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CHAPTER I
INTRODUCTION

Consider a plane region D as the equilibrium position of a
homogeneous and uniformly stretched elastic membrane fixed along the
boundary, C , of D . If A is the frequency of the gravest proper
tone of the membrane and if a factor which depends on the physical
properties of the membrane is dropped, them A 1is a purely geometric
quantity% The problem of determining A 1is one of the classical
problems of mathematical physics. It may be stated as follows.

Given a plane region D it is required to find the smallest
positive constant 12 for which there exists a function f defined on
D such that f 4is continuous, f vanishes on the boundary, C , of D

and f satisfies the differential equation

v 2 f + 12 T

Y ’

on b, $72 being the Laplace operator. There is no need, however, to
require D to be a plane region. If D is a region in Euclidean
n-space, 12 may be defined in an analogous fashion.

In Chapter II several properties of 12 are discussed. The major

tool of the chapter is a geometric operation called Steiner symmetrization

lG. Polya and G. SzegO, Isoperimetric Inequalities in Mathematical
Physics, (Princeton, Princeton University Press, 1951), p. 2.




invented by Jacob Steiner. This operation is shown to transform a

region D into another region whose fundamental eigenvalue is not greater
than that of D and whose volume is equal to that of D . Using this
result it is shown, for a large class of regions, that of all such

regions with a given n-dimensional volume the hypersphere has the smallest
fundemental eigenvalue. Other properties of the fundamental eigenvalue
are discussed though in less detail.

Chapter III deals with the mumerical results obtained in the
solution of specific problems of the above type. The results of Chapter
IT are used in obtaining bounds for the fundemental eigenvalue. A method
of computing the fundamental eigenvalue in a case where the analytic
solution is not known is described and the results of the computation
are given.

If the membrane is not homogeneous but is composed of two homogeneous
portions the fundamental eigenvalue may be defined in a similar fashion.
Two specific cases are discussed in some detail, the case of concentric
spheres and the case of three semi-infinite slabs. For these cases the
fundemental eigenvalue was computed as a function of the relative size

of the regions and of the matching constant at the interface.




CHAPTER II
A MINIMAL PROPERTY OF THE SPHERE

In this chapter several properties of Steiner symmetrization and
the fundamental eigenvalue of a solid are developed. They, in turn, lead
to a minimal property of the sphére which is stated and proven in

Section VII.

Section I. Notation

Throughout this chapter and the next the following notation is

used.
I.1l.1 En represents an Euclidean space of n dimensions.
I.1.2 X = (xl, ceuy xn) represents a point in E_  with

rectangular coordinates Xy eeey Xy oo

If f(xl, ceey xn) is a function defined in E , and it 1L 1 Kn
then
of
I.1.3 fxi represents E&—i »
2 2 2
I.1.k (7 £)° represents L f ’
X
1l i
5 n
I.1.5 7 ° £ represents L (f_ )
x,’x
1 i1
I.1.6 J] £dv_ represemts [ ...[ fax, ...dx .
B n B &

b4




If B is abody in E (cf. Definition V.l), then
I.1.7 Vn(B) represents the volume of B ,

I.1.8 An_l(B) represents the Minkowski surface area of B

(cf. Definition v.6), and

I.1.9 B* = §; (B) denotes that B* 1is the imasge of B

n-1
under Steiner symmetrization (cf. Definition V.2) with respect to En-l ’
an (n-l)-dimensional subspace of E -

If B is a solid in E, (cf. Definition II.1) then

I.1.10 n(B) represents the fundamental eigenvalue of B

(cf. Definition II.3).

I.1.11 X = 2 |x has property Pj signifies that X is the
set of all elements, x , such that x has property P . If X and

Y are pointsets in En ,» then;

I.1l.12 x€X signifies that x 1is an element of X,
I.1.13 xfX signifies that x is not an element of X .
I.1.14 Y( X signifies Y is a subset of X,

I.1.15 Yd: X signifies Y is not a subset of X,




1.1.16 - x N v = ¢ [-zex and zéY] ,

I.1.17 U Y = %2 [zex or zéY] ,

1.1.18 X - Y =% [zex and zfy] , ama

I.1.19 d(X, Y) denotes the distance between X and Y .

Section II. The Equivalence of the Variational and the Boundary Value

Problem Definitions of the Fundamental Eigenvalue of a Solid

For the purposes of this paper the most usefuwl definition of the
fundamental eigenvalue is the one provided ﬁy the Calculus of Varilations.
In practise, however, the more usual definition is that of a boundary
value problem. This section establishes, to the extent needed for the
later sections of this chapter, the equivalence of these definitions.

Definition IT.1. By a sollid is meant a closed set B such that

the interior of B is non-empty and connected and whose boundary is a
surfécel S consisting of a finite number of surfaces each of which is
plecewise smooth.

