuel.
€ = the fast neutron fission effect.
f = the thermal utilization = 3 3(0235)

2 a(D20) +3,(vP)
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Za = macroscopic absorption cross section, cm'l.
and the other symbols have been previously defined. It may be noted that
equation (38) is the same as equation (4) except that k, has been replaced
by Meépf and e'Bz'(ha.s been approximated by (1 + Ba'f)'l.

For a dilute solution such as specified, it is reasonable to assume
€ and p to be unity. The Ferml age for the solution may be taken as
that for D20. However, it is necessary to correct the diffusion length

of the solution because of the presence of uranium. The corrected value

may be calculated from

DO
? - 12(p,0) Zo(P0) (39)
S o(D00) +3,(0235)
Rearranging and substituting, the critical equation becomes
Za(00) M- (1+327) (40)
2 (1) (1+B2T) [_1 + BaLa(DQO'a

The above equation may be solved for the critical concentration

from the values given in Table I as
Za(0) . 0.0653

2 a(U239)

Since the solution is dilute, let it be assumed that the cross section of

D20 is unaffected by the presence of small amounts of uranium. With this
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NUCLEAR PROPERTIES®
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T(020)
12(D,0)

N
Y

2 ,(0,0)
0a(U233)
ap(UR35)
oe (1¥30)
52

12 (solution)

120 cn®

10,000 cm®
2.1

2.5

0.0008 cm™t
650 barns
549 barns
101 barms
0.00118 e °

613 o

b

extrapolation distance.

32 calculated from
R2

Glasstone and Edlund, pp. 83, 127, 183.

for a aphericallreactor where R includes the

The extrapolation distance is defined as the
distance from the physical boundary of the reactor to the point where
the neutron flux would be zero if extrapolated from the boundaxy with
a line whose slope 18 equal to the slope of the flux at the boundary.
The extrapolation distance 1s usually taken as O.TlAyr where Ay, is
the transport mean free path for neutrons in the material.

¢ L2(solution) calculated from equation (39).
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assumption Za(u235) is calculated to be 0.01225 cm~l. The fission cross

section, Zf(U235), will be 625'% x 23(0235 ) or 0.01035 cm™' and the capture
cross section, zc(U235),,will be é% xza.(0235) or 0.0019 cm~l.

In order to obtain the ga.mmi source terms for the "pile" gammas,
which are proportional to the thermal flux, it will be helpful to obtain
the thermal flux expression.. For a spherical reactor, this is given as

@ = A sin Br (1)
r
where

thermal flux at any radius, neutrons/cmasec.

Q
]

-
n

constant, neutrons/cm sec.
B = geometrical buckling, cm .
r = radius, em.

It can be shown that the everage flux is given by

@ =-3h_ (u2)

nR

where R includes the extrapolation distance. The average flux is also
given in terms of the power as

f, 3.1x10°0p (43)

Zf(U235 ) v

where P = power level, watts.
V = reactor volume, cm3 .
Since the extrapolation distance for this reactor is small com-

pared to the radius, it is assumed to be negligible. With that sssumption
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the two expressions for average flux may be combined to give

Upon substituting the values in equation (44), A is found to be 8.96

x 107 neutrons/cm sec. Now equation (41) mey be written as
@ = 8.96 x 10%7 _8in 0.03hr ' (45)
r

Equation (1) may be used to calculate the primary gamma currents
entering the vessel wall. The source function will be taken proportional
to the thermal flux for the capture and prompt fission gemmas, and pro-
portional to the average flux for the fission product gammas.

Assuming on the average that one 6 Mev gamma is produced for each
non-fission neutron capture in uranium and that the captures in heavy
water are negligible, the source function for the capture garmas may be

written as

*s(r) = ZC(U235) ¢ = 1.71 x 1013 8in 0.0344r 14 (46)
r cmjsec

Assuming that five gammas of an average energy of 1 Mev each are

emitted as prompt fission gammas, the source function for the prompt

fission gammas may be written as
8(r) = 5L (U25) @ = 164 x 10" Bln 0:-03hr 7 (7)

r cm55ec

Assunmitlg that two gammas of an average energy of 2.5 Mev each are

emitted as delayed gammas from the fission products, the source function
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for the delayed fission gammas may be written as

s(r) = 22,(0"°) @ = 1.95 x 1012 _ 2 (48)

cm’sec

The gemma absorption coefficients for the solution must be known
as a function of photon energy in order to apply equation (3). Some
experimental values are given in Appendix E based on thin absorbers and
a collimated beam of radiation. For thick absorbers, a bulldup factor
must be used. The method used in this discussion, as pointed out earlier,
ig to divide the values as obtained from the curves by 1.2. Since the
velues for heavy water are not included in the curves of Appendix E, the
values for light water may be used and corrected by the ratio of their
densities. The corrected values of the coefficients used in performing
the calculations in this discussion are given in Table II for the solu-
tion and for the vessel.

The values of the exponential integral may be obtained from the
curves in Appendix C for use in equation (1).

Table III presents the method chosen to calculate the portion of
equation (1) under the integral sign as a function of the radius for the
primery capture gemmas. The data from the table is given in Figure 1
from which one may graphically integrate to obtain the area underneath
the curve. Using the scale factor as given in the figure, the aree is
evaluated and the 6 Mev capture gamma current is estimated to be 8.95
x 10 7/cm28ec. In a similer manner the 1 Mev prompt fission gamma
current is estimated to be 5.13 x 10]'2 7/cm28ec,and the 2.5 Mev fission

product gamma current is estimated to be 9.70 x 1012 7/cm2 sec. It should
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TABLE II

ABSORPTION COEFFICIENTS

Photon Energy u(solution) u(Fe) ("t"’a )Fe
1 Mev 0.0705 cm1 0.388 cm™! 0.213 cmt
2.5 Mev 0.0438 em™! 0.24k4 cm~t 0.163 cm™!
6 Mev 0.0275 cm™t 0.201 em™! 0.185 cm™!
7 Mev — 0.197 cm! 0.189 cm!
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NOMENCLATURE FOR TABLE III

Column Column Heading Units
1l r cm
2 R+r cm
3 R-r em
L p(R + r) -
5 (R - 1) -
6 F, E(R - rﬂ -
7 P pr + 5] --
8 (R+ 1) Fll:p.(R - rﬂ cm
9 (B - £) Fy[p(R + )] em
10 (R + r) Py [p(R - r)]- (R - )[F} p(R + r)] cm
1 e- KR - 1) --
12 e- R(R + 1) -
13 L[ MR- R ) -
14 Br radians
15 sin Br -
16 r 8(r) x 10712 y/cn® sec
17 # (R + 1) Fl[p.(R - rZ] -(R-r) Fl[p(R + r):l

. :__1 E- p(R «r) _ o~ pR+ 1‘)]} x 10% et
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ROMENCLATURE FOR TABLE III (CONTINUED)

Column Column Heading Units

18 I.'__SM{(R +7r) Fl[p.(R - r)]- (R -r) Fl[p.(R + :)]

4R2

+ ,-]I' [e" PR =-1) _ - p(R+ r)} X 1077 7/cm3 sec




TABIE IIT

CALCUIATIONS FOR DETERMINING THE 6 MEV GAMMA CURRENT

®

® 06 ® &6 6 0 6

0.00
10.00
20,00
30.00
L0.00
50.00
60 000
70.00
75000
80.00
85.00
90.00

91.’-1,-1 = R

91.LL
101.LL
111. Lk
121,40
13144
1414
15144
16144
166,40
171.LL
176.LL
181.LL
182.88

91.LL
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VE e wwwwmho N
L]
wownpE
OCOO0OOOOOHFKHKEFEMN
L[] o . . Q L]
OO KHwWEN®
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0.019
0,027
0,040
0.056
0.086
0.120
0.183
0.277
0.355
0.L60
0.5%0
0.860
1.000

0.0193
0,0136
0.0100
0.0070
0.0051
0.0036
0.,0027
0.0019
0.0016
0.001L
0.0012
0.0010
0.0010

-1.737
2.739
:hohss
6,801
11.30L
16.973
27.71L
Ly.719
59.086
78 .862

104.100
156.038
182.880

1.737
1.108
0.71L
0.430
0,262
0.149
0.085
0.0l41
0.026
0.016
0,008
0.001
0.000

£y



TABIE III (CONTINUED)

