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CHAPTER I

INTRODUCTION

Consider a plane region D as the equilibrium position of a

homogeneous and uniformly stretched elastic membrane fixed along the

boundary, C , of D . If X is the frequency of the gravest proper

tone of the membrane and if a factor which depends on the physical

properties of the membrane is dropped, then X is a purely geometric

quantity. The problem of determining X is one of the classical

problems of mathematical physics. It may be stated as follows.

Given a plane region D it is required to find the smallest
o

positive constant X for which there exists a function f defined on

D such that f is continuous, f vanishes on the boundary, C , of D

and f satisfies the differential equation

2 2
Vf + Xf = 0

on D ,y2 beinS the Laplace operator. There is no need, however, to

require D to be a plane region. If D is a region in Euclidean
p

n-space, X may be defined in an analogous fashion.
2

In Chapter II several properties of X are discussed. The major

tool of the chapter is a geometric operation called Steiner symmetrization

1G. Polya and G. Szego, Isoperimetric Inequalities in Mathematical
Physics, (Princeton, Princeton University Press, 1951)> P* 2.
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invented by Jacob Steiner. This operation is shown to transform a

region D into another region whose fundamental eigenvalue is not greater

than that of D and whose volume is equal to that of D . Using this

result it is shown, for a large class of regions, that of all such

regions with a given n-dimensional volume the hypersphere has the smallest

fundamental eigenvalue. Other properties of the fundamental eigenvalue

are discussed though in less detail.

Chapter III deals with the numerical results obtained in the

solution of specific problems of the above type. The results of Chapter

II are used in obtaining bounds for the fundamental eigenvalue. A method

of computing the fundamental eigenvalue in a ease where the analytic

solution is not known is described and the results of the computation

are given.

If the membrane is not homogeneous but is composed of two homogeneous

portions the fundamental eigenvalue may be defined in a similar fashion.

Two specific cases are discussed in some detail, the case of concentric

spheres and the case of three semi-infinite slabs. For these cases the

fundamental eigenvalue was computed as a function of the relative size

of the regions and of the matching constant at the interface.



CHAPTER II

A MINIMAL PROPERTY OF THE SPHERE

In this chapter several properties of Steiner symmetrization and

the fundamental eigenvalue of a solid are developed. They, in turn, lead

to a minimal property of the sphere which is stated and proven in

Section VII.

Section I. Notation

Throughout this chapter and the next the following notation is

used.

1.1.1 E represents an Euclidean space of n dimensions.

1.1.2 X = (x1, ..., xn) represents a point in EQ with

rectangular coordinates x., ..., x .

If f(x,, ..., x ) is a function defined in EQ , and if 1 < i < n ,

then

1.1.3 f represents -r— ,

2 n 2
1.1.4 (V f) represents E f ,

1 xi

2 n
1.1.5 V f represents Z (f )

1 xi xi

1.1.6 / f dV represents / .../ f dx- ... dx .
B n B



If B is a body in E (cf. Definition V.l), then

1.1.7 V (B) represents the volume of B ,

1.1.8 A ,(B) represents the Minkowski surface area of B

(cf. Definition V.6), and

1.1.9 B* = S_ (B) denotes that B* is the image of B
En-1

under Steiner symmetrization (cf. Definition V.2) with respect to E , ,

an (n-1)-dimensional subspace of E .

If B is a solid in Efl (cf. Definition II.l) then

1.1.10 u(B) represents the fundamental eigenvalue of B

(cf. Definition II.3).

1.1.11 X = "x [x has property p] signifies that X is the
set of all elements, x , such that x has property P . If X and

Y are pointsets in E , then;

1.1.12 xeX signifies that x is an element of X ,

1.1.13 xj^X signifies that x is not an element of X .

1.1.14 IQ X signifies Y is a subset of X ,

1.1.15 Y(£ X signifies Y is not asubset of X,



1.1.16 X fl Y = £ [zeX and zeYj ,

1.1.17 X U Y = £ [zeX or zeYJ ,

1.1.18 X - Y = £ [zeX and z^YJ , and

1.1.19 d(X, Y) denotes the distance between X and Y .

Section II. The Equivalence of the Variational and the Boundary Value

Problem Definitions of the Fundamental Eigenvalue of a Solid

For the purposes of this paper the most useful definition of the

fundamental eigenvalue is the one provided by the Calculus of Variations.

In practise, however, the more usual definition is that of a boundary

value problem. This section establishes, to the extent needed for the

later sections of this chapter, the equivalence of these definitions.

Definition II.l. By a solid is meant a closed set B such that

the interior of B is non-empty and connected and whose boundary is a

surface S consisting of a finite number of surfaces each of which is

piecewise smooth.

Definition II.2. A function f is piecewise smooth on a solid

B means f is continuous and there exists a finite number of smooth

surfaces S, which subdivide B into a finite number of sub-solids

B. such that f , for 1 ^ i -^ n , is continuous on the interiors

of the B.'s and coincide with a continuous function on each B. .

"TPibor Rado, Length and Area, (American Mathematical Society,
Colloq. Vol. XXX), Chapt. 3, pp. II6-I33.



Definition II.3. If B is a solid in E with surface S ,

then by the fundamental eigenvalue of B one means the smallest positive

number, u(B) , for which there exists a function f defined on B

such that

(i) f is piecewise smooth on B ,

(ii) f vanishes on S , and

(iii) in the interior of B , f satisfies the differential

equation

II.3.1 V f + u(B) f = ° >

then f is called an eigenfunetion associated with u(B) .

Definition II.k. If B is a solid in En with surface S

and if

II.4.1 F = £ If is piecewise smooth on B , f(S) = 0 ,

and / f dV is positiveJ
B

then X(B) is defined by

/ (yf)2dvn
B

II.4.2 X(B) * inf
f€F t J2./ f dV

B



Theorem II.5. If B is a solid in E , thenn

ii.5.1 Mb) = u(B)

2
Proof. In the well-known book by Courant and Hilbert , the

above result is proven in detail in Ep and the authors state that

their proof generalizes directly to E, and generalizes to E ,

n > 3 , if the Euler equation of the variational problem fulfills

k
certain conditions . If

2 n 2II.5-2 E(v) = / (p (yv) + 2Z a v + qv ) dV ,
B 1 Xi

is the variational integral, where p > 0 , q > 0 , the a.'s have

first and second derivatives, and p has continuous first, second,

and third derivatives, then the Euler equation is

n

II.5-3 L(u) = E (pu ) - q*u + X(B)u = 0 ,
1 xi xi

where

n

II.5-4 q* = q - E a.
1 1

2
R. Courant and D. Hilbert, Methoden der Mathematischen Physik,

(New York: Interscience Publishers, Inc., 19*43) Vol. 2, pp. 471-508.

5Ibid., p. 471.

Ibid., p. 499.
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The requirement which II.5*3 must satisfy in order that the

proof generalize to n dimensions is

II.5-5 q* = 0 .

Since, for this theorem, p = 1 , a. = 0 for all i , and q > 0 ,

this condition is fulfilled and II.5.2 becomes

II.5.6 E(v) = / (y v)2 dV
B

Thus the equivalence of Definitions II.3 and II.4 has been established.

