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ANALYSIS OF SPHERICAL PRESSURE VESSEL
HAVING AN ENERGY SOURCE WITH IN THE WALL

by

R. H. Chapman

ABSTRACT

A method Is given for determining the optimum thickness of a

spherical pressure vessel In which there is an exponential heat

source contained within the vessel wall. The method has applications

In the design of certain types of nuclear reactors. It is shown how

the thermal stress may be estimated for thermal reactors and combined

with the pressure stress to obtain the total stress. The solution

to a hypothetical design problem is given to Illustrate the proce

dure. Some data are Included which should be an aid in the solution

to' similar problems.



CHAPTER I

GENERAL INTRODUCTION

Frequently In the field of nuclear engineering, the design of pres

sure vessels requires that serious consideration be given to the thermal

stress as well as to the pressure stress. The thermal stress may be

relieved by creep and plastic deformation, with no harm being done, pro

vided it is not of a cyclic nature. However, the usual designs are sub

ject to some temperature cycling which could lead to failure of the vessel

if the thermal stress is excessive.

It will be shown how the thermal stress may be evaluated and

combined with the pressure stress to obtain the total stress. It is

known that the thermal stress increases with an increase in vessel thick

ness while the pressure stress decreases. Obviously their sum will give

a minimum value at a particular vessel thickness. The optimum thickness

may be of little interest in many cases as a thinner vessel may have a

total stress less than the allowable stress. It will be shown how this

optimum vessel thickness may be obtained for various design conditions

when operating in the steady state region. While the procedure presented

is for a spherical vessel, the same general procedure will apply for other

shapes.

The thermal stress considered herein is the result of nuclear

radiation absorption within the vessel wall. This Implies an internal

heat source with an exponential distribution. While it is not the purpose

of this discussion to present a rigorous theoretical study of nuclear
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shielding, a method of determining the heating due to the radiation

absorption will be included. It is hoped that one familiar with the

fundamentals of nuclear engineering may take this discussion and apply

it to the particular problem being Investigated.

For simplicity, only pressure stresses and thermal stresses due to

radiation absorption are considered in this analysis. No attempt will be

made to analyze the localized stresses due to outlets, supports, pressure

surges, wind load, weight of fluid, pipeline reactions, etc. These are

all dependent on the particular vessel design and are somewhat indetermi

nate. It should be pointed out that nozzles and connecting pipes may

impose high localized stresses if insufficient flexibility is incorporated

in the piping design. Some experimental data (l, 2) are available to

indicate the magnitude of the stresses around openings in pressure ves

sels.

Unfortunately much of the work on thermal stresses with an internal

heat source is in the classified literature (3). Timoshenko and Goodier

(k) give the general equations for thermal stress for any given temperature

distribution. They also give the particular solution to the stress equa

tions for a linear temperature distribution. Carter (5) presents some

general expressions for several geometries where the heat source is con

sidered constant per unit volume. Luster (6) discusses thermal and pres

sure stresses in cylinders where the temperature distribution is linear.

(l) Numbers in parentheses refer to similarly numbered
references in bibliography at end of paper.
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The effect of thermal stresses is also given along with a method of

arriving at the optimum wall thickness for cylinders. Kent (7) considers

transient stresses in spheres and cylinders. Durham (8) presents a

method of determining heat transfer rates and thermal stresses in several

geometries. Criteria for minimizing the thermal stresses based on slab

geometry and uniform heating are given along with the corresponding cool

ing rates.

The discussion presented herein differs from the above cited re

ferences in that the thermal stresses are the result of a steady state

exponential heat source. The equations of Timoshenko and Goodier are

applied in spherical geometry after obtaining an expression for the

temperature from the exponential heat source. A simple problem will be

worked to illustrate the procedure presented in this discussion. The

optimum vessel thickness will be determined for a particular design

condition and curves showing the stress and temperature distribution will

be given for that thickness.



CHAPTER II

HEAT PRODUCTION

In the classified literature (3) and unclassified literature

(8, 9, 10, 11, 12, 13> 14), there are numerous discussions on shielding

of reactors. However, very few of these discussions mention the heating

effect resulting from the radiation absorption. This is very important

in the design of reactors, and, as such, it should be given more promi

nence in the shielding discussions. The following treatment 1b not In

tended as a rigorous theoretical discussion of shielding, but as a prac

tical method of obtaining the heat production within the shield. It

should be pointed out that If a more precise method is available, it

should be utilized in the determination of the heat production.

The sources of the heat generated within the shield are as follows:

(1) Thermal neutron capture gammas. As thermal neutrons are cap

tured by the materials present within the active region of a reactor,

gamma radiation is released. This radiation is often referred to as the

primary or pile capture gammas. They are not to be confused with the

radioactive decay gammas of the product nuclei. Some of the thermal neu

trons which leak out of the active region are captured by the materials

present within the shield. Gamma radiation is released in this process

also. These gammas are often referred to as the secondary capture gammas.

(2) Fast neutron capture gammas. If fast neutrons are captured

by the materials present within the region under consideration, gamma

radiation will be released in a similar manner as above.

5
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(3) Elastic scattering of fast neutrons. In an elastic collision,

a portion of the neutron's kinetic energy appears as heat.

(k) Inelastic scattering of fast neutrons. In an inelastic col

lision, a portion of the neutron's kinetic energy appears as gamma rad

iation. This may occur in the active region as well as in the shield.

(5) Prompt fission gammas. In the fission process, a small

portion of the energy released appears immediately as gamma radiation.

This radiation is sometimes referred to as the prompt gammas.

(6) FisBion product gammas. Some of the fission products result

ing from the fission process emit gamma radiation with characteristic half

lives after the fissioning takes place. This radiation is sometimes refer

red to as the delayed gammas.

The pile gammas are attenuated through the active region before

they enter the shield which in this case is the reactor vessel. Near the

inner boundary of the vessel, the primary radiation may assume a major role

in the heat production; whereas, for greater thicknesses the secondary

radiation may become the more important of the two. For thermal reactors

the effects of the fast neutrons are generally negligible, hence, they

will not be included. This will not be true for intermediate or fast re

actors where most of the fissions are due to the higher energy neutrons

and where most of the neutrons which enter the pressure vessel wall are

fast neutrons. The classified literature presents methods of estimating

these effects.

In order to obtain the heat production within the vessel wall, it

is necessary to know the gamma and neutron currents entering the wall.

The total primary gamma current incident on the vessel wall from all
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elements of volume is given in the case of a spherical source with self-

absorption as

1&=fI^£l (R+r)Pl [u(R.rj .{R.r)Pl £(8*] +i£-^*U^<**>L (l)
o

where

I = gamma current entering the spherical shield,

7/cm2 sec.

r = radius at any point within the spherical source, cm«

R = inside radius of the spherical shell, cm.

u = energy dependent, linear absorption coefficient of the

material in the spherical source corrected for multi

ple scattering, cm" . See Appendix E.

S(r) = gamma source strength, y/cm'sec.
00

Firu(R-r|) f-y
( = exponential integrals defined by F-(t) = t r__ dy.

F^R+rl J y2
J See Appendix C. t

The derivation of equation (l) is given in Appendix A.

From the information on the size and nature of the reactor, and

with an assumed gamma source distribution, equation (l) may be integrated

graphically to give the primary gamma current for any particular photon

energy. It will be sufficient to assume that the capture and prompt gammas

are distributed in proportion to the thermal neutron flux. Inasmuch as

the fission product gammas are emitted some time after the fission, the

source distribution will depend upon the type of reactor. In a stationary

fuel reactor the source distribution will be the same as the thermal neutron

flux distribution. The fission product gammas will be emitted uniformly

throughout the reactor in most fluid fuel reactors.
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Once the gamma currents entering the vessel wall are known, the

heat production may be estimated for each of the various photon energies.

In order to simplify the problem, slab geometry will be assumed for the

purpose of calculating the heat production. This will be sufficient for

the calculations provided that the radius is large compared to the thickness.

A conservative assumption is made by treating the current, as given by equation

(1), as a collimated source as it enters the wall.

The intensity of a collimated beam of photons which has passed

through a thin absorber is given as

I - I e"^x

o

where

(2)

I = intensity of gammas at x, r/cm2 sec.

IQ • incident gamma current, 7/cm2 nee.

Ht = energy dependent total absorption coefficient, cm"1.

x = thickness of absorber, cm.

For large thicknesses of absorber (2 or 3 attenuation lengths), equation

(2) should be modified to include the effect of multiple scattering or

buildup as it is commonly known. Several methods of correcting for build

up are available to the designer. The one chosen for this discussion,

because of its mathematical simplicity,is to simply divide the total absorp

tion coefficient by 1.2. This reduced value gives a good correlation between

the values reported in Appendix E for thin absorbers, where the scattered

radiation is negligible, and for thick absorbers where the scattered radi

ation becomes important.

The energy released at any point is given by the product of the
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radiation intensity at the point, the energy released per collision and the

energy absorption coefficient. A buildup factor should be considered in

evaluating the energy released. With the buildup factor discussed herein,

the heat energy at any point is given as

H(x) - Ey (^ -cr8) IQ e-MX (3)

where

H(x) • heat produced per unit volume at any point,

Mev/cm sec.

E • energy released per absorption,. Mev/7.

u = energy dependent absorption coefficient corrected

for buildup, cm .

(u^-Og) = energy dependent, energy absorption coefficient, cm ".

x = distance from face of shield, cm.

IQ » Incident gamma current, y/cm sec.

Equation (3) may be used to estimate the heat production within the vessel

wall as a function of the thickness for each of the various photon energies.

In order to obtain the heat production from the neutron reactions,

It is necessary to have the neutron currents entering the shield. One

method often used is to obtain the thermal and fast neutron flux equations

and calculate the net leakage from them. Rather than go through the in

volved calculations of obtaining the exact flux equations, a simpler method

will be discussed here. If one considers the reactor as a bare thermal

reactor, the leakages may be obtained in terms of nuclear constants for

the particular reactor.
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The criticality equation for a bare homogeneous thermal reactor may

be written as

k -- - *oo e
eff " 1+ LSB^ {h)

where

k __ • effective multiplication factor for a finite reactor.

Jtoo « multiplication factor for an infinite reactor.

2 o
B » effective geometrical buckling of the reactor, cm .

(Note: B2 may differ for fast and thermal neutrons).

T = Fermi age or the square of the slowing down length for

fast neutrons, cm .

2 2
L = diffusion length for thermal neutrons, cm .

For a finite reactor to remain just critical, k -- must, of necessity,

be unity. The value of k^, is fixed for any given reactor by the geo-

-w2T
metrical and nuclear properties. The factor e is the probability

that a fast neutron does not leak out of a finite reactor while slowing

down to thermal energy. For these calculations the exponential may be

approximated by (l + B2 f )" • The factor (l + L B )" is the fraction

of the thermalized neutrons which are absorbed as thermal neutrons or,

stated differently, the non-leakage probability of the thermal neutrons.

Let -J be the number of fast neutrons produced per fission and p

be the probability that a fast neutron will become thermalized before

capture. This allows one to calculate the number of thermal and fast

neutrons which leak out per fission. Since 1 watt • 3.1 x 10 flB8long,
sec '

the total fissions may be calculated from the given power level, P, in watts.
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The current may be estimated by dividing the number of neutrons leaking

out by the surface area of the reactor of radius R cm. Defining the fast

neutron current entering the shell as IQ f and the thermal neutron current

as I0 t> one Bay write the equations for these as

and

W • [*x 1010 PJ

Lo,t
3.1 x 1010 PtJp

WR2

B2T
_1 + b2T (5)

r i

.(l + L2B2)(1 + B2T)J
(6)

As stated earlier the heat produced in thermal reactor pressure

vessels due to the fast neutron reactions is usually negligible and will be

omitted from this discussion. The heat production due to the thermal neutrons

is important and must be considered. Enlund (13) has derived an expression

for the heat production in a slab due to the capture gammas emitted upon a

thermal neutron absorption. His analysis considers the effect of the gamma

traveling some distance after the neutron collision before being absorbed.