CAICUIATIONS FOR DETERMINING THE 6 MEV GAMMA CURRENT

®

® @ ® 0 66 ® ®

0.00
10,00
20,00
30.00
40,00
50.00
60,00
70,00
75.00
80.00
85.00
90,00
910)4)4 - R

0.000
1.631
3.74hL
6.371
11.042
16.82)
27.629
L}L.678
59,060
18.8L46
104,092
156,037
182.880

0.082085
0.106459
0.1),0858
0.184520
0.2L4143
0.319819
0.423162
0.554327
0.637628
0.733Ul7
0.835270
0.960789
1.000000

0.082085
0.061421
0.046888
0.035437
0.027052
0.020L445
0.015608
0.011796
0.010255
0.009005
0.,007828
0.006806
0.006539

0.000
1.638
3,417
5.h21
7089)4
10.886
14.820
19,728
22,81L
26.343
30.089
3)4.690
36.126

0,000
0.3LL
0.688
1.032
1.376
1.720
2,06l
2.408
2.580
2.752
2.92)
3.096
3.142

0.0000
0.3373
0.6350
0.8583
0.9811
0.9889
0.8810
006698
0.5329
0.3802
0.2163
0.0460
0,0000

0.00
5.77
10.86
14.68
16.78
16.91
15.06
11.45
9.11
6.50
3.70
0079
0,00

™
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be pointed out that the curve in Figure 1 goes to zero at the surface of
the active region only because the extrapolation distence was assumed to
be negligible in calculating the geometrical buckling. This would not be
proper in the solution of a problem of this nature for an actual design.

Equation (6) may be used to estimate the thermal neutron current
entering the vessel wall. It should be remembered thet the method used
herein for caléulating the neutron leakage may not be the most accurate
one available. However, the method will serve the purpose of obtaining
a value of the leakage from which the thermal stresses may be calculated.
The diffusion length for thermal neutrons in the solution is calculated
to be 613cm? by use of equation (39) and the values given in Table I.
Substituting the proper values in equation (6) gives an estimate of the
thermal neutron current entering the vessel as 2.71 x 1013 neutrons/cmaaec.
As pointed out earlier, the effect of fast neutron heating will be neg-
lected in this discussion.

The heating in the vessel wall due to the primary gammas may be
calculated as & function of thickness by equation (3) for each photon
energy. Using the values as given in Table II for the absorption co-
efficients and the gamma currents as calculated, the heating due to
these gammas is given in Table IV and Figure 2 as a function of shell
thickness.

The heating due to the thermal neutrons being absorbed in the
shell is calculated by use of equation (8) with the aid of Appendix D.
Table IV gives the results of these calculations if the value of p for
iron is taken as 3.87. The heating effect is given in Figure 2 as a

function of shell thickness.




NOMENCILATURE FOR TABLE IV

k7

Column Column Heading Units

1 Position cm

2 px; Capture Gammas -

3 e~ PX; Capture Gammas -

4 E7(P-t - crs)Io e P* x 10711; Capture Gammas Me"'/¢m3 sec
5 px; Prompt Fission Gammas -

6  e~P%; Prompt Fission Gammas -

7 Ey(Pt - 03)I, e P* x 10"11; Prompt Fission Gammas Mev/cm3 sec
8 px; Fission Product Gammas -

9 e™. Fission Product Gammas -
10 E7(P't - <J'$)Io e"P* x 10'113 Fission Product Gammas Mev/cm3 sec
11 px; Secondary Gammas ==

12 F(B, px); Secondary Gammas --

13 N E, Iogt (P't - 03)F(B, px)lO'll; Secondary Gammas Mev/cm3 sec

2 .
14 H(x); All Heat Sources Mev/cm3 sec




TABIE IV

HEAT PRODUCTION CALCUIATIONS

®

® 60 © o6 60 @

®
©
Q

® &

=~

MO NN WNH QO
) . L] L] L} L] ® e o L] L] L[]
(oo o NeoNoNoNoNoNo R, ¥o iV, ¥e)

[}
=
°

o

0,0000 1.0000 9.93 0.000 1.0000 10.93 0.000 1.0000 39.53 0.0000 1.580 283.2) 3L3.63
0.1005 0.90LL 8.98 0.194 0.8237 9.00 0.122 0.8851 34.99 0.0985 1.936 3L7.06 L00.03
0.2010 0.8179 8.13 0.388, 0.678L 7.41 0.2LL 0.7835 30.97 0.1970 1.790 320.89 367.L0
0.3015 0.7397 7.35 0.582 0.5588 6.11 0.366 0.6935 27.41 0.2955 1.5L8 276.97 317.8L
0.4020 0.,6690 6.65 0.776 0.4L602 5,03 0.488 0,6139 24.27 0.3940 1.310 234 .84 270,79
0.6030 0.,5472 S.LL 1.164 0.3122 3,41 0.732 0.4809 19.01 0.5910 0.913 163.67 191.53
0.8040 0.L475 L.4S 1.552 0.2118 2.31 0.976 0.3768 14.89 0.7880 0.618 110.79 132.4)4
1.0050 0.3660 3.64 1,940 0.1437 1.57 1.220 0.2952 11.67 0.9850 0.L25 76,19 93.07
1.2060 0.2994 2,97 2.328 0.0975 1.07 1.h6L 0.2313 9.1 1.1820 0.302 5.1l 67.32
1.4070 0.2LL9 2.43 2.716 0.0661 0.72 1,708 0.1812 7.16 1.3790 0.218 39,08  149.39
1.6080 0.2003 1.99 3.104 0.044k9 0.L9 1.952 0.1420 5.61 1.5760 0.157 28.14 36.23
2,0100° 0.1340 1.33 3.880 0.0207 0.23 2.L40 0.0872 3.45 1.9700 0.082 14L.70 19.71
2.4120 0.0896 0.89 L.656 0.0095 ~0.10 2.928 0.0535 2.11 2.36L0 0.0LS 8.07 11.17
2.8140 0.0600 0.60 0.05 3.416 0.0328 1.30 2.7580 0.028 5.02 6.97

5.432 0.00LL
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The various heating effects are added and their totel is given by

“curve B in Figure 2. In order to apply the equations for temperature and

stress, it is necessary to approximate the total heat production curve by
one or more exponential functions. The "hump" in the curve mmy be ob-
ta.il_ned by subtracting an exponential if it is thought to be important.

For the purpose of ;his discussion a single exponential as shown by curve

A, Figure 2, is used to approximate curve B. The slope of the curve is
1

, and the value of the intercept is read from

calculated-to be 0.321 cm
the curve as 5.2 x 1013 Liev/cmBSec. Thus the total heating at any point

is approximated by
B(r) = 5.2 x 1017 ¢-0:321(r - R) Mev/cm3sec (49)

The maximum tangential thermal stress and the tangential pressure
stress determine the optimum vessel thickness as pointed out previously.
It was also shown that the maximum ta.ngentié.l thermal stress has a min-
imum value when:both surfaces are at the same temperature. Therefore, for
this condition, equation (35) is used to evaiua.te the total stress. The
pressure stress should be evaluated at the inside radius. These equations
are based on R = 36in. = 91.44cm and the value of a and b varied. This
enables one to plot the maximm stresses as a function of shell thickness
while the diameter of the active reglon remains consta.nt._ The properties
of the vessel material used in these calculati‘o_né are given in Table V.