Corollary II.6. If B is a solid in EQ with surface S and

if f is an eigenfunction associated with u(B) , then

/ (yf)2dvn
II.6.1 ^(B) = —

/ f2 dV
B

2
Proof. Applying Green's theorem to the function fy f yields

n.6.2 / (y f)2 dv = - / fy2 fdV + / f •f dS ,
B B S

where f is the normal derivative of f and dS is the element of
n

surface area. Since f is an eigenfunction associated with u(B) ,

f vanishes on S . Therefore



II.6.3 / f • f ds = 0 .
S

Hence II.6.2 becomes

n.6.4 / (yf)2dvn = - /fy2fdvn
B B

But, since f is an eigenfunction associated with a (B) , then

II.6.5 y2 f + ,i(B) f = 0 .

Multiplying II.6.5 by f and rearranging gives

II.6.6 -fy2f = U(B) f2 ,

and integrating II.6.6 over B yields

II.6.7 - / fy2f dV = u(B) / f2 dVQ .
B B

Substituting II.6.4 in II.6.7 and dividing gives

/ (yf)2dvn
II.6.8 u(B) = —

/ f2dvn
B

Q.E.D.
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Section III. Approximation of a Continuous Function with Piecewise

Continuous First Derivatives by a Polyhedral Function

Since Steiner symmetrization may introduce singularities, the

image of a solid under symmetrization may no longer be a solid, as the

example at the end of Section V shows. However, the image of a poly

hedron is a polyhedron. Therefore, it is shown that the following

sections may be limited to the discussion of polyhedral functions with

no loss of generality.

Lemma III.l. If K is a hypercube, in E , with center C ,
1 n n n

then there exist 2 nJ simplexes in E with disjoint interiors

and equal volumes such that K is their union and C is their
n n

intersection and a vertex of each simplex.

Proof. The lemma, is true for n = 2 , since, by constructing

the lines from Cp to the vertices of Kp , Kp is divided into four

triangles (simplexes in Ep) whose interiors are disjoint and whose

areas are equal. Clearly, Kp is their union and Cp is their

intersection, Cp is a vertex of each triangle, and 2 • 21 = 4 .

The proof then proceeds by induction. Assume the lemma is true

for n=p-l > 1. K has 2p faces and each face is a hypercube

of dimension (p - 1) . Therefore, each face can be decomposed into

2P" (p - 1)1 simplexes. Construct all the E , which contain C

and an edge (an E p bounding a face of the simplex). The E -, 's

p-2
divide K into simplexes. There are 2r (p - 1)1 simplexes in

each face and 2p faces, and so there are 2p 2^~ (p - 1)1 = 2r pJ
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simplexes constructed above. Clearly, C is a vertex of each simplex,

they are disjoint, K is their union and C is their intersection.
p P

Also, by Cavalieri's Principle every simplex has the same volume.

Thus the induction is complete.

Q.E.D.

Definiton III.2. A function p , defined in E is a poly

hedral function if and only if there exists a subdivision of En into

simplexes such that p is a linear function on each simplex, p is

continuous in E , and every bounded region of E contains only a

finite number of simplexes.

5
Theorem III.3-; Let B be a solid in E with surface S andj n

let P(B) be the class of polyhedral functions which vanish in some

neighborhood of S . If F(B) = f If is defined and piecewise smooth

in B and f(S) =oj ,then for any e > 0 there is a peP(B) such

that

/(y p)2 avn /(Vf)2 dvn
111.3.1 — p < inf -£—p + e .

/ tF dV f€F(B) / f dV
B B .

Proof. Clearly, P(B) d F(B) and thus one need only prove

that given e > 0 and feF(B) , there exist a peP(B) such that

/ (y p)2 4vn / (y f)2 dVn
111.3.2 -B—» < -^—5 + e

/pd dVn /td dvn
B B

5
The theorem and proof given above are due to Professor Walter

Snyder,
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For any to > 0 and feF(B) define

III.3-3 f (X) = max 0, f(X) - to + min j_0, f(X) + w

for XeB and

III.3.4 f (X) =0 for Xfb

Then f is defined and continuous in E and vanishes in some

neighborhood of S. Let K =X [jf(X)| =wJ. Since ^ £ ta2
implies K (|K is empty, K | > 0 for at most a countable set

U-| Up w i

of values of to . Requiring that

exists almost everywhere and

IH.3.5

Indeed, if jS± Ii=1
the partial derivatives of f are distributed and if G is any

K = 0 it follows that f
u

/(yf)2 dv < /(yf)2 dvn .
B U n B n

are the surfaces on which the discontinuities of

neighborhood of S on which f vanishes identically then on any

component, C , of the open set D ,

III.3.6 D " <En - K. " U Si} U 0 >
i=l

f is either identically zero, identically f + to , or identically
to



f-to . Thus, either (y f )2 =(yf)2 or (y f) =0 on C
k u U

and since K
to

= 0 ,111.3.5 follows. Letting

13

to

+ E
i=l

-> 0 , but always requiring K
CO

= 0 , / f2 dV >/ f2 dVB a) n £ n
Thus for some to > 0 , K

to
= 0 ,

in.3.7

/(vf/dvn
_B

/ (f f &n
B U n

<

/ ( V f) av,
n

B

/ f2avr
B

e

+ 2

Clearly, f has partial derivatives on D and these are
to

uniformly bounded. Indeed, if

so the limit points of

f (X ) > n , then X eB - G and
to n n

xl
are also in the closed set B - G , thus

contradicting the hypothesis that f is piecewise smooth since

(XJ f (X )
x..v n'

n = 1, 2, Let M be a bound for

all the partial derivatives of f on D . Then f satisfies a
* to to

Lipschitz condition. For, consider a line segment, Z , with endpoints

X' = (x£, ..., x^) and X" = (x£, ..., x£) with xJ =xJ ,i= 2, 3,

..., n . Suppose that, with the possible exception of the endpoints,

i is in C ,a component of D . Then |A f |< h|A x. | by the
w k

mean value theorem. Now, assume 1 intersects I^J S. in only a
i=l

finite number of points but doesn't intersect K , except possibly

at the endpoints. On each segment of the subdivision of I by the

points of t I I( IJ S.) the preceding result holds and, by
i^l v

summation, it holds on J . Next, suppose £ intersects
u

infinitely often but doesn't intersect K , except possibly at the
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endpoints. Delete a small neighborhood of each endpoint, if

necessary, so that the shortened segment, /* , may be translated

parallel to itself and remain in E - K . This translation is to
* n to

be made so that, in the new position, the translated segment intersects
k

IJ S. at most a finite number of times. To see that this is
iVl 1
possible, let x. = f..(U), j = 1, ..., n be the parametric

J ij

representation of S. ,i = l, ..., k , with U = (u., ..., u .)

varying over a topological (n - 1) - sphere, D. , of E , .

Each f . is of class C1 . Consider the transformation x, = £..«(*") t

j = 2, ..., n with i fixed. Let N.(x^, .... x ) be the number
i 2' ' n'

of distinct points, U , in D. such that x. = f .(U) . Then N.

is defined in E . but vanishes outside some bounded region.