He gives the energy absorption as

H(x) - H ±2i* (ut .<rB) Ey FO,ntt) (7)
where

N = number of photons of energy E produced per neutron capture.

F(B,u^t) - absorption function. See Appendix D.

and other symbols have been previously defined. The above equation does

not consider gamma ray buildup. In order to take into account the buildup,

this writer chooses to replace the total absorption coefficient by the
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reduced absorption coefficient as discussed previously.* Making this change,

equation (7) becomes

H(x) = NEr ^ (ut -<re) F(p,ut) (8)
The function F(P,ut) is defined for three cases; P>1; p • 1; and P <c 1.

The derivation of equation (7) and the definition of the functions are

given in Appendix D. Curves of the function are presented in the appendix

with P as a parameter. Using equation (8) with the appropriate absorption

function, the thermal neutron heating effect may be estimated.

The various heating effects may be plotted on semi-log paper and

added to give the total heat production as a function of the thickness.

The total heating curve may then be approximated by a single exponential;

or more exponentials if greater accuracy is desired. The slope and inter

cept of the exponentials are obtainable from the plot on semi-log paper.

For the time being let it be assumed that the total heating is given by

H(x) = HQ e"11* (9)

where

H(x) = heat production at any point, Mev/cm^ sec.

HQ = heat production at face of slab, Mev/cm^ sec.

m = slope of the assumed exponential, cm""*".

x = distance from face of the slab, cm.

It will be shown later how corrections may be made if more than one ex

ponential is needed to approximate the total heat production curve.

* Since this memorandum was issued, Alexander (17) has issued a
memorandum on the application of the NBA Build-up Factors. An equation
for the heating is given in terms of build-up factors.



CHAPTER III

TEMPERATURE DISTRIBUTION

A method for estimating the heat production per unit volume within

the vessel wall due to nuclear radiation absorption was given in the

previous section. Slab geometry was employed in arriving at the ex

pression for the heat production, but, for the'remainder of this discus

sion, spherical geometry will be employed as the basic geometrical con

sideration. Define the radius at any point within the vessel wall by

r e R + x (10)

then equation (9) may be written as

H(r) =Hr e-m<r "R) (11)
The differential equation for steady state heat conduction with an

internal heat source is given (15) in spherical coordinates as

2
d T + 2 dT = -H(r) (12)
dr2 r dr k

where

T = temperature at any point, degrees F.

r = radius at any point defined by equation (10), cm.

H(r) • heat production per unit volume at any point defined

by equation (ll),.Mev/ca3 see.

k = thermal conductivity of the vessel material assumed to be

constant and expressed in consistent units, Mev/cm sec F.

13
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The temperature distribution within the vessel wall is obtained

by substituting equation (ll) into equation (12) and integrating. The

resulting expression is

T(r) --̂_. ^_£__je-m(r -R) .£+̂ ^

where Cx and Cg are constants of integration to be evaluated from the

boundary conditions. The integration of equation (12) and the evaluation

of the constants are given in Appendix B.

Three sets of boundary conditions have been used to evaluate the

constants:

Case I. The outside surface of the vessel is considered as a

heat barrier and the inside surface is at some equilibrium temperature.

Case II. The inside surface of the vessel is considered as a

heat barrier and the outside surface is at some equilibrium temperature.

Case III. The inside surface and the outside surface are at some

equilibrium temperatures which may or may not be the same.

Some comments on the boundary conditions may be of value in deter

mining which case applies to the problem being investigated. Case I

considers that all the heat generated within the vessel wall is conducted

to the inside surface where it is dissipated by some convenient heat

transfer mechanism to the adjoining medium. This condition would be em

ployed where heat losses are important and need to be kept at a minimum.

Case II considers the reverse of Case I, i.e., all the heat generated is

conducted to the outside surface and dissipated by some convenient
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mechanism of heat transfer. ThiB condition would be used for an unin

sulated vessel with a large amount of cooling on the outside, or for

a vessel insulated on the inside. Case III considers part of the heat

generated within the vessel wall as being conducted to both surfaces

where it is dissipated by some convenient heat transfer mechanism. A

special case of interest is when both surfaces are at the same temperature.

However, the practical value of this special case may be limited due to

the problem of keeping both surfaces at the same temperature. It should

be pointed out that this special case describes the temperature distri

bution in a thermal shield which may be placed within the vessel in such

a manner as to have the same medium cool both sides of the shield.

The various temperature distributions are:

Case I.

T(r) =JjjL f Al"Bl +i[bx -(mr +2)e"m<r "R>j j (Ifc)
where

A, =(ma +2)e-m<a " R>
Bl - (mV +2mb +2)e^b " R>
T(a) = 0 as a datum

2* =o
dr 'r=b

Case II.

T(r) =?fe J*2 *"* +1[b2 -(mr +2).-** "R)]l (15)
m?k ^ b r L -M
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where

Ag =(mb +2)e-ffl(b "R)
Bg =(A2 +2ma +2)e-m(a -R)
T(b) = 0 as a datum

« 0dT

dr
r=a

Case.III.

*> •*f"OW3*ite*t^♦"•Hh
where

A, =(ma +2)e-m(a " R)
Bj - (mb +2)e-m(b - R)
T(a) • TR

T(b) =Tb

Case III. (Special Case)

where

T(a) = T(b) = 0 as a datum

The heat removal per square ft of surface area may be estimated by eval

uating the temperature gradient at the appropriate surface and multiply

ing by the thermal conductivity.



CHAPTER IV

STRESSES

It was pointed out in an earlier chapter that only pressure

stresses and thermal stresses due to radiation absorption would be con

sidered. Only the maximum tangential stresses are necessary in determi

ning the optimum vessel thickness for any given design, and these stresses

will occur at either or both of the boundaries. This assumes that the

three-dimensional stress system may be treated as a two-dimensional or

plane stress problem. Once the optimum thickness has been determined,

the three-dimensional stress distribution may be calculated from the

equations presented. The stress distribution is mostly of academic

interest as the maximum stress may be used as a conservative design cri

teria in pressure vessels. The value of the maximum allowable stress is

given in the various codes under whose jurisdiction the vessel design

may fall.

Timoshenko and Goodier (k) give the equations for stresses in thick

spheres due to internal pressure as

and

\*± = b3 -a3

*,*i
Pj aJ

b3 - a

2r3 + b3

2r3

b3

L r3

(18)

(19)

;17
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where

°t P-t = tangential stress due to internal pressure, psi.

ar p = radial stress due to internal pressure, psi.

P^ = internal pressure, psi.

a = inside radius of sphere, cm.

b = outside radius of sphere, cm.

r = radius of any point in vessel wall, cm.

Obviously the pressure stresses are principal stresses by virtue of

symmetry. It is easily seen that as the vessel thickness increases,

the tangential stresses decrease. When the thickness of the vessel

is small compared to the radius (ratio of 1 to 10), the vessel may be

treated by the membrane theory or the so-called thin sphere equation.

This assumes that the vessel acts as a membrane; therefore,the tangential

stress is constant across the vessel wall and is given as

*'pi 2(b-a)

Timoshenko and Goodier (k) give the equations for thermal stresses

in hollow spheres for any temperature distribution as

%«, -mfeip A«•** ♦ &A-*2*♦ *«*>' <»°
and
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where

Of. th * tangential thermal stress, psi.

o^. tn = radial thermal stress, psi.

a = linear coefficient for thermal expansion, in./in. F.

E = modulus of elasticity, psi.

V , = Poisson's ratio.

T(r) • temperature distribution as a function of r, degrees F.

a,b,r = radii as defined in equations (18) and (19).

These stresses are also principal stresses by virtue of symmetry. This

fact allows them to be added algebraically to the pressure stresses with

out using combined stress theory. As the vessel thickness increases, the

thermal stresses increase due to the greater temperature gradient required

to conduct the heat through the vessel.

The total stress at any point is given as

°t =%p± + °t,th (23)

and

°r = °r,Pi + °r,th: <2l0

Equation (23) has a minimum value for some particular thickness which will

provide the optimum stress condition for vessels which have thermal as

well as pressure stresses. The usual method of obtaining the maximum or

minimum of an equation is too complicated to employ where the stress

distribution has both exponential and power terms as is being considered

herein. Instead,a graphical method will be used to obtain the minimum.

The maximum tangential stress due to internal pressure is at the

inside surface while the maximum tangential thermal stress will occur

at the surface which has the lowest temperature. These maximum stresses
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may be calculated from the equations presented and their sum plotted

versus shell thickness. The optimum shell thickness may be read

directly from the curve at the particular thickness where the total

stress has its minimum value.

Equations (21) and (22) must be integrated for each of the known

temperature distributions as given in Chapter III before the thermal

stresses may be evaluated. The results of these integrations will be

given for each set of boundary conditions:

Case I:

T(r) _Hr Al -Bl ,1 ^- (mr +2) e-n(r-R)

and

mJk

<JT
T(a) - 0 (as a datum); —

dr r • b

^=(ma +2) e-m(a-R>• Bx -(nrV +2mb +2) e'*(b-R)

T(r) r2 dr = _2.
m3k

C,H' Bl) £ +Bi^ +/mr +2f,-(r-H),
a / 3 2 V n

SubstitutiiTg the above expressions in equations (21) and (22) gives the

tangential thermal stress as
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2r3 + a?

(b3 - a3)r3

b2 - a2'

MPrM

Q£ Hr

°t,th = )
(l--y)m3kN

/"* +2]2 c-m(b-R) A* +2|2 e-m(a-R)

^ WM-fc*)
+ i™ "*" 2 I e"m^r"RJ - Z"1* + 2^

m

2^ e-m(r-R) _ /ma + 2\d e-m(a-R)

;1_- Bl + ?1 /mr_+_2"\ -m(r-R)

V
-ft8)

and the radial stress as

r3 -a3
(D3 . a3)r3

fi^y^ft)\ -BlWh3 -a3

2o£ %

°"r'th "^A<

/mb + 2\2 e-m(b-R) _ /ma + 2\2 e-m(a-R)

(^)^) -^
/mr+_2\2 e-m(r-R) _ /ma +2\2 g-m(a-R)

> (25)

y

(26)



The maximum tangential thermal stress for this case is at the

inside radius and is given as

3ctE Hr

t,th max" (i.i>)m3k(b^-a3) Ff^H^
h2 - a2

22

+ /mb +2\2 e-m(b-R) _H±j)2 e-m(a-R) I
(27)

and

Case II:

T(r). „?R_ 1*2 - B2 ^ 1
m 3k b r _

B2 - (mr +2) e~m(r-R)| ,

T(b) = 0 (as a datum); —
dr

= 0
r=a

A2 = (mb +2) e"m(b-R)

B2 = (m2a2 + 2ma + 2) e"m(a_R)

T(r) r2 dr = fL_ -
m3k

A2 - B2>) r3 Bg r-
7 3 2

('mr + 2

m

-m(r-R)
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Substituting the above expressions in equations (21) and (22)

gives the tangential thermal stress as

a E Ho
o+ -- »%th =

(l-i;)m3k
<

2r3 + a3

(b3 - a3)r3

'H -B2) /b3 -a3\ ^
Br

2 -a2^

+ /mb_+_2^2e-m(b-R) _/ma +2\2e-m(a-R)

*)M*<^
+ /mr + 2l2e-m(r-R) _/ma + 2\2e-m(a-R)

Ag -B2 + Bg _/mr + 2] e~m(r-R)
b r"V r / y

(28)

and the radial stress as

f r3 - a3 h> ' *2\fa - a3\ ^ _ /b2 - a2
f + Br

^

2a E HR

(b3 - a3)r3

+ /mb + 2\2 e-m(b-R) _ /ma + 2\2 e-m(a~R)

^2 " B2^ /r3 _ a3)
+ Bo

b j\ 3 y ~V 2

\2

r2 - a2

+ /mr_LE)2e"m(r-R) _/ma +2\2 e-m(a-R)

