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INTRODUCTION

This paper is concerned with linear ordinary differentisl systems
of the nth order. It is wéll known [li] . that such systems may be
replaced by an equivalent system of n first order linear differsntial
eqaations“and?ﬁhatsystems of the latter type may be studied by investi-

gating a matrix differential equation [l] of the form
(1) Y* + PY = @Q

where P 1is a square matrix with n rows and Y' , ¥ , and Q have
n rows but only one column. Therefore the paper uses the noiation of
métrix algebra and calculus.

The peper assumes familiarity with such operations as addition,
multiplication, differentiation and integration as applied to matrices.
Capifal letters are used to demote matrices; small letters are used to
denote scalar quantities. If A = (aij) is a matrix, then aij is the
element in its ith row and jth column. AT = (aji) is the transpose
matrix of A and is obtained by interchanging rows and columns of A .
E = (eij) , where e, =1 (eij =0 if 1 # 3) is the identity mabrix.
The zero matrix (with all its elements equal to zero) is denoted by the

ordinary zero symbol. If A is a square matrix with n rows, then |A|

lﬂumerals in square brackets refer to works listed in the bibli-
ography at the end of the paper. ‘
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denotes the nth ordered determinant of A . If ‘Al # 0 , then the
unique inverse matrix AI exist and satisfies A AI = AI A=%.
A matrix is said to be continumous, integrable, differemtialable, etc.

when all its elements have the indicated properties. If ¥(x) = (yij)

a yi,j)
ax

is a matrix, then

Yi(x) =
and
b b
[ 1(x)ax = f ¥y Ox
a a

The symbols Y(X } and Y‘(x denote, respectively, the matrices

7 Lim ¥ (%f:> and (ig \ Vi3 (x) \ . Since most of the matrices
x—ax

used in this paper are square with n rows, hereafter, if the term
matrix is used without any reference to the number of rows or number
of columns, then the matrix is square with n vrows.

Boundary value problems cousisting of equation (1) and a set of
boundary conditions involving the vaiues of the sqlution ¥ a%t one or
more points have been considered extensively (for‘references to this
work see Reid [?2] and Whyburn [5%] }. In these investigations, there
are several implicit definitions of the term solution. In general; a

solution Y(x) is required to be a continvous matrix having a certain
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number of continuous derivatives and to satisfy equation (1) everywhere
on some fundemental interval |a, b] o | This sense of the term solution
is used with the Riemann theory of integration and, therefore, may be
called an R-solution. |

Investigations of eguation (1) and bourdary conditions at k-points
of the fundamental interval led scme authors (see for example Reid [21]
and Mansfield [15] } to comsider as solutions matrices which have all of
the properties of the R-solution at esach point of the interval except
possibly at the k points involved in the boundary conditions. Thus
these solutions and their derivatives might have discontinuities of the
Pirst kinde at each of the k points.

Another understanding of *the term solution (sse for example
Whyburn [319 and [55] } requires only that a solution ¥(x) be an

3

absolutely continuous” matrix and satisfy the differential equation (1)

almost everywhere on the interval [a, 'b] . %Hhis sense of the term
solution is used with the Lebesgue theory of integration and, therefore

may be referred to as a L-sclution,jor an absolutely contimuous solution.

2A matrix Y(x) is said to have a discontinuity of the first
kind, or an ordinary discontipuity, at the point Xcr if the limits

+ =y £ + i
Y(xa} and Y(xa) exist and ’:f(xa) # ‘31(3:&) .

A function £{x) is said to be sbsolutely comtinuocus on [a, D)
if f(x) is defined on |a, b] and has the property that for each
positive number € , there exist a positive number & such that if
Xy £z < xjf_ (i =1,2,...) is any finite or infinite collection of non

overlapping subintervals -of |a, b] such that X lxi-x£| < & then
Zlax) - £x)] < €.




Obviously, the last two meanings of the term solution are
generalizations of the first. In this paper the absolute continuity
condition of the L-solution is relaxed in that the solutions may have
discontinuities of the first kind and any point of a closed subset l—'
of measure zero on [a, b]' .

Definition 1. The statement that the matrix Y(x) is a

F—solution on [a, b] of equation (1) means

(a) [ is a closed subset of measure zero of [a,, b] ,

(b) ¥(x) is absolutely continuous on each componenth of

(Ea,b] -F>=cP,

(e) the limits Y(x;) and Y(xé) exist for each x on

[a, b:l , and

(d) ¥(x) satisfies equation (1) almost everyvhere on [a, 't_;].

The points of " shall be called interfaces. If it is assumed that for
each point Xy in l_' there is given & non-singular matrix Béx and

that the | ~-solution Y(x) must satisfy the relation

+ o :
(2) =) = B ¥x) , x_ in |,
for each point x  in [ +then conditions (2) are called interface

conditions. A problem composed of equation (1) and conditions (2)

given at a suitable set ,_1 will be called an interface problem.

hBy a component of a point:sét {) one wnderstands a maximal
connected subset of .



In Chapter I, [ is assumed to be Finite and it is shown in
Section 3 that for the interface problem (l):and (2) there exist an

associated matrix equation of the seme type as equation (1},

(3) Wt o+ PW

R
£

These systems are associated in the sense that there is a non-singular
transformation D(x) such thaet if W(x) is an L-solution of the
associated equation then Y(x) = D(x) W{x) is a [ -solution of (1)
satisfying conditions (2) and conversely if Y(x) is a ['-solution of
(1) satisfying cénditions (2) then there is an L-solution W(xz) of (3)
such that Y(x) = D(x) W(x) .

This association of the two systems is exploited to establish
the existence and unigueness of rﬁ—solutions and the form of the general
rj-solution, System {1) and (2) is studied (see Section L, Chapter I)

in conjunction with boundary conditions of the form
(&) Aya) + BY(® = ¢ .
The adjoint system is introduced and the Greex's matrix for systenm

(1), (2) and (&) is found and its properties discussed.

In Chapter II, the homogeneous system depending on a parameter

(5) ¥ + PY = ARY
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(6) Y(x;) - Ba"ff(x;) x din [
(7) A¥(a) + BY() = 0

is studied. The definitions of self-azdjoint and definitely self-adjoint
as presented by Bliss [2] and [3] are extended to systems with
interface conditions (see Section 1, Chapter II).

Some example‘s {Section 6, Chapter I and Section 3, Chapter II)
are considered which are stabted as chemical diffusion problems but
which also have analogues in heat problems (see for exampl=s [5] s
[6] 5 [7] 5 [12] or [27‘]) 5 in bioclogieal diffusion <éee for axample
[18] ; [19] 5 [20] or [36]> in reactor physics (see [ 8}) and even
in acoustical vibrations | see I:l"?] for example) . The first exampls
is a nonhomogeneous problem of the second order which in i"eaa@“bor
language would be a one-group, n-region reactor problem with contact
resistance type interfaces and nernhomogeneous boundary conditions.

The second example is a homogeneous problem depending on a
parameter which in reactor langusge is a two-group n-region reactor
problem with contact resistance type interfaces. Conditions (see
Section 4, Chapter II) under which this problem is self-adjoint Bod.
definitely self-adjoint are also found. |

In Chapter III, certain extensions of the results of Chapter I

and II are considered where [—7 is an infinite set,
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CHAPTER I

DIFFERENTIAL SYSTEMS WITH INTERFACE

CONDITIONS AT k POINTS

Section 1. Notation and Definitions

The system of Tirst order linear differential equations

n
L4 3 — e _. 03
yi + . Pij(x) yj - q_i L & 4y ee0y 1D
J=1
may be written in matrix form as
1.1 I{(Y) = ¥ + P(x}Y = @(x)

where P(x) = (Pij) is a square matrix of n rows and L(Y) , ¥ , ¥°
and Q(x) are matrices with n rows but only one column. Single
linear equations of order n and systems of higher order lianesar
eqguations may be repls.ced by matrix equations similar to l.1. To
illustrate how this replacement may be effected consider the single
linear differential equation

1.2 y(n} +oa 4 y(n”l) toeee B ¥ o+ ay ¥ = a -

Let ‘yl =¥, = y:.:’l > 2 £ 1 £ n. Then a matrix equation

equivalent to 1.2 is



1.3

- S

N

s a0

P

e

2 h ooa

~N

As a second illustrations consider a system of two second order differ-

ential equations

1.h

01 %

1T F

Zl + allzl + a1222 =

zZ =

Let v, =2, 5 Y5 =27 » Vs = 2p and Yy, =z} then a matrix equation

equivalent to 1.4 is
Y

105

L

.

y

S

Lo

%
L

Clearly k second order equations could be replaced by a matrix equation

(each matrix having 2k rows) in a similar menner.