Banach has shown that

III.3.8 / N± dVn-1 = /
En-1 Di

d(x2, ..., xn)
d(uL, ..., u

n-1

dV
n-1

Since this integral is finite it follows that N. is finite almost

everywhere in E^ . Let I± =(x2, ..., xq) |_N±(x2, ..., xq)
J and let I= M I. . Then I is a set of (n - 1)-dimensional= +

Lebesgue measure zero and thus I* can be shifted as little as desired
k

to a position where the translated segment, /* , intersects IJ SH- " , illOCIBCUUB I I O.

only a finite number of times and does not intersect K . For /* ,
to i

Banach, S., Fund. Math., 7, 225-236.
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IAf I ^ mIAx.1 and by continuity this inequality holds for £* .
to J-

Again by continuity the same inequality must hold for £ . Thus

|Af |<IAxJm on £ if £ intersects K only at the endpoints,
to 1 (*>

if at all. But if one or more of the points of K lie interior to £ .
to

then f vanishes at these points. Let X, be the point of KJ >•*
to '1 to

closest to X' and let X~ be the point of K 0 / closest to X" .
X „ U

Then IAfL< lAfl1 + |Af|X", since f(X.) =0, i=1, 2
to l ^ to „, X W

But |Af jX" ^ mIX-j^-X'I +m|X2 +Xm|< m|Ax1I . Thus the

proof is complete for x1 and similarly for the other coordinates.

Now, let S6 =$[d(S; X) < 9Jand let 6 > 0be taken
50vn

such that f vanishes on S . Let
to

V V

r .../
2~v~ -V -V

V V

III.3.9 g^X) = -^ / .../ fjx +Z) dzx ... dzn

for 0 < v < ©. Then g^(X) is continuous in EQ and vanishes

in S^ . Moreover, g is of class C' . Since f is

continuous, g (X) —-> f (X) as V —> 0 and since the functions

vanish outside a bounded region and are uniformly bounded

I gv dVn >JfI dVn a8 V->0.
B B

At any point Xe (^ -K, - {£ 8±) \J G,-5- -* -^ and

since these functions are also uniformly bounded and vanish outside a
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bounded region /(ygJ2 dV > /(yf )2 dV • ^us for co and vB B to n

sufficiently small

III.3.10 — 5 < g + r

/ (yf)2 dv
B 3e

< 5 + T
/ (f) avn
B

Take a cubical net in E of mesh width r „ By Lemma III.l each
n

cube can be divided into 2 " ni simplexes having a common vertex at the

center of the cube and having disjoint interiors. Let X be any point

of a simplex with vertices V", ..., V°+ . If e is the vector from

v""*"1 to V1 ,and

n i
III.3.II X = E p. e ,

i=l

n

E
i=l

n

then E p. -^ 1 and the (6.) are linear functions of X , say

111.3*12 B, = E a. x
1 k=l i ^

i i 1
Let e. , ..., e be the components of e * Then

m.3.13 ^ - \ - l^i 5-
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where 6^ = -{ \ (the Kronecker delta). From the
* '1 for I =k

construction of the simplexes in Lemma III.l it is clear that each

vertex, except the center of the cube, is the vertex of a simplex in

at least two hypercubes. Therefore, since g^ is continuous, if

gv(C) is the value of g at the center of the hypercube and if g

is the value of g at V , then

III.3.14
n

pr(x) = g^c) + E (g; - gv(c)) Bj

is a polyhedral function, and

III.3.15

Sxk

n

E
i=l X

dx<
+ e

n

where e*. are infinitesimals with respect to r . Then

III.3.17 2Ze
Sxk SXk

n n j SPi

C /=1 i=l U l ~^\

By III.3.13, using Cramer's rule and the Hadamard bound for a

determinant,

III.3.I8

where
SP

i

i

n

0n-l , n-1/ _» n»l
2 nJ r (n-1) -5—

< _ f

is the determinant with the ith row and the kth
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column all zeros except for the i , kth element which is one. Therefore

III.3.I9 '•u •I
< e±g\ 2 n. (n-1) -5-

But 2n" ni(n - 1) " " is independent of r and lim e, = 0
2 r —> 0 "

Thus, for r sufficiently small, III.3.17 implies

apr
lim "STr-^0 dXk Sxk

Therefore / (ypr) dVfl-
B

clearly,

-^ / ( V g ) dV as r > 0 and,
B

/p2dVn >j£**n as r—^0
B B

Thus, for sufficiently small r ,

III.3.20

/ (y P_) dV
B

/(Pr)2 avn
B

<

<

/ (ygvr dv
B . e

s + r

/(«/ dVn
B

/ (Vfr dV
B

; f2 dv.
+ e

B

Q.E.D.
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Section IV. Some Properties of the Fundamental Eigenvalue of a Solid

In this section some elementary properties of the fundamental

eigenvalue are given, some to be used in later sections of this

chapter, others to be used in the next chapter.

Theorem IV.l. If B and B1 are two solids in En such that

B' C B and B - B' consists of a finite number of solids, then

17.1.1 u(B) < u(B')

Proof. Let F be the class of functions defined in II.4.1

and let F' be the class similarly defined when B* is substituted

for B . Let

IV.1.2 F f |_feF and f = 0 on B-B'J

By Theorem H.5>

/ (y f')2 dV
B*IV.1.3 n(B') = min -—^-—^

and so, obviously,

f'eF' / (f) dVn
B'

/ (yf)2dvn
IV.1.4 u(B') = min ^-g-

Similarly,

- - / f dVfeF JB n



/(yf)2 dvn
IV.1.5 u(B) = min - *

feF / f dV
B

Clearly, F C F , and, therefore

/(yf)2 dVQ /(yf)2 dVn
IV.1.6 min , > min B—* ^ min k

f€F / f dVn «F / f dVn
B B

20

That is,

IV.1.7 u (B1) > n (B) .

Q.E.D.

Theorem IV.2. Given a solid B in E with surface S ,
n '

there exist an eigenfunction associated with u(B) which does not

change sign on B .

Proof. Let f be any eigenfunction associated with u(B) .

If h is any function in the class F defined by II.4.1 let

/ (yh)2 dVn
IV.2.1 Q(h) = «

Let g = |fI. Then g is Holder continuous in B . Let J be a

^Schauder, Math. Zeits. 38, No. 2, pp. 257-282 (1931*-).



Q

continuous function such that

IV.2.2

and J(S) = 0 . Then

17.2.3

and

IV.2.4 m

y J = g

u(B) = Q(f) = Q(g) ,

2 2ft (yj)2dvn^) (l g2dvn
B

(/ J8*.) (/(v^dvj

Applying Green's theorem and IV.2.2 gives

M

iv.2.5

2 2(J JV2JdVnJ Qgy2JdV^
~2 2dvn ) (/ (yg)2 dvn)G'

/gjjwj ( I yj • vg dv
B B

(l*a0 (£<*«>aO'

21

8.Lichtenstein, Encykl. der Wissen., Vol. 2, part 3, pp. 1277-13^«



IV.2.5

-.2

Q(J) f! S• Jdvnj

Q(g) n j2 dvn ) (/ g2 dVn}

^/ y j •vgdvn^)

/ (yj)2dv^) (/ (vg)2dvj
B B

22

By the Schwartz inequality,

17.2.6

P

and

rv.2.7 r/vj.vgdvn) < (7(vJ)2d7^) Q(yg)2d7n^)

Equality is attained if and only if J is a multiple of g, If the

inequality holds then 17.2.5, 17.2.6, and 17.2.7 yield

17.2.8 m <
Q

That is

17.2.9 Q(J) < Q(g) = Q(f) = n(B) •
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But JeF , and

17.2.10 Q(f) = n(B) = min Q(h) ,
h€F

which is a contradiction. Thus the equality must hold and J is a

multiple of g and thus of constant sign.