.......(29)



The maximum tangential thermal stress for this case is at the

outside radius and is given as

2k

3aEHR

tf*> *2\Se.«(t-R) _/ma+_a\2e^»(a-B)
t,thmax {lJU)(lM)A

Case III

^(i£)+ B3(H) - <»+ £> '-<r-,°
T(r) = i

r

T(a) = Tft ; T(b) = Tv

^

A3 = (ma +2) e-m^a-R) • b, = (mb +2) e~m(b-R)

and

f, aT_ -'a - Mb)
a - b / 3 V a -b/ 2

^

T(r)r2dr
<

H,LR

m3k

^ r3 . /^a-tfjV r2 +/?£±2]2e.in(r.R)
^ a-b / 3 V a-b / 2 ^ m/

7

>

Substituting the above expressions in equations (21) and (22)

gives the tangential thermal stress as



°t,th= iq> *i

r

2r3+a3

:b3.a3)r3

V

+/'"b+^e-mtb-R) _/ma+2\2e-m(a-R) I

+Jfe f/^A3-B3Vr3:a3^ _̂ Ag-aBgN /r2.a2\
m3k Va-b/l 3

/mr+2\2e-m(r-R) _ /ma+2\2c-m(a-R)l

25
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and the radial stress as

26

r3-a3
(b3.a3)r3

^th - 1-v J

1

/aTa - MVA/b3 - a3\
(-w^-j—j

+(sb+g | e-m(b-R) _ /ma+g^2 e-m(a-R)j

- ab
(Ta - Tb bc - ac
, a-b /\ 2

faT, ?\ - ab /*a - TbN/r2 - a^^f^) "" M) y

+/mr+2\2 e-m(r-R) _ /ma+gY e-m(a-R)j

(32)

The maximum tangential stress will be at the surface which has

the lowest temperature. If this occurs at the inside surface, the

maximum stress is given as

3 a E HR
Jt,th max " (i-^J) m3k (b3-a3)

. OtE b

fAo-B,\/b3-a3\ /bAo-aB-^/b2-a2>
razsa1 to-ajJoi

a-b J\ 3 I \ a-b A 2

/mb+2\ -m(b-R) [ma+2\ -m(a-R)

1 -3 a (°2 - a22 IbTTl? (Ta "Tb)
(33)

>
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If the lowest temperature, is at the outside surface, the maximum stress

is given as

3 BEHjj

rA3-B3\/b3-a3^
a-b

rt,th max " (l--z))m3k(b3-a3) 7mb+2J2 e-m(b-R) . (ma+2j2 e-m(a-R)

ctE a
1 - 1

2 bTT-al Ta " Tb

•(3*)

It is seen that equations (33) and (3k) contain one term which

depends upon heat generation within the vessel wall and one term which

depends upon the difference in surface temperatures. The heat generation

term is identical in both equations whereas the surface temperature de

pendent term is not. It should be noted that the latter term appears as

a linear function of the surface temperature difference. Equations (33)

and (3*0 are for the general case where it will be necessary to obtain

the surface temperatures in terms of heat transferred and film coefficients.

To prove that the maximum tangential thermal stress has a minimum

value when both surfaces are at the same temperature, it is necessary to

prove that the term containing the surface temperature difference is

greater than zero for all other cases. For the case where Ta< Tb,

equation (33) applies. Since (a-b)<0, (l-lJ) > 0, and (Ta-Tb)< 0, it

J***%) In order for the surface tempera-is necessary to show that £ > a

ture term to be greater than zero. This may be shown by inequalities in

the following manner:

2 ^ a'*2"a2 ab + a£

3-a3 / b^ab+a2VbJ-a
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Reversing the Inequality by inverting both sides and breaking the right

side into two fractions, one obtains the inequality

± < b2
2 a* + ab

Now b y a, b2 > a2, ab > a2, and 2b2 >• (a2 + ab). Dividing this in-
„ b2 i

equality by 2(a* + ab), one obtains the Inequality that "2 Z *•> T .

Therefore, it is concluded that for the case where T <_ T^, the term

containing the surface temperature difference is greater than zero. For

the case where Tb < Tft, equation (3V) applies. Since ( a - b) < 0,

(1 -2/) > 0, and (Ta -Tb) > 0, it is necessary to show |<b(53-7
in order for the surface temperature term to be greater than zero. This

may be shown in the following manner:

b2 -a2\ u b2 +ab
^b3 -a3 )" b2 +ab +a2

Reversing the inequality by inverting both sides and breaking the right

side into two fractions, one obtains the inequality

i a2
2 -^ b2 + ab

Now b> a, b > a2, ab > a2, and (b2 + ab) > 2a2. Dividing this In-

equality by 2(b2 + ab), one obtains the Inequality that - -> -J*-. .
2 ' b2 + ab

Therefore, it is concluded that for the case where Tj, < Ta, the term

containing the surface temperature difference is greater than zero. For

the case where Ta » Tfe, both equations (33) and (3^) give zero for the

term containing the surface temperature difference.
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It is obvious from the foregoing that the maximum thermal stress

is equal to the thermal stress due to the internal heat generation plus

the thermal stress due to the difference in surface temperatures which,

in itself, will be equal to or greater than zero. Therefore, it is con

cluded that the maximum tangential thermal stress will have its minimum

value when both surfaces are at the same temperature. Thus, for this

case and a given inside diameter, the optimum vessel thickness is found

from the following expression which gives the minimum value of the maxi

mum tangential stress as

p

Min. o£>max - _i 2a3 + b3
b3 -a3

+ 3a E HR
(1-V) m^k (b3-a3)

_fa** -**) (f -a*V feSf.-•<**> -/5=*f e-m(a-R)
(35)

The usual method of obtaining the minimum value of an expression is

too complicated to apply to equation (35)« Instead, it is recommended

that the expression be plotted as a function of vessel thickness, and

the particular value of the thickness which gives a minimum value for

the total stress be read directly from the curve.

The thermal stress distribution for the case where both surfaces

are at the same temperature is obtained from equations (31) and (32) by

letting T - Tb • 0 as a datum. Making that substitution the equations

may be written as



°t,th =
a E H,lR

(1-Wm3k

and

2a E Hi
S

r'th (1--I>)m3k

30

r
2r3+a3

(b3-a3)r3 '^(^ ^3-^3
a-b yi 2

h2-a2^

<

+/i*+i]2e-m(b-R) - /ma4-2\2f-m(a-R)

^3f3)f^=53
^a-b/V 3

- /^-^/r2^2

+(^£)2 e"m(r-R) - ClE?!2)2 e-m(a-R)

V

1

r A3 (3) +B3 (H) "<*»2> e"a(r-R)

r 3.-3r->-a

(b3.a3)r3 ©(¥J

....(36)

^/bA3-aB3\/b2.a2

^ a-b /( 2

+ /mhf^2 e.m(b-R) _/ma+2f e-m(a-R)
\ m /

A3-B3

\ m /

1_
r3 a-bm -̂ m

,2 , _. ,__.^
,-mva-n;

J
......(37)

Throughout the previous derivations of the thermal stress

equations, it has been assumed that the total heat production function

could be approximated by a single exponential expression. If more than

+/°^2\2e-m(r-R) _/ma+2\2e-m(a.R)

>
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one exponential is necessary in order to get a closer approximation to

the heat production function, the same equations will apply by simply

evaluating the thermal stress for each exponential, separately, and

adding or subtracting them as the case may be. The only limitation to

adding the various solutions is when the surface temperatures are speci

fied as T and Tb. The effect of the surface temperatures can only be

added for one solution in order to maintain the proper boundary conditions.

In this manner the thermal stress may be obtained for any particular

internal heat source. Generally, two, and seldom more than three, expo

nentials are required to give a close approximation to the heat production

function.

If the value of the total stress as calculated by the appropriate

equation given herein exceeds the permissible allowable stress for the

given vessel material, some means of lowering the thermal stress becomes

necessary. This may be achieved by adding aso-called "thermal shield"

within the vessel to absorb the radiation before it strikes the pressure

vessel. The equations presented will still apply to the problem with

some minor assumptions. It is convenient to assume that the inside

radius of the thermal shield is the boundary of the reactor described

by R throughout this discussion and that the coolant channel between

the thermal shield and vessel wall absorbs a negligible amount of the

radiation leakage. This means that the pressure stress will go up

slightly due to the increased diameter, and the thermal stress will de

crease as the actual metal thickness appears as a negative exponential

in the thermal stress equations. The thickness of the coolant is

neglected in the exponential function. The above procedure will be
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demonstrated in a later section.

If it is Impractical to maintain both surfaces of the vessel

at the same temperature, an optimum vessel thickness may be obtained

for the particular boundary conditions imposed upon the vessel. It

becomes necessary to apply the appropriate equations as presented herein

to arrive at the optimum for the desired conditions in the same manner

as outlined for the case where both surfaces are at the same temperature.



CHAPTER V

APPLICATION OF METHOD

The procedure to be followed in the solution to a problem may

be outlined as follows:

1. Obtain the radiation leakages incident on the vessel wall by

some acceptable manner.

2. Convert the absorbed radiation into heat energy as a function

of distance from the face of the shield. Add all the various

heat sources and approximate the total heat production by

simple exponential functions.

5- Calculate the maximum tangential thermal stress for the par

ticular boundary temperature conditions selected. This should

be done for several thickness of practical interest while

keeping the Inside diameter of the vessel constant.

k. Calculate the maximum tangential stress due to internal pres

sure for the same thicknesses as the thermal stress was calcu

lated.

5. The above stresses are added and their sum plotted versus

shell thickness. The optimum thickness may be read directly

from the curve of total stress versus shell thickness.

6. If the total stress for the optimum thickness exceeds the

allowable stress, a radiation shield thickness may be employed

as a parameter whereby several total stress curves are

obtained.

33
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The above outlined procedure will be demonstrated by the solution

to a simple problem. The optimum shell thickness will be found for a

vessel which has both surfaces at the same temperature. Once the parti

cular thickness is determined, the stress and temperature distribution

may be calculated. The values of the various nuclear constants used in

the problem are unclassified and may not represent the most accurate data.

The problem solved here is not a design nor is it contemplated as

the design for a reactor. For the purpose of illustrating the method,

assume a reactor of the following general description. It shall consist

of a 6 ft. inside diameter steel sphere operating at 1000 psia and 70

degrees F. The fuel and moderator is a dilute homogeneous, circulating,

solution of pure U2^ and Dp0. The power level of the reactor is taken

to be 100,000 kilowatts.

For the purpose of calculating the thermal neutron leakage of this

reactor, it may be assumed that the reactor is a so-called bare reactor.

The criticality equation may be written as

k = ^€f __ =l (58)
eff (1 + LaBa) (1 + B*T)

where

t^ = the average number of fast fission neutrons produced per

absorption in fuel.

6 = the fast neutron fission effect.

^a(^55)f « the thermal utilization

*»&*>> +2«<D?35>
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£ = macroscopic absorption cross section, cm .

and the other symbols have been previously defined. It may be noted that

equation (58) is the same as equation (k) except that k has been replaced
o

by "Htfpf and e "^has been approximated by (l + ifiXY •

For a dilute solution such as specified, it is reasonable to assume

€ and p to be unity. The Fermi age for the solution may be taken as

that for DgO. However, it is necessary to correct the diffusion length

of the solution because of the presence of uranium. The corrected value

may be calculated from

2 o Ia(D2°)iT =L2(D20) -i-2 __ (59)
Ia(D2<>) -laC*255)

Rearranging and substituting, the critical equation becomes

Za (D2°) \ - (1 + B2T)
Za(U255) " (1 +B2 T) [l +B2L2(D20)] (^0)

The above equation may be solved for the critical concentration

from the values given in Table I as

Za(D20)
Za(U255)

= 0.0655

Since the solution is dilute, let it be assumed that the cross section of

DO is unaffected by the presence of small amounts of uranium. With this



TJfoaO)

L2(D20)

^a(D2°)
Oa(u235)

0^(^35)

^(U23?)