One may regard L(Y¥) , ¥ , ¥°

with 2ll columns of Q salike.

and § of 1.1 as square matrices

In this case the columns of ¥ each
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satisfy the same system of equati@ns‘ and may or may not be alike. In

the present paper, unless otherwise spscified, the matrices in equation
1.6 L(¥) = ¥' + P(x)Y = Q(x)

are understood to be square matrices with n rows. It is clear that
the above mentioned special case occurs when the columns of @Q(x) are
alike.

Let Y(x;) and ¥(x;) denote the right and left limits
respectively of the matrix ¥(x) at x = %; o let [—' denote a set

of k points, x on the real number interval |a, ‘b] such that

i’
a<xl< x2< o“<Xk<bandlet cr'denote ([aﬂ"kﬂ -
P)“ Consider a differential system composed of equation 1.6 and a

set of conditions, hersafter referred to as interface conditionms,

which are to be satisfied at the points of '—' of the form

£ % - 7 + - 7 hd - T
1.7 I,{¥) = mxi) By Y’Qxi) = 0 i=1, cooy k

where each Bi is a non-singular matrix of constants.

 Definition 2. The statement that the n x n matrix U{x) , a

[ -solution of 1.6, is a non-singular | “solution mesns that the

determinant I U(x)l is not zero on c [ and that the determinants

}U(x;')‘ and 'U(x;;)' are not zero for any x, 1in .



10

Definition 3. The statement that a | -solution ¥(x) has the

character of D(x) means Y(x) can be expressed as ¥(x) = D(x) /f(x)
where [Y}(x) is absolutely continuous on [a, b] and D{x) is a non-

singulaxr Pmsolu‘tion of D'+ 0D =0, i.e., D' =0 .

Section 2. A Fundamental Theorem
Theorem l. A necessary and sufficient condition that the system

1.6 have & | -solution with the character of D{x) 1is that the system
2.1 f(w) = W' + DI(X) PD(x} W = DI@@} Q=)

have an sbsolutely continucus solution W , vwhere the matrices P and
Q are the same as those in equation 1.6 7 =

Proof. Suppose that system 2.1 has an absolutely continuous
solution W . Then the matrix equation 2.1 holds almost everywhere on
l:a, "b:] o But D is defined except at a finite set of points and is

non-singular. Therefore
DW® + POW = Q(x)

nolds almost everywhere on [a, b:, . Since D' = 0 by defimition, the

relation

(ow)* + P(DW) = Q(x)
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holds almost everywhere on |a, b] » Clearly then Y = DW satisfies
the definition of a [ -solution and has the character of D .

Suppose system 1.6 has s r' -golubion with the character of D .
Then by definition, Y can be expressed as Y = D% where /}2’ is
absolutely lcontinucms on [ay ‘b:l o Sin&e ¥ , by assumption, is a

Pwsolution, the relation
(09) + P(R) = q(x)

holds almost everywhere on [ag b] . 8inge D' = 0 almost everyvwhers

on [a,b]
p(?)* + (¥ = qlx)

holds and since IDI £ 0

«;‘w})“ + (I}IPD)/Y\ = DEQ

holds slmost everywhere on lia, 'b] .« (learly then % satisfies the
definition of an gbsolutely conbinuous solution of 2.1. ‘

Note that a | -solution of 1.6 with the character of D is zero

almost everywhere on [a, b] if and only if /f is identically zeroc on

(}, 'b] hence the meapping of solutions of 2.1 onto Pwsolut_iens of 1.6 is

one to one. As a result, the existence and uniéueness of r' -golution
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of 1.6 with the character of D sare established by the existence and

uniqueness of the sclutions of system 2.1.

-

Section 3 The General Solubtion

Géﬁsi&er now ‘the interface problem 1.6 and 1.7 where P(x) and

Q(x) of 1.6 are Lebesgue integrable on [éy b} - Let D, =E and
Dy, =B; Dy 5 1 £ k , and then let
Dix) = D[i] L =1, sooy, K+ 1

where [i] denotes the smallest 1 such that x ( X, 5 % in [ﬂ s

g

i < k;and X =P |

Clearly if ¥(x) is a | -solution of 1.6 and has the character
of D(x) , ¥(x) satisfies 1.6 and 1.7, and is, therefore, a solution
t0o this interface problem.

Since P(x) and Q(x) are Lebesgue integrable, it is easily seen
that BI(x) P(x) D(x) and pt Q(x) are also Lebesgue integrable, and
the existence’theorem given by Whyburn [359 The XIJ gives an absolutely
continuous solution, W , of

3,1 i(w) = W' + DUPW = D'Q

such that

3.2 Wle) = C
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where a ¢ < b and C is any constamt matrix. If ¢ is not a
point of | ‘then system 1.6 and 1.7 will have a | -solution Y¥(x)

sueh that
- I
3.3 Y(e) = D {e)C .

If ¢ is a point Xi € r then system 1.6 and 1.7 will have a

[ -solution such that

Y(xg)

L
o
L
e
]
)
S
Q

i
o)
Q

Y(x;)

In particular, if Q(x) is identically zeroc on [a}, b] then the

existence theorem gives an absolitely conbtinuous solwution W(x) of

5.4 £ )

]
o)

3.5 W(e)

i
=
[

furthermore, by well known theorems” | W (x)| £0 on [a, b] , and

every absolutely continuous solution, W , of 3.k can be:expressed as

5See Whyburn [55] for a discussion and development of the theory

of absolutely continuous solutions.
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3.6 Wwix) = ¥ix)c .

It also follows from these theorems that every absolutely continuous

solution, W , of 3.1 can be expressed as
5.7 Wx) = Mx)c + W(x)

where Wp is a particular solution of 3.1 . It follows from Theorem 1

that every rﬂ-sclution Y(x) of 1.6 and 1.7 can be expressed as
3.8 ¥(x) = D(x) (W{x)0+wp) .

Then 3.8 is the gemeral | ' -solution of 1.6, 1.7.

Section %, Nonhomogeneous Systems end Green's Matrix

Congider, now, a boundary value problem composed of

b1 L{Y) = ¥' + PY = Q

i

P +4 v
b2 (¥} = ¥(x) - By Y(x;) = 0

Ax(a) + BY(®) = C .

4.3 B(Y)



15
Boundary conditions 4.3 are of the two point type and comsist of n
ccndiﬁi@ns on the values of the elements of the columns of Y(x} at the
end pqints of the interval [ﬁ; b] o
Theorem 2. A necessary and sufficient condition that the

homogeneous system

bok | Y) = ¥ + PY = 0O
4,5 I,(Y) = ¥{x;) - B, Y(x;) = 0
L6 HY) = AY(a) + BY¥Db) = 0

have a non-identically vanishing rjmsolutiong is that (H(%%)‘ = 0
where }Lz plx) Wix) . |

Proof. Simce Q dis identically zero Wp in 3.8 can be chosen
as the zero matrix. It then follows that every | -solution of 4.k and

k.5 is of the form
b7 Yz} = b{x) Wix)c = ‘%%{x) ¢ .