Q.E.D.

Theorem 17.3. Given a solid B in E and a constant k ^ 0 ,

if T is the similarity transformation which takes the point X =

(x , ..., x ) into the point Y= (kx^ ...,kxa) ,and if B' = T(B) ,

then

i(B') = ^17.3-1 u(B') = ^V
k

Proof. Let f be an eigenfunction associated with jj.(b) and

let y. = kx for 1 ^ i ^ n . Let

2 n b217.3.2 v - Z
3 1 dy±

Then

2 2 2
17.3.3 y = k Vy

Let g(x1, ..., xn) = f(yx, ..., yn) ,then



17.3.4 v2g + ^ir g = o
k

and

Isi17.3.5 n(B') < E
k2

By symmetry

17.3.6 u(B) < k2 tt(B') ,

hence

17.3.7 (i(B) = k2 u(B')

24

>

Q.E.D.

Section 7. Some Properties of Steiner Symmetrization in E

Since Steiner symmetrization is a major tool in the last sections

of this chapter, those properties of this operation which are needed

in these sections are developed here.

Definition V.I. By a body in E is meant a bounded, connected,

measurable, point set with interior points.

Definition 7.2? If K is abody in En and if X=(a^, ..., xq)
is a point in E , then, by the Steiner symmetrization of K with

9Dinghas, A., Math. Naehr., 2, 108-109 (19^8).
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respect to the space x = 0 , one means the following operation:

Let C(x_, ..., x ) be the characteristic function of K and

let A be any line in E which is orthogonal to the E„ , space
n n—4.

x = 0 and which intersects K . Let
n

x
n

7.2.1 /(xa) « / G(x1, ..., x^, u)du .

Relate a point X = (x.., .*., xn ., x ) of A to another point

X= (xx, ..., xn_x, xn) of A by

7.2.2 xn = i(x ) -| i(~) .

Let

_ A r_ _
7.2.3 K « X |_X » (x^ ..., xn-1, xn) and there

exists a point X =(x^ ..., xn)eK such that

xn =/(xn} "I i(^J *

Then K is called the image of K under Steiner symmetrization with

respect to the E -, , x =0. In symbols, K =S _0 (K) .

Since K is a body, C(X) is a measurable function of

(x,, ..., x ,) . Therefore, by Fubini's theorem

•I OO

7.2.4 G(x1, ..., xn-1) = ?y / C(x1, ..., x^, u)du
— 0<7
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is a measurable function of (x., ..., x ) . Hence the ordinate set

of G is measurable and therefore K is measurable. Clearly K is

bounded, connected, and has interior points. Therefore K is a body.

A more intuitive formulation of Steiner symmetrization for three

dimensional solids is given by Polya and Szegd. An obvious generaliza

tion of their definition is given below.

Definition 7.3. The Steiner symmetrization of a solid B in

E with respect to some Ew , C E changes B into the solid B*
n n—l n

in E characterized as follows:
n

(i) B* is symmetric with respect to E , •
n-i

(ii) If I is any line in E orthogonal to E , ,
n n-1

and if 1 intersects one of the solids B and B* , then it intersects

the other and the two intersections have the same linear measure,

(iii) The intersection of £ with B* is connected (the

intersection of JL with B may have infinitely many components).

Definition 7.4. If K is a body in E , then
n

7.4.1 KT = & [_XeE ,and d(x, K) < b~]

11
The following theorem is proved by A. Dinghas.

Theorem 7.5. If K is a body in E and if K = ^ (K) for
n ^n-1

G. Polya and G. Szego, Isoperimetrie Inequalities in Mathematical
Physics, (Princeton, Princeton University Press, 1951), p. 5

Dinghas, A., 0p_. Cit., p. 109,
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some E ,C E , then
n-1 n '

7.5.1 Vn(K) = Vn(K) ,

and

V.5.2 VjK*1) > Vit)

12
Definition 7.6. If K is a body in E , then the Minkowski

surface area of K is defined by

7 (K*1) - 7„(K)
„ /- , . frr* lim n^ nN
7.6.1 A^CK) = j^^q h *

Corollary 7.7. If K is abody in En and if K =Sg (K)

for some E , C E , then
n-1 n '

7.7.1 An^(K) > A^K) .

Proof. By definition 7.6

7 (K*) - 7„(K)„ /- , A ,„•>. lim nv ' nx '7.6.1 AQ_1(K) = ir=T5 £

and

"^Ibid., p. 110.



7 (K*1) - 7 (K)

Theorem 7.5 states

7.7.3 Vn(K) = 7 (K)
n n

and

28

7.7.4 7^) > 7JK*1)

Therefore

7.7.5 An-1(K) > An-l(g) *

Q.E.D.

The following theorem demonstrates that the symmetrization of a

body in E simultaneously produces symmetrizations in certain sub-

spaces of n-1 dimensions, and thus in certain sub-spaces of

dimension k for any k less than n and greater than one.

Theorem 7.8. If

(i) X = (x]., ..., x ) is a point of En ,

(ii) E , CI E is the space x = 0 ,
' n-1 n n

(iii) E 7 C E is the space x, = 0 ,
n-1 n l

(iv) E p C E is the space x., = x = 0 ,



(v)

(vi)

(vii) D = B fl E , , and
n-l

(viii) D* = B* H Vl '

then

B is a body in E
n

B* =

n-1

(B) t

7.8.1 D* = S_, (D)
A-2

29

Proof. Hypotheses (vii) and (viii) imply D C E , , and

D*C Em . . If A is any line in E , orthogonal to E 0 , then
n-x n-J. n—d *

A is orthogonal to E, . Therefore the mapping of A onto itself

in Definition 7.2 is identical for the symmetrization of B with

respect to E , and the symmetrization of D with respect to E p

Thus E , H B* = SL (D) . But D* =E . 0 B* and therefore
a-1 En_2 n"1

D* =S^ 0(D).
^n-2

Q.E.D.-

Theorem 7.9. If

(i) X = (Xj^, ..., xn+1) is apoint of En+1 ,

(ii) En C Eq+1 is the'space xq+1 =0 ,

(iii) E~~ C E ., is the space x. - 0 ,

(iv) En-lC En+1 is the space xl =xn+l =° '

(v) D is a solid in E ,
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(vi) D* = S (D) ,
En-1