The maximum stress calculations performed for this discussion are -
given in Table VI where the thermal shield serves as & parameter. The

results are also given by Figure 3. It is seen from curve B of Figure 3
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TABLE V
PHYSICAL PROPERTIES OF VESSEL MATERIAL
———
E - Modulus of Elasticity 30 x 106 psi
a - Coefficlent of expansion 6.30 x 10-6 in/in F
7/ - Poisson's ratio 0.3
kK - Thermal conductivity 25 Btu/hr £t F
= 1.5 x 1012 Mev/cm sec F
Op ~ Allowable stress 13,500 psi




NOMENCLATURE FOR TABLE VI
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Column Column Heading Units
1 Thermal Shield Thickness in.
2 R cm
3 a in.
b a cm
5 b in.
6 b cm
T 82 t:m2
8 b2 cm®
9 a.3 cm3

10 b3 cm3
11 be - a2 e
12 b2 - & cm?
2
13 b3 - &3 cm3
1k 3 - &3 cm3
3
15 a - R; See footnote to table. cm
16 b - R; See footnote to table. cm
17 a~->b in.
18 a-b cm
19 n cm'l
20 ma -




NOMENCLATURE FOR TABLE VI {CONTINUED)
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Column Column Heading Units
21 mb -
22 ma + 2 -
23 mb + 2 -
2k ma + 2 cm

m
25 mb + 2 cm
m
26 (I_H_a+_a)2 o
m
2
mb + 2 2
27 ( — ) cm
28 m(a - R) -
29 n(b - R) -
30 e-m(a - R) .
31 e"m(b - R) _—
32 Ay = (ma+ 2)e-nl(a - R) -
33 By = (ub + 2)e-n(b - R) -
3% bA3 cm
35 3-33 cm
36 A3 - B3 -
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NOMENCLATURE FOR TABLE VI (CONTINOUEY)

Column Column Heading Units
37 A3 - B3 cm-1
a->
38 'bA3 - aBy cm
39 bA; - aBy -
a -b
40 <A3 - 33) <b3 - 33) em?
a-b 3
11 3 - &B3> (ba - a2 o
a-b 2
h2 (mb ; 2>2 e"m(b - R) cm2
43 (ma. ; 2)2‘ e--m(a. - R) cm?
uu A3 - B3 'b3 - 8.3 bA3 - 3333 'b2 - 32
a - b a-b / 2 '
. (mb + 2)2 o-m(d - R) _ (ma + 2)2e_m(a - R) om?
m m
QaEH
ks R psl.cm

Zl - V)m3k




NOMENCLIATURE FOR TABLE VI {CONTINUED)

55

Column Column Heading Units
3QEH.
46 R psi/cm?
(b3 - a3)(1 - V)mdk
47 oi:,th max psi
48 2a3 cm3
49 2a3 + b3 cmd
50 2a3 + 13 .
'b3 - a3
51 Py psi
72 P4 max psi
53 0% max psi




TABIE VI

CAICUIATIONS TO DETERMINE THE MAXIMUM STRESSES IN VESSEL WALL WITH
THERMAL SHIELD AS A PARAMETER AND BOTH SURFACES AT THE SAME TEMPERATURE

OO OO O ® O 6 6 @

0.0 91.LL 36 91.LL 37 93.98 8361 8832 764555 83005L L71  235.5 65499  21833.00
0.0 91.LL 36 91.LL 38 96.52 8361 9316 76L555 899191 955  L77.5 13L636 LL878.67
0.0 91.LL 36 91.LL 39 99.06 8361 9813 76LS55  97206L 1LS2  726.0 207509 69169 .67
0.0 91.L4k 36 91.LL LO 101.60 8361 10323 76L555 10L8772 1962 981.0 28l217 94739.00
0.0 91.hLL 36 91.LL b1l 10L.1y 8361 10845  76L555 1229413 2L8L 1242.0 364858 121619, 33
0.0 91.kL 36 91.LL L2 106.68 8361 11381 76L555 1214085 3020 1510.0 LL9S30 1498L43.33
1.0 91.hh 38  96.52 39 99.06 9316 9813 899191 97206L L97 2L8.5 72873  2L291.00
1.0 91.h, 38 96.52 LO 101.60 9316 10323 899191 10L8772 1007 503.5 149581  L9860.33
1.0 91.LL 38 96.52 L1 10L4.14 9316 108L5 899191 1129413 1529 76L.5 230222 76740.67
1.0 91.LL 38 96.52 L2 106.68 9316 11381 899191 1214085 2065 1032.5 31L89L 10L96L.67
1.0 91.hh 38 96.52 L3 109.22 9316 11929 899191 1302886 2613 1306.5 L03695 13L565.00
1.0 91.Lh 38 96.52 Lk 111.76 9316 12490 899191 1395916 3174 1587.0 L96725 165575.00
2.0 91.LL LO 101.60 L1 10L.1h 10323 10845 1048772 1129L13 522 261.0 806L1  26880.33
2.0 91.L4 L0 101.60 L2 106.68 10323 11381 10L8772 1214085 1058 529.0 165313 5510). 33
2.0 91.L4 LO 101.60 L3 109.22 10323 11929 10L8772 1302886 1606 803.0 25411l 8L70L.67
2.0 91.LL LO 101.60 LL 111.76 10323 12490 10L8772 1395916 2167 1083.5 3L471LL 11571L.67
2.0 91.4y L0 101.60 L5 114.30 10323 1306L 1048772 1493271 2741 1370.5 LLLL99 1,,8166.33
2.0 91.L4 L0 101.60 L6 116.84 10323 13652 10L8772 1595051 3329 166L.5 SL6279 182093.00
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TABLE VI (CONTINUED)

CAICULATIONS TO DETERMINE THE MAXTMUM STRESSES IN VESSEL WALL WITH
THERMAL SHIELD AS A PARAMETER AND BOTH SURFACES AT THE SAME TEMPERATURE

DO 0O ® ® ® @ ® ® ® O

0.0 2.54 -1 -2.54 0.321 29.3522 30.1676 31.3522 32.1676 97.670L 100.2106 9540 100L2
0.0 5.08 -2 -5.08 0,321 29.3522 30.9829 31.3522 32.9829 97.670L 102.7505 95L0 10558
0.0 7.62 -3 -7.62 0,321 29.3522 31.7983 31.3522 33.7983 97.670L 105.2907 9540 11086
0.0 10.16 -4 -10.16 0.321 29.3522 32.6136 31.3522 3L.6136 97.670L 107.8305 95L0 11627
0.0 12.70 -5 <12.70 0.321 29.3522 33.L4289 31.3522 35.4289 97.670L4 110.370L4 95L0 12182
0.0 15.2h -6 -15.2L 0,321 29.3522 3L.2LL3 31.3522 36.2LL3  97.670L 112.9106  95LO 127L9
1.0 5.08 -1 =-2.5L 0.321 30.9829 31.7983 32.9829 33.7983 102.7505 105.2907 10558 11086
1.0 7.62 -2 -5.08 0.321 30.9829 32.6136 32.9829 3L.6I36 102.7505 107.8305 10558 11627
1.0 10.16 =3 =T7.62 0.321 30.9829 33.4289 32.9829 35.L289 102.7505 110.370L 10558 12182
1.0 12.70 =L -10.16 0.321 30.9829 3L.2L43 32.9829 36.2LL43 102.7505 112.9106 10558. 127L9
1.0 15.24 -5 -12.70 0.321 30.9829 35.0596 32.9829 37.0596 102.75C5 115.L505 10558 13329
1.0 17.78 -6 -15.24 0.321 30.9829 35.8750 32.9829 37.8750 102.7505 117.9906 10558 13922
2.0 T7.62 -1 -2.54 0.321 32,6136 33.4289 3L.6136 35.L4289 107.8305 110.3704 11627 12182
2,0 10.16 -2 -5.08 0.321 32.6136 3L.2LL3 3L.6136 36.2LL3 107.8305 112.9106 11627 127L9
2.0 12.70 -3 -7.62 0.321 32.6136 35.0596 3L.6136 37.0596 107.8305 115.L505 11627 13329
2.0 15.24 -L -10.16 0.321 32.6136 35.8750 3L.6136 38.8750 107.8305 117.9906 11627 13922
2.0 17.78 -5 -12.70 0.321 32.6136 36.6903 3L.6136 38.6903 107.8305 120.5305 11627 1L528
2.0 20.32 -6 =15.2L4 0.321 32.6136 37.5056 3L.6136 39.5056 107.8305 123.070L 11627 151ké

Lg



TABIE VI (CONTINUED)

CAILCULATIONS TO DETERMINE THE MAXIMUM STRESSES IN VESSEL WALL WITH
THERMAL SHIELD AS A PARAMETER AND BOTH SURFACES AT THE SAME TEMPERATURE