B2

L2 (solution)

TABLE I

NUCLEAR PROPERTIES0

120 cur

10,000 cm2

2.1

2-5

0.0008 cm"1

650 barns

5^9 barns

101 barns

0.00118 cm"2

613 cm2

36

Glasstone and Edlund, pp. 83, 127> 183*

Bc calculated from 2- for a spherical reactor where R includes the

extrapolation distance. The extrapolation distance is defined as the
distance from the physical boundary of the reactor to the point where
the neutron flux would be zero if extrapolated from the boundary with
a line whose slope Is equal to the slope of the flux at the boundary.
The extrapolation distance is usually taken as 0.71Xtr where \^T is
the transport mean free path for neutrons in the material.

L (solution) calculated from equation (39)*
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assumption Za(«) *s calculated to be 0.01225 cm'-'-. The fission cross

section, ^(U255), will be Iii2_ xj,(U255) or 0.01055 cm'1 and the capture
650 a

cross section, 2c(10255),.'will be iPi x2ft(U255) or 0.0019 cm"1.
In order to obtain the gamma source terms for the "pile" gammas,

which are proportional to the thermal flux, it will be helpful to obtain

the thermal flux expression. For a spherical reactor, this is given as

<p = A sin Br (M)
r

where

(p =thermal flux at any radius, neutrons/cm sec.

A = constant, neutrons/cm sec.

B = geometrical buckling, cm" .

r = radius, cm.

It can be shown that the average flux is given by

^ ^2L_ (te)

where R Includes the extrapolation distancek The average flux is also

given in terms of the power as

ftB ^.lxlO^P (*3)

where P = power level, watts.

V = reactor volume, cnr.

Since the extrapolation distance for this reactor is small com

pared to the radius, it is assumed to be negligible. With that assumption
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the two expressions for average flux may be combined to give

A= 7-75 x109p (1A)
2,(0**) R2

Upon substituting the values in equation (kk), A is found to be 8.96

x 10 ^ neutrons/cm sec. Now equation (to) may be written as

<p =8.96 x 1015 sin 0.05Ur (h,5)
r

Equation (l) may be used to calculate the primary gamma currents

entering the vessel wall. The source function will be taken proportional

to the thermal flux for the capture and prompt fission gammas, and pro-

portional to the average flux for the fission product gammas.

Assuming on the average that one 6 Mev gamma is produced for each

non-fission neutron capture in uranium and that the captures in heavy

water are negligible, the source function for the capture gammas may be

written as.

*S(r) = ^(U255) <P =1.71 xlO1' sin O.O^r / (W)
r cnrsec

Assuming that five gammas of an average energy of 1 Mev each are

emitted as prompt fission gammas, the source function for the prompt

fission gammas may be written as

S(r) =5lt(U255) <P=k.6kx 101* sln °'°^kr -L- (U7)
r cnrsec

Assuming that two gammas of an average energy of 2.5 Mev each are

emitted as delayed gammas from the fission products, the source function
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for the delayed fission gammas may be written as

S(r) =2ZJU255) $ =1.95 x 1012 ' (W)
cnrsec

The gamma absorption coefficients for the solution must be known

as a function of photon energy in order to apply equation (5)- Some

experimental values are given in Appendix E based on thin absorbers and

a collimated beam of radiation. For thick absorbers, a buildup factor

must be used. The method used in this discussion, as pointed out earlier,

is to divide the values as obtained from the curves by 1.2. Since the

values for heavy water are not included in the curves of Appendix E, the

values for light water may be used and corrected by the ratio of their

densities. The corrected values of the coefficients used in performing

the calculations in this discussion are given in Table II for the solu

tion and for the vessel.

The values of the exponential integral may be obtained from the

curves in Appendix C for use in equation (l).

Table III presents the method chosen to calculate the portion of

equation (l) under the integral sign as a function of the radius for the

primary capture gammas. The data from the table is given in Figure 1

from which one may graphically integrate to obtain the area underneath

the curve. Using the scale factor as given in the figure, the area is

evaluated and the 6 Mev capture gamma current is estimated to be 8.95

x 1011 y/cm2sec. In a similar manner the 1Mev prompt fission gamma

current is estimated to be 5-15 x 1012 7/cm sec,and the 2.5 Mev fission

product gamma current is estimated to be 9-70 x 10 7/cm sec. It should



TABLE II

ABSORPTION COEFFICIENTS

Photon Energy u(solution) u(Fe) (u^-crjFe

1*»• 0.0705 cm"1 O.388 cm"1 0.213 cm'1

2-5 Mev 0.CA38 cm"1 0.2W cm"1 0.163 cm'1

6**• 0.0275 cm"1 0.201 cm'1 O.I85 cm"1

7 "*• — 0.197 cm'1 0.189 cm'1

ko
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NOMENCLATURE FOR TABLE III

Column Column Heading Units

1 r cm

2 R + r cm

3 R - r cm

U u(R + r) MM

5 u(R - r) —

6 *! f(B - rj| •»*•

7 Fl f(B +rf| —

8 (R +r) F^ufR - tT\ cm

9 (R - r) F-^ufR +r)] cm

10 (R +r) Fx[u(R - r)] - (R - r)^ u(R +r)] cm

11 e- u(R - r)
—

12 e- u(R + r)
—

13
1 C- u(R - r) . e- u(R +r)|

cm

Ik Br radians

15 sin Br
—

16 r S(r) X 10"12 ?/car sec

17 _i_ |(R +r) Fx]ji(H - rj] - (R - r) Pjj>(H +r)]

+i |> P(R -r> -e" P<R +r>]J X101* -1
cm
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NOMENCLATURE FOR TABLE III (CONTINUED)

Column Column Heading Units

18 E^£l |(R+r) Fju(R -r)]-(R -r) F^R+r)]

+i£- r^(R -r) .e- u(R +r)| x10-9 7/cm3 sec



TABLE III

CALCUIATIONS FOR DETERMINING THE 6 MEV GAMMA CURRENT

© © © © © © © © ©

0.00 91.au 91.au 2.51 2.51 0.019 0.0193 a.737 1.737
10.00 101. UU 8i.ua 2.79 2.2a 0.027 0.0136 2.739 1.108
20.00 111.UU 71.ua 3.06 1.96 o.oao 0.0100 ea.a58 0.71a
30.00 121.14; 6i.au 3.3a 1.69 0.056 0.0070 6.801 0.a30
ao.oo 131.UU 51.UU 3.61 i.ai 0.086 0.0051 11.30a 0.262
50.00 1U1.UU ai.aa 3.89 1.1a 0.120 0.0036 16.973 O.Utf
60.00 151.UU 3i.aa a.16 0.86 0.183 0.0027 27.71a 0.085
70.00 161.aa 2i.aa a.aa 0.59 0.277 0.0019 aa.719 o.oia
75.00 166.kh i6.aa a.58 o.as 0.355 0.0016 59.086 0.026
80.00 171.hh n.aa a.71 0.31 o.a6o 0.001a 78.862 0.016
85.00 176.UU 6„aa a.85 0.18 0.590 0.0012 10a.100 0.008
90.00 181.UU i.aa a.99 0.0a 0.860 0.0010 156.038 0.001

91.UU s R 182.88 0.00 5.03 0.00 1.000 0.0010 182.880 0.000



TABLE ITT (CONTINUED)

CALCULATIONS FOR DETERMINING THE 6 MEV GAMMA CURRENT

© © ® © © © © © © ©

0.00 0.000 0.082085 0.082085 0.000 0.000 0.0000 0.00 0.00 0.00
10.00 1.631 0.106U59 0.06LU21 1.638 o.3aa 0.3373 5.77 0.98 0.56
20.00 3.7aa 0.1U0858 0.oa6888 3.U17 0.688 0.6350 10.86 2.1a 2.33
30.00 6.371 0.18U520 0.035a37 5.U21 1.032 0.8583 ia.68 3.53 5.18
ao.oo 11.0U2 0.2UULU3 0.027052 7.89a 1.376 0.9811 16.78 5.66 9.50
50.00 16.82U 0.319819 o.o2oaa5 10.886 1.720 0.9889 16.91 8.29 ia.01
60.00 27.629 0.a23l62 0.015608 LU.820 2.06a 0.8810 15.06 12.69 19.11
70.00 UU.678 0.55a327 0.011796 19.728 2.ao8 0.6698 11.us 19.26 22,05
75.00 59.060 0.637628 0.010255 22.8ia 2.580 0.5329 9.11 2a.a8 22.31
80.00 78.8U6 0.733aa7 0.009005 26.3a3 2.752 0.3802 6.50 31.U5 20. as
85.00 10U.092 0.835270 0.007828 30.089 2.92a 0.2163 3.70 ao.12 ia.8a
90.00 156.037 0.960789 0.006806 3a.690 3.096 o.oa6o 0.79 57.03 a.a9
91.UU = R 182.880 1.000000 0.006539 36.126 3.1U2 0.0000 0.00 65.a8 0.00
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be pointed out that the curve in Figure 1 goes to zero at the surface of

the active region only because the extrapolation distance was assumed to

be negligible in calculating the geometrical buckling. This would not be

proper in the solution of a problem of this nature for an actual design.

Equation (6) may be used to estimate the thermal neutron current

entering the vessel wall. It should be remembered that the method used

herein for calculating the neutron leakage may not be the most accurate

one available. However, the method will serve the purpose of obtaining

a value of the leakage from which the thermal stresses may be calculated.

The diffusion length for thermal neutrons in the solution is calculated
o

to be 6l5cm by use of equation (59) and the values given in Table I.

Substituting the proper values in equation (6) gives an estimate of the

thermal neutron current entering the vessel as 2.71 x lO1^ neutrons/cm2sec.

As pointed out earlier, the effect of fast neutron heating will be neg

lected in this discussion.

The heating in the vessel wall due to the primary gammas may be

calculated as a function of thickness by equation (5) for each photon

energy. Using the values as given in Table II for the absorption co

efficients and the gamma currents as calculated, the heating due to

these gammas is given in Table IV and Figure 2 as a function of shell

thickness.

The heating due to the thermal neutrons being absorbed in the

shell is calculated by use of equation (8) with the aid of Appendix D.

Table IV gives the results of these calculations if the value of B for

iron is taken as 5-87. The heating effect is given in Figure 2 as a

function of shell thickness.