(vii) f(x,, ..., x ) is a continuous, non-negative, single

valued, function defined on D which vanishes on the surface of D,

(viii) B is the solid In E . defined by 0 < x _ <

f(x1, ..., xq) ,where (x^ ..., *n)eD t

(ix) B* = S—(B) ,
En

(x) f*(x,, ..., x ) is the function for which 0 <^ x . <

f*(x , ..., x ) defines B* , and

(xi) G(t) is any continuous, monotone, function of t ,

then

7.9.1 / G[f(xx, ..., xn)] d7n = / G[f*(x]_, ..., xn)] d7n

Proof. Theorem 7.5 and hypothesis (ix) imply

7.9.2 7n+1(B) = 7n+1(B*)

Let D(t) and D*(t) be the intersections of B and B* ,

respectively, with the space x 1 =t , and let A(t) and A*(t) be

the orthogonal projections of D(t) and D*(t) , respectively, on EQ

Theorem 7.8 implies

7.9-3 D*(t) = SE (t)(D(t)) ,
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where E ,(t) is the space in E defined by 3L=0 and x . = t

Theorem 7.4 then implies

7.9.4 Vn !><*>] " Vn[D*(t)] >

and, therefore,

7.9.5 Vn[A^] " Vn[A*^]

Let t be the maximum value of f on D . Subdivide the interval

< 0 , t > of the x axis into m equal intervals of width A t

Let

7.9.6

Then

7.9.7

Similarly, if

7.9.8

A7n [A(t)] = 7n [A(t) -A(t +At)] .

A7n [A(t)] = Vn jX[x =(x^ ..., xn) eD and
G(t) < G(f(X)) 4 G(t +At)]J

A7n [A*(t)] = 7n [A*(t) -A*(t +At)] ,



7.9.9 A7n [A*(t)] = 7q j $[x =(x1, ..., XQ)eD* and
G(t) < G(f*(X)) < G(t +At)

Let K be defined by

7.9.10 0 < x < G(f(X)) ,

where X = (x1, ..., x ) eD , and let K* be defined by

7.9.11 0 < x < G(f*(X))

where X = (x-, ..., x ) eD* .

7.9.12 Vl<K> - 'G(f(X)) dVn >

and

7.9.13 Vl(K*> - £. G(f*(X)) dVn •
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If S is the subdivision of the interval < 0 , t > of the
m

x , axis into m equal intervals of width At, then
n+1 u m

7.9.1^
m-1

E G(t±) A7n (k(t±)) < 7n+1(K) <



m-1

7.9-14 < E G(t± + Atm) A7n A(t±) ,
i=0

and

m-1

V.9.15 E G(t±) A 7n (A*(t1)) < Vn+1(K*) <

E G(ti+Atm)A7n(>*(ti)) .
m-1

E
i=0

33

Since G(t) is continuous and A7 (A(t)) and A7Q (A*(tj)
are of bounded variation, then

7.9.16 lim E G(t) A 7_ (A(tf) = lim E G(t+At)
m m

A7n(A(t)) = / G(t) d7n(A(t)) ,

and

7.9.17 lim E G(t)A7 (A*(tj) = lim E G(t+At)A7„(A»(tj)
m^ ~> S n V m-> ~ S nm-^ ^ s m- ,

But 7.9.5 implies

t

= / G(t) d7n(A*(t)) .
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7.9.18 d7n (A(t)) = d7n (A*(t)) .

Therefore

t t ^
7.9.19 / G(t) d7n(A(t)) = / G(t) d7n(A*(t)j) .

Applying 7.9.16, 7.9.17, and 7.9.19 to 7.9-14 and 7.9-15, yields

t t ^

7.9.20 Vn+l<K) = / G^t) dVn(A(t)) = ' G(t) dVn Qk*^V

" Vn+1(K#) '

That is, by 7.9.12 and 7.9.13*

7.9.21 / G^fC^, ..., xj) d7n = J G^V -.., xn)Jd7n

Q.E.D.

Example 7.10. Consider a square, S , with vertices (0, 0) ,

(0, 2), (2, 2) and (2, 0). Its corners can be rounded in such a way

CO

that the boundary curve of S is of class C . For example, to round

the corner at (0, 0) consider the curve defined on 0 -^ x ^ l/2

by y = f(x) , where

1

V.10.1 f(x) = e^ (jA- + Ie2) .
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This curve fits the boundary of S continuously at (0, l/2) and

(l/2, 0) as do all its derivatives. Let S' be the result of rounding

all the corners of S in a similar manner. Then the boundary of S*

is of class C . Let S" be the same as S' except the line

segment y = 2 for l/2 < x ^ 3/2 is replaced by y = f(x)

for l/2 < x < 3/2 and

7.10.2 f(x) = e(l/2-x)(3/2-x) sin2 ^_^ + g #

The boundary of S" is also of class C

Let S be the symmetrization of S" with respect to the y-axis.

The boundary curve of S has a discontinuity in the first derivative

for each value of y > 2 at which the boundary curve of S" has a

relative maximum. Since there are an infinite number of such values

of y , the boundary curve of S is not even piecewise smooth.

Section 71. The Effect of Steiner Symmetrization on the Fundamental

Eigenvalue of a Solid

The result of the final section of this chapter will depend upon

the properties of Steiner symmetrization. Therefore the effect of this

operation on the quantity under discussion, the fundamental eigenvalue,

is established here. The proof of the following theorem, for Ep , is

sketched by Polya and Szego.

JG. Polya and G. Szego, op_. cit., pp. 89-91 and pp. 182-186.
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Theorem 71.1. If D is a solid in E and if D* = S„ (D) ,
n En-1

where E , (Z E , then
n-1 n

71.1.1 n(D) > u(D»)

Proof. Let E CZ E . and choose a rectangular coordinate

system in E„. such that E is the space x , = 0 and E ,
n+l n * n+1 n-1

is the space x^ =x =0 . Let E~ be the space x. =0 . Let

p(x1, ..., xq) be a polyhedral function defined in E ,which is

non-negative on D , and vanishes on E - D . Consider the polyhedron

defined by

71.1.2 0 ^ Xn+1 ^ P^V •'•' XJ '

where (x^ ..., xn)eD . This solid will be referred to as the

"polyhedron" B . Let B* = S=-(B) and let D* = B* f) E . Since
jbi n
n

D = B (1 E , Theorem 7.8 implies

71.1.3 D* = S_ (D)
n-1

Since B* is a polyhedron there exists a polyhedral function p* such

that B* is defined by

71.1.4 0 < xn+1 < p*(xn, ..., xj ,
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where (x^, ..., x ) eD* . Since B* =Sj- (B) ,Theorem 7.9, 71.1.2,
n

and 7.1.4 yield

71.1.5 /P2 d7T) = /(p*)2 d7
D D

Since B and B* are polyhedra,

71.1.6 A_(B) = / fl +(yp)2] d7 + 7(D)
D

and

1

2 l4

71.1.7 An(B*) = / |"l +(y p*)2] d7 +7(D*).
n D*

Theorem 7.5 and Corollary 7.7, with 71.1.3, imply

71.1.8 / fl +(y p)
D L

d7 >
n

r ' 212/ U + (VP*) J d7
D*

Let e be any positive constant and let C be the polyhedron defined

by replacing p by ep in 71.1.2. Similarly, let C* be the poly

hedron obtained by replacing p* by ep* in 71.1.4. Then

14
Favard, M. J., La Longeur et L'Aire d'apres Minkowski,

Bull. Soe. Math. France, 6l (1933), PP. 63-84.