Definition I1I.2. A function f 1is piecewise smooth on a solid

B means f 1s continuous and there exists a finite number of smooath
surfaces Sk which subdivide B 1into a finite number of sub-solids

B, such that fx , for 1 £ 1 £ n, is continuous on the interiors

J 1

of the BJ's and coincide with a continuous function on each BJ .

lTibor Rado, Length and Ares, (American Mathemastical Society,
Colloq. Vol. XXX), Chapt. 3, pp. 116-133.




Definition II.3. If B is a solid in En with surface S ,

then by the fundamental eigenvalue of B one means the smallest positive

number, p(B) , for which there exists a function f defined on B

such that

(1) f is piecewise smooth on B ,

(i1) f vanishes on S , and

(iii) in the interior of B, f satisfies the differential
equation

I1.3.1 of + u®f = 0 |,

then f is called an eigenfunction associated with n(B) .

Definition II.4%. If B 1is a solid in E, with surface S

and if

II.h.1 F = f Er is piecewise smooth on B , £(S) =0,

and IS v is positivé] ,

B
then A(B) is defined by
2
[ (vf)” avy
IT1.h.2 AMB) = inf -2 .
EF £ av_




Theorem II.5. If B is a solid in En , then

II.5.1 AMB) = u(B) .

Proof. In the well-known book by Courant and Hilberta, the

above result is proven in detail in E, and the authors s‘(:a:l:e3 that

2

their proof generalizes directly to E, and generalizes to En s

3
n > 3, if the Euler equation of the variational problem fulfills

certain conditionsh . If

n
I1.5.2 E(v) = [ (p (7v)Z + 2% 8, v o+ o) v,
B 1 i

is the variational integral, where p > 0, ¢ > 0, the ai's have

first and second derivatives, and p has continuous first, second,

and third derivatives, then the Euler equation is

n
II.5.3 L(u) = X2 (pux )x - g*u + AB)u = 0 ,
1 i1
where
n
II'50,"’ q* = q - Zai .
1

2R. Courant and D. Hilbert, Methoden der Mathematischen Physik,
(New York: Interscience Publishers, Inc., 1943) Vol. 2, pp. 471-508.

3Ib:i.cl., p. 471.

kaid., p. 499.




The requirement which II.5.3 must satisfy in order that the

proof generalize to n dimensions 1s
I1.5.5 g = 0 .

Since, for this theorem, p=1, a, =0 forall i1, and q > 0,

i
this condition is fulfilled and II.5.2 becomes

11.5.6 Bv) = [ (vviav, .
B

Thus the equivalence of Definitions II.3 and II.4 has been established.

Corollary II.6. If B 1is a solid in E with surface S and

if £ is an eigenfunction associated with p(B) , then

11.6.1 u(B) =

Proof. Applying Green's theorem to the function fi72f ylelds

11.6.2 [ (v f)2 av. = - fV2 fav. + [ £ . £ ds,

n n n
B B S

where fn is the normal derivative of f and 4SS is the element of

surface area. Since f is an eigenfunction associated with y(B) ,

f vanishes on S . Therefore




11.6.3 [ 2.2 a8 = 0 .
Hence II.6.2 becomes

I1.6.4 [ (vf)2 av, = - ffvafdvn .
B B

But, since f 1is an eigenfunction associated with p (B) , then
I1.6.5 v2f + u(B)f = 0 .

Multiplying II.6.5 by f and rearranging gives

I1.6.6 -fvzf = u(B) £ ,

and integrating II.6.6 over B yields

II1.6.7 - fvzf v = u(B) [ £ av_ .
B

B

Substituting II.6.% in II.6.7 and dividing gives

[ (w0 av
I1.6.8 u(B) = B .
J
B

2
T dvn

Q.E.D.
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Section III. Approximation of a Continuous Function with Piecewise

Continuous First Derivatives by a Polyhedral Function

Since Steiner symmetrization may introduce singularities, the
image of a solid under symmetrization may no longer be a solid, as the
example at the end of Section V shows. Howefer, the image of a poly-
hedron is a polyhedron. Therefore, it is shown that the following
sections may be limited to the discussion of polyhedral functions with
no loss of generality.

Lemma III.l. If Kn is a hypercube, in En , with center Cn ’
then there exist 2n-ln£ simplexes in En with disjoint interiors
and equal volumes such that Kn is their union and Cn is their
intersection and a vertex of each simplex.

Proof. The lemma is true for n = 2 , since, by constructing

the lines from C, to the vertices of K2 s K2 is divided into four

2
triangles (simplexes in E2) vhose interiors are disjoint and whose

‘ areas are equal. Clearly, K2 is their union and 02 is their
intersection, C, is a vertex of each triangle, and ol .oy,

The proof then proceeds by induction. Assume the lemma is true
for n=p -1 > 1. Kb has 2p faces and each face is a hypercube
of dimension (p - 1) . Therefore, each face can be decomposed into
2P72 (p -~ 1)! simplexes. Construct all the Ep-l which contain Cp
and an edge (an EP-2 bounding a face of the simplex). The Ep_l's
divide K? into simplexes. There are 2p-2 (p - 1)! simplexes in

- -1
each face and 2p faces, and so there are 2p [?p 2 (p - l)!] = 2P p!