Substituting into 4.6 gives

4.8 H( %c) = A%(a}c + B?(b)q = H(?—)C =0 .



e e

But @ necessary and sufficient condition that equation 4.8 have

i
<

a solution for € which is not the zero matrix is that |H(%)|

Theorem 3. If the homogeneous system 4.4, 4.5, and 4.6 is

incompatible, i.e. has only the identically vanishing solution ¥ = ¢,

then the Green's matrix G(x, t) for system 4.1, 4.2, and 4.3 is

a(x, t) = D(x) -H(x, t) DY(t)

where yg(x, t) 1is the Green's matrix for the system

I
=
1]

k.9 W' + DPDW = D Q

S
z
]

k.10 Aw(ay + Bup) = c
where (A = Ab(a) and @= BD(b) .
Proof. Whyburn [55 s P 57:\ gives the form of the Green's

matrix for system 4.9 and 4.10 as

—

9 (x) MY 2 (2) H ) for t < x
b1 »ﬂ(x, t) =

—%x)aﬁl(%@%(a)wl(t) for t > x

N

and a selution of system 4.9 and 4.10 is
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. b
b2 W) = W@aEn or @i atat
a
By Theorem 1 and subsfitutions QLL(W) = H(DW) and Z%(x) =d(x) W (x) ,

b
T(x) = D(x) W(x) = %) Hl(y/)c + D(x) [ HUx,t) DI(t) Q(t)at
a

or
I b
k.13 = , 1) Q(t)at
Y(x) %(X) H (%)C + £ a(x, t) Q(t)
where
.1 a(x, t) = D(x) & (x, t) D (%)

By substituting %(x) = D(x) 7/ (x) ,%1(2;/) = H(%) , /4 = ap(a) eand
B = BD(b) in L4.11 one has

[ I I |
?(X)H (?) A%(a)% (t) t < x

6(x, t) = J

-H(x) ' (%) BYO)Y L(t) t > x .
porprpy

a(x, t) is the Green's matrix for | -solutions of L.k, 4.5 and

4.6. Some of its properties are
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(£} o(x, t) is continuous in (x, t) throughout the rectangle

a £ x » t L b except for finite discontinuities at the lines
X=X, t = xs and x =t . The discontinuity on the line x =1t 1is

given by
G(x, x-) -~ 6(x, ) = E if x ¢ X, .

(i) For fixed t ,t =%t ,on e[ ' ; L [é(é, %i] = 0
almost everywhere on l:a, b] .

(iii) For fixed t , t =T , on c|  G(x, T) satisfies the
interface conditions Ii(Y) =0 .

(iv) For fixed t ,t =% , on ¢ [ ,H[G(x, -'E)] = 0.

(v) @&(x, t) is unique.
it l Al and |B| are both not zero one can then define the pair of

homogeneous systems 4.4, 4.5 and 4.6 and

k.15 M(z) = Z2°' -ZP = O

. + gro=y ml

4.16 Fi(z) = Z(xi) - Z(Xi) Bj = 0
b7 J(&) = 2Z(a) Al . Z(b) Bl = o

to be adjoint, either being the adjoint of the other.

In this case one has the further properties for G(x, t)
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(vi) For fixed x ,x =2 on el ' , M [G(SE, t)] = 0 almost
everywhere on [g, b] 3

(vii) For fixed x , x=x,0n e |  , @¢(x, t) satisfies

]

the interface conditions Fi(Z) 0.

(viii) For fixed x , x=%x ,on cl  ,J [G(E, %,)] =0 .

(ix) Gz, t) = -G(t, x) where G(x, t) is the Green's matrix
for the adjoint system 4.15, 4.16 and 4.17.

Properties (i)-{ix) may be established by an examination of the
properties of the Green'’s matrix /éé(xg t) for the associated homogeneous

, T
system and the matrices D(x) and D (x) and making use of 4.1k,

Section 5. A Formula for Non-Singular Solutions

Consider again the homogeneous, interface problem
5.1 .L(:v:) = Y' + PY = O
5,2 LM = =) - B, ¥(x)) x, in (.
In Section 3, it‘was shown that the general [ -solution was of the form
¥(x) = D(x) Wix)c

¢ an arbitrary »n xz n nmatrix, and‘&/(x) a non-singular solution of

Loy = w o+ plw) P D W = o0

\Ji
B
\N
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and
5.4 | %) = B .

Let a = X, and b = X1 The fundamental existence theorem
for absolutely continuous solution gives that on each interval X1 <

x £ x i=1, ..., k+1 , there exist a non-singular solution Ui (,X)

i )
. I

of 5.1, such that Ui(xi_l) =E . Let W; =Dj Ui(x) D; , then on the

same interval, W, is a solution of 5.3, and Wi(xi_l) = E . Therefore,

a non-singular absolutely continuous solution on [a, b] of 5.3 is
5.5 H(x) =W =) Wy g (g Wy o0z o) ven W)

where [1} is the smallest i such that x, > x , and W(xj) =

W(x;) =W(x3) ) Xy in [ .

Note that
H(x)) = Wy () Wolx,) vee W (xy)
ﬂ(xg) = wj(xj) Wia(xgq)eee Wylx)
and since Wj+l(xj) =B, E(XS) =W (x;) . .
Let 7%— demote A_B,_ ... A, B, A B, and T denote A, B

k
A, By ..o Ak Bk . Then 5.4 can be written as
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1
0 - pl I,
W(x) = B[ﬁt}m(x) Dy TT7 Dj LJ.(XJ.) Dj

i-1
or since D DI =B 5.5 can be expressed a
ST RS I > ®
, I 7%/
.6 W(x) = D Uprn(x B, U.(x,
5 _() [l] f___l]() o1 J J( J)

and
Wla) = E .

Clearly 5.6 satisfies the definition of i&/(x) in the formuls (3.8)
for the general [ﬂ-solution. Therefore every fﬁ-solution of 5.1, snd

5.2 is of the form
I(x) = D(x) W(x)cC
and

1
5.7 7(@ = D(x) W(x) = Uy (x) TT By U(x,)

i-1

is a non-singular rj-solution of 5.1 and 5.2, also 2%(&) =E . Clearly

the fﬁ-solutions of 5.1 and 5.2 then have the form

5.8 Y(x) = 2L(X)C
/)
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where C is a cbnsta,nt matrix. In the example which follows this form
of the general P-solution‘ will be employed and € most often will be
a 2 X 2 matrix whose columns are all alike, which can be written as a
column vector, the ith component being the common number which appears

in the ij:_@ row of each column of € .

Section 6. An Example

Consider a n region diffusion problem for a spherically symmetric
geometry, in particular, a central sphere and n - 2 concentric shells
in an infinite medium. The diffusion equation for steady state solutions

is
2
6.1 D(r) v o + Kr)e = O s

where D(r) and K(r) are istep functions. In the ith region, D(r) =
Di > the diffusion coefficient of the material in ﬁhe ith region, and
K(r) o = K, ¢ , the rate of production of the diffusing substance in
the ith region (Ki < 0 indicates the diffusing substance is being
consumed). Asswme (i) all D, > 0 and K1 =03 (i1) (1) o(r)

L
(iii) at the juncture of two

e

is bounded, (2) Lim ofr) = C,
r——>eo

. +
regions, r =71, , (1) h, |:q>(ri)

o(x]) | = D,V ex]) , (2) D

i+l \%

cp(r;:) =D, ¥ cp(r;) s (hi is the perineability of the membrane at the
ith interface).

\V/ 2q> for a sphere is o"(r) + —i— @'(r) wusing this and that
D(r) > O one has that 6.1 can be written as
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" 2 K(r)
6.2 @ + -i.- (P' ——(—T (p = O -

In order to employ the results of Sections 1-5, equation 6.2 is replaced

by
| 0 -1
6.3 LY)= Y' + PY = Y' 4+ Y' =0
K(r) 2
Dir r

< > <q)(r) >
where Y .
o'(r)

Boundary conditions ii(1l) and (2) are replaced by

(1) Y(0) is bounded

. CO
(2) Lim Y(r) = < >
r —y oo 0

and the interface conditions (iii}(1l) and (2) are replaced by

l
E"
6.5 I. (Y) Y(r ) <i: 5 \j> Y(r ) = Y(r;) - By Y(r;) =

It was shown in Section 5 under the assumptions that Q(r)= 0 and that

6.k

P(r) was Lebesgue integrable on [a, b:l there exist a non-singular

|7 -solution of 6.3 and 6.5 of the form
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1
6.6 U = U r B, U.(r.)
(x) = Upyyle) TT B, 0,
v where Uj(r) is a non-singular solution of 6.3 on the Jth interval

r, r r, such that U_.{r, =FK . It was also shoyn that
J-l< < J J( J-l) ®

every [ -solution, Y(x) , of 6.3 and 6.5 was of the form

¥(r) = u(r)c H

¢ =a constant matrix. For vector solutions C has all its columns
c

alike and hence no confusion will arise if one understands by <:;£>

G G ¢
the matrix a a . In this example, however, P(r) is

2 2

unbounded at the origin and is not Lebesgue integrable on any interval
which has zero as a limit point. Phis difficulty is circumvented by

modifying 6.6 in choosing Ui(r) differently. Choose

~
(F;in ai r cos ai r
a’l r r
. ‘ if @ £0
sin r
«———fﬁg—— "cos r,l
N %
r
_/
6.7 Ul(r) =<4 N~
1 L |
T
if o, =0
L r

|

- where ai = . Now to satisfy the boundery conditions 6.4 (1) gives

D
that € wmust have the form

-t
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Cl\
C = »
¢

where C; = o(0) . To satisfy condition 6.3 (2) one has that

. 1 > Cy o

where CO is the concentration in the outside, or infinite, region.