71.1.9 C* = Sg- (C) ,
n
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and D = cflE , and D* = C*flE . Therefore, by the preceding argument,

71.1.10 / fl +e2 (yp)2]2 d7n >
D U

1

/ fl +e2 (y p*)2]2 d7n .

Choosing e so that e2( y p)2 < 1,f1+€(y p) J may be
2 2

expanded in a power series in terms of e (yp) , yielding

71.1.11 [i +e2(yP)2]2 =i+£j£*L +
J-i

j=2

,1

'2

(vp)2 ]

Since the series in 71.1.11 is an alternating series, the magnitude of

the terms of which decrease monotonically, then

71.1.12

where

71.1.13

1 + *2(VP)2] = 1 + * <aV>> + 0(c") ,

0(ek) s 1 4 , X< ^ e (yp)



39

Since p is a polyhedral function, there exists a constant k such that

71.1.14
1 4 . 4k > £e (yp)* ,

for all points in D . Therefore

71.1.15 o(.*) < ke ,

r 2 21 —larly, 1 + e (yp*) J 2 may be expanded in a power series,Simi

yielding

71.1.16 [i ♦ £2 (vp*)] 5 =i ♦ L&z£ ♦ <*/> .

where

71.1.17 0*(e ) < k*e ,

and k* is some finite constant such that

71.1.18
1 4 4k* > | e* (yp*)

for all points in D* . Inserting VI.1.12 and 71.1.16 in 71.1.10 yields



2

71.1.19 / fl +^-(yp)2 + 0(e4)]d7n >

/ fi +l_(Vp*)2 +-o*(e*)] dVn
D*

Since 7Q(D) = 7n(D*) ,71.1.19 implies

71.1.20 /fe2 (yp)2 + 2x0(e)] d7Q >

/ [e2(yp*)2 + 2x0*(e^)]d7n
D* n

2
Dividing both sides of VT.1.20 by e gives

vi.1.21 /[(vp)2 - S^l] dvn >

/ [(vp.)2 ■♦ SKjtiV.
D* €

Letting e go to zero in VI.1.21 yields

71.1.22 /(yp)2 dv > / (yp*)2 d7
D D*

By Theorem III.3, given an e > 0 , p may be chosen such that

40



/ (yp)2 d7n
71.1.23 U(D) + e > 2 _

I s dT°

By 71.1.5, 71.1.22, and 71.1.23 and Theorem III.3, it follows that

4l

/ (vp)2 d7n / (yp*)2 d7n
71.1.24 n(D) +e > 2 ^J£ >h(d*)

/P2 d7„ / (p*)2 d7_
D D*

But e is arbitrary, and so

71.1.25 u(D) > n(D*)

Q.E.D.

Section 711. A Minimal Property of the Sphere.

Lemma 711.1. If S and B are two convex solids in E , with
• n

surfaces s and b , and if S CZ B for some h > 0 , then S CZ B

Proof. Assume S CfZ B . Then there exists a point Xe(s - B) .

Let

VTI.1.1 D = d(X, B) = d(X, Q) ,

where QeB . Clearly Qeb . Let L be the line such that QeL and

XeL and let E , be the (n-1)-space such that E ,(Z E„, QeE„ , ,
n-1 n-l n n-1 '

and L is orthogonal to E , . Let T(X, D) be the sphere in E
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of radius D and center X . Then T(X, D) is tangent to E 1 and

on the same side of E , as X . Thus E , seperates X and B •
n-1 n-1

For if E , did not seperate X and B , then there exists a point

YeB such that Y is on the same side of E , as X . But then the
n-±

line segment between Y and Q must be contained in B and must

intersect T(X, D) . Then d(X, B) < D , which is a contradiction.

If ZeL and Z is on the same side of E . as X , let n(z) =

d(Q, Z) . Then n(x) = D . Let s and b be the boundaries of S

and B , and let L' be the part of L on the same side of E ,

as X . Let Y=L' fl bh . Then n(Y) =h . Let Z =L' Pi s .

Since XeS , n(z) ^ n(x) + h . This is a contradiction since

h > 0 . Therefore S - B is empty, and thus S CZ B .

Q.E.D.

15
It has been shown by R. Courant that of all simply connected

plane domains, with piecewise analytic boundary curve of a given

length, the circle has the smallest fundamental eigenvalue. G. Faber

has obtained the stronger result that of all simply connected plane

domains of a given area and with a piecewise analytic boundary curve

the circle has the smallest fundamental eigenvalue. Unfortunately their

proofs depend strongly on the use of the theory of an analytic function

of a complex variable and therefore do not generalize directly to n-space.

5R. Courant, Math. Zeits., 1, pp. 321-328.

G. Faber, Sitzs. Bayer. Akad. Wissen., (1923)> PP« 169-172.
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However, using Steiner symmetrization and the preceding theorems it is

shown, in Theorem 711.3, that of all solids of a given volume, which

can be made convex by a finite number of symmetrizations, the sphere

has the smallest fundamental eigenvalue. The following result is

17
proved by A. Dinghas.

Lemma 7TI.2. If K is a body in E and S is a sphere in

E such that
n

7II.2.1 7n(K) = 7n(S) ,

and if K=&* fK* is the image of K after afinite number of
Steiner symmetrizationsj ,then given numbers h and k such that

h > k > 0 there exists a K*eK such that

7II.2.2 Sh~k C (S 0 K*)h

Theorem 711.3. Given a solid B in E , if
•* n '

711.3.1 B = B* [_B* is the convex image of B after
a finite number of Steiner Symmetrizationsj ,

is not empty, and if S is a sphere in E such that

17A. Dinghas, op_. cit., p. 111. See also Math. Rev., 11, p. 386
which is a review by P. Scherk of this article.



44

VTI.3.2 7n(B) = 7n(s) ,

then

VII.3.3 n(B) ^ n(S)

and given an e > 0 there exists a B*eB such that

711.3.4 n(B*) - e < n(s)

Proof. Note that, under symmetrization, any image of a convex

solid is again convex. If h > k > 0 , then by Lemma 7II.2 there

exists a B*eB such that

711.3.5 sh_kCZ (sOb*)* ,

and obviously

711.3.6 (s Ob*)11 C B*h .

If D is a solid with surface C , let

711.3.7 D~ =^ [xeD and d(X, C) >i] .
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Since B* is convex, by Lemma 711.2,

711.3.8 s~k C B*

By Theorem 7.5, 7n(S~k) < 7n(B*) ,and B* -S~k is not empty.
Let X be apoint of B* -S~k such that d(X, S~k) =max d(Y, s"k) ,

YeB*

—k
and let V = d(X, S ) . Let G be the cone with vertex X each ray

-k
of which is tangent to S and let K be the solid consisting of the

-k
part of G between X and S . Since B* is convex

711.3.9 K C B* ,

and, therefore,

7II.3.10 7n(B*) > 7n(S-&) + 7n(K) .

Since k is arbitrary and 7n(B) = 7(S) , it follows that as k *0+ ,

7 (K) > 0 , and this implies v 3> 0 . Therefore given an e > 0 ,

7H.3.11 s"€c b* c s+€

But, Theorem 71.1 implies

7II.3.12 u(B) > n(B*) ,
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and Theorem 17.1 implies

711.3.13 u(S~£) ^ ^(B*) > u(S+£) .