NOMENCLATURE FOR TABLE IV

Column Column Heading

1 Position

2 ux; Capture Gammas

3 e" H*; Capture Gammas

E (ufc _Og)l e"^ X 10-11; Capture Gammas

5 ux; Prompt Fission Gammas

6 e-ux; Prompt Fission Gammas

^7

Units

cm

Mev/cnr sec

8

9

10

E (it -Og)l0 e'P* X10"11; Prompt Fission Gammas Mev/cm3 sec

uxj Fission Product Gammas

e_uxj Fission Product Gammas

E(tL. -<r )I0 e"^ x10_11J Fission Product Gammas Mev/cm^ sec

11 ux; Secondary Gammas

12 F(B, px); Secondary Gammas

13 NE7 ^°ft (U+ -°s)F(0, uxJlO"11; Secondary Gammas Mev/cm3 sec

lU H(x); All Heat Sources Mev/cm3 sec



TABLE IV

HEAT PRODUCTION CALCUIATIONS

© © © © © © © ©©©©©©©
0.0 0.0000 1.0000 9.93 0.000 1.0000 10.93 0.000 1.0000 39.53 0.0000 1.580 283.2a 3a3.63
0\S 0.1005 0.90aa 8.98 0.19a 0.8237 9.00 0.122 0.8851 3a.99 0.0985 1.936 3a7.06 U00.03
1.0 0.2010 0.8179 8.13 0.388. 0.678a 7.U1 0.2Ua 0.7835 30.97 0.1970 1.790 320.89 367.ao
H 2*?2iS °Al9rl l'& °^82 °'?588 6-n °*366 °*6935 21'hl 0'2955 1.5U5 276.97 317.8U
f'2 S*K!° 0,S?90 5*f? 0,7# °*1*602 **03 °*U88 °*613? 2U.27 o.39ao 1.310 23a.su 270.793.0 0.6030 0.5U72 5.UU 1.16U 0.3122 3.U1 0.732 0.a809 19.01 0.5910 0.913 163.67 191.53
a.o o.soao o.aa75 a.a5 1.552 0.2118 2.31 0.976 0.3768 ia.89 0.7880 0.618 110.79 132.ua
5.0 1.0050 0.3660 3.6a 1.9U0 0.ia37 1.57 1.220 0.2952 11.67 0.9850 0.a25 76.19 93.07
6.0 1.2060 0.299U 2.97 2.328 0.0975 1.07 1.U6U 0.2313 9.1U 1.1820 0.302 5U.1U 67.32
7.0 1.U070 0.2UU9 2.a3 2.716 0.0661 0.72 1.708 0.1812 7.16 1.3790 0.218 39.08 a9.39
8.0 1.6080 0.2003 1.99 3.10a 0.0Ua9 0.U9 1.952 0.1U20 5.61 1.5760 0.157 28.1U 36.23

10.0 2.0100- 0.13U0 1.33 3.880 0.0207 0.23 2.aao 0.0872 3.a5 1.9700 0.082 lU.70 19.71
12.0 2.ai20 0.0896 O.89 a.656 0.0095 0.10 2.928 0.0535 2.11 2.36ao 0.oa5 8.07 11.17
ia.o 2.8iao 0.0600 0.60 5.a32 o.ooaa 0.05 3.U16 0.0328 1.30 2.7580 0.028 5.02 6.97

•p-
00
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The various heating effects are added and their total is given by

curve B in Figure 2. In order to apply the equations for temperature and

stress, it is necessary to approximate the total heat production curve by

one or more exponential functions. The "hump" in the curve may be ob

tained by subtracting an exponential if it is thought to be important.

For the purpose of this discussion a single exponential as shown by curve

A, Figure 2, is used to approximate curve B. The slope of the curve is

calculated to be 0^521 cm" } and the value of the intercept is read from

the curve as 5•2 x 10 ^ Mev/cnrsec. Thus the total heating at any point

is approximated by

H(r) = 5-2 x 1015 e-°-52l(r -*) Mev/cm5sec (1^9)

The maximum tangential thermal stress and the tangential pressure

stress determine the optimum vessel thickness as pointed out previously.

It was also shown that the maximum tangential thermal stress has a min

imum value when both surfaces are at the same temperature. Therefore, for

this condition, equation (55) is used to evaluate the total stress. The

pressure stress should be evaluated at the inside radius. These equations

are based on R = 56in. = 91*UUcm and the value of a and b varied. This

enables one to plot the maximum stresses as a function of shell thickness

while the diameter of the active region remains constant. The properties

of the vessel material used in these calculations are given in Table V.

The maximum stress calculations performed for this discussion are -

given in Table VI where the thermal shield serves as a parameter. The

results are also given by Figure 5« It is seen from curve B of Figure 5
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TABLE V

PHYSICAL PROPERTIES OF VESSEL MATERIAL

E - Modulus of Elasticity

a - Coefficient of expansion

1/ - Poisson's ratio

k - Thermal conductivity

o~a - Allowable stress

30 x 10° psi

6.30 x 10'6 in/in F

0.3

25 Btu/hr ft F
= 1.5 x 1012 Mev/cm sec F

13,500 psi



52

NOMENCLATURE FOR TABLE VI

Column Column Heading Units

1 Thermal Shield Thickness in.

2 R cm

3 a in.

k a cm

5 b in.

6 b cm

7 a2 cm2

8 b2 cm2

9 a3 cm3

10 b3 cm3

11 b2 - a2 cm2

12 b2 -a2 cm2
2

13 b3 - a3 cm3

ik b3 -a3 3
•LH - cmJ

15 a - R; See footnote to table. cm

16 b - R; See footnote to table. cm

17 a-b in.

18 a-b

19 m cm"1

20 ma

cm



Column

21

22

23

2k

25

26

27

28

29

30

31

32

33

3V

35

36

NOMENCLATURE FOR TABLE VI (CONTINUED)

mb

ma + 2

mb + 2

Column Heading

ma + 2

m

mb + 2

m

/ma + a\
\ m /

/mb + 2^
m

m(a - R)

m(b - R)

e-m(a -R)

e-m(b - R)

A3 =(ma +2)e"m(a "R)

Bo = (mb + 2)e~m(b " R)

bA0

aBo

A3 -B3

53

Units

cm

cm

cm

cnr

cm

cm



5*

NOMENCLATURE FOR TABLE VI (COmUXQBSf)

Column Column Heading Units

37
A3 -B3
a-b

cm"l

38 bAo - aBo cm

39 bA, - aB3
a-b

—

to ft: ?)(*;•') 2

in Crrrr2) p
cur

k2 /mb +2-f e.m(b . R) 2
CUT

h3 /ma + 2)2 m(a _ r) 2

I » /

kk $r^r-3*3)-(br. ^r 2 ^ \

+ /mb + 2\2 -m(b - R) /ma^ ^% -ml[a - R) cm

R
U5 _, psi. cm

(1 - l>)m3k



NOMENCLATURE FOR TABLE VI (COHTDTOED)

Column Column Heading

3aEHR
*to

(b3 - a3)(i -i;)m3k

M t,th max

k8 2a3

h9 2a3 + b3

50 2a3 + b3

b3 - a3

51 pi

52 01 p
l»ri max

53 °t max

55

Units

psi/cm2

psi

3
cmJ

cm3

psi

psi

psi



TABLE VI

CALCULATIONS TO DETERMINE THE MAXIMUM STRESSES IN VESSEL WALL WITH
THERMAL SHIELD AS A PARAMETER AND BOTH SURFACES AT THE SAME TEMPERATURE

©OO©©©©©© @©©@ © ©
0.0

0.0

0.0

0.0

0.0

0.0

1.0

1.0

1.0

1.0

1.0

1.0

2.0

2.0

2.0

2.0

2.0

2.0

91.1*1*
91.1*1*
91.1*1*
91.1*1*
91.1*1*
91.1*U

91.1*1*
91.1*1*
91.1*1*
91.1*1*
91.1*1*
91.1*1*

91.1*1*
91.1*1*
91.1*1*
91.1*1*
91.1*1*
91.1*1*

36
36
36
36
36
36

38
38
38
38
38
38

1*0
1*0
1*0
1*0
1*0
1*0

91.1*1*
91.1*1*
91.1*1*
91.1*1*
91.1*1*
91.1*1*

96.52
96.52
96.52
96.52
96.52
96.52

101.60
101.60
101.60
101.60
101.60
101.60

37
38
39
1*0
Hi
1*2

39
1*0
1*1
1*2
1*3
1*1*

1*1
1*2
1*3
1*1*
1*5
1*6

93.98
96.52
99.06

101.60
101*.11*
106.68

99.06
101.60
101*.11*
106.68
109.22
111.76

101*. 11*
106.68
109.22

111.76
111*.30
116.81*

8361
8361
8361
8361
8361
8361

9316
9316
9316
9316
9316
9316

10323
10323

10323

10323
10323

10323

8832
9316
9813

10323

1081*5
11381

9813
10323

1081*5
11381
11929
121*90

1081*5
11381
11929
121*90
13061*
13652

761*555
761*555
761*555
761*555
761*555
761*555

899191
899191
899191
899191
899191
899191

101*8772
101*8772
101*8772
101*8772
101*8772
101*8772

830051*
899191
972061*

101*8772
12291*13
1211*085

972061*
101*8772
11291*13
1211*085
1302886
1395916

11291*13
1211*085
1302886
1395916
11*93271
1595051

1*71
955

11*52
1962
21*81*
3020

1*97
1007

1529
2065
2613
3171*

522
1058
1606

2167
271*1
3329

235.5
1*77.5
726.0
981.0

121*2.0
1510.0

21*8.5
503.5
761*.5

1032.5
1306.5
1587.0

261.0
529.0
803.0

1083.5
1370.5
1661*. 5

651*99
131*636
207509
281*217
361*858
1*1*9530

72873
11*9581
230222

311*891*
1*03695
1*96725

8061*1
165313
251*111*
31*711*1*
1*1*1*1*99
51*6279

21833.00
1*1*878.67
69169.67
91*739.00

121619.33
11*981*3.33

21*291.00
1*9860.33
7671*0.67

101*961*. 67
131*565.00
165575.00

26880.33
55101*. 33
81*701*.67

115711*.67
11*8166.33
182093.00

0

0

0

0

0

0

2.51*
2.51*
2.51*
2.51*
2.51*
2.51*

5.08
5.08
5.08
5.08
5.08
5.08

o\



TABIE VI (CONTINUED)

CALCULATIONS TO DETERMINE THE MAXIMUM STRESSES IN VESSEL WALL WITH

THERMAL SHIELD AS A PARAMETER AND BOTH SURFACES AT THE SAME TEMPERATURE

© © © © © © © @ © © © © @

0.0 2.5U -1 -2.51* 0.321 29.3522 30.1676 31.3522 32.1676 97.6701* 100.2106 951*0 1001*2
0.0 5.08 -2 -5.08 0.321 29.3522 30.9829 31.3522 32.9829 97.6701* 102.7505 951*0 10558
0.0 7.62 -3 -7.62 0.321 29.3522 31.7983 31.3522 33.7983 97.6701* 105.2907 951*0 11086

0.0 10.16 -k -10.16 0.321 29.3522 32.6136 31.3522 31*.6136 97.6701* 107.8305 95UO 11627
0.0 12.70 -5 -12.70 0.321 29.3522 33.U289 31.3522 35-1*289 97.6701* 110.3701* 951*0 12182

0.0 15.21* -6 -15.21* 0.321 29.3522 3U.2l*l*3 31.3522 36.21*1*3 97.6701* 112.9106 95Uo 1271*9

1.0 5.08 -1 -2.5U 0.321 30.9829 31.7983 32.9829 33.7983 102.7505 105"."2907 10558 11086

1.0 7.62 -2 -5.08 0.321 30.9829 32.6136 32.9829 3U.6136 102.7505 107.6*305 10558 11627
1.0 10.16 -3 -7.62 0.321 30.9829 33.U289 32.9829 35.1*289 102.7505 110.3701* 10558 12182

1.0 12.70 -I* -10.16 0.321 30.9829 31*. 21*1*3 32.9829 36.21*1*3 102.7505 112.9106 10558 1271*9
1.0 15.21* -5 -12.70 0.321 30.9829 35.0596 32.9829 37.0596 102.75C5 115.1*505 10558 13329

1.0 17.78 -o -15.21* 0.321 30.9829 35.8750 32.9829 37.8750 102.7505 117.9906 10558 13922

2.0 7.62 -1 -2.5U 0.321 32.6136 33.1*289 31*.6136 35.1*289 107.8305 110.3701* 11627 12182

2.0 10.16 -2 -5.08 0.321 32.6136 31*.21*1*3 31*.6136 36.21*1*3 107.8305 112.9106 11627 1271*9

2.0 12.70 -3 -7.62 0.321 32.6136 35.0596 31*.6136 37.0596 107.8305 115.1*505 11627 13329

2.0 15.21* -1* -10.16 0.321 32.6136 35.8750 31*.6136 38.8750 107.8305 117.9906 11627 13922

2.0 17.78 -5 -12.70 0.321 32.6136 36.6903 31*.6136 38.6903 107.8305 120.5305 11627 11*528

2.0 20.32 -6 -15.21* 0.321 32.6136 37.5056 31*.6136 39.5056 107.8305 123.0701* 11627 1511*6

-J



TABLE VI (CONTINUED)

CALCULATIONS TO DETERMINE THE MAXIMUM STRESSES IN VESSEL WALL WITH
THERMAL SHIELD AS A PARAMETER AND BOTH SURFACES AT THE SAME TEMPERATURE