Since Un(r) is the only thing that is changing as r increases, one has

L) (e ()2 (5)
0 0 ;’I By Uy(r,) 0 = \o /°
1

T

Letting T = | | Bj Uj(rj) , one clearly has

cl>
(l: -rn-l) (T) o = CO

l
n-1
Cl
which always has a solution if (1, -rn_l)T is not orthogonal to o P
Here, one should note that if j # 1 , Uj(r,'ag) for this

example is



608 Uj(r,aj )=
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rj-laj cos aj(r—rj_l)+§1n aj(r-rj_l) ry, sin Gﬁ(r°rj-l)
a. r . T
dJ aj
T-1, cos q,(r-r. ' cos a.(r-r, ,)
a-l> J( J"l) - » J( 31!
r r J=-1 r
sin e, (r-r. )
1 . J J-1 ]
(rj-l ab + ajr) sin aj(r rj_l) GE =

—

As a function of a, alone U(r, 05) is continuous at a; =0 .

Further, each element of U(r, aj) is an even funetion of aj which is

2
real valued if oy is real. If ozj = 0 then Uj(r, czj) = Uj(r, 0) and

6.9

- , hj

rj—l

Uj(r, O) = 2 °

— -/
Thus the original problem is reduced to grinding out the n-l

matrices Uj(rj) » 3=1,2, «v., n-1 and the n-1 matrices Bj and

multiplying them together in the order specified in (6.6). Then, Cy

is determined so that the inner product

6.10

C
1
(l: "rn) T <o> = CO P

where C, = 9(0) and Cy = p(==) .

)



CHAPTER II

THE HOMOGENEOUS INTERFACE PROBLEM DEPENDING

UPON A PARAMETER

Section 1. B8elf-Adjoint and Definitely Self-Adjoint Systems

Assume that [ is a finite set of points X, such that on

interval [a, b] , a < Xl < %

D e < X < b , and consider the

interface problem

1.1 L(Y) = Y' + PY = MRY ,

_ . _
1.2 Ii(Y) = Y(Xi) - By Y(xi) = 0 x; in P
1.3 HY) = AY(a) + BY(Db) = 0 ,

where XA 1is a complex parameter.

Definition 4. The values of A for which the system 1.1, 1.2

~and 1.3 has a rj-solution, which is not identically zero, are said to

be characteristic values of A for system 1.1, 1.2 and 1.3.

Let D(x) be defined as in Chapter I, Section 3 and let (F =
DI(X) PD(x) , %X = DI(X) RD(x) , /L = AD(a) and - B D(b) .
Theorem 4. The characteristic values of system 1.1, 1.2 and 1.3

are the same as the characteristic values for absolutely continuous
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solutions of the system

1.4 = (w) W' + W = a7

Au(a) + Zéyw(b)

gzgggo For each value of A , Theorem 1 gives that a necessary
and sufficient condition that 1.1, 1.2 and 1.3 have a [_'usolution is
that system 1.4 and 1.5 have an absolutely continuous solution.

Systems of the fcrm 1.k and 1.5 have been investigated by a
number of writers <see Reid [23J> and many interesting results are
readily available for the interface problem 1.1, 1.2 and 1.3 by way of
the transformation D{x) . One of the most interesting of these results

is the idea of definitely self-adjoint systems as presenbted by Bliss

2] et [3] .

Definition 5. A system 1.4 and 1.5 is said to be self-adjoint

in the sense of Bliss if there exist a non-singular ebsolutely continuous

matrix oﬁti‘such that
1.6 | X -eTx - X 0
1.7 HJHR+#T Y = 0

1.8 AxHat = Bre Bt



e gy g — - —

e

29
This is not the definition given by Bliss but is equivalent
since Bliss [2} showed that the conditions 1.6, 1.7 and 1.8 are
necessary and sufficient conditions that system 1.4 and 1.5 be self-
adjoint under the definition he gave.

Definition 6. System 1.4t and 1.5 is said to be definitely

self-adjoint in the sense of Bliss if the system is self-adjoint and

satisfies
(1) a;%/7f?is symmetric,
(2) gT,%(ﬁfg is positive semi-definite for real vectors ¢ ,
(3) W(x)= 0 is the only solution of L(W) = 0 which
satisfies AL(W) = 0 and AW =0 .
(Hereafter when the terms self-adjoint and definitely self-adjoint are
used it will be in the sense of Bliss as given in the above definitions.)

Definition 7. System 1.1, 1.2 and 1.3 is said to be self-adjoint

if the associated system 1.4 and 1.5 is self-adjoint.

Definition 8. System 1.1, 1.2 and 1.3 is said to be definitely

self-adjoint if the associated system 1.4 and 1.5 is definitely self-

adjoint.
Theorem 5. Necessary and sufficient conditioms that system 1.1,
1.2 and 1.3 be self-adjoint is that there exist a non-singular rj-solution

of

1.9 K' - PK -~ KP = O
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T + -
1.10 By K(x;) B; - K(xi) = 0
satisfying the further properties

1.11 KR + RK 0

1.12 AKN(a) AT = BKY(b) BT

The proof of this theorem consists of showing that if <Q%f exist
satisfying 1.6, 1.7 and 1.8, then X = (DT)IJg'DI satisfies 1.9, 1.10,
1.11 and 1.12. Furthermore if K exist satisfying 1.9, 1.10, 1.1l and

Txp satisfies 1.6, 1.7 and 1.8 and L is

1.12 then ,ﬁj/ =D
absolutely continuocus. -

Theorem 6. Necessary and sufficient conditions that system 1.1,
1.2 and 1.3 be definitely self-adjoint are that X be a non-singular
rj«solution of 1.9-1.12 and K satisfies the following properties:

(1)* KR is symmetrie,

(2)* gT KRt is positive semi-definite, and

(3)' Y(x)=0 is the only | '-solution of L(Y) = O
satisfying Ii(Y) =0, HY) =0, and RY =0 .

Proof. If 73f’ﬁ?is symmetric, substituting y%f = DTKB and
gﬁf = DIBD one has

DTKD DIBB = DT RT(DT)I DT KT D ,
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which clearly gives

[k - €| D =0

=

or gince D is non-singular

Therefore, KR is symmetric.
1t X K is positive semi-definite, then it follows that
FT(/%/ﬂi F 1is positive semi-definite if F is a non-singular metrix.

Letting F = DI one has that

(053" % 5% p o' mD D*

&

and hence KR 1is semi-definite.

Suppose condition 3 is satisfied, then by Theorem 1 one has that
¥(x)= 0 4is the only | '-solution of L{¥) =0 , 1,(¥) =0 and H(Y)
= 0 . It therefore remains only to show that RY = O .implies
Aw(x) = 0 . Multiplying by pt gives DERY = 0 , but there exist
a Lesolution of -7 (W) = O such that Y = DW . Therefore, 70V =
DI RBW =0 .

The proof of the necessity is just as obvious.
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In order to indicate the nature of the conditions 1.9-1.12 and
(1)?={3)° consider the set j of all matrices Y which are absolutely
continuous on each component of ¢ ]_T .
Statement 1. If K is a non-singular Pusolution of 1.9, then

for all ¥ in j the La Grange Identity

7 and Y

>
1.13 (1) KY, + KLY, = (f KY)

holds almost everywhers on [ay 'b] o

Proof.
' T il T _T
1.1k L(Yl) = ¥ + Y P
. ¥
1.15 L(YE) = ) + PY, .

on the right apd 1.15 by YTK on the left and

multiply 1.14% by K¥, 1

2
add. Then one has

T T _ T T, T T s
LH(Y,) Kf, + ¥y KL(YQ)‘-.YiVIKXé + T(PK + KPYL, + gixxé .

Since K' = PTK + KP almost everywhere on [a,, b:l one has that

i T B T _ T .
L (Yl)KYé + ¥ KLY, = Y; KY, + YiK“Yé + Y KY; = (YigXé) .
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Statement 2. If K satisfies 1.9 and 1.10, then for all Yl
and Y2 in j which satisfy the interface conditions 1.2, the

Green's Formula

t
t :
1.16 H(s, ) = [[L(y) Ky, + sz L(Yg):l dx = Y? KY,,
B 8

holds for all s and t such that a < s, t £ b .