Therefore, by Theorem 17.3

711.3.14 u(B) > n(B*) > ^S>g ,
(1 + e)

and since e is arbitrary,

711.3.15 n(B) > \x{S)

Moreover, VTI.3.I3 implies

711.3.16 n(B*) < ^ p
(1 - e)2

Thus, for sufficiently small h and k , Dinghas' Lemma (Lemma 711.2)

furnishes a B*eB such that the fundamental eigenvalue of B* is

arbitrarily close to the fundamental eigenvalue of a sphere of equal

volume.

Q.E.D.



CHAPTER III

SOME NUMERICAL RESULTS FOR ONE AND TWO REGION PROBLEMS

Section I. Some Examples of Steiner Symmetrization

In this section, all work is done in the Euclidean plane. By

using some of the results of Chapter II and the known fundamental

eigenvalues of certain plane regions, bounds are obtained for the

fundamental eigenvalue of a rhombus with diameters a and -*— a •

By similar techniques, bounds can be obtained for the fundamental

eigenvalue of many plane regions.

Table I is, to the best of the author's knowledge, a complete

listing of those fundamental eigenvalues of plane regions which are

.0.8
known exactly. This tabulation is given by G. Polya and G. Szego.

Region

(l) Circle , radius a .

(2) Square, side a .

'able I

Fundamental Eigenvalue

2
a

2/
2

a

2/ 2 ,2,
b .

jt (a + b )

2 v2
a b

(3) Rectangle, sides a and b .

1 o

G. Polya and G. Szego, op_. cit., pp. 251-274. The fundamental
2

eigenvalue is denoted by -A in their notation.

19 j is the first zero of the J Bessel function, = 2.4o48.
"o o '



(k)
20

Semicircle , radius a .
4
2

a

2 2
Jj_ it

(5) Sector of a circle, radius a
and angle (of opening) y . 2 2

r a

(6) Equilateral triangle,
side a .

16/

3a2

(7) 45°, 45°, 90° triangle, sides 5*2
2

a
a , a , v 2a .

(8) 30°, 60°, 90° triangle, sides
a , a/2 , /3/2 a .

112jt2
9a2
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Example I.l. Let T be an equilateral triangle with side a

and let L be a line parallel to one of the sides of T . Let

1.1.1 R = SL(T)

Then R is a rhombus with diameters a and -ft— a . Let M be a

line perpendicular to one of the sides of R . Then, if

1.1.2 Q = SM(R) ,

Q is arectangle with sides /•*• a and £a. Table Iyields

20 j is the first zero of the J± Bessel Function, = 3.8317.



1.1.3

and

1.1.4

H(T)
16/

3a2

n(Q) - f
3a

By Theorem 17.1 of Chapter II,

1.1.5

Therefore

1.1.6

That is

1.1.7

u(T) > n(R) > u(Q)
^

i6(j)>,(H) >.^(4;

52o64 , .
2~ > ^R' >

45o58

a

*9

One is tempted to find a much more general class of transformations

which will provide similar bounds on the fundamental eigenvalue. It is

clear from the arguments of the preceding chapter that the fundamental

eigenvalue is rather intimately related to the volume to surface area

ratio. Unfortunately, as the following example shows, this relationship

is not simply a proportionality..
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Example 1.2. In the Euclidean plane, the volume of a solid is

the plane area and the surface area of a solid is its perimeter. If

two solids can be constructed which have equal areas and equal

perimeters but different fundamental eigenvalues, then the following

is true. There exist three solids, F, , F„ , and F_ , such that

1.2.1 72(F1) = V2(F2) = 72(F3) ,

1-2.2 A^Fg) > A1(F1) > AX(F3) ,

1.2-3 n(F2) > n(Fx)

and

1.2.4 n(F3) > nC^) .

Let T be an equilateral triangle of side a and let R be a

rectangle with sides rj(3 -£9 -4 /^) and £(3 +/9- 4 £"$) .

Then

1.2.5 72(R) = 72(T)

1.2.6 AX(R) = A^T) ,



51

but

2 2

1.2.7 n(R) = S (36- STD > h(t) - 16(2-3)
3a 3a

Therefore let F, be the equilateral triangle T , let Fp be a

rectangle with sides &X and ^ ,and let F_ be arectangle

with sides -£— a and a ♦ Then

2 /-r

1.2.8 72(F1) = 72(F2) = 72(F3) = ^4^- ,

1.2.9 AX(F2) =af2-^ +|) > A1(F1) = 3a >

> A1(F3) = (2 +^|-)a ,

1.2.10

and

1.2.11

2 2
/•_ » 16 It / /-CI \ 19 a-(jt(F1) = -r- — < u(F ) = -f -g

0 a J ° a

Section II. An Approximate Computation of the Fundamental Eigenvalues

of Certain Circular Segments

Let S be a semicircle of radius sixteen, where the origin is

at the midpoint of the diameter of S . Let
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II.1.1 Sk = {x, y) [_(x, y)eS and x > k] .

The problem is to obtain the fundamental eigenvalue of Sj^ for

0 -^ k < 5 o The solution of this problem is known only when

k = 0 , i.e. when the region is a semicircle,, The differential equation

which an eigenfunction f must satisfy is

H.1.2 ^ + ^ + ^Sk)f ^ 0 .

To obtain approximate values of u(S,) recourse was had to

numerical techniqueso It was noted from the symmetry of S^ about

the line y = 0 , that if f were an eigenfunction then

n.i.3 f(x, y) = f(x> -y)

A mesh was then placed on the square with vertices (0, 0), (0, l6),

(16,0), and (16, 16) with the mesh points being the points in the

square with integers for coordinates. Figure I is a diagram of the

mesh employed. Whil«j not all of these points lie in S^ it was

convenient for computational purposes to retain all the points of the

mesh.

The differential equation (lld.2) was then replaced by a

difference equation which gave rise to a set of two hundred and seventy-two
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simultaneous equations of the form

II.1.4 -4*^ + -1+1^ + ^^ + W^J+1 + ^^

where u. . is the value of the function at the point (i, j)

The boundary conditions for the difference equation are

II.1.5 w. , = 0 for i -^ k ,

II.1.6 w. , = 0 for i2 + j2 > 256 ,

and

II.1.7 w4 < = w. . .

However, II.1.4 and II.1.6 would provide a poor approximation of the

boundary. Therefore, II.l.4 was replaced by

1 1
T to, ., x + — W, , ., + to, n * + («)J

II.1.8 -4(o.
-Li,j + 2+i +i =^(skK„

A B

where A is the distance from (i, j) to the boundary in the x

direction, or the distance to the next point in the x direction, which
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ever is smaller, and B is the distance from (i, j) to the boundary

in the y direction, or the distance to the next point in the y

direction, which ever is smaller.