OO ® ® ® ® 0 & 6 O O @

0.0 0.0000 0.8153 1.000000 0.442507 31.3522 1L.23LY 2946.L4798 1301.5935 17.1178 -6.7393 16LL.8863
0.0 0.0000 1.6307 1.000000 0.195792 31.3522 6.4578 3026.11k3 '590.5012 2L4.89Lkk -L.9005 2L35.6131
0.0 0.0000 2.L46O0 1.000000 0.086639 31.3522 2.9283 3105.7L89 267.7638 38.4239 -3.7302 2837.9851
0.0 0.0000 3.261L 1.000000 0.038338 31.3522 1.3270 3185.3835 121.3409 30.0252 -2.9552 306L.0L26
0.0 0.0000 L.0767 1.000000 0.016963 31.3522 0.6010 3265.0181 5h.955k 30.7512 -2.421) 3210.0627
0.0 0.0000 L.8920 1.000000 0.007506 31.3522 0.2720 33LL.6527 24.8717 31.0802 -2.039L4 3319.7810
1.0 0.8153 1.4307 0.LL2507 0.195792 1L4.5929 6.6174 1LL5.8005 638.711h 7.9778 -3.1409 807.0891
1.0" .0.8153 2.LL460 0.LL2507 0.086639 1L4.5929 2.9989 1L82.8723 289.L4538 11.5963 -2.2827 1193.4185
1.0 0.8153 3.2614 0.L42507 0.038338 1L.5952 1.3583 1519.9Lk2  131,1031 13.2369 -1.7371 1388.8L11
1.0 0.8153 L.0767 0.L42507 0.016963 14.5952 @.6148 1557.0159  59.3212 13.980L -1.3760 1L97.69L7
1.0 0.8153 L.8920 0.LL42507 0.007506 1L4.5952 @.2782 159L4.0877 26.8519 1L4.3170 -1.1273 1567.2358
1.0 0.8153 5.707L 0.LL2507 0.003321 14.5952 0,1258 1631.1596 12,1422 14.L694 -0.9L9L 1619.017L
2.0 1.6307 2.LL4L60 0.195792 0.086639 6.7771 3.0695 T705.7672 311.8612 3.7076 -1.4597 393.9060
2,0 1.6307 3.261Lh 0.195792 0.038338 '6.7771 1.3895 722.9810 1L41.1732 ©5.3876 -1.0606 581.8078
2.C .1.6307 L.O767 0.195792 0.016963 6.7771 0.6286 740.1949 63.8658 6.1485 -0.8069 676.3291
2,0 1.6307 L.8920 0.195792 0.007506 6.7771 0.2843  757.4087  28.88L9  6.4928 -0.6391 728.5238
2.0 1.6307 65.707L 0.195792 0.003321 6.7771 0.1285 77L.6225 13.0556 6.6486 -0.5235  761.5669
2,0 1.6307 6.5227 0.195792 0.001470 6.7771 0.0581 791.836L 5.9030 6.7190 -0.4L09  785.933L

8s



TABLE VI (CONTINUED)

CALCUIATIONS TO DETERMINE THE MAXIMUM STRESSES IN VESSEL WALL WITH
THERMAL SHIELD AS A PARAMETER AND BOTH SURFACES AT THE SAME TEMPERATURE

©

®» ©© O 60 6 6

HHKMHKFHKMHKH O0O0OO0O0O0
L] L]

bo000b oOoOOODO VOOOOOO

N PO NN

-647.5930 -147139 -152508  Lhhh 9540 273 282985 12,9613
-479.461L  -219928 -228938 2067 9540 1537 282985 6.3056
-372.4390 -258017 -270391 960 9540 379L 282985 4.0912
-301.5790 .« =279973  -2958L9 Lhé 9sLho 6782 282985 2.9870
-252,7608  -29L489  -313929 207 95L0 10107 282985 2.3268
-217.833L4 -305590 -328928 96 9540 13894 282985  1,8885

-317.7516 ~76296 -78961 2171 Lé72 164 282985 11.6L98
-234.92L9 -113816 -118285 1007 Lé672 8oL 282985 5.6756
-182.2626 -133306 ~-139340 u67 L672 1829 282985 3.6875
-147.4109  -144431 -152202 216 L6772 3315 282985 2.6960
-123.h0LL -151695 -161228 100 L672 L4961 282985 2.1030
-106.2347 ~157197 -16859L L6 L6722 6771 282985 1.7091

-155.0811 -39237 -Loh76 1055 2276 18 282985 10.5276
-114.5291 -58Llil -60586 L89 2276 355 282985 5.1354
-88.7571 -68348 -71272 226 2276 874 282985 3.3408
-71.7051  -73953  -77692 10k 2276 1567 282985  2.LL5S
-59.9659 -77565 -82183 U8 2276 2390 282985 1.9099
-51.570L -80285 -85839 22 2276 3300 282985 1.5511
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TABLE VI (CONTINUED)

CAICULATIONS TO DETERMINE THE MAXIMUM STRESSES IN VESSEL WALL WITH
THERMAL SHIELD AS A PARAMETER AND BOTH SURFACES AT THE SAME TEMPERATURE

©

© ® ® ® & @ 6

0.0 3538 1529110 2359165 36.018 1000 18039 21577
0.0 9692 1529110 2128301 18.036 1000 9018 18710
0.0 15522 1529110 2501174 12,053 1000 6026 21548
0.0 20258 1529110 2577882 9,070 1000 4535 24793
0.0 23517 1529110 2658523 7.286 1000 3643 27160
0.0 26239 1529110 2743195 6.102 1000 3051 29290
1.0 1911 1798382  2770LL6  38.017 1000 19085 20996
1.0 4563 1798382 284715L 19.03L 1000 9517 14080
1.0 6744 1798382 2927795 12,717 1000 6358 13102
1.0 8937 1798382 3012467 9.566 1000 4783 13720
1.0 10433 1798382 3101268 7.682 1000 3841 14274
1.0 11572 1798382 3194298 6.430 1000 3215 14787
2.0 189 2097544 3226957 40,016 1000 20008 20197
2.0 1823 20975L) 3311629 20.032 1000 10016 11839
2,0 2920 20975LL 3400430 13,382 1000 6691 9611
2,0 3832 20975LL 3493460 10,064 1000 5032 886l
2.0 L4565 20975LL 3590815 8.082 1000 Lohl 8606
2.0 5129 209754l 3692595 6.760 1000 3380 8509

* Assuming that the coolant absorbs no radiation, the actual thickness of metal
is used for the attenuation of the radiation. However, the larger radius
appears in factors involving a and b.

09
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that the optimum thickness is about 2.75" for a 1" thermal shield and
the total stress is approximately 135,500 psi or slightly less than the
allowable stress as given in Table V. It should be noted that the total
stress curve for a 2" thermal shield is very flat,and the minimum did not
occur within the region of these calculations. It should also be noted
that the total stress curve exhibits a sharply defined minimum for the
case of zero thermal shield thickness.

In general, the maximum stresses as given by Figure 3 would be
all that is necessary in order to insure a safe design. However, for
those interested in the stress distribution within the vessel wall,the
calculations are presented in Table VII for the case of 1" thermal shield
and a 2.75" wall thickness. The tangential stress distribution and the
temperature distribution for the vessel wall are given by Figure 4 while
the radial stress distribution and temperature distribution are given by
Figure 5. One should notice the magnitude of the radial stresses compared
to the tangential stresses as the scales for the figures are not the same.
The tangential stress and the temperature distribution are given by Figure
6 for the 1" thermal shield.

The maximum temperature in the vessel wall is found to be about 34.8
degrees F above the surface temperature while the maximum temperature in
the thermal shield is about 18.9 degrees F above the surface temperature.

Figure 7 shows the variation of the maximum total stress in the tan-
gential direction as a function of the difference in the surface tempera-
tures for the 2.75" wall thickness. It is seen from the figure that the

stress rises sharply with a few degrees difference in temperatures. For




NOMENCLATURE FOR TABLE VII

63

Units

Column Column Heading

1 r in.