Proof. Since Y;l and Y2 satisfy the interface conditions 1.2

at a point x, of [, onme has

Yf(vx;f_‘)x(x;') T,(x) {X?(x;) Bﬂ K(x}) [Btg YE(XE)J

A6q) | o] k) 2, | %0

But since K satisfies 1.10, one has that K(x;) = Bg_? K(x;) B; -

Hence
GO KOG To(x]) = ¥p(x)) K(xp) Yplxp)

for each xi in r‘ . Hence Yi KY2 can be extended to a continuous
matrix on [a, b] . But since |  is finite and Y? KY, is absolutely
continuous on each component of ¢ P s, it follows that Yi K‘.YE is an

absolutely continuous matrix. Hence by a fundamental theorem of

L-integrals <[lh] , Do 208>
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and by Statement 1, then

t

. |
i-: (LT(Yl) KL, + T, K L(YQ)) x = Y] K, )

Statement 3. If A and B are non~singular and K satisfies

1.9, 1.10, and 1.12, then for all Y, amd Y, in 7 satisfying

1.2 and 1.3
T b
1.17 X (a, b) = T, KY, = 0 .
8
Proof.
1.18 (b) K(b) T,(b) - Ti(a) K(2) L,(a)
. 1 2 1 2
but since Yl and Y2 satisfy 1.3, one has
T
T T I
Yfga) + b)) B AT =0
and
v.(a) + AYBY.(B) = O
2 v Bl = .



Substituting into 1.18 gives
T T T
Yl(b) K(b) Ya(b) - Yl(b) B- A

which gives

’ ‘ T
T(b) [k(b) - B' a7 K(a) AT B

Since K satisgfies
B K(b) B = AK{(a) AT

and A and B are non-singular

T T
BT k(b) BY = AT K(a) At

or

T I
K(b) - B A" kK{a) A" B

L]

Thus

T

#l

T
T k(a) AT BY,(b)

] Yg(b) .

0

35
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If K satisfies 1.9, 1.10, 1.11 and 1.12 and A

and B are non-singuler, then if Yl and Y2 are [ -solutions of

1.1, 1.2 and 1.3 for different X , say A, and A, respectively, then

1.20

But

and

Hence,

but KR = -RK .

1 2

b
T
{Yl, YQ} = i(YlKRYz)dx = 0 .

By Statement 3, one has that

b
£ [LT(YI) KY, + YTK;(YE)] dx = 0 .

T T T

L(YQ) = 2, RY, .

T T ° =

(¥ B K¥plax + 2, af (Y; KRY,)dx = O

Therefore
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b .
()‘2» = }"l) i (Yi KBYe)d-X = 0 .

By hypothesis A # A, and therefore,

b L
{Yl, YQ} = g (YlKRYe)dx = 0 .

Statement 5. IFf the hypothesis of Statement 4 is satisfied and
K and R satisfy the conditioms (1)', (2)' and (3)', then all of the
charascteristic values of A for the system 1.1, 1.2 and 1.3 are real.:

Proof. Since all of the conditions 1.1, 1.2, and 1.3 are
conditions on the columns of the matrix Y , for any X which is a
characteristic value of this system, one can choose a corresponding
characteristic rj-selution, Y , vwhich has all its columns alike.

Suppose A = pj + ip, 5 by £0 is a charécte_ristic value of
1.1, 1.2 and 1.3, and let Y =U + iV be & cerresponding:chargcteristic
[ -solution with its columns all alike. Then T = U - iv is als;:a a
characteristic r' ~solution of this system corresponding to X =

uy = i pye Simce 2 £ X , it follows from Statement 4 that
L e b‘ - ‘
{Y, Y} = f (YT KRY)dx = O
. . »

= fb o™ 7] wm [tﬂiv] ax
12
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b ' b :
= [ (Wrwax + [ (VKRV)dx + i ﬂj’ (v’ kRO)dx -
a & S a

b
[ (UE KRV)dx} .
a,

But since columns of U are all alike and the columns of V are all
alike, the matrix VT KRU has all its elements alike. Hence (VTKRU)T =

V'KRU end since KR is symetric by (1)

VTKRU = (VT KRB)T = UT(KI-'{)TV = UT KRV .

It follows then that

LI b
f (v xru)ax + f (V. KRV)ax = 0
a a

But KR 1is positive by (2Y and RU # 0 by (3f. Hence

b b
[ (U ku)ax > 0 amd [ (V KRV)ax > 0 .
a a

This is a contradiction and the hypothesis that X was complex is
untenable. Therefore, all the characteristic values of A for system
1.1, 1.2 and 1.3 are real.

One could easily continue in fhis direction and find other

interesting results. The work of Bliss <[2] and [51) and of Reid
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<[23] , [2&] and [25]) , for the two point self-adjoint and
definitely self-adjoint systems, clearly implies that ceorresponding

results for interface problems may be obitailned.

Section 2, The Second Order System

Consider the second order differential equation
2.1 U+ P Y+ BpY = My,

where Py p2 and r are Lebesgue integrable functions on the
interval [a, b] . Suppose that [ =i;xi} (a < xi_< Ky eee < ¥ < b)
is a finite subset of points of [a, bj} . Suppose also that interface

conditions

+ i - i o=
2.2 i=1,2, eeu, k

8 4 - i 3 i 8 =
vy \Xq) = bgl Y(Xi) + b22 y (Xi)

and boundary conditions

i
)

a, v{a) + ap ¥'(a) + By ¥(b) + By, (D)
2.3

}
o

oy ¥(a) + oy vi(a) + By Y(B) + By, ¥(B) =

are given.
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One may write a system equivalent to 2.1 in matrix notation as

2.4 Y' + PY = 2ARY
where
P = 9 R = s and Y =
T £
Py Py r 6] Yl Y2
The interface conditions 2.2 become
+ - .
2°5 Y(Xi) el Bi Y(Xi) = 0 1 = l’ ooy k
where
i i
by Ppp
Bi = . .
i i
by Pap
The boundary conditioms 2.3 become
2.6 AY(a) + BY(®) = 0
where
%4y % Piz  Pyp
A = and B =
%y Y%/ Boy  Ppo.
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The necessary and sufficient conditions of Theorem 5 must be
satisfied if this system is to be self-adjoint with the matrix X .

Let
11l 12
21 ez
Then condition 1.1l gives
kll k12 0 0 0 r kll k12 0 0
+ = L3
kEl k22 r O 0o 0 kEl k22 o O

Hence

r kl2 0 rkel rk22 0 0
+ = . o
r k22 0 0 0 0 0
This gives k22 = 0 and kzl = akl2 .- Therefore, K must have the
form
kl ka
. K - L4
wkg 0

Condition 1.9 gives that



1 1

kK 0 P\ /K K ko k3N /©
+ +

7 - - -

K0 1 p/ \k, O k, 0/ \»,

2

which gives

] —
kl = 0
v —1 L
k;2 = kl + Py ke
- ? == - e
k2 kl pl k2 .

Hence kl =0 and X must have the form
0o 1
K(x) = k(x)
=1 0
where k 1is a scalar function satisfying
¢ ! = .
2.7 k 129 k 0

Since for any 2 % 2 matrix C

1 0 1
GT <O > C = iC’( >
=1 O =1 0

42



one has that for each 1 , 1i=1,2, «o., k ,

T + gt o 1
B K(xi) B, = }Bi‘ k(xi) <i;l . .

Thus conditions 1.10 are satisfied if k is a ‘—T-SOlution of 2.7 and

interface conditions

2.8 By =D - k(=) = 0 .

1

Letting D(x) be defined as in Section 3 of Chapter I, one has

that %
[ p, dt
c.e ™ g
2"9 . k(X) = 1
5]
where c¢, is an arbitrary constant, satisfies 2.7 and 2.8 and is

1

indeed & | = -solution.

Therefore if

K(x) = K(x) ),
-1 0

where k ié given by 2.9, then the necessary and sufficient conditions
of Theorem 5 are satisfied except possibly 1.12 and no further restrictions
have been placed on the functions Py Py and r , and only the

restriction that ‘Bi’ £#0,1i=1, ..., k , on the interface conditicns.
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Clearly this result is analogous to the well known theorem <Ince [i },
Po 215) that every linear seeogd order differential eqguation can be
put in a self-sdjoint form.
Condition 1.12 gives that if in the boundary conditions 2.6 A

and B satisfy
| a|x(p) = | Ble(a)

which may be written
b
dt

Py
sl

2,10 \A‘ e

then system 2.4, 2.5 and 2.6 is self-adjoint.