The matrix D of the coefficients of II.1.8 was found. Thus

the approximate problem was to find the smallest eigenvalue of D . If

-u is the smallest eigenvalue of D and - X is the largest eigenvalue

of D then, if m > |x| and w is the largest root of I + — D = E ,

the eigenvectors of E and D are the same and

II.l.9 u = (1 - u)m

21 22
The largest root of E was computed by the Aitken ' Iteration

process. Figure 2 shows jo, plotted as a function of k . The exact

value for the semicircle is given and indicates, roughly, the error in

the computed values. All values have been normalized to those for the

case where the radius of S is one. From Chapter II, it is clear that

a simple multiplication by 256 performs this normalization. Figure 3

shows the estimate of p. as a function of the number of iterations

performed. Figure 4 is a plot of the level lines of the eigenfunction

obtained by interpolating between the values of the eigenvector

components.

21A. C. Aitken, Proc. Roy. Soc. Edinburgh, 57 (1937) PP« 269-304.
22
H. Hotelling, Ann. Math. Stat., 14 (1945), Pp. 1-31*-*
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Section III. Two Boundary Problems

Consider a pair of solids T and R in EQ with surfaces t

and r such that R is contained in the interior of T . Let

III.l.l

and then

III.1.2

Let

III.1.3

and let

III.1.4

S = (T - R) |J r ,

F = f

G = £

- tU r

f is a continuous function of x^, ..., xq

and a parameter X , with piecewise

continuous first derivatives with respect

to X ,and defined on rJ ,

[• is a continuous function of x1, ..., x

and a parameter X , with piecewise

continuous first derivatives with respect

to X , defined on S and which vanishes

on sJ •
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The two boundary problem consists of finding a function feF

and a function geG such that

III.l.5

in R ,

III.1.6

in S ,

III.1.7

where Xer, and

III.l.8

2 PV f + X^ f = 0 ,

2 2
V + X g = 0 ,

f(X) = g(X)

v of
-M

where £— is the outer normal derivative and -5— is the inner
on on

+

normal derivative, k is a constant, and III.1.7 and III.1.8 are

satisfied for all Xer .

Assume feF and geG satisfy III.1.5 and III.1.6 respectively.

Then, if a and b are arbitrary constants, afeF , bgeG , af

satisfies IH.I.5 and bg satisfies III.1.6. If af and bg are to

be solutions of the two boundary problem they must satisfy 111*1.7 and
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III.1.8 for some value of X • That is

III.1.9 af(X) = bg(X)

and

III.1.10 ka
Bf

h -o"f

for all Xer . For III.1.9 and HI.1.10 to have a non-trivial solution,

it is necessary that

f(x) g(X)

III.l.ll = 0

k
of

for all Xer That is

IH.1.12 *w|f x**"« ^+ = 0

for all Xer . Then III.1.12 is an equation in X and is called the

characteristic equation of the two boundary problem. It is clear that

the square of the roots of this equation are the eigenvalues of the

two boundary problem and it is assumed that the smallest non-zero
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root of this equation is the smallest (fundamental) eigenvalue of the

two boundary problem. Once X is determined a and b are

determined by III.1.9 and III.1.10 and af and bg form an eigen

function associated with the fundamental eigenvalue. As in the one

boundary problem, any multiple of an eigenfunction is again an

eigenfunction.

Example III.2. If R is a sphere of radius a, 0< a< 1,

with center at the origin and if S is the spherical shell of outer

radius one and inner radius a , then the corresponding two boundary

problem has been solved. Changing to spherical coordinates it is

clear there will be no angular dependence in the eigenfunction. Indeed,

if there were, then by rotating any eigenfunction one obtains a non-

denumerable number of independent eigenfunctions belonging to the

eigenvalue. Since each eigenvalue has only a finite multiplicity,

this is clearly impossible. Thus, III,1.5 and 111,1.6 become

IH.2.1 f + |f + X2 f = 0 ,
rr r r

and

IH.2.2 grr + 1^ +X2g = 0

The interface conditions III.1.7 and HI.1.8 become



III.2.3

and

III.2.4

Let

III.2.5

and

III.2.6

f(a) = g(a) ,

k f
r a

f(r) =
sin Xr

/ > sin X(l - r)
g(r) = -* L
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Then, feF , geG , f satisfies III.2.1 and g satisfies III.2.2.

The characteristic equation is

III.2.7 (l - k) sin Xa sin X(l - a) +

aX sin Xa cos X(l - a) + k cos Xa sin X(l - a) = 0

It is clear that 111.2,7 is an equation in |X| . For k = 1 , the

problem reduces to a one region problem since the differential

equation is satisfied at the interface. In this case, 111,2,7 becomes
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IIIo2o8 ax sin Xa cos X(l - a) +

cos Xa sin x(l - a) = 0 ,

That is

III.2.9 sin x[a +(l -a)] = sin X= 0 .

Therefore X = jt is the smallest positive root which is exactly as

expected.

Using Newton's method of approximating the roots of an equation,

^ was computed for various values of k and a „ Figure 5 shows X

as a function of a for five values of k . The slight non-linearity

in the curve for k = 1 gives some indication of the amount of error

in the computation. Figure 6 shows X as a function of k for four

values of a . Unfortunately, the Newton approximation did not

converge for certain combinations of k and a , and therefore the

range in a was cut.

Example 111,3. Relaxing the condition that R and S be

solids, consider next the situation where S is a pair of semi-

infinite slabs and R is a semi-infinite slab between the two slabs

of S . Specifically, R is the slab in E defined by

HI.3.1 -a -^ x ^ a ,
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where 0 < a < 1 , and S is the pair of slabs defined by

III.3.2 -1 ^ x ^ -a ,

and

III.3.3 a 4; x ^ 1 ♦

The eigenfunction will, as in the previous case, be independent

of two of the three variables. Therefore, III.l.5 and HI,1,6 become

111.3.^ fxx +^f " ° >

and

III.3.5 gxx + * 8 " °

The interface conditions III.l.7 and III.1.8 become

III.3.6 f(a) - g(a) ,

IH.3.7 f(-a) = g(-a) ,

III.3.8 k f
" *x
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and

III.3.9 * f x -a °xl-a

Let

111.3.10 f(x) = cos Xx

and let

111.3.11 g(x) = sin X(1 - Ix|) .

Then feF , geG , f satisfies III.3.4, and g satisfies III.3.5.

Since f and g are both even functions of x , III.3.7 and III.3.9

may be omitted. The characteristic equation is then

IH.3.12 k sin Xa sin X(l - a) - cos Xa cos X(l - a) = 0

Again, if k = 1 , this becomes a single region problem. In this case

111.3.12 becomes

111.3.13 cos X(a + (1 - a)) = cos Xa = 0

That is X = p^ , the expected result.
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The first positive root of III.3.12 was computed for various

values of k and a by Newton's approximation. It is clear, as in

the previous example, the characteristic equation is in |X| , The

characteristic equation in this example is also symmetric about a = -r •

Figure 7 shows X as a function of a for twelve values of k , and

Figure 8 shows X as a function of k for five values of a . By the

symmetry mentioned above, Figure 8 actually shows X as a function of

k for nine values of a .
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Figure 1, Mesh Points for Example II.l
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150 175

Figure 3- u vs. Number of Iterations for Example II.l
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Figure 4. Lines of Constant Flux f\. -' Example II.l
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Figure 5. X vs. a for Example III.2
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Figure 7. a vs. X for Example III.3
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