11
simplexes constructed above. C(Clearly, Cp is a vertex of each simplex,
they are disjoint, Kb is their union and CP is their interseqtion.
Also, by Cavalieri's Principle every simplex has the same volume.

Thus the induction is complete.
Q.E.D.

Definiton III.2. A function p , defined in En is a poly-

hedral function if and only if there exists a subdivision of En into
eimplexes such that p 1is a linear function on each simplex, p dis
continuous in En , and every bounded region of En contains only a
finite number of simplexes.

Theorem III.3? Let B be a solid in En with surface S and

let P(B) be the clase of polyhedral functions which vanish in some
neighborhood of S . If F(B) = 9 [f is defined and pilecewise smooth

in B and £(8) =O] , then for any € > O there is a peP(B) such

that
2 2
J (v p) av, J (V) av
IIT.3.1 B 5 < inr B 5 + e .
[ p°av feF(B) [ £° av
B n B n

Proof. Clearly, P(B) C F(B) and thus one need only prove

that given € > O and feF(B) , there exist a peP(B) such that

2 2
[(op ey, (v,

ITI.3.2 <

+ € .
/97 v, [ £° v,
B B

5The theorem and proof given above are due to Professor Walter
Snyder.
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For any w > O and feF(B) define

i

II1I.3.3 fw(X) max [o, £(X) - w] + min [o, £(X) + w:]
for XeB and

IIT.3.k fw(X) for X¢B .

]
o

Then fm is defined and continuous in En and vanishes in some
neighborhood of S . Let K = R Bf(X)| = wj . Since w # Wy
implies KwI”)KbQ is empty, lK&l > 0 for at most a countable set
of values of w . Requiring that IKm| = 0 1t follows that fw

exists almost everywhere and

2 2
III.3.5 1f3(Vf“’) av, < ]_Q(Vf) av, .

k
Indeed, if {Si} 4=1 &Tre the surfaces on which the discontinuities of
the partial derivatives of f are distributed and if G 1is any
neighborhood of S on which fw vanishes identically then on any

component, C , of the open set D ,

X
III.3.6 p = (5, -k - |JspUe,
1=1

fw is either identically zero, identically f + w , or identically
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2 2 2
f - w . Thus, either (Vf) = (V£f)" or (vfw) =0 on C

and since |K | + k \sl - 0 , III.3.5 follows. Letting
11

w —> 0 , but always requiring IKm, = 0, [ fi an —>J f‘2 an .
B

Thus for some w > O, Km|=0,

2 2
é(me) av, . ]J;(Vf)
f(fm)’2 av ig £° av,

ITT.3.7

Clearly, fm has partial derivatives on D and these are

uniformly bounded. Indeed, if Ifw (Xn)l > n , then XneB - G and
oo x]_

so the limit points of {xn} | ere also in the closed set B - G , thus

contradicting the hypothesis that f 1is piecewise smooth since

|fmx (x )| = |fxl(xn)| , n=1,2, «o. . Let M be a bound for

1
all the partial derivatives of fm on D . Then fm satisfies a

Lipschitz condition. For, consider a line segment, ! , with endpoints

X' = (x]l-, ecey Xl;) and X" = (X;_, vy x;) Vith x:,:. = x; ’ i-= 2, 3,

ees, N o Suppose that, with the possible exception of the endpoints,

/isin C, & component of D . Then |Af | < M|A by the
w S TR

mean value theorem. Now, assume /  intersects U S

i
i=1
finite number of points but doesn't intersect Km , except possibly

in only a

at the endpoints. On each segment of the subdivision of L by the

points of L ﬂ( U S ) the preceding result holds and, by

summation, it holds on ./ . Next, suppose A intersects q S,
i=

infinitely often but doesn't intersect Km , except possibly at the




1k
endpoints. Delete a small neighborhood of each endpoint, if
necessary, so that the shortened segment, ,/*', may be translated
parallel to itself and remain in En - Kw « This translation is to

be made so that, in the new position, the translated segment intersects
k

tj Si at most & finite number of times. To see that this is

i=1

possible, let x, = fiJ(U)’ 3J=1, «osy, n be the parametric

J

representation of S, , 1 = 1, esey k , with U = (ul, cony un-l)

i
varying over a topological (n - 1) - sphere, Dj sof B ;.