2 r cm

3 re cm?

l-l» 1‘3 cm3

5 r2 - 9.2 cm2

6 2 - a2 cm®

7 r3 - 33 cm3

8 r_3;92 cm3

3

9 r - R; see footnote to table cm

10 a-r cm

11 r-bd cm

12 r-b -
a->

l a = r -

3 a->

1 r3 - ad _
b3 - a3

15 a3 -
3




NOMENCLATURE FOR TABLE VII (CONTINUED)

64

Column Column Heading Units
16 2r3 + a3 .
r3
3
a -—
a b3 - 5.3
18 b3 -
3
19 m cm":L
20 nr -
21 m + 2 -
22 o ; 2 cm
2
23 (=r2)
2L m(r ',R) -
25 e-m(r - R) -
26 (mr + 2)e(F = R) _.
mr + 2% _n(r - R) 2
27 ( ) e cm
28 A_L- B3 cm':L
a -b
29 bA3 - aBj -
a -b
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NOMERCLATURE FOR TABLE VII {CONTINUED)

Column Column Heading Units

SIS --

8 -rr -—
31 B3(a - b)
e (A2 ) on?
bA; - aB3) [r2 - a2) 2
33 ( a-> ) { 2 e
3L A3z - B3) r3 - a3 bA3 - aBg r° - a2
a - b 3 "I e-0 2

. (mr + 2)2 o-m(r - R) _ (ma. + 2)2 .-n(a - R) o2

35 A3(z :g) + 133(9—%> - (mr + 2) e - R) -

36 21'3 + a3 A3 - B3 b3 - 33 - bA3 - aB3\ (’be - 9-2)
r3(b3 - &3) a-b 3 a-b) 2
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NOMENCLATURE FOR TABLE VII (CONTINUED)

Column Column Heading Units
;- L (A3 - B3> (r3 - a3) _ [oas - a.B3> 2 aa)
3 a-b 3 a-b 2
<mr + 2)2 e-m(r -R) _ (ma + 2>2 e-n(a - R)} cm™L
m m
38 % {A3(z : 2) + 33@_5—;) - (ur + 2) T - R)} cn-1
b aen [lom) (o) pnoeited)
r3(b3-&3) \a-b 3 a->b 2
. (mb + 2)2 o-(b - R) _ <ma + 2)2 e-nla - R)}
m m
! (A3 - Bs)(r3 - a3) _ [bh3 - =B3) <r2 - &%
S Ne-» 3 a-b / 2
(o0 - S one )
R R e R L S
oEH;
ko R

_T(l ~U)m k psi cm
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NOMENCLATURE FOR TABLE VII (CONTINUED)
Column Column Heading Units
k1 %,th psi
)-I»Q r3 - a3 -
3
s gt faes famecs
r3(3 -a3)\a -1 3 a-b 2
. <mb + 2)2 e-m(b - R) _ (ma + 2)2 e-m(a - R) } em-l
m m
" 3 - a3 <A3 - 33) <b3 - a3> ] <bA3 - aBs) <b2 - a"’)
r3(b3-a3) a-b 3 a-b 2
4 [mb + 2)2 e-m(b - R) _ (ma + 2)2 o-m(a - R)
m m
1 -A3'B3\<r3-a3) _ 3'”3)(1”2-&2)
=S Na-v/ 3 a - 2
+ <mr + 2)2 e-m(r - R) _ (ma + 2)2 e-m(a - R)} cm™t
m m
i k5 —_—R psi cm
| (1 - V)m3k
| b6 op 4 pai




NOMENCLATURE FOR TABLE VII {CONTINUED)

Column Column Heading Units
4 L
7 53 -
48 r3 - b3 --
r3
)'1_9 21'3 + b3 -
op3
3 3 3
o a r? - Db -
’ (b3 - a3> ( r3 )
3 21-3 + b3)
51 . -
<b3 - a3) ( 2r3
52 Pi psi
53 t,Py psi
Sk T, Py psi
55 o} psi
56 oL psi
51 _Hg cm F
m3k
58 2(r) °F




TABIE VII

TEMPERATURE AND STRESS DISTRIBUTION CALCULATIONS

FOR OPTIMUM VESSEL THICKNESS

®

® 0 ® 66 0O 6

® © O O 0

38o000 = a
38.375
38.750
39,125
39.500
39.875
L0.250
L0.750 = b

96.5200
97.4725
98.14250
99.3775
100,3300
101.2825
102.2350
103.5050

9316
9501
9687
9876
10066
10258
104452
10713

899191
926075
953490
98111
1009933
1038971
1068560
1108879

0
185
371
560
750
9L2

1136

1397

0.0
92.5
185.5
280.,0
375.0
L71.0
568.0
698.5

0
2688l
51,299
82250

110742

139780

169369

209688

0.00
8961.33
18099.67
27L16.67
3691L.00
L6593.33
56456.33
69896.00

2.5400
3.4925
L.hL50
£.3975
6.3500
7.3025
8.2550
9.5250

0.0000
-0.9525
-1,9050
~-2.8575
-3.8100
=4.7625
-5.7150
-6.9850

-6.9850
-6.0325
-5.0800
-14.1275
-3.1750
-2,2225
-1.2700

0.0000

1.0000
0.8636
0.7273
0.5909
0.L5L5
0.3182
0.1818
0.0000

0.0000
0.1364
0.2727
0.L091
0.5L55
0.6818
0.8182
1.0000
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TEMPERATURE AND STRESS

TABIE VII (CONTINUED)

DISTRIBUTION CALCULATIONS FOR OPTIMUM VESSEL THICKNESS

®

®» © O O

® O ® 6 @ 6 6 6

38,000 = a 0.0000

38,375
38.750
39.125
39.500
39.875
40.250

0.1282
0.2590
0.3922
0.5281
0.6666
0.8077

L40.750 = b 1.0000

1.0000
0.9710
0.9431
0.9162
0.8903
0.8655
0.8415
0.8109

3.0000
2,9710
2.9431
2.9162
2.8903
2.8655
2.8l15
2.8109

L.2882
L.,2882
L.2882
L.2882
L,.2882
L.,2882
L.2882
L.2882

1.2332
1.1974
1,1630
1.1298
1.0980
1.0673
1.0377
1.0000

0.321
0.321
0.321
0.321
0.321
0.321
0.321
0.321

30.9829
31.2887
31.59L1
31.9002
32,2059
32.5117
32.817L
33,2251

32,9829
33.2887
33.59LL
33.9002
34.2059
34.5117
34.817,4
35.2251

102.7505
103.7031
10L4.6555
105.6081
106.560L
107.5131
108.L65L
109.7355

10558
10754
10953
11153
11355
11559
11765
12042

0.8153
1.1211
1.,268
1.7326
2,038,
2,341
2.6L,99
3.0575

0.442507
0.325921
0.2L0076
0.17682)
0.130237
0.09593L
0.070658
0.047005

ol




TABIE VII (CONTINUED)

TEMPERATURE AND STRESS DISTRIBUTION CAICUIATIONS FOR OPTIMUM VESSEL THICKNESS

®

® ® ® ® ® @& & 0 6 O

@

38.000 = a
38,375
38,750
39.125
39,500
39.875
L0.250
L0.750 = b

14,5952
10.8495
8.0652
5.99LL
L.LSL9
3.3108
2.1601
1.6558

L672
3505
2630
1972
1479
1109

831

566

-1,8525
-1.8525
~1.8525
-1.8525
-1,8525
-1.8525
-1.8525
-1.8525

=193.3942
-193.39L2
-193.3942
=193.39L2
-193.39L2
-193.3942
-193.3942
-193.39L2

14,5952
12.604LL
10,6151
8.6243
6.6335
L.6LL2
2.653L
0.0000

0.0000
0.2259
0.4515
0.6774
0.9032
1,1289
1.3548
1.6558

0
-16601
-33530
-5G6789
-68383
-8631L

-104585

~129L,82

e
~17889
-35875
-54150
-72523
-~91089

-1098L8

-135086

0
121
303
661
9l7

1212

1422

1498

0.0000
1.9808
3.001L
3.3073
3.0818
2.L623
1.5L81
0.0000

0.021432
0.021225
0.021025
0.020833
0.0206L8
0.020471
0.020300
0.020081

0,000000
0.000131
0.000318
0.000673
0.000938
0.001167
0.001331
0.001351

Tl



TABIE VII (CONTINUED)