The further conditions under which system 2.4k, 2.5 and 2.6 is

definitely self-adjoint are given in Theorem 6 as (1)', (2)' and (3)*

If X is given by 2.9, then,

=L JC GG

which is symmetric. Hence condition {1)° is satisfied. Condition (2)°

raguires that the quadratic form gTKRg be positive semi-definite.

kr O E 5
(815 &5) < > <1> = gk
0 0 Eo
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-2
Since g, 2 O, one has that k and r must not have different

signs on [a, b] . Examination of 2.9 reveals that since

& at
Jh |
e > 0 for a ¢ x £ b

and ¢y is arbitrary, this condition becomes the product r|D| must
not change sign on the interval [aq b] . Bince D is constant on
each component of ¢ (ﬂ s this means that r cannot change sign at
any point of ¢ fj .

Condition (3)°* is satisfied since RY = O , if and only if,
0 0
o t — t
Y has the form . But Yo = V91 and Yoo = ¥ip *
| Vo1 Yap

Hence, y21 = y22 =0 .

Thus the conditions that system 2.4, 2.5 and 2.6 be definitely
self-adjoint are that

(a) Each B, be non-singular,

(b) A and B satisfy b

f p,dt
Al = sl

and

(¢) =~ °| D\ always hasithe same sign on [é, b.] .

Section 3. An Example

Consider a n-region 2-substance diffusion problem for a

spherically symmetric geometry, in particular, & central sphere and
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n-1 concentric spherical shells. In certain regions, Sl and 82 are
being produced and consumed while in other reglons, Sl is being
cqnsumed only and 82 is being produced and consumed. The diffusion

equations for the steady state solutions are

2
D(r) "9y - K(r) o, + 2o(x) ky(r)o, = O
3.1

2

where @, 1is the flux of &, (i =1, 2) ; Di(r) = Dij and ki(r) =
kij where Dij and kij are the known positive physical constants,
the subsecript i denotes the diffusing substance and the subscript J
denotes the region; ¥ 1is a non negative step function being zero in

those regions where S is not produced, and A is a parameter.

1
The assumed symmetry indicates that the flux P is a function
of r and t , but for steady state solutions 9s is a function of

r alone. Hence the equations 3.1 can be written

2
2 (pl + _2... .d_(,g - ]_Si + N %—% = 0
drg r dr Dl q>l U Dl P2
3.2
d2 d k k
cpz + g., _?g + _.3; - -—2- = 0
—z T Tdr . %1 . %2 .
dr 2 2

Let T be the radius of the composite sphere then the boundary

conditions are



(1)

(i1)

where

b7

(1) @i(r, 1) is bounded 0 £ r K r, s i=1, 2
(@) @plrgs M) = gplrg, M) = 0
At the juncture of two regions r = rj P

D) o(r) = o(r) - oM i)
PAEg) = PNy - B Pty
1t . 1] -
(2) D3 341 cpl(rj) = Dy, cpl(rj)
D
+ _ - 23 -
(3)  oplryl = oylry) - oy Palry)

o+ -

hij is the permeability of the jth membrane to the ith substance,

i=l,2 and j:l’ 23 oo g Il-'l-

5.3

System 3.2 is replaced by the system

/ 0 -1 0 ‘O

-a? 0 1702 ¢

L(Y) = Y'+P(x,}) = ¥ '+ / ‘ Y = 0

° - -— ¢ =
where the 4ﬂE§ column of Y 1is yll = r¢lﬂ R yéﬂ,‘ (r @lﬂ) ’ y5£

N and g = (r @22)!‘“(®1ﬂ » Do y ,L=1,2, 3% % being four

pairs

of functions satisfying system 3.2. Where also on the hth interval
2 2 2 2 2

2 2 '
the step functicn (a? s b, ¢ ,d7) = (ah s bh > Cpo dh) =



L8

, and vy ds the step function in system

Ly Fon Xon Eip
2 2 2
Din " Doy " Dyn 7 Doy

3.2, Note that a,eb2 = 02d . The boundary conditions become

(1) 7 = 35(0) = 0
3.4

(2) yi(ry) = y3(rs) = 0 .

The new interface conditions are found by examining the transformstion

' ™ (‘ ™
r 0 0 0 P
¢ 1 T 0 0 P
Y = R E = l »
. 0o o0 r 0 5
0 0 1 r cpé
L— 1
Thus one has
Y(rf) = R(r,) m(rf) = R(r,) A, o(r.) = BR(xr.) A, RI(r.) ¥(r)
J J J J°7d J 477 J J
and on substituting for B(rj).ﬁj RI(rj) = BJ
+ - .
5'5 ‘ Y(I‘j) = BJ. Y(l‘j) s Jd = l, conry n"l .

Each matrix B  , written in 2 x 2 blocks, has the form
J



k9

B, 0
0 By,
where
l*.].:__ -D—j-'—‘i i - ?..j_'.‘j-
r. h.. h,.
J iJ ij
Bij = i=1, 2
L,L 2w L2y L w0y
Ty o= Byy Ty Disa rs Biy o Diga

For each A , let U(r, ) be the non-singular [ -solution of 3.3 and

3.5 which has the form

3.6 U(r,d) = Uy (o x)"‘r B; UJ(rJ, A) o,

where [1] denotes the smallest 1 such that r < r,, 0= r, <
< * 9 a4

r

1 r, =r_ ond vhere Uj(r, A) 1is on the jth regilon,

n

<
i1 L r( Ty, an gbsolutely continuous solution of ¥' + P(r, AY=0
and Y(rj-l’ A) = E.

Let
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and

sinh ¢, (r + r, .)
cosh o, (r -, -) — g-1
J J-1 0.
d
S. =
jo
L*fj sinh oy (r - rj-l) cosh o (r - rj_l)

Then Uj(r, A) has the form

- b

2 2 2 2 2
(ay - ay) 8y - (By - ay)s;, My B8, - 8
1
B 2 2 2 2 2.2
a5 - By |9(845 - Syp) (a; - D)8 - (B-D5I8 4,
AN .

The general | -solution of 3.3 and 3.5 is of the form

3.8 ¥(r, 2) = U(r, 2)e¢

where C is an arbitrary matrix. If each column of Y(r, A) is to be
a solution to 3.3, 3.4 and 3.5, then boundary condition 3.4 (1) gives
that the first row and third row of C must be (0000) because U(0y, A) =

E . The second boundary condition gives the two equations
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Ul(rs, 2) = (0000)

and
U5(rs, A) = (0000) ’

where U' denotes the ith row of the matrix U(r_, A) . Considering

both conditions gives a set of equations

il
[n]

ule(rs, 2) CQJ + ulh(rs, 2) Chj
3.9 j=1, 2, 3, 3

u32(rs, A) ng + u3h(rs, A) C&j

i
o
-

which have non trivial solutions if and only if the determinant

ulE(rs’ A) ulh(rs’ 2)

3.10 = 0 .

uBQ(rs’ A) u34<rs’ )

Furthermore, if not all uij of this determinant are zero, then the
solutions are linearly dependent, i.e., scalar multiples of the
solution (Cel, ahl) .

The equation 3.10 is then the characteristic equation of the

system 3.3, 3.% and 3.5 for the parameter A . One observes that this
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characteristic equation involves functions of each interface ri énd
each coefficient (ai s bi s c? and di) and the step function 7y
for i=1,2, ¢ouy, n-1 .,

One may also arrive at equation 3.3 if one considers a diffusion
problem on an infinite composite slab of finite thickness made up of
n slabs of different materials. The only changes necessary to consider

this problem from what has been established for the spherical problem

would be in the interface conditions. The new interface conditions

would be
+
3.11 Ii(Y) = Y(xi) - By ¥(x.) = 0
where
- )
D
1 - Eli 0 0
1i
D, .
0 Dll 0 0
e 1i+l
3.12 Ei - D v -
0 0 1 - hzl
21
D,..
0 0 0 Dgl
’ 2i+1
N : o _

The form of the general rT-solutignNB.é would only be changed

in that the Bi's would be replaced by gi’s of 3.12. The characteristic
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eguation again may be found as before. In the next section, conditions
are found under which a system of the type 3.3, 3.4 and 3.5 is self-

adjoint and definitely self-adjoint as defined in Section 1.