Each f is of class C' . Consider the transformation xJ = fij(U) s

i3
J =2, eeey n with 1 fixed. Let Ni(x2’ esey X ) be the number

of distinct points, U, in D; such that x, = fiJ(U) . Then N,

is defined in En— but vanishes outside some bounded region.

1
Banach has shOWn6 that

an_l

III 3 8 f d a(x2’ te oy Xn)
*je N Vv =

i n-1 a( seey U
Ep1 Dy v > -l

Since this integral is finite it follows that Ni 1s finite almost

everywhere in En-l . Ik.vet Ii = (x2, esey xn) [Ni(XQ’ ceey xn)
= +c%o] and let I = LM{ I, « Then I isa set of (n « 1)-dimensional
i=

Lebesgue measure zero and thus Z/* can be shifted as little as desired
k

*
% intersects £;{ Sy

only & finite number of times and does not intersect K& o For ,Z§ ’

to a position where the translated segment, /

6Banach, S., Fund. Math., 7, 225-236.
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lAfm| < Ml xll and by continuity this inequality holds for /% .
Again by continuity the same inequality must hold for ./ . Thus
| & fwl < A xl|M on J if [ intersects K only at the endpoints,
if at all. But if one or more of the points of Kw lie interior to VA s
then f  vanishes at these points. Let X be the point of Kwﬂl
closest to X' and let X, be the point of X ] / closest to X" .

l 1 X"
Then [A 2 |,< IAfwlx, + Af“’lx , stnce £(X,) =0, 1=1,2.

) 4 2
X "
But IAfw|X‘ < Mz -xt| +ux, + x| < MAx

o Thus the

proof is complete for xl and simila.:fly for the other coordinates.

Now, let s = % \:d(S; x) < e] and let © > O be taken

such that fm vanishes on 859\ n « Let
1 v v
III.309 (X) = — f ooof g (X + Z) dz eee 4Z
& oMt Ly oy @ 1 o

for 0 < v < ©, Then gv(X) is continuous in E_ and vanishes
Ja -

in S39 2, Moreover, gy is of elass C' . Sinece fm is

continuous, gV(X)  — fw(x) ags Vv —> 0 and since the functions

vanish outside a bounded region and are uniformly bounded
2 2
[ av,. —> [ £ av as v —>0 .
B v n B (A n

k
At any point Xe (En-Km- pl Si)UG, %—}_%éj and

since these functions are also uniformly bounded and vanish outside a
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bounded region [ (U g )2 av —> J(gf )2 V. . Thus for w and Vv
B v n B W n

sufficiently small

2 2
1f3 (Ve,)” av, 1f3 (w£)" av,

IIT.3.10 5 < . + f;
£ (g,)" av, £ (£,)" av,
[ (v2)® av,
< B + '3E€' .
[ (57 av,
B

Take a cubical net in En of mesh width r . By Lemma IIT.l each
cube can be divided into 2n'ln£ simplexes having a common vertex at the
center of the cube and having disjoint interiors. ILet X be any point
of a simplex with vertices Vl, eooy Vn+l » If ei is the vector from

Vn+l to Vi » and
ITT.3.11 X = L By &

n

then Zi By < 1 and the (61) are lineer functions of X , say
Sk

IIT.3.12 By = §1 CAE N .

Let ei, ceey ez be the components of ei s Then

X
IIT.3.13 Bé - af -

™Mp
L
¥

[
1]
pt
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0 for Z 4k
where 8 = (the Kronecker delta). From the
1 for / =k

construction of the simplexes in Lemma ITI.l it is clear that each
vertex, except the center of the cube, is the vertex of a simplex in
at least two hypercubes. Therefore, since gy is continuous, if
gv(c) is the value of g  at the center of the hypercube and if gi

is the value of 8, at Vi s then
N |

IIT.3.1% p.(X) = glc) + Zl (g, - &,©) By
1=

is a polyhedral function, and

n EBBi

= Z
X i1 9%

ITI.3.15 T
Xy

+ ezi] e‘z.
c

: e
X 'Z=1 wa

where ?Zi are infinitesimals with respect to r . Then

op o8 n n oB
T v i i
III.3.17 _— = —— + L L e e = .
0X |x oX | ¢ g1 11 ¥4 ox ¢
By III.3.13, using Cramer’s rule and the Hadamard bound for a
determinant,
8 BBi g}* ‘ Py rn-l(n-l) E%l
IIIO3.1 E = ’
*x e} rt

vhere le}'* | 15 ‘the deterninant ‘ej | with the 1th row and the kth
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column all zeros except for the i , kth element which is one. Therefore

n-l

IT1.3.19 EARE lH |< | e, 22t (m1) 252

put 2% 1ni(n - 1)

2 ; 1 s independent of r and 1lim € = 0 o
r—>0
Thus, for r sufficlently small, IIT.3.1l7 implies

oP

r o8,

lim axk

r—>0 ax‘k

c

Therefore [ (v pr)2 v — [ (v gv)2 v as r—> 0 and,
B B
clearly,

2 2
]{sprdvn—afgvdvn as r—> 0 .