© © © © © ® © © © © © ©

0.0 0.0000 0.8153 1.000000 0.1*1*2507 31.3522 11*.231*1* 291*6.1*798 1301.5935 17.1178 -6.7393 161*1*. 8863
0.0 0.0000 1.6307 1.000000 0.195792 31.3522 6.1*578 3026.111*3 590.5012 21*.891*1* -1*.9005 21*35-6131
0.0 0.0000 2.1*1*60 1.000000 0.086639 31.3522 2.9283 3105.71*89 267.7638 38.1*239 -3.7302 2837.9851
0.0 0.0000 3.2611* 1.000000 0.038338 31.3522 1.3270 3185.3835 121.31*09 30.0252 -2.9552 3061*.01*26
0.0 0.0000 U.0767 1.000000 0.016963 31.3522 0.6010 3265.0181 5'1*.9551* 30.7512 -2.1*211* 3210.0627
0.0 0.0000 1*.8920 1.000000 0.007506 31.3522 0.2720 33l*l*.6527 21*.8717 31.0802 -2.0391* 3319.7810

1.0 0.8153 1.6307 0.1*1*2507 0.195792 1U.5929 6.6171* 11*1*5.8005 638.7111* 7.9778 -3.11*09 807.0891
1.0 0.8153 2.1*1*60 0.1*1*2507 0.08,6639 11*.5929 2.9989 11*82.8723 289.1*538 11.5963 -2.2827 1193.1*185
1.0 0.8153 3.26H* 0.1*1*2507 0.038338 ll*.5952 1.3583 1519.91*1*2 131.1031 13.2369 -1.7371 1388.81*11
1.0 0.8153 U.0767 0.1*1*2507 0.016963 H*.5952 0.611*8 1557.015.9 59.3212 13.9801* -1.3760 11*97.691*7
1.0 0.8153 U.8920 0.1*1*2507 0.007506 1U.5952 0.2782 1591*.0877 26.8519 11*.3170 -1.1273 1567.2358
1.0 0.8153 5.7071* 0.1*1*2507 0.003321 11*.5952 0.1258 1631.1596 12.11*22 11*.1*691* -0.91*91* 1619.0171*

2.0 1.6307 2.1*1*60 0.195792 0.086639 6.7771 3.0695 705.7672 311.8612 3.7076 -1.1*597 393.9060
2.0 1.6307 3.2611* 0.195792 0.038338 '6.7771 1.3895 722.9810 11*1.1732 5.3876 -1.0606 581.8078
2.C ,1.6307 1*.0767 0.195792 0.016963 6.7771 0.6286 71*0.191*9 63.8658 6.11*85 -0.8069 676.3291
2.0 1.6307 1*.8920 0.195792 0.007506 6.7771 0.281*3 757.1*087 28.881*9 6.1*928 -0.6391 728.5238
2.0 1.6307 5-7071* 0.195792 0.003321 6.7771 0.1285 77l*.6225 13.0556 6.61*86 -0.5235 761.5669
2.0 :1.6307 6.5227 0.195792 0.0011*70 6.7771 0.0581 791.8361* 5.9030 6.7190 -0.1*1*09 785.9331*

CO



TABLE VI (CONTINUED)

CALCUIATIONS TO DETERMINE THE MAXIMUM STRESSES IN VESSEL WALL WITH
THERMAL SHIELD AS A PARAMETER AND BOTH SURFACES AT THE SAME TEMPERATURE

© © ® © ©• © © © ®

0.0 -61*7.5930 -11*7139 -152508 1*1*1*1* 951*0 273 282985 12.9613
0.0 -1*79.1*5H* -219928 -228938 2067 951*0 1537 282985 6.3056
0.0 -372.1*390 -258017 -270391 960 951*0 3791* 282985 U.0912
0.0 -301.5790 . -279973 -29581*9 1*1*6 951+0 6782 282985 2.9870
0.0 -252.7608 -291*1*89 -313929 207 951*0 10107 282985 2.3268

0.0 -217.8331* -305590 -328928 96 951*0 1389U 282985 1.8885

1.0 -317.7516 -76296 -78961 2171 1*672 161* 282985 11.61*98

1.0 -231*. 921*9 -113816 -118285 1007 1*672 801* 282985 5.6756
1.0 -182.2626 -133306 -1393UO 1*67 1*672 1829 282985 3.6875
1,0 -11*7.1*109 -11*1*1*31 -152202 216 1*672 3315 282985 2.6960

1.0 -123.1*01*1* -151695 -161228 100 1*672 1*961 282985 2.1030

1.0 -106.231*7 -157197 -168591* 1*6 1*672 6771 282985 1.7091

2.0 -155.0811 -39237 -1*01*76 1055 2276 18 282985 10.5276
2.0 -111*. 5291 -581*1*1* -60586 1*89 2276 355 282985 5.1351*
2.0 -88.7571 -6831*8 -71272 226 2276 871* 282985 3.31*08
2.0 -71.7051 -73953 -77692 101* 2276 1567 282985 2.1*1*55
2.0 -59.9659 -77565 -82183 1*8 2276 2390 282985 1.9099
2.0 -51.5701* -80285 -85839 22 2276 3300 282985 1.551*1

NO
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that the optimum thickness is about 2.75" for a 1" thermal shield and

the total stress is approximately 15,500 psi or slightly less than the

allowable stress as given in Table V. It should be noted that the total

stress curve for a 2" thermal shield is very flat, and the minimum did not

occur within the region of these calculations. It should also be noted

that the total stress curve exhibits a sharply defined minimum for the

case of zero thermal shield thickness.

In general, the maximum stresses as given by Figure 5 would be

all that is necessary in order to insure a safe design. However, for

those interested in the stress distribution within the vessel wall,the

calculations are presented in Table VII for the case of 1" thermal shield

and a 2.75" wall thickness. The tangential stress distribution and the

temperature distribution for the vessel wall are given by Figure 1* while

the radial stress distribution and temperature distribution are given by

Figure 5* One should notice the magnitude of the radial stresses compared

to the tangential stresses as the scales for the figures are not the same.

The tangential stress and the temperature distribution are given by Figure

6 for the 1" thermal shield.

The maximum temperature in the vessel wall is found to be about 5**.8

degrees F above the surface temperature while the maximum temperature in

the thermal shield is about 18.9 degrees F above the surface temperature.

Figure 7 shows the variation of the lqayiynnq total stress in the tan

gential direction as a function of the difference in the surface tempera

tures for the 2.75" wall thickness* It is seen from the figure that the

stress rises sharply with a few degrees difference In temperatures. For
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1

2

3

1*

5

6

7

8

9

10

11

12
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ll*
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NOMENCLATURE FOR TABLE VII

Column Heading

r

r

r2

r3

~2 o2r - a

r2 -a2
2

r3 . a3

r3 - a3

3

r - R; see footnote to table

a - r

r - b

r - b

a-b

a - r

a-b

r3 - a3
,3 . a3
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Units

in.

cm

cm

cnP

cm

™2cm

cm3

cm^

cm

cm

cm
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22

23
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27

28

29

NOMENCLATURE FOR TABLE VII (CONTINUED)

Column Heading

2r3 + a3

b3 - a3

?

m

mr

mr + 2

mr + 2

m

pnr + 2fV m J

m(r -• R)

e-m(r - R)

/ , -v -m(r - R)
(mr + 2)e

A3 "B3
a-b

bAo - aBo

a-b
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Units

cm

cm

cm-

cm

cm
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Column Column Heading

30

31 B3

32
a-b

33

A3 - B3| /r3 - a3

bAo-aBj] Jr2 - a2
a-b

* (W)(^)-( bA3 - aB3yr2 - a2
a -b [ 2

35

36

♦ (=**/ «-(r"R) -(r¥j (a -R)-m

,(H*) +B3(Hf) - <«♦ 2> e"m(r •R)
2r3 + a3 )A3-B3\^b3 . a3^

r3(b3 - a3) ] \ a
bA3 " ^3 (^ - a2>

(b - R) /ma + 2^2 e"m(a _ R)
m

/mb + 2\2 e-w

65

Units

cm

cm

cm

-1
cm
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NOMENCLATURE FOR TABLE VII (CONTINUED)

Column Column Heading Units

37

38

39

M^^-fe-?)^
2 -m(r - R) _fna +2\2 m(a _R)[ cm"l/mr + 2\

KA3^)+B3(Hi)"(mr+2)e-m(r-R)}
2r3+a3 !fhjLll\fal^A) -h^(* ^

e - l—ST-' e

cffl-1

r3(b3.a3} [W-b/\ 3 / Va-b A 2 /

+/mb +2\2 e-m(b - R) /ma +2\2 e-m(a - R) I

+f^_l)2e-m(r "R) - (** +2f e"m(a "R)f

- ;f3(r^) *B3^)" <-+ 2) e"m(r"E)) -1
qEHr

1*0 -. rr-T— psi cm
(1 -I»)m3 k
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Column Heading

°t,th

r3 - a3

r3-a3 f/A3 - B3\ /b3 - a3j _/bA3 - &AL2 _̂
r3(b3 -a3)1\a -bA 3 / U-b A 2 y

+ /mb +2\d -md, - R) _ /ma +2^2 -m(a - R)
m m

r3 - a3 //A3 - B3yb3 - a3\ _^ - aB3Wb2 . a2
3(b3 _a3) V* - WV 3

+ /mb + 2\2 e-m(b - R) _ /ma + 2^2 m(a . r)
m m

1 f/A3 - H /r3 - a3 3-aB3Wr2 _ a2

a-b

/mr + 2\2 e_m(r - R) _ /ma + 2\2 e-m(a - R) /

^/

2QEEHp
U5 R

(1 - ^)m3k

^th
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Units

psi

cm

-1
cm

psi cm

psi
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NOMENCLATURE FOR TABLE VII CCONTJDraED)

Column Column Heading Units

b3

I4.8 r3 - b3
3-

1*9

50

r-

2r3 + b3

2r3

:3 .b3
b3 . a3J ^ r3

52 P± psi

53 Ot,Pl Psi

3k c-r;Pi psi

55 crt psi

56 o~ psi

57 _% cm F
m3k

58 T(r) °F



TABIE VII

TEMPERATURE AND STRESS DISTRIBUTION CALCULATIONS FOR OPTIMUM VESSEL THICKNESS

© © © © © © © © © © © © ©

38.000 = a 96.5200 9316 899191 0 0.0 0 0.00 2.5UOO 0.0000 -6.9850 1.0000 0.0000

38.375 97.U725 9501 926075 185 92.5 2688U 8961.33 3.U925 -0.9525 -6.0325 0.8636 0.136U
38.750 98.U250 9687 953U90 371 185.5 5U299 18099.67 U.hUSO -1.9050 -5.0800 0.7273 0.2727
39.125 99.3775 9876 98lUtl 560 280.0 82250 27U16.67 5-3975 -2.8575 -U.1275 0.5909 0.1*091
39.500 100.3300 10066 1009933 750 375.0 1107U2 3691U.00 6.3500 -3.8100 -3.1750 0.U5U5 0.5U55
39.875 101.2825 10258 1038971 9U2 U71.0 139780 U6593.33 7.3025 -1^.7625 -2.2225 0.1182 0.6818
U0.250 102.2350 10U52 1068560 1136 568.0 169369 56U56.33 8.2550 -5.7150 -1.2700 0.1818 0.8182
U0.750 . b 103.5050 10713 1108879 1397 698.5 209688 69896.00 9.5250 -6.9850 0.0000 0.0000 1.0000

o\
VO



TABLE VII (CONTINUED)