Section 4. Definitely Self-Adjoint Cases for the Example

If one writes the interface problem of the preceding section in

the form considered in Section 1 of this chapter, he has that

— —~ o )
0 -1 O 0 4] 0 8] 0
2
—a2 0 0 0 ] 0 ~-ye 0
ko1 P(X) = s R(X) = P
0 0 4] -1 0 0 0 0
d2 4] -bz 0 Q 0O 0 0
N _/ N— _/

and that the boundary conditions 3.4 can be written as

k.2 AY(0) + B Y(rs) = 0
where
— ) o ™
1 0 0 0 0 0 0 0
0 0 0 o 1 o} 0 0
b.3 A= , B= .
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
\_ - N _/

The interface conditions 3.5 (or 3.12) are already in the form



considered in Section 1 of this chapter.
D k

Assume (i) the ratios Ei and E§ are constant on
D, 2, 2
0L r £ r. and (ii) —2 = —< for each J .
s hlj hag

The object of this section is to show that under the assumptions
(i) and (ii) that the interface problem 3.3, 3.4 and 3.5 is definitely

self-adjoint, with the matrix K given by

bk K(r) = k(r)
o -1 0 ~-g
1 0 g 4]
N~ _
a2 2
where k(r) is a step function to be determined and g = —
d
Note that under assumption (i) g is a comstant on 0  r K T
for
%2
g(x)_a?.-bg_})l by Dk
a° 5y b oK
Do
Also K' = 0 and simply by multiplying one may check that
PTK + KP = 0 and RTK + KR = 0 . Therefore, conditions 1.1l and 1.9
are satisfied. The assumptions (i) and (ii) give that each matrix B 3
of the interface conditions has B., = B,, and, therefore, has the form

1j 23
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k.5

where € is a 2 x 2 block. Observe that since CT <O -O>C =

| c| (g %} one has
Yo ™

- ‘w - ™ 4
¢t o o 0 ,0 -1 c o 0 0 10
o 0 'l o ©c o ,1
4.6 e =lcl| ---
0 -1 ,0 -g 0 -1 10
o ¢ | |1 o | 0 o ¢ 1 0 'g
N~ _JJ — NG -/ \_

Hence, condition 1.10 requires that
T + -
. K{r.) B, - K(r.,) = 0
B K(rj) B, - K(x})
or by k.6

+ -
B.. K(r. - r. = 0
. la} ( J) K J)
which gives that if |Blj| k(rg) = k(rg) then condition 1.10 is
satisfied. ©Now let k(ri) =1 then k(r) is determined on c | .
Note that since lBljl > 0,k(r) > 0 on el .

Now since

55
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and by an observation similar to 4.6 one has that since A and B are

of the form 4.5 that

AKI(a) AT = o KI(a) = 0
and
0 0
BK (D) B = K'(b) = O .
10

Hence condition 1.12 is satisfied and by Theorem 5, system 3.3, 3.4 and
3.5 1s self-adjoint with the matrix K given by bk,

Now to show that 3.3, 3.4 and 3.5 is definitely self-adjoint,
one may show that conditions (1)', (2)®' and (3)*' of Theorem 6 are
satisfied.

Observe that

o M
o 0 0
KR = 0 O ” 0
0 0 7kc O
0 O 0 0
N /



' o7
which is symmetric and positive semi-definite since 7 ,k(r), and c2
are non-negative. Hence, condition (1)' and (2)' are satisfied.
Suppose tha;t there exist a matrix Y # O satisfying Y' + P(x) Y =

0, both 3.4 and 3.5, and RY=0 on 0K r { s .

If RY= 0 then yij 0 on any region for which ¥ #£ 0 .
Since
/_ —\
o =1 0
2
T+ - 0 0 0 Y = 0
0 0 o -1
2
0 -b2 0
N _/
one has that
t —
7 —_ 8.2
4.8 : i=1,2,3%, 4 .
357 Y
2 2
.= =d .+ D .
Thy 13 T3
On any reglon where 'YB;]‘:‘ 0 , the third equation above gives

that yl*JE G , and the fourth equation that yljz 0. If ylj.=_ 0

on a region, the first eguation gives that ygjz 0 . Thus one has that’
if RY= O , then on any region where vy 40, Y=0. But Y satisfies
3.5 and each Bi is non-singular. Hence Y= 0 on O T < rs .

This ig a contradiction and RY = O implies that Y = 0 . Hence

Condition (3)' is satisfied and by Theorem 6, system 3.3, 3.4 and 3.5 is



CHAPTER III

DIFFERENTIAL SYSTEMS WITH INTERFACE CONDITIONS

AT INFINITE SUBSETS OF |a, b]

The methods and results of Chapters I and II are based on the
assumption that the set [ ' is finite. Since most of the results
follow from applications of Theorem I Chapier I and since the proof of
this theorem depends only on | being a set of measure zero , one is
led quite naturally to comsider the possibility of ’—' being infinite.

Definition 9. The statement that either of the ordered pairs

(!_' ,@Y or (B, ) is a set of interface conditions on |a, b]
means | 1is a subset of 2, b] and @ is a set of non-singular
matrices Ba such that for each ch in [ +there is one and only
one Ba in @ .

Definition 10. The statement that a matrix W(x) satisfies the

interface conditions (@ s B )} means that at each point xa of r'
the right and left hand limits W(X;) and W(X;) exist and satisfy

the relations
+ -
(1) W(xa) - B, W(x@} = 0 .

Definition 1l1. The statement that a matrix W(x) satisfies the

interface conditions (I A )} means that at each point %, ©Ff [

the right and left limits W(x;) and W(x;) exist and satisfy the
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definitely self-adjoint with the matrix K given by 4.4 where k is a

step function which is constant on each region and satisfies

K(r]) = Tﬁif k(r])
at each interface r, o

If one starﬁs out to find K by imposing conditions 1.9, 1.10,
1.11 and 1.12, he finds that on those regions for which ¥ # O , that
K must have the form 4.% if condition 1.9 and 1.1l are satisfied.
If one then assumes that K has this form on all regions, then he is
led to assumptions (i) and (ii) in order that condition 1.10 may be
satisfied. Clearly, it is not necessary, in general, that X have the
same form on each subinterval since on these intervals for which ¥ = O,
the matrix R= 0 , and condition 1.1l places no restriction on K .
However, if K does pot have the same form on each interval, then one
must concern himself with the arrangement of the regions for which
v = 0 and those for which vy % 0 .

The assumptions (i) and (ii) while quite restrictive are

D
plausible. In fact, the conditions that ﬁ% be a constant and that
Dl‘ DE,J 2
=4 = -5 agre used by Weinberg [56:) and Rashevsky [20] and the

h., h,,
1 23 k

condition that Ei be a constant is Just that the equilibrium constant
e

for the reaction Slf&; S2 be the same in each region.



relation

(2) W(x;) - W(x)B, = 0O )

Definition 12. The interface conditions (B , [ ) [or (., C’?)]

are said to be of Type I on |a, b] if |—' is a closed and countable
subset of [a, b] and on ¢ | there exist a matrix D(x) having the
following properties:

(1) D'(x) = 0 everywhere on ¢ [

(11) D(X;) and D(x ) exist and are finite for each point

x 1 [ ;

a

(111) [p(x) | #0 on e ;

(iv) |D(x;)| and | D(X;)I are both different from zero for
each Xy in ‘—j ; and

(v) ¥(x} = D(x) W(x) or [(v)“ Z(x) = W(x) D(x):l satisfies

the interface conditions (73 , [ ) [(r‘ ,@ﬂ if W(x) is continuous
on [a, b] N

Examination of the D{(x) as defined in Section 3 of Chapter I

reveals that it satisfies all of the properties (i)-(v) of Definition 12.
l_‘ was assumed to be finite, hence, closed and countable. Therefore,
the interface conditions considered in Chapters I and II are of Type I
on [a, b:) .

Lemma 1. If G(x) is a continuous matrix and G(x) is a

constant on each component of ¢ " P f_‘ a closed and countable subset
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of the interval [a, b] ; then G(x) is a constant on [g, b} .