Thus, for sufficiently small r ,

[ (v pI.)2 av_ J (vgv)e av,
TII.3.20 E < B2 . £
1f3(Pr) av, g(sv)
[ (v£)®
B
< 5 + € .
1I3 £° av,

Q.E.D.
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Section IV. Some Properties of the Fundamentel Eigenvalue of a Solid

In this section some elementary properties of the fundamental
eigenvalue are given, some to be used in later sections of this
chapter, others to be used in the next chapter.

Theorem IV.l. If B and B' are two solids in En such that

B'(_ B and B - B' consists of a finite number of solids, then

IV.l.1l u(B) € u(BY .

Proof. Let F be the class of functions defined in IT.4.1
and let F' De the class similarly defined when B' is substituted

for B . let

- A - -
Iv.l.2 F = ¢f [feF end £ = O on B-B':I .
By Theorem II.5,
2
] (v£)” avy
]
IV.1.3 u(B') = min 2 .
frer' [ (£Y)” av
Bl
and so, obviously,
=2
, ] (V1) av
IV.1.b u(B') = min ]; — .
== £ 4v
feF B

Similarly,




2
[ (v£)” av
IV.1.5 u(B) = min 22— .
fer [ f av_
B
Clearly, F C F , and, therefore
[ (V2 ay [ (v av
Iv.l.6 B 5 > min B S
Fer {Bf v, feF {3 £ av
That is,
v.1.7 p (B 2> u(® .

Q.E.D.

Theorem IV.2. Given a solid B in En with surface S,

there exist an eigenfunction associated with p(B) which does not
change sign on B .
Proof. Let f be any eigenfunction associated with p(B) .

If h is any function in the class F defined by II.kt.l let

[ (v h)2 v,
B

) n° av,

B

v.2.1 Q(h) =

T

20

Let g = |fl . Then g 1is Holder continuous in B . Let J be a

7Schauder, Math. Zeits. 38, No. 2, pp. 257-282 (193k4).
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continuous function8 such that

IV.202 v J = g 2

and J(S) = 0 . Then

IV.2.3 n(B) a(f) = Q&)

and

IV.2.h

4 (1 @ a) ([ &)

e @ szvn>2 Q;(v g)° an\>2

Applying Green's theorem and IV.2.2 gives

o] 2 (f IV JdV> <fgv JdV>
{Q_%} <BJ2dV> (] ve" av)

IV.2.5 (f g+ Jdv> <]f3 VI . Vg‘dvb
<B 7 dV <]J; (v &)° dvn>2

2

8Lichtenstein, Encykl. der Wissen., Vol. 2, part 3, pp. 1277-134k4,
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2

a(J) CIJ; g o Jdvnv

= X

a(g) <lj; szvn > <£ gz an>

IV.2.5 2

Ga VI-Ve dvn>
(1 @a?ar,) (f (00 av)

By the Schwartz inequality,

1V.2.6 G; g . Jdvn>2< (]J; F an> <£ &2 dVID ,

and

IV.2.7 Q; VI eVE an>2 < <£ (vJ)2 der <]f3 (vg)2 dvn> .

Equality is attained if and only if J 1is a multiple of g . If the

inequality holds then IV.2.5, IV.2.6, and IV.2.7 yield
2
J J
02.8 —Qé'% < ’QH °
v [Q g} Qlg)
That is

IV.2.9 Q(J) < «ale) Q(f) = u(B) .




23

But JeF , and

. IV.2.10 Q(f) = u@B) = min q(h) ,
heF
vhich is a contradiction. Thus the equality must hold and J is a
multiple of g and thus of constant sign.
QeEeDa

Theorem IV.3. Given a solid B in En and a constant k # 0,

if T is the similarity transformation which takes the point X = '

(xl, coey xn) into the point Y (kxl, ...,kxn) , and if B' = T(B) ,

then
IV.3.1 n(B') = E%l .
k

Proof. let f be an eigenfunction associated with u(B) and

let y, = kx, for 1 £ 1 ¢ n. lLet

i
n 2

2 0
IV.302 v = Z ———2——

y 1l ayi
Then

2 2_2

IV.303 v = k vy L]

Ilet g(xj., ceoy Xn) = f(yl’ esey yn) [} then




2k

IV.3.k v2g+2i-glg=0,
and

IV.3.5 u(®') < Eég')' .
By symmetry

IV.3.6 w@) < ¥ aE)
hence

IV.3.7 w(®) = K u®) .

Q«E.D.

Section V. Some Properties of Steiner Symmetrization in E_
Since Steiner symmetrization is a major tool in the last sections
of this chapter, those properties of this operatlion which are needed

in these sections are developed here.