TEMPERATURE AND STRESS DISTRIBUTION CALCULATIONS FOR OPTIMUM VESSEL THICKNESS

© © © © © © © © © © © © ®

38.000 = a 0.0000 1.0000 3.0000 U.2882 1.2332 0.321 30.9829 32.9829 102.7505 10558 0.8153 O.UU2507
38.375 0.1282 0.9710 2.9710 1*.2882 1.197U 0.321 31.2887 33.2887 103.7031 1075U 1.1211 0.325921
38.750 0.2590 0.91*31 2.91*31 U.2882 1.1630 0.321 31.5W* 33.59UU 10U.6555 10953 1.U268 0.2U0076
39.125 0.3922 0.9162 2.9162 U.2882 1.1298 0.321 31.9002 33.9002 105.6081 11153 1.7326 0.17682U
39.500 0.5281 0.8903 2.8903 U.2882 1.0980 0.321 32.2059 3U.2059 106.560U 11355 2.038U 0.130237
39.875 0.6666 0.8655 2.8655 U.2882 1.0673 0.321 32.5117 3U.5117 107.5131 11559 2.3UU1 0.09593U
U0.250 0.8077 0.81*15 2.81*15 U.2882 1.0377 0.321 32.817U 3U.817U 108.U65U 11765 2.6U99 0.070658
1*0.750 * b 1.0000 0.8109 2.8109 U.2882 1.0000 0.321 33.2251 35.2251 109.7355 120U2 3.0575 O.OU7005

-4
o



TABLE VII (CONTINUED)

TEMPERATURE AND STRESS DISTRIBUTION CALCUIATIONS FOR OPTIMUM VESSEL THICKNESS

© © (g)

38.000

38.375
38.750
39.125
39.500

39.875
U0.250
U0.750 = b

1U.5952
10.8U95
8.0652
5.99UU
U.U5U9
3.3108
2.U601
1.6558

U672
3505
2630
1972

1U79
1109

831
566

=1.8525
-1.8525
-1.8525
=1.8525
=1.8525
=1.8525
-1.8525
-1.8525

§)®©©@©@® ©

-193.39U2
-193.39U2
=193.39U2
-193.39U2
-193.39U2
-193.39U2
-193.39U2
-193.39U2

1U.5952
12.60UU
10.6151
8.62U3
6.6335
U.6UU2
2.653U
0.0000

0.0000

0.2259
O.U515
0.677U
0.9032

1.1289
1.35U8
1.6558

0

-16601
-33530
-50789
-68383
-8631U
-10U585
-129U82

0

-=17889
-35875
-5U150
-72523
-91089
-1098U8
-135086

0

121

303
661

9U7
1212

1U22
1U98

0.0000

1.9808
3.001U
3.3073
3.0818
2.U623
1.5U81
0.0000

0.021U32
0.021225
0.021025
0.020833
0.0206U8

0.020U71
0.020300
0.020081

0.000000

0.000131
0.000318
0.000673
0.000938
0.001167
0.001331

0.001351



TABLE VII (CONTINUED)

TEMPERATURE AND STRESS DISTRIBUTION CALCUIATIONS FOR OPTIMUM VESSEL THICKNESS

© ® © ©

282985

©

6065

©

0.0000

© © © © © ® ©
38.000 * a 0.000000 0.0211*32 0.000000 0.000000 565970 0 0.6166 -0.2332 1.6166
38.375 0.020321 0.001035 282985 293 0.0290 0.000207 0.000076 565970 U3 0.5987 -0.197U 1.5987
38.750 0.030U9U -0.009151 292985 -2590 0.0569 0.000U06 0.00016U 565970 93 0.5815 -0.1630 1.5815
39.125 0.033280 -0.01177U 282985 •=3332 0.0838 0.000599 -0.00007U 565970 -U2 0.56U9 -0.1298 1.56U9
39.500 0.030716 -0.009130 282985 -258U 0.1097 0.00078U -0.00015U 565970 -87 0.5U90 -0.0980 1.5U90
39.875 0.02U3H -0.002673 282985 -756 0.13U5 0.000961 -0.000206 565970 -117 0.5337 -0.0673 1.5337
U0.250 0.0151U2 0.006U89 282985 1836 0.1585 0.001132 -0.000199 565970 -113 0.5189 -0.0377 1.5189
U0.750 - b 0.000000 0.021U32 282985 6065 0.1891 0.001351 0.000000 565970 0 0.5000 0.0000 1.5000

ro



TABIE VII (CONTINUED)

TEMPERATURE AND STRESS DISTRIBUTION CALCUIATIONS FOR OPTIMUM VESSEL THICKNESS

© © © © © © © © © ©

.38.000 = a -1.000 6.932 1000 6932 -1000 12997 -1000 10U8 0.000

38.375 -0.8U6 6.855 1000 6855 -8U6 71U8 -803 10U8 21.296

38.750 -0.699 6.781 1000 6781 -699 U191 -606 10U8 31.958

39.125 -0.557 6.710 1000 6710 -557 3378 -599 10U8 3U.877

39.500 -0.U20 6.6U2 1000 66U2 -U20 U058 -507 10U8 32.190

39.875 -0.289 6.577 1000 6577 -289 5821 -U06 10U8 25.U78

U0.250 -0.162 6.513 1000 6513 -162 83U9 -275 10U8 15.869

Uo.750 - b 0.000 6.U32 1000 6U32 0 12U97 0 10U8 0.000

Assuming the coolant absorbs no radiation, the actual metal thickness is used
as the attenuation distance.
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instance, if the vessel were perfectly insulated, the difference in sur

face temperatures would be 101.3 degrees F and the total stress would be

27,580 psi.



CHAPTER VI

DISCUSSION

Obviously there are many ways of arriving at an estimate of the

heat production within a body. Many assumptions can be made in order

to reduce the amount of calculating necessary to obtain an answer.

Several such assumptions have been made in this discussion for the sake

of arriving at some numerical values for use in the demonstration of the

stress calculations. The seriousness of the problem may shed some light

on the amount of simplification which may be tolerated in any given sit

uation.

While the equations for the thermal stresses were derived on the

basis of the heat production being described by a single exponential

function, this does not limit their usefulness. It may be necessary to

approximate the estimated heat production function by addition and/or

subtraction of several exponentials in order to "fit" the given curve.

If several exponentials are required, the stresses may be calculated for

each exponential,as shown,and then added. The one exception would be for

the general case where both surface temperatures are determined from the

heat transferred to the surrounding mediums. All that would be necessary

in this situation (Case III) is to include the effect of the surface

temperatures in only one of the exponential functions and the other ex

ponentials would be treated as if both surface temperatures are equal to

zero. The terms which contain the surface temperatures are implicit

functions of the heat production as shown by equations (33) and (J>k)..
79
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These terms merely serve as a reference for the boundary conditions and

their effect cannot be added more than once and still maintain the proper

boundary conditions.

The maximum thermal stress (tension) will occur at the points

where the temperature is at a minimum,and the minimum thermal stress

(compressive) will occur at the points where the temperature is at a

maximum. If stress corrosion is a factor in the design, it is possible

to impose a compressive thermal stress at the inside surface by control

ling the cooling of the vessel. This compressive stress would subtract

from the pressure stress to give a net stress which can be made equal

to some desired value. However, this would be at the expense of very

high tensile stresses at the outside surface.

In performing the stress calculations great care must be exercised

in order to obtain consistent results. The usual slide rule accuracy is

not sufficient'as the differences in very large numbers occur in many

places. Quite often these differences are very small compared to the

large numbers. It is recommended that mathematical tables and a calcu

lating machine be employed in performing calculations of this type.

The thermal stress in a material is proportional to oCE. Natural-
k

ly one would like for this number to be small. Often stainless steel is

employed for systems operating at high temperatures and containing cor

rosive mediums because of its strength and corrosion resistant qualities.

Unfortunately the factor <*. E for stainless steel is about 2 to 3 times
k

that for carbon steel which means 2 to 3 times the thermal stress. The
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use of a thin stainless cladding on carbon steel may be the solution

to this problem. However, this suggests another problem in that a

thermal stress analysis similar to the one presented here would be de

sirable for an integrally clad vessel.

Throughout this discussion it has been assumed that the thermal

conductivity, the modulus of elasticity, and the coefficient of expan

sion do not vary with temperature. The stress calculations have been

assumed to remain in the elastic region even though they may not. The

thermal stress may be relieved by creep. The amount of relief obtained

or expected is a matter of conjecture. In the absence of quantitative

results it may be desirable to exclude any benefits obtained from the

relief of the thermal stresses. It would be helpful to have data to

guide one's thinking along these lines.
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APPENDIX A

RADIATION CURRENT FOR A SPHERICAL SOURCE WITH SELF-ABSORPTION

The gamma current at point Q, Figure 8, is given as I 7/cm sec.

Let S(r) be the source strength per unit volume of material which has

an absorption coefficient, u, dependent upon the gamma energy. One may

write the current normal to the surface at 0. from an element of volume as

,-up

dIQ - S(r) dV f-^-z sin ^ (50)

where

IQ = gamma current at Q, 7/cm2 sec.

S(r) = source strength, 7/ar sec.

dV • element of volume, cor.

e-W> m linear attenuation factor for the material.

-—„ a spherical correction factor.
kxp*

8in <1> • normal component of the radiation at Q.

For spherical coordinates, the element of volume is given as

dV - r2 sin 6 dr d0 dcu (51)

Substituting and Integrating with respect to cu , the expression for the

total current is obtained as

I g*j e_W) sin 9sin "Jy de dr (52)
r-0 e-o

86
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FIGURE 8

DIAGRAM FOR PRIMARY GAMMA CURRENT FOR

A SPHERICAL SHELL WITH SELF-ABSORPTION
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By applying the law of cosines, it is seen from the figure that

p =R2 +r -2Rr cos 0 (53)

which may be differentiated to give

pdp
= r sin 0 dO

R

From the figure it is also seen that

sin f = R - r cosO
P

Combining equations(53) and (55) gives

22o
sin <j> = P + R - t

2 Rp

(5k)

(55)

(56)

Combining equations (52), (5U), and (56), and changing the limits, gives

-2 2 ^p H>p
- r e *^ + e rK

fr=R „/ \ rP=R+r r t>rS(r) JH Jl
0 J r=0 lii2 J p-R-r L

dpdr (57)

Changing the variable p to /* p and rewriting, equation (57) becomes

r=R r yuP=A(R+r)
- f E^r

J_n *>*2r=0
r ^(R2-r2)f^) dw

>P=/*.(R-r)

^/UR+r)

+pJ (e*PJ d(^p)
/rp=/t(R-r)

dr (58)



The integrals within the brackets may be changed to the form

¥±(t) S t
r °° -y

e *

J
dy

by writing equation (58) in the following manner

r=R

•I
rS(r)

*-*LJ-&) +p)
kRc

14>=/,u(R+r)
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(59)

+(R2 -r2)
>.oo i4)=MR+r J

j^p^R+r) r -*uP=MR-r)
dr (60)

Two of the integrals in equation (60) are of the same form as equation

(59) and may be evaluated from the information given in Appendix C.

Carrying out the integration and writing equation (60) in terms of the

F, functions, the current at Q is

I0 ,j jSklj (»»)?£(» <K-rj| - (R-r) PjfXBw)]
1[.-HT~-r) _e-/^(R+r)

'J} dr

Equation (6l) may be graphically integrated for any given source

distribution, S(r).

(61)



APPENDIX B

DERIVATION OF TEMPERATURE DISTRIBUTION

The differential equation for steady state heat conduction with

an internal heat source may be written in spherical coordinates as

5L +£ §1 =-H(r) (62)
2

dr r dr k

where

T = temperature, degree F.

r = radius, cm.

H(r) = heat source, Mev/cnrsec.

k = thermal conductivity of the material assumed independent

of temperature, Mev/cm sec F.

Letting Y = dT , dy_ = d~T and substituting
dr dr , 2

dr

H_e"m^r ' for H(r), the above equation becomes

dy_ +2y= -B_e"m(r-R) (63)
dr r -*-=:

which has as a solution

-Jl dr[r|2 dr
= e;r e* r[p* ^-y^V-i] (6k)
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Carrying out the indicated operations

dT 1

7 = 7Z = r2dr r

Further simplication gives an expression for the temperature gradient as

Hg 2 -m(r-R)-fJ r2 e dr+Cl

2 . 2e «-m(r-E) ♦ a ♦ ss/£±!ht a/s
dr mk r2 m3k I r^

The temperature as a function of the radius is obtained by integrating

equation (66) term by term. In performing the integration of equation

(66), the exponential integrals of the third and fourth terms cancel when

the third term is integrated by parts. After some manipulation, the

expression for the temperature is given as

where the constants of integration must be evaluated from the appropriate

boundary conditions.