TEMPERATURE AND STRESS DISTRIBUTION CALCUILATIONS FOR OPTIMUM VESSEL THICKNESS

®

® ®© 0 © ® @0 ®@ ©® ®

38,000 = a 0,000000

38.375
38.750
39.125
39.500
39.875
L0.250

0,020321
0.030L94
0.033280
0.030716
0.024311
0.0151)2

40,750 = b 0.000000

0.021),32
0.001035
-0.009151
-0.011774
-0,009130
-0.002673
0.006L89
0,021,432

282985
282985
292985
282985
282985
282985
282985
282985

6065
293
-2590
=3332
-258L
-756
1836
6065

0.0000
0.0290
0.0569
0.0838
0,1097
0.1345
0.1585
0.1891

0.000000
0.000207
0.000406
0.000599
0.000784
0.000961
0.001132
0.001351

0.,000000
0.000076
0.,000164

-0,000074

-0.000154

-0.000206

-0.000199
0.000000

565970
565970
565970
565970
565970
565970
565970
565970

0
L3
93

v
-87
-117
-113
0

0.6166
0.5987
0.5815
0.56L9
0.5490
0.5337
0.5189
0,5000

-0.2332
-0.197L
-0.1630
-0,1298
-0.0980
-0.0673
-0.0377

0.0000

1.6166
1.5987
1.5815
1,56L9
1.5490
1.5337
1.5189
1.5000

el



TEMPERATURE

TABLE VIT (CONTINUED)

AND STRESS DISTRIBUTION CALCUIATIONS FOR OPTIMUM VESSEL THICKNESS

®

&

D)

® & & & @

.38.000 = a
38.375
38.750
39.125
39.500
39.875
L0.250
L0.750 = b

-1.000
-0.8L6
-0.699
~0.557
-0.420
-0.289
-0.162

0.000

6.932
6.855
6.781
6.710
6.6L2
6.577
6.513
6.132

1000
1000
1000
1000
1000
1000
1000
1000

6932
6855
6781
6710
6642
6577
6513
6L32

-1000
-8L6
~-699
-557
~120
-289
-162

0

12997
7148
4191
3378
L,058
5821
83L9

12L97

~1000
-803
-606
-599
-507
-L06
-275
0

1048
10L8
1048
10L8
10L8
1048
1048
10L8

0.000
21.296
31.958
3L.877
32.190
25.478
15.869

0.000

Assuming the coolant ebsorbs no radiation, the actual metal thickness is used

as the attenuation distance.

€L




TANGENTIAL STRESS- PSI

74

15000
A-TOTAL STRESS
B- PRESSURE STRESS
| C- THERMAL STRESS
D- TEMPERATURE
10000

5000 \

-5000

rd

38

DISTRIBUTION

39
RADIUS -~ IN.

FIGURE 4

TEMPERATURE AND TANGENTIAL STRESS

IN OPTIMUM VESSEL THICKNESS

40

40.75

TEMPERATURE-°F
(ABOVE SURFAGCE TEMPERATURE)




75

(ABOVE SURFACE TEMPERATURE)

500
. — 40
30
— 20
—10
/ /—\\
~ N
(o] (0]
»
o W
y 9
@ :é
Fz:" D
- P
n @
3 w
o
p s
=) w
<t -
@
-500
A-TEMPERATURE
B-THERMAL STRESS _
C-PRESSURE STRESS
D-TOTAL STRESS |
-1000
38 39 40 40.75
RADIUS- IN.
FIGURE 5

TEMPERATURE AND RADIAL STRESS DISTRIBUTION
IN OPTIMUM VESSEL THIGKNESS




76

4000 20
//———.~~\ —
//
-— ’ A
7 . ] -~
n N w
0 A- TEMPERATURE \ _ x
o B- THERMAL STRESS \ e
€ 2000 0 &
7)) W
B &
- w =
: s &
— b=
: 3y
: p—
= w
- - = T
g
- ()
- (o} o
z 3 36.25 36.50 /75 37 W
© RADIUS-IN. _ o
2 @™
g g
- . =
-2000
FIGURE 6

THERMAL STRESS AND TEMPERATURE
DISTRIBUTION IN THERMAL SHIELD




30000
/
n /
/
/V
_ /
_ /
n | /
a
1
A /
w
@ 25000 X /
wn
i a
- §
- =
(@]
-
u
=}
= i \
-
2
w 20000 /
') \
2
[-§ L
-
= -
o
=
= -
- §
b |
A /
13000 —G565—"—"=80 <60 -40  -20 ) 20 20 60 80 100 20 140 X
T, T °F
FIGURE 7

MAXIMUM TANGENTIAL STRESS VERSUS SURFACE TEMPERATURE
DIFFERENCE FOR 2.75 INCH WALL THICKNESS




78
instence, if the vessel were perfectly insulated, the difference in sur-
face temperatures would be 101.3 degrees F and the total stress would be
27,380 psi.




CHAPTER VI
DISCUSSION

Obviously there are meny weys of arriving at an estimate of the
heat production within & body. Many assumptions can be made in order
to reduce the amount of calculating necessary to obtain an answer.
Several such assumptions have been made in this discussion for the sake
of arriving at some numericel velues for use in the demonstration of the
stress calculations. The seriousness of the problem may shed some light
on the amount of simplification which may be tolerated in any given sit-
uation.

While the equations for the thermal gstresses were derived on the
basis of the heat production being described by a single exponential
function, this does not limit their usefulness. It mey be necessary to
approximate the estimated heat production function by addition and/or
subtraction of several exponentials in order to "£it" the given curve.
If several exponentials are required, the stresses may be calculated for
each exponential,as shown,and then added. The one exception would be for
the general case where both surface temperatures are determined from the
heat transferred to the surrounding mediums. All that would be necessary
in this situation (Case III) is to include the effect of the surface
temperatures in only one of the exponential functions and the other ex-
ponentials would be treated as if both surface temperatures are equal to
zero. The terms which contain the surface temperatures are implicit
functions of the. leat production as shown by equations (33) and (34)..
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8o
These terms merely serve as a reference for the boundary conditions and
their effect cannot be added more than once and still maintain the proper
boundary conditions.

The maximum thermal stress (tension) will occur at the points
where the temperature is at.a minimum,and the minimum thermal stress
(compressive) will occur at the points where the temperature is at a
maximum. If stress corrosion is a factor in the design, it is possible
to impose a compressive thermal stress at the inside surface by control-
ling the cooling of the vessel. This compressive stress would subtract
from the pressure stress to give a net stress which can be made equal
to some desired value. However, this would be at the expense of very
high tensile stresses at the outside surface.

In performing the stress calculaticns great care must be exercised
in order to obtain consistent results. The usual slide rule accuracy is
not sufficient as the differences in very large numbers occur in meny
places. Quite often these differences are very smell compared to the
large numbers. It is recommended that mathematical tables and a calcu-
lating machine be employed in performing calculations of this type.

The thermal stress in & material is proportional to o E. Natural-
ly one would like for this number to be small. Often stainlzss steel is
employed for systems operating at high temperatures and containing cor-
rosive mediums because of its .strength and corrosion resistant qualities.
Unfortunately the factor = E for stainless steel is about 2 to 3 times

k
that for carbon steel which means 2 to 3 times the thermal stress. The
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use of a thin stainless cladding on carbon steel may be the solution
to this problem. However, this suggests another problem in that a
thermel stress aha]ysis similar to the one presented here would be de-
sirable for an integrally clad vessel.

Throughout this discussion it has been assumed that the thermal
conductivity, the modulus of elasticity, and the coefficient of expan-
sion do not vary with temperature., The stress calculations have been
assumed to remain in the elastic region even though they may mot. The
thermal stress may be relieved by creep. The amount of relief obtained
or expected is a matter of comjecture. In the absence of quantitative
results it mey be desirable to exclude any benefits ocbtained from the
relief of the thermal stresses. It would be helpful to have data to

guide one's thinking along these lines.
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APPENDIX A
RADIATION CURRENT FOR A SPHERICAL SOURCE WITH SELF-ABSORPTION

The gamma current at point Q, Figure 8, is given as Io 7/cmesec.
Let S(r) be the source strength per unit volume of material which has
an absorption coefficient, p, dependent upon the gamms energy. One may

write the current normal to the surface at Q from an element of volume as

e~HP

a1, = S(r) @V -z ein y (50)

vhere

I = gamma current at Q, 7/cm° sec.

s(r) source strength, 7/cm3 sec.
av = element of volume, an3
e = linear attenuation factor for the material.