Definition V.1l. By a body in En is meant a bounded, connected,
measurable, point set with interior points.

Definition V.27 If K is a body in E  and if X = (xl, cons X))

is a point in En , then, by the Steiner symmetrization of K with

9D1nghas, A., Math, Nachr., 2, 108-109 (1948).
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respect to the space x, = 0 , one means the following operation:
Let C(x;, «eey X ) be the characteristic function of K and
let A be any line in En which is orthogonal to the En—-l space

xn = 0 and which intersects X . Let

X
n

V.2.1 1[(xn) = [ C(xl, ceey X 15 u)du .

-0

Relate & point X = (xl, cees X 19 xn) of A to another point

X = (Xl, eeoy xn-l, xn) Of A by

- 1
Ve2.2 Xn = Z(xn) - §' [ ( oo ) .
Let
— JAY - -
V.23 K = X [X = (x._L, cess X 95 xn) and there

exists a point X = (xl, eee, X )€K such that
= 1

X = A0 -3 A=) .

Then K is called the image of K under Steiner symmetrization with

respect to the E x =0 . Insymbols, K =5, _o (X) .

n-1 ’ “n
n
Since K is a body, C(X) is & measurable function of

(xl, cony xn-l) . Therefore, by Fubini's theorem

1 oS
V.Q.,-l- G(xj_’ seey xn-l) = '2- f C(Xl, eesy xn-l, u)d.u

- D
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is a measurable function of (xl, esey X Hence the ordinate set

n-l) *
of G is measurable and therefore K 1is measurable. Clearly K 1is
bounded, connected, and has interior points. Therefore K 1s a body.

A more intuitive formuletion of Steiner symmetrization for three
dimensional solids is given by Polya and Szego1o An obvious generaliza-
tion of their definition is given below.

Definition V.3. The Steiner symmetrization of a solid B in

En with respect to some En—l - En changes B into the solid B*

in En characterized as follows:
(1) B* 1is symmetric with respect to E 1 °

(11) If / is any line in E, orthogonal to E ., ,
and if / intersects one of the solids B and B¥ s then 1t intersects
the other and the two intersections have the same linear measure.

(i11) The intersection of / with B* 1is connected (the
intersection of ./ with B may have infinitely many components).

Definition V.4, If K is a body in E, s then

v.k.1 & - ? [XeE , end 4a(x, K) < h] .
n
11
The followlng theorem is proved by A. Dinghas,

Theorem V.5. If K is a body in E_ and if K = Sp (K) for
n-1

10 G. Polya and G. Szego, Isoperimetric Inequalities 1n Mathematical
Physics, (Princeton, Princeton University Press, 1951), p. 5

llDinghaB, A., g. %., P. 1090
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gome E ,C E_, then
n-l n

V.5.1 v (k) = v (K) ,
and
V5.2 vn(Kh) > vn(ih) .

Definition V.6.0 If K is a body in E_, then the Minkowski

surface area of K 1s defined by

v(xch) - VvV (x)
V.6.1 Ag(®) = =& 2 % .

Corollary V.. If K is a body in E  and if K = Sg (x)
n-1

for some En—l C En s then
V.T.1 An_l(K) > An_l(K) .

Proof. By definition V.6

v (Kh) - V.(K)
v.6.1 a_,(K) = himo 2 - 2

and

2rid., p. 110.
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vn(fch) - vn(i{')

VaT.2 An_l(ﬁ) = h—lgo 5 .
Theorem V.5 states

V.T.3 v (R) = v (K)

and

V.T.b v > v @E) .
Therefore

V.T7.5 A () > oA (B .

Q.E.D.

The following theorem demonstrates that the symmetrization of a
body in En simultaneously produces symmetrizations in certain sub-
spaces of n - 1 dimensions, and thus in certain sub-spaces of
dimension k for any k 1less than n and greater than one.

Theorem V.8, If

(1) X = (xl, coey xn) is & point of E_,
(i1) E _;C E, is the space x =0,
(111) E;:I C E_ is the space x; =0,
(iv) E,.o, C E  1is the space x, =x =0,
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(v) B is abody in E  ,

(v1) B* = s (B) ,
n-l1

(vi1) D = B[ E _, »end

(viii) ¢ = B[ E _; ,

then

v.8.1 D* = (D) .
SEn-2
Proof. Hypotheses (vii) and (viii) imply D C E . »end
D* E 1+ If A is any line in E 5 oOrthogomal to E , , then

A 1s orthogonal to E
n-~1

in Definition V.2 is identical for the symmetrization of B with

« Therefore the mapping of A onto itself

respect to En—l and the symmetrization of D with respect to En-2 .

Thus B3 M e - (D) . But D* = E 1 () B* and therefore

S
En-2
D* = SEn-2 N (o) .