Three sets of boundary conditions will be used to evaluate the

constants:

(65)

Case I: dT
d? = ° ' r • b

T = 0 (as a datum); r = a (68)
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The constants are found from equations (66), (67), and (68) as

C =-\ (A2 +2mb +2)e-m(b-R)

=J^f (ma +2)e-m<a-R) -(m2b2 +2mb +2)e-m(b-R))

Letting A1 .(ma +2)e"m(a'B) and B^^ =(m2b2 +2mb +2)e-m(b-R)

and C

then

^--\*i ~o,.y±±

Substituting these values into equation (67) gives the temperature for

a hollow sphere which has an exponential heat source and is perfectly

insulated on the outside surface as

T(r) = JL
m?k

At . .__._. .
(69)

h-Bl +%_ fa +2\c-m(r-R)~|

Case II; dT =0 ; r = a
dr

(70)

T = 0 (as a datum); r = b

The constants for these conditions are found from equation (66), (67),

and (70) as

hC. = --3L (m2a2 + 2ma + 2)e-m(a-R)
x iA



and

then
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H_ f(mb +2)e-m^b-R) -(m2a2 +2ma +2)e-m(a"R) >
2 tm^jj

Letting A, =(mb +2)e-m(b-R) and B2 -(m2a2 +2ma +2)e-m(a-R)

nrk

B0 and C0 =
% A2 - B2

m-2k

Substituting these values into equation (67) gives the temperature for

a hollow sphere which has an exponential heat source and is perfectly

insulated on the inside surface as

Case III:

H_

T(r) - *
m-Tc

B^ Brt /mr + 2V-_B2+ B,

T = T ; r = a
a

T = T, ; r = b
0

-m(r-R)
(71)

(72)

The constants for these conditions are found from equations (66),

(67), and (72) as

ab [<?. -V ♦ S-lfr^ f^a - by

and

a-b K-"^ + x
(m+2)e-m<a-E) -(mb . 2)e->(*-><>



Letting Ag - (ma +2)e-m(a-R) and B^ = (mb +2) e'^'^
94

then C, - —5L.
J- a-b <*a "%) +& (** Bq

- **

and -H [(a^-aTb) +5f- (A3-B3)j
Substituting these values into equation (67) gives the temperature for

a hollow sphere which has an exponential heat source and the surface

temperatures specified as Ta and T^. The temperature distribution is

given as

r

T(r) = i \ aT. (ki) ♦ «> (sh)

&[vM +B3 (Wf)- (-a).-'^j (73)

A special case of interest is when both surfaces are at the same tempera

ture. If that is true, then the temperature at any point is given by

TW -* ♦ & H -3 (hi v»,(Hi;- <—>.-<'-"'!»,



APPENDIX C

F - FUNCTIONS

Frequently in shielding calculations the so-called F-functions

appear. These functions are defined by

r oo

F It) * tn y-(n+l) e^ dy (75)
n 't

For n - 0, the function is the exponential integral which is tabulated

in the WPA Math Tables as - Ei(-x). For n > 1, the following expression,

obtained by integrating the above, integral by parts, is helpful in

evaluating the functions.

Fn^> 5n-[e_t -tFn-l^J (76)

A useful property of the functions is FQ(0) =I for n £ 1. Figures 9

and 10 give the value of FQ(t) for n «1 and Oiti 6.5 calculated

from the above expression with the aid of mathematical tables.
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APPENDIX D

SECONDARY CAPTURE GAMMA HEATING

Enlund (13) presented a solution for the heating in a slab

due to thermal neutrons being captured within the slab. Upon the

absorption of a thermal neutron, gamma rays of a particular energy

spectrum are emitted. The gammas travel some distance before they are

absorbed to produce heat at the point of absorption. A brief summary

of the derivation is given here.

Consider an infinite plane source of neutrons emitting a neutron

current, I . intp an infinite plane slab of absorber. The neutron
o, w

flux within the absorber is given as

Jo t e
<P --2£ (77)

KD

when

<D = neutron flux, neutrons/cm2 sec.

I = neutron current incident on the slab, neutrons/cm sec.

K " V5Za2tr * c*~l-
*£a = neutron absorption cross section, cm" .

2+_ = neutron transport cross section, cm" .

D = diffusion coefficient, cm.

x = distance from face of slab to point of neutron absorption, cm.
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The number of neutrons absorbed at x, Figure 11, is given as

2JP'
la -^o,-!

-Kx

KD

= I . K e
o,t

-Kx (78)

Letting N be the number of gammas of energy E^ produced per neutron

absorption, (L+ -cr) be the energy absorption coefficient for energy

E- , and/., be the linear absorption coefficient for energy E^,, the

heating is given by

^-x=oo ^p=oo

H(x) =NE7 Io^t -OJ) r

Jx=0 J p=0 Iwh2

Making the substitution w = l/cos 8, and, from the figure,

h = * -* , p = (t - x) tan 0, then e£p_ = sin0 d0 = £*_
cos a h2 cos 9 w

The boundary conditions may be stated as

and

8 = 0 ; w = + 1 ; and x = 0 / as 9 increases from

& =«/2 ; w = + oo ; and x = t J 0 to it/2

"q _ rt/2 ; w = - oo ; and x = t ] as 8 increases from

0 = « ; w = - 1 ; and x = ooJ */2 to it
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FIGURE II

DIAGRAM FOR NEUTRON CAPTURE AND SECONDARY

GAMMA ABSORPTION FOR AN INFINITE SLAB
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The expression for the heating may be written as

H(x) =HE -f~ K(H -Og) ^ +<D (.-«* .-'*-'>»*. J
X=0 ^w= + 1

/- x = oo r w

^
X = t w • - oo

The integration of (80) may be carried out and the results written as

H(x) = NEy i°r*i (Mt -<TB) F(B,ut) Mev/cm3sec

where P - K/u. The value of the function F(B,ut) is defined as

follows:

(1) K> u; B = K/u > 1

V8* e-^-x)wdwdx (80)

(81)

FCfcut) = •"*-* ( •** - Ei(-ut) + Ei(ut 0 - 1J)

6+1

+ In 6 - 1

Note that the limit of F(B,ut) = In (p + 1) as t -* 0.

(2) K = u; 6 = K/u = 1

F(B,ut) - e"*** Je*** F- Eit-ut^J + In 27 +In ut >

where In 27 = 1.2703

Note that the limit of F(B,ut) = In 2 as t -*0.

(82)

(83)
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(3) K< u ; 6 = K/u <1

F(p,ut) =e'W ie^ \- Ei(-ut)] -[-Ei(-ut [l -pj)]
1 + P i+ in rr-p J (6%)

Note that the limit of F(P,ut) = In (l + B) as t -»0.

The Ei functions are the exponential integrals as tabulated in the WPA

Mathematical Tables. A family of curves may be plotted for the function

F(P,ut) with P as the parameter and ut as the independent variable to

aid in the solution of problems. Such a family of curves appeared in the

original article. This writer has extended the range of the original

curves to greater values of at and several additional values of p. The

extended curves are given by Figure 12 for use in estimating the heating.

It should be noted that as p -*• 0, n -»oo and the heating occurs at

the point of the neutron absorption. Also asP-»oo, u-*0 and

the heating approaches ±s.u minimum value.
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APPENDIX E

ABSORPTION COEFFICIENTS

Reference (l6) gives a brief discussion of the various absorp

tion coefficients along with values of the coefficients versus energy

for several materials. The curves from the reference are reproduced

herein for completeness. The values given on the curves are for thin

absorbers, hence, the necessity for using a buildup factor is pointed

out. Figures 13 and Ik give the linear mass absorption coefficients as

a function of photon energy, while Figures 15 and 16 give the energy

absorption coefficients.
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NOMENCLATURE

A constant, neutrons/cm sec

Ax constant =(ma +2)e-m(a "R)
Ag constant =(mb +2)e"m(b 'R)
A3 A±

a inside radius of pressure retaining vessel, cm.

B2 geometrical buckling of reactor, cm"2.

B1 constant =(m2b2 +2mb +2)e-m(b "R)
B2 constant =(m2a2 +2ma +2)e"m^a "R^
B3 Ag

b outside radius of pressure retaining vessel, cm.

C-, constant of integration, degree F-cm.

C« constant of integration, degree F.

D thermal neutron diffusion coefficient, cm.

E modulus of elasticity of vessel material, psi.

v gamma energy, Mev.

F»Fn*Fi prefix designating a function.

f thermal utilization of the reactor, ^a(P^ ')
^(020)^(^235)

H(x) heat production per unit volume at any point in an infinite
slab, Mev/cm3sec.

H_ heat production per unit volume at face of slab, Mev/cnPsec

H(r) heat production per unit volume at any radius within vessel
wall, Hev/cnrseo

Hp Heat production per unit volume at Inside boundary of reactor
Mev/cm3sec.

>

i
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h distance, cm.

I radiation intensity at any point, cm-2 sec"1.

I0 incident radiation striking shield, cm"2 sec"1.

IQ,t fast neutron current entering vessel, neutrons/cm2sec.

I0,t thermal neutron current entering vessel, neutrons/cm2 sec.

K neutron coefficient = ~V 3 I& Ztr cm"1.

k thermal conductivity of vessel material, Mev/cm sec F.
(Note: 1 Btu/hr ft F = 6 x 1010 Mev/cm sec F.)

koo multiplication factor for an infinite reactor.

keff effective multiplication factor for a finite reactor.

L2 diffusion length of thermal neutrons, cm2.

L (D2O) diffusion length of thermal neutrons in heavy water, cm2.

m slope of heat production function, cm"1.

N number of gammas produced per neutron absorption.

n integer.

P power level of reactor, watts.

^i internal pressure, psi.

p probability.

E outside radius of active region of reactor, cm.
* (Note: In the absence of a thermal shield R= a.)

r radius, cm.

S(r) gamma source strength, 7/cm^ sec.

T temperature, degree F.

Ta temperature of inside surface of pressure vessel, degree F.

^ temperature of outside surface of pressure vessel, degree F.

T(r) temperature at any point within vessel wall, degree F.
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t distance, cm.

V volume of reactor active region, cnP.

w l/cos ©.

x distance from face of slab, cm.

y variable.

z variable.

a coefficient of thermal expansion of vessel material,
in/in F.

P K/u

€ fast neutron fission effect.

71 average number of fast fission neutrons produced per
absorption in fuel.

9 angle, radians.

\^r neutron transport mean free path, cm.

u energy dependent gamma absorption coefficient corrected
for buildup, cm-1.

H energy dependent gamma total absorption coefficient, cm"1.

(u^-Cg-) energy dependent gamma energy absorption coefficient, cm" .

l) Polsson's tfatio.

p distance, cm.

£ macroscopic neutron absorption cruaa section, cm.

Z macroscopic neutron capture cross section, cm"1.

Z"f macroscopic neutron fission cross section, cm"1.

^(1^35) microscopic neutron absorption cross section, barns.

0^(U^35) microscopic neutron capture cross section, barns.

0£(Tj235) microscopic neutron fission cross section, barns.



0^ allowable stress-, psi.

q~ total radial stress at any point, psi.

<TTj p radial pressure stress at any point, psi.

<7^. th radial thermal stress at any point, psi.

o~t total tangential stress at any point, psi.

°~tj p tangential pressure stress at any point, psi.

CTt th tangential thermal stress at any point, psi.

0"t,th max maximum tangential thermal stress, psi.

t Fermi age of fast neutrons, cm2,

ll number of fast neutrons produced per fission.

<p neutron flux, neutrons/cm^sec.

(p average thermal neutron flux, neutrons/cm2sec.

ty angle, radians.

to) angle, radians.
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