‘LE‘ = gpherical correction factor.

hxp
sin ¥/ = normal component of the radiation at Q.
For spherical coordinates, the element of volume is given as
a4V = 12 sin 6 dr 46 dw (51)
Substitutipg and integrating with respect to w , the expression for the

total current 1s obtained as

r=R x
I, -f l %ﬁ-’f e 5in 6 siny a8 ar (52)
r=0  e=0




FIGURE 8

DIAGRAM FOR PRIMARY GAMMA CURRENT FOR
A SPHERICAL SHELL WITH SELF-ABSORPTION
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By applying the law of cosines, it is seen from the figure that
p2 =R2 + r° - 2Rr cos @ (53)
vhich may be differentiated to give
ﬁp- =r 8in 0 49 (54)
R
From the figure it is also seen that
siny =R - T cos@ (55)
p
Combining equations(53) and (55) gives
2 2 2
sin § =P +R_-r (56)
2 Rp

Combining equations (52), (54), and (56), and changing the limits, gives

r=R =R+r 2 2 -
I =f rs(r j" [.____.R -r e+ e gar (57)
° r=0 LR p=R-r 02

Changing the variable p to 4p and rewriting, equation (57) becomes

r=R wp= M(R+r) .
e (H6° - 2 ) e
0 b= bu(R-T) (o)
o= (R+r)
Y ( e"“’) aup) | (58)
>
p= jo(R-r)
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The integrals within the brackets may be changed to the form

(s o}
= s
P (t) 5t ft e (59)

by writing equation (58) in the following menner

(
,,..p:p.( R+r)

.00
"k-(R2 - r2) ( e;:z)z) dgb,p) +i ( e-/“p) dsp,p) dr (60)
P.Dj‘-(R+r) p=p(R-r)

G

f

pp=p{R-r)

r=R
#p
I, = .j‘ rS(r) (82 - ) e ) alup)

Two of the integrals in equation (60) are of the same form as equation
(59) and may be evaluated from the information given in Appendix C.
Carrying out the integration and writing equation (60) in terms of the
F1 functions, the current at Q is

r=R

I, = _::_:é_{). (Rex) Fl{_p.(n-rﬂ - (R-r) Fl[p.(mr)]

r=0
+ /::L:[e-f»(R—r) _e-,l~(R+r):] } ar (61)

Equation (61) may be graphically integrated for any given source

distribution, S(r).




APPENDIX B

DERIVATION OF TEMPERATURE DISTRIBUTION

The differential equation for steady state hest conduction with

an internal heat source may be written in spherical coordinates as

d2T +2 4ar - -H(r)
2

ar r ar k

where
T = temperature, degree F.
r = radius, cm.

H(r) = heat source, Mev/cmzsec.

(62)

k = thermal conductivity of the material assumed independent

of temperature, Mev/cm sec F.

]

47 , dy = a°T and substituting

dr dr dra

Letting Y

HRe-m(r-R) for H(r), the above equation becomes

-m(r-R)
dy + 2 y = -~ e™
j‘% 7 EB_k___

which has as a solution

- -fg ar Ig dr _ -(r-R)
y=e’r e'r HRe dr + Cl ]

k

(63)

(64)
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Carrying out the indicated operations

y = & ,:EBJ e-m(r-R) ar + CJ (65)

Further simplication gives an expression for the temperature gradient as

o-m(r-R) . ¢ ., o8 o-n(r-R) -m(r-R
2 E( 2 %)

The temperature as a function of the radius is obtained by integrating

daT

R B

equation (66) term by term. In performing the integration of equation
(66), the exponential integrals of the third and fourth terms cancel when
the third term is integrated by parts. After some manipulation, the

expression for the temperature is given as

H mr + 2
T = - R -m(r-R) Q
(r) 3k T e - T + Ca (67)

where the constants of integration must be evaluated from the appropriate
boundary conditions.
Three sets of boundary conditions will be used to evaluate the

constants:

Case I: daT
& = 0 r=0d

]
[

O (as & @atum); r=a (68)
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The constants are found from equations (66), (67), and (68) as

c, == g% (2202 + 2ub + 2)e P(PR)
and c, = a.n_igl_:-{ {ma + 2)e-m(a-R) -(m2b2 + 2mb + 2)e-m(b-R)}

-m(a-R)

letting = (ma + 2)e and B. = (mzbe + 2mb + 2)e-m(b-R)
1

then

B /A -3

B
C, = - B and C, = —
1 2 m3k 2

S

Substituting these values into equation (67) gives the temperature for
& hollow sphere which has an exponential heat source and is perfectly

insulated on the outside surface as

A, - B
™r) = R_ [ 1-P% B w2 e‘“‘(r"ﬂ):l (69)
m3k a r r
Case II: g.l =0 ;r=a

(70)

T =0 (as a datum); r =D

The constants for these conditions are found from equation (66), (67),

and (70) as

¢, =- H—R- n%a® + 2ma + 2)e-m(a-R)
m
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and

H
C2 = _R_}_; { (mb + 2)e-m(b~R) - (n2e® + Pma + z)e-m(a-R)
bm:

-m(b-R) -m(a-R)

Letting A, = (mb + 2)e and B, = (m28.2 + 2ma + 2)e

then

B /4 -5

HR
c = - B and C T e
1 msi 2 2 m3k b

Substituting these values into equation (67) gives the temperature for
& hollow sphere which has an exponential heat source and is perfectly

insulated on the inside surface &as

™(r) = R 2P + ig_ - Cnr i ) o (r-R) (71)

m3k b T r

Case III: T = Ta. ; r=a2a
(72)
T = Tb ;5 r=D>

The constants for these conditions are found from equations (66),

(67), and (72) as

H
aj -m(a-R) fuwb + 2)_-m(b-R)
Cl a -bb{(Ta - Tb) ¥ mRBE [(m :. 2)e ) -< : )e ]

[

(ma + 2)e-m(a_R) - (mb + 2)e'm(b‘Rﬂ

F
L

I

02 1 {(aTa - bTb) +

a-~->b




(ma + 2 )e-m(a-R)

Letting A; =

and B, =

3 (mb +72) ¢-0(b-R)

ab H ‘B
then €, = =5 { (L -T) + ﬁi - 'é

5

e G, = o {(a{l‘a-a'nb) + B (A3-B3)}

Substituting these values into equation (67) gives the temperature for
& hollow sphere which has an exponential heat source and the surface

temperatures specified as T and Tpe The temperature distribution is

aT, (ai——: b) + T (: = ;)

= |}3 -(_"": : b> * By (3——: b) - (mr*‘?)e'm(r'n)] (73)

A special case of interest is when both surfaces are at the same tempera-

gliven as

T(r) =

1

ture. If that is true, then the temperature at any point is given by

)+ B, ( — ;>- (mr+2)e (TR

1

T(r) =T, + gg; )




AFPENDIX C
F - FUNCTIORNS

Frequently in shielding calculations the so-called F-functions

appear. These functions are defined by

e 9]
F (t) = ¢ ft y ™) oV oy (75)

For n = 0, the function is the exponential integral which is tabulated
in the WPA Math Tables as - Ei(-x). For m > 1, the following expressionm,
obtained by integrating the above integral by parts, is helpful in

evaluating the functions.
F(t) = %[e't -t Fn_l(t)] (76)

A useful property of the functions is F (0) = % for n & 1. Figures 9
and 10 give the value of F (t) forn=1and 0 £ t £ 6.5 calculated

from the sbove expression with the aid of mathematical tables.
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APPENDIX D

SECONDARY CAPTURE GAMMA HEATING

Enlund (13) presented a solution for the heating in a slab
due to thermal neutrons being captured within the slab. Upon the
absorption of a thermal neutron, gamma rays of a particular energy
spectrum are emitted. The gammas travel some distance before they are
absorbed to produce heat at the point of absorption. A brief summary
of the derivation is given here.