Q.E.D. -

Theorem Ve9. If

(1) X = (xl""" xn+1) is a point of E ., ,
(i1) E, C E ., 1is the'space x , =0 ,

(1i1) E; C E_,; 1s the space x, =0 ,

(iv) E ,C E,, 1s thespace x, =x ., =0 ,

(v) D is a solid in E_ ,
n
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(vi) D* = SE l(D) ’
N

(vii) f(xl, sy xn) is a continuous, non-negative, single

valued, function defined on D which vanishes on the surface of D,

(viii) B is the solid in E , defined by 0 < x <
f(xl, coey xn) , where (xl, evey xn)eD ’
(ix) B* = SE-(B) ’
n

(x) f*(xl, coey xn) is the function for which 0 xn£L<§
f*(xl, ceoy xn) defines B* , and
(x1) G(t) is any continuous, monotone, function of t ,
then
V.9.1 [ c [f(xl, cee, xn)] v, = [ G[e(xy eees xn)] av,_ .

D D¥*

Proof. Theorem V.5 and hypothesis (ix) imply
*

V.9.2 vn+1(13) Vn+l(B Y .

Let D(t) and D¥(t) be the intersections of B and B* ,

respectively, with the space x =t , and let A(t) and A*(t) be

n+l
the orthogonal projections of D(t) and D*(t) , respectively, on E_ .

Theorem V.8 implies

v.9.3 D) = 8y )OO
T
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where E l(‘l:) is the space in E_ defined by x; =0 and x =t .

N=

n+1l

Theorem V.4 then implies

Ve9.k

and, therefore,

V.9.5

v, [pw)] = v, [oxw)]

v, [A(t)] A [A*(t)] .

Tet t be the maximum value of f on D . Subdivide the interval

<0, t>

Let

V.9.6

Then

V9.7

Similarly, if

V.9 08

of the x axis into m equal intervals of width At .

n+1

AR'AS [A(t)] v, [A(t) - A(t + At)] .

A
v, { X [x = (xl, ceny xn) €D and
a(t) < 6 (2(x) € ot + At)]} .

A vy [A(t)]

AV, [A*(t)] = v [A*(t) - A¥(t + A.t)] ’
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V.9.9 AV [A*(t)_] = Vv, {%[x = (xl, coey xn)eD* and

a(t) < G(f*(x)) < et + At)]} .
Iet K be defined by

V.9.10 0 K X < G(f(XD ’

where X = (xl, coey xn) €D , and let K* be defined by
¥7.9.11 o < x ., < @ (ex3@)

Where f = (-E]-, eoey ;n) eD* .

v.9.12 V(8 = 1J;<;,<f(x)) v, o,
and

v.9.13 v (&) = ]f)* ¢ (e*(X) av_ .

If S, 1s the subdivision of the interval < 0, t> of the

X4l axis into m equal intervals of width A tm s then
m-1
V.9.1k L oa(t) AV, (A(tiD L VB <

i=0




V.9.1k

N

and

V.9.15

m~-1

i=0

m=-1
%
i=0

M=l
Z
i=0

G(t1
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+ Atm) Avn A(ti) ,

6(t,) & v (ax(t,) < V(&%) <

Gty + Ot ) OV (A*(tiD .

Since G(t) 1s continuous and ADV_ (A(t) and A V_ (A*(t)
n n

are of bounded varistion, then

V.9.16 lim

and

e

v.9.17 1lim % G(t)AVnCA*(tD -

m—> “° §
m

‘But V.9.5 implies

3
é a(t) av_ (ax(t))

1lim

m—>

z G(t)AanA(tD: lim L G(t+Ot)
m—>eo  § m—>°g

m

t
av_ (k) = [ o) av, (awy)

T G(t+Ot)A vn(A*(t))
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v.9.18 dvn<A(t)) - av (A*(t)) .
Therefore
T t
V.9.19 é a(t) anCA(tD = é a(t) av_ (A*(t)) .

Applying V.9.16, V.9.17, and V.9.19 to V.9.1lk and V.9.15, yields

V.9.20 vn+1(K)

t t
é a(t) av_ (A(t)) {) o(t) av_ (A*(t))

v (Kk*) .

n+l
That is, by V.9.12 and V.9.13,

V.9.21 ]‘g G(f(xl, coey an v, = ]{* G<f*(x1, anny xn)> v, .