Proof. Since [ is elosed, e[’ is the sum of a countable
number of non-cverlapping open intervals. On each of these intervals
G(x) is constant, hence G(x) takes on only a countable number of
values on cl ' . Since | is countable,; it follows that G(x) takes
on only a countsble number of values on [a, b] . If G(x) vwere not
a constant then G(kl) # G(xe) for some pair of points (xl, xQ) on
[é, b] s but G{(x) is continuous hence G(x) must take on all
values between G(xl) and G(xz) . This set of values is uncountable.
This is a contradiction, therefore G(x) is a constant.

Lema 2. (B, ") are of Type I on [éj ﬁ] if and only if
(r ,(331) are of Type I on [é, b] .

The proof of this lemma consists of showing that if S(x)
satisfies (i)-(iv) then so does Sl(x) , and that if 8 satisfies
either of the relations (1) or (2) that Sl(x) satisfies the other.

By properties (i) and (iii), 8(x) is a constant on each
component of cl' and Sl(x) exist and satisfies properties (i) and (iii).
By property'(ii) and (iv) and the continuity of the fumction §(A) =
AI 5 Which is defined and centinucus on the set of all non-singular
- matrices, SI(x) has properties (ii) amd (iv).

Suppose that 8(x) satisfies (Cig, [y . Then at each point
x, of [" onme has from (v) by letting W(x) =E , S(%;) - B, S(x;) =0 .

But it has been shown that each of the matrices are non-singular. Hence

I, + I, =y I
S(Xa)’s(xa)Ba = 0 .
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Had one supposed that S(x) satisfied (| ,") , then the
roles of SI(X) and S({x) are interchanged. Therefore ([’ ,CE;)
of Type I implies 039 ;1) is of Type I.

Lemma 3. Every matrix S(x) satisfying properties (i) and (ii)

of definition 12 is Lebesgue integrable.

Proof. Property (i) implies that S(x) is continuous on el
Property (ii) then implies that S(x) is bounded and has discontinuities
of the first kind only. Such matrices are Riemann integrable and
Lebesgue integrable (ﬁobson [10] P 46%) .

Lemma 4. If M and N are bounded Lebesgue integrable matrices

and P is Lebesgue integrable, then the matrix MPY¥ is Lebesgue integrable.

n n
Proof. Each element is of the form ;Ei ﬁél My Poy By

where each fterm m(> p(> n() iz the product of two bounded L-integrable
functions and an L-initegrable function.

Since the product of two L-integrable functions is L-integrable
if one of them is bounded <I;4} Do lEi) it follows that ecach element
is a sum of L-integrable functions, hence ig L-integrable. Therefore,
MPN is L-integrable.

Theorem T. If (GZ;Q [") 4is of Type I on [g, b] and P and

Q are Lebesgue integrable matrices on |a, é] then the system
(3) L{Y) = ¥' + P = Q

has & | -solution satisfying (B, [') .
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Proof. Since ((z3,[') is of Type I, there exist a D(x) with
properties (i)-(v), and pt exist and satisfies properties (i)-(iv)

and (v)'. Consider the system

(%) %(w) = W' + DIPDW = DTq .

Lemma 3 then gives that DI

and D are bounded and Lebesgue integrable.
Hence Lemma 4 gives DI PD and DI Q are L-integrable. The fundamental
existence theorem gives that %(W) =D Q -has an asbsolutely continuous
solution W(x) . Theorem 1 of Chapter I now applies to give that (3)
has a | -solution with the character of D , i.e. Y(x) = D@ . Property
(v) gives that Y(x) satisfies (@, 'y .

Theorem 8. Every | -solution Y(x) of (3) that satisfies
(3B ,[") has the character of D , i.e. is of the form Y¥(x) = D(x) éf\(x)
Where /Y\ is absolutely continucus on [a, b] .

Proof. Let Z(x) = DI Y . Then since DI satisfies (P ,@I)
end Y satisfies (@3 ,[') one has Z(X;) = DI(X;) Y(x;) = DI(X;)B;
B, Y(x,) = Z(x;) . Let

@(X) } Z(x) on el

Z(x;;) on |

A
and note that %(x) is continuous, and i(z) = JK(DI Y) = DI L(Y) = DI Q

holds almost everywhere on [a, b:| o
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If /i(x) were absolutely continuous the proof would be complete.
Suppose /Z\(x) is not absolutely continuous and let W(x) be an
absolutely continucus solution of ;ﬁ(w) =D Q end W(e) = /Z\(c) 5
a L e b. Let U=W = 2 eand note that U satisfies the
system X(U) =0 and ©(ec) =0 . The homogeneous system X(W) =0
has a non-singular absolutely continuous solution 7/(x) and ?JI(X)
is a non-gingular absoclutely continuous solution of 97[(\7) =V' - VDIPB =0 .

Now consider Z/I ¥ . One has that

i)
@JI{}“ + Zt/I g

It

(7/U)

wru + Wt ot POy

H

Wt L(v)

almost everywhere on [a, 'b] .

Since ?,(/I and U are absolutely conbtinuous on each component
of ¢l , 95 is & constant on each component of el . But 71y
is continuous on |&, b] . Therefore Z/IU is a constant matrix on
2, b] .

Since U(ec) = 0 , U must be the zero matrix. Therefore
/Z\(x) = W(x) and 2 is absolutely continuous. Hence Y has the

character of D gince Y =D ﬁ »
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In the interface problems of Chapters I and II, one may replace
the interface conditions Ii(Y) by (B, ) and if (423, (MY is
of Type I on |a, hﬂ then all of the results obiained in Sections 2, 3
and 4 of Chapter I and Sections 1 and 2 of Chapter II are valid for the
new interface problem. The results of Section 5 of Chapter I depend
upon the finiteness of r1 hence do not extend to the more general
interface problem without modification.

The condition that |  be countable comes about for two
different reasons. First by requiring that (jmselutions have both
left and right limits at each point of |a, b:l one implies that these
limits can differ only at a countable <;ee Hobson [;é] Do 50;)
subset of | a, b] . The second reason is found in Lemms 1., Since
this lemma is not true if [ '@ is uncountable, Theorem 8 does not hold
and as & result the interface condition would no longer determine the
character of the solution.

If the condition that [ ' be closed is removed, then one would
have three cases to consider. Letting F; denote the closure6 of [
one has Case I: f; is countable; Case II: f; is uncountable but
dense in no interval; and Case III: r; is uncountable and contains
some subinterval of |a, ﬁ] » The first case might be reduced to

Type I by letting the matrix corresponding to each point of ([ - [7)

6

By the closure of a point set [ ' one understands a point set
consisting of the points of [ and the limit points of .

2
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be E , the identity matrix. Casev II would require something more
than just interface conditions to determine the character of the
solutions, and Case III would reguire a different definition of

P«-solution since all of the components of ¢ [ mey now be degenerate.
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SUMMARY

This paper establishes that differential systems with interface
conditions may be studied by investigating an associated system without
such conditions, where the matrices involved in each system have the
gsame dimension. The associgtion gives a one to cne correspondence
between the discontinuocus solutions of the interface problem and the
absolutely continuous sclutions of the associated system. As a
consequence of this correspondence, one has that theoretical results
for boundary value problems with absolutely continuocus solutions imply
corresponding results for associated interface problems. Among the
results established by this method are existence and unigueness of the
solutions, the Green's matrix and its properties and adjoint and self-
adjoint relationships.

A formula (5.7) is developed for finding the general solution of
homogeneous systems with interface comditions. It does not depend upon
the specific form of the interface conditions, hence one may treat
conditions that require some, all or none of the elements of the solution
matrix Y to be continuous at the interface in exactly the same manner.
The effectiveness of this approach is illuétrated by solving & steady
state, n-region, one substance diffusion problem and a characteristic
value, or eigenvalue problem for a n-region, two substance diffusion
problem. These examples also serve to illustrate that the results of
this paper have applications to the composite bdﬁndary value problems
of heat conduction, chemical diffusionm, potential theory, vibration theory

and nuclear reactor theory.
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Sangren [28] has studied the single nth order equation with
the point of view of developing expansion theorems and applications to
the composite boundary value problems méntioned above. It is possible
using the method of this paper to obitain generalizations of his resulis
fcr»the matrix differential systems.

Differential systems with interface conditions at a finite set
of points and two point boundary conditions are a special case of the
k-point boundary value problem investigated by Mansfield and others
(see Whybama[f%] for references) and might have been studied from
this viewpoint. However, the method used here avoids the artificial
limitation that k be finite which is imposed by the methods used in

these studies of the k-point boundary problem.
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