Consider an infinite plane source of neutrons emitting a neutron

current, I into an infinite plane slab of absorber. The neutron

o,t

flux within the absorber is given as

-Kx
Io,t (]
P =—— (77)
KD
when
@ = neutron flux, neutrons/cm® sec.
Io t = neutron current incident on the slab, neutrons/cmasec.
’
-1
K = + BZaztr s, cm .
Z2a = neutron absorption cross section, em™t.
p3 tr = neutron transport cross section, cm'l.
D = diffusion coefficlent, cm.
x = distance from face of slab to point of neutron absorption, cm.
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The number of neutrons absorbed at x, Figure 11, is given as

Salop e Kx
z¢=.._&__’____ = I _Ke" (78)
a KD o,t
Ietting N be the number of gammas of energy E, produced per neutron
absorption, (b -O;) be the energy absorption coefficient for energy
E,, , and L be the linear absorption coefficient for energy E, , the

heating is given by

=00 p=00
H(x) = MB, I, K{u, -O;)J f ™ o™ 2npapax (79)
hah®
x=0 p=0

Meking the substitution w = 1l/cos 8, and, from the figure,

h =t-%X, p=(t-x) teane, then pdp = 5ind 46 - dv
cos O he cos 6 w

The boundary conditions may be stated as

e =0 ; w = +1 ; and x = O as @ increases from
@ =x/2; w = +00; &and x = t 0 to n/2

and
@ = n/2 ; w = -c0 ; and X = 1 as 8 increases from
6 = =« ; w o= -1 ; and x = ® x/2 to =




100

dp

FIGURE 11

DIAGRAM FOR NEUTRON CAPTURE AND SECONDARY
GAMMA ABSORPTION FOR AN INFINITE SLAB
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The expression for the heating may be written as

x=t w=+
I Kx _-(t-x)w
B(x) = W, ® Kl - ) f (e — dx)

x=0 w= o+ 1
Xx= w=
x=1

-1
W= - 00

-]‘
(e'Kx e”(:'x)" dw dx i (80)

The integration of (80) may be carried out and the results written as
- Lot 3
Hx) = NE, b (g - 0g) F(B,ut) Mev/ca’sec (81)

where B = K/u. The value of the function F(B,ut) 1s defined as
follows:

(1) X>u; B = Ku>1
F(B,ut) = e PHY {ea“t [— Ei(-pt):] + Ei(ut [B - 1))
g+ 1
+1n -1 (82)
Note that the 1imit of F(B,ut) = 1n (B + 1) as t —» O.
(2) K=p; B=Ku =1

F(B,ut) = e Mt {e“t [— Ei(-ut_;J + 1n 27 + ln ut} (83)
where 1n 27 = 1.2703

Note that the limit of F(B,ut) = ln2as t 0.
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(3) Ken ; B = K<l

Peut) = e 3 Lmi(ut)] - [Bi(wt - )]

+ 1n ifg} (84)

Note that the limit of F(B,ut) = 1n (1 + B) as t —» 0.
The Ei functions are the exponential integrals as tabulated in the WPA
Mathematical Tables. A family of curves may be plotted for the function
F(B,ut) with B as the parameter and ut as the independent variable to
aid in the solution of problems. Such a family of curves appeared in the
original article. This writer has extended the range of the original
curves to greater values of ut and several additional values of B. The
extended curves are given by Figure 12 for use in estimating the heating.
It should be noted that as B -» O, p —+»o00 and the heating occurs at
the point of the neutron absorption. Also as f w0, u —- O and

the heating approaches .iie minimum value.
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2
FUNCTIONS FOR CALGULATING SECONDARY GAMMA HEATING

FIGURE




APPENDIX E
ABSORPTION COEFFICIENTS

Reference (16) gives a brief discussion of the various absorp-
tion coefficients along with values of the coefficients versus energy
for several materials. The curves from the reference are reproduced
herein for completeness. The values given on the curves are for thin
absorbers, hence, the necessity for using a buildup factor is pointed
out. Figures 13 and 14 give the linear mass absorption coefficients as
a function of photon energy, while Figures 15 and 16 give the energy

absorption coefficients.
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MASS ABSORPTION COEFFICIENTS FOR ALL INTERACTIONS % cmZ/g (EXPERIMENTAL)
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FIGURE 13

MASS ABSORPTION COEFFICIENTS
(MACROSCOPIC TOTAL CROSS SECTION DIVIDED BY DENSITY)
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MASS ABSORPTION COEFFICIENTS FOR ALL INTERACTIONS 'ln—‘ cmz/g {CALCULATED})
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FIGURE 14

MASS ABSORPTION COEFFICIENTS
(MACROSCOPIC TOTAL CROSS SECTION DIVIDED BY DENSITY)
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FIGURE 15

ENERGY ABSORPTION COEFFICIENTS
(MACROSCOPIC GROSS SECTION FOR ENERGY ABSORPTION DIVIDED BY DENSITY)
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ENERGY ABSORPTION COEFFICIENTS
(MACROSCOPIC CROSS SECTION FOR ENERGY ABSORPTION DIVIDED BY DENSITY)
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NOMENCLATURE

constant, neutrons/cm sec.

(ma + 2)e‘m(a - R)
-n(b - R)

constant

constant = (mb + 2)e
4

inside radius of pressure retaining vessel, cm.
geometrical buckling of reactor,-cm'z.
constant = (m2b2 + 2mb + 2)e~B(b - R)

(nPe2 + 2ma + 2)e-n(a - R)

constant
A
outside radius of pressure retaining vessel, cm.
constant of integration, degree F-cm.

constant of integration, degree F.

thermal neutron diffusion coefficient, cm.
modulus of elasticity of vessel material, psi.
gauma energy, Mev.

prefix designating a function.

thermal utilization of the reactor, __ 25(0%35)
2, (D20)+2, (U235)

heat production per unit volume at any point in an infinite
slab, Mev/cm3sec.

heat production per unit volume at face of slab, Hev/cm3sec.

heat produ:;}on per unit volume at any radius within vessel
wall, Mev/cm’sec.

Heat production per unit volume at inside boundary of reactor,
Mev/cm3sec.
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distance, cm.
radiation intensity at any point, cm™2 sec~l.
incident radiation striking shield, cm-2 sec-t.
fast neutron current entering vessel, neutrona/cmaseco
thermal neutron current entering vessel, neutrona/cm2 sec.

neutron coefficient = ‘V 32,2 tr ——

thermal conductivity of vessel material, Mev/cm sec F.
(Note: 1 Btu/hr £t F = 6 x 1010 Mev/cm sec F.)

multiplication factor for an infinite reactor.

effective multiplication factor for & finite reactor.
diffusion length of thermal neutrons, cm2.

diffusion length of thermal neutrons in heavy water, cm®.
slope of heat production function, cmL.

number of gammas produced per neutron absorption.
integer.

pover level of reactor, watts.

internal pressure, psi.

probability.

outside radius of active region of reactor, cm.
(Fote: In the absence of a thermal shield R = a.)

radius, cm.

gamma source strength, 7/cm3 sec.

temperature, degree F.

temperature of inside surface of Pressure vessel, degree F.
temperature of outside surface of pressure vessel, degree F.

temperature at any point within vessel wvall, degree F.
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t distance, cm.

v volume of reactor active region, cm3.

v 1/cos ©.

x distance from face of sleb, cm.

y varieble.

z variable.

a coefficient of thermal expansion of vessel material,
in/in F.

p K/u

€ fast neutron fission effect.

%? average number of fast fission neutrons produced per
absorption in fuel.

] angle, radians.

Ar neutron transport mean free path, cm.

1} energy dependent gemms absorption coefficient corrected
for buildup, cm-l.

Kg energy dependent gamma total absorption coefficient, cm'l

(ut-ag) energy dependent gamma energy absorption coefficient, cm

1) Polsson's ratio. ,

p distance, cm.

Sa. macroscopic neutron asbsorption cruss section, cm"l°

Z-c macroscoplc neutron capture cross section, cm™t.

fo macroscoplc neutron fission cross section, cm.

03(0235) microscopic neutron absorption cross section, barms.
02(0235) microscopic neutron capture cross section, barns.

o;(U235) microscopic neutron fission cross section, barns.

-1

°




%

Jr

0—1;) Py
9r, th
Ty

o
t, Pi

0¢, tn

allowable stresss péi.

total radial stress at any point, psi.
radinl pressure stress at any point, psi.
radial thermal stress at any point, psi.
total tangential stress at any point, psi.
tangential pressure stress at any point, psi.

tangential thermal stress at any point, psi.

0t,th max maximum tangential thermal stress, psi.

T

J
7
@
W
w

Fermi age of fast neutrons, cma.

number of fast neutrons produced per fission.
neutron flux, neutrons/cmPsec.

average thermal neutron flux, neutronS/cmzsec.
angle, radians.

angle, radians.
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