Q.E-D-

Example V.10. Consider a squere, S , with vertices (0, 0) ,

(o, 2), (2, 2) and (2, 0). Its corners can be rounded in such a way
that the boundary curve of S 1s of class ¢™ . For example, to round
the corner at (0, 0) consider the curve defined on O < 2 K 1/2

by y = £(x) , where

1
f(x) = ex"]':2 (——l—— + J'-e2)

V.10.1 Tog X 5
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This curve fits the boundary of S continuously at (0, 1/2) and

(1/2, 0) as do all its derivatives. ILet S' be the result of rounding
all the corners of S in a similar manner., Then the boundary of S!
is of class C~° . Let be the same as S' except the line

S"
segment y =2 for 1/2 { x ( 3/2 1s replaced by y = f£(x)
and

for 1/2 £ x < 3/2

1
v.10.2 £(x) = e\L/2x)(3/2-x) 2  x

(T7§:§Y + 2 .
The boundary of S" is also of class c™ .
Let S be the symmetrization of S" with respect to the y-axis.
The boundary curve of S has a discontinuity in the first derivetive
for each value of y > 2 at which the boundary curve of S" has a

relative maximum. Since there are an infinite number of such velues

of y , the boundary curve of S is not even piecewise smooth.

Section VI. The Effect of Steiner Symmetrization on the Fundamental

Eigenvalue of a Solid

The result of the final section of this chapter will depend upon
the properties of Steiner symmetrization. Therefore the effect of this
operation on the quantity under discussion, the fundsmental eigenvalue,
is established here. The proof of the following theorem, for E2 s 18

sketched by Polya and Szeg6}3

13G. Polya and G. Szegd, op. cit., pp. 89-91 and pp. 182-186.
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Theorem VI.l. If D 1is a solid in E, and If D* = 5, (D) ,
n-1

where En-l - En s then

VI.1l.1 (@) > u(p*) .

Proof. Let En - En+ and choose a rectangular coordinate

1

such that En is the space x

system in En+ e+l

1 =0 and En—l

is the space X = X4l = 0. Ilet En be the space X, = 0. Let
p(xl, coey xn) be a polyhedral function defined in E_, vhich is
non-negative on D , and vanishes on En - D . Consider the polyhedron

defined by

VI.1.2 0 < x5 < px, eee, x)

where (xl, seay xn) €D . This solid will be referred to as the

"polyhedron” B . ILet B* = 8-—(B) and let D* = B ﬂEn . Since
n
D=5 E , Theorem V.8 implies

VI.1l.3 D* = S (p) .

Since B* is a polyhedron there exists a polyhedral function p* such

that B¥ 1is defined by

VI.1l.b 0 & %y < PX(xp, eeey x)
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where (xl, cosy xn) eD* . Since B¥ = S (B) , Theorem V.9, VI.l.2,
n

and V.l.4 yield

2 2
VI.1.5 [p v = [ (p*) av, .
D D

Since B and B¥ are polyhedra,

1
, 2
VI.1.6 An(B) = [ [1+ (Vp)z:l v+ Vn(D)
D
and
5 L
2 1
VI.1.7 A (B¥) = [ [1+(v p*)2] av_ + v, (D*).
D-)(-

Theorem V.5 and Corollary V.7, with VI.l.3, imply

1
VI.1.8 f [1 + (v p)ej 2 av_ 2
D
1

1f)* [1;(vp*)2]2 v, .

Iet € be any positive constant and let C be the polyhedron defined
by replacing p by e€p in VI.l.2. Similarly, let C* be the poly-

hedron obtained by replacing p* by e€p* in VI.l.4k. Then

thavard, M. J., La Longeur et L'Aire d'apres Minkowski,

Bull. Soc. Math. France, 61 (1933), pp. 63-84.
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VI.1.9 cx = s (C) ,
n

end D =CE , and D* = C¥IE . Therefore, by the preceding argument,

o=

VI.1.10 J l:l r el (vp)2] av, >
D

1

]J;* [l + e (v p*)2]§ av, .

1
Choosing € so that e2(v p)2 < 1, [1 + ee(v p)2:| 2 may be

expanded in a power series in terms of 62(V p)2 s yielding

1 2 2
VI.1.11 l—_l+52 (vp)2]2 - 1+_€__(222)_ .
1 5
a1 G-4
ro L= G (vm?]9d .
3=2 J°

Since the series in VI.l.ll is an alternating series, the magnitude of

the terms of which decrease monotonically, then

1
) 2 2
vI.l.12 [l + e2 (v p)2:| = 1 + -‘E-—(EY—P-L- + O(’eh) R

where

VI.1.13 ]o(el‘)! < 3 & (vn* .
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Since p 1is a polyhedral function, there exists a constant k such that
VI.1.1h k> %eh e ,
for all points in D . Therefore

)

VI.l.15 ' o(el‘) , < ke .

1
Similarly, [l + €2 (vp*)2:| 2 may be expanded 1ln a power series,

vielding
2 % 2 v p*)2 L

VI.1l.16 [1 + € (Vp*):\ = 1 +——-§§—P—)— + 0*%(e’) ,

where

Vi.1.17 [o*(e)*)l < k*eu R

and k¥ 18 some finite constant such that
L
VI.1.18 > % ¢t (vp*)

for all points in D* , Inserting VI.1l.12 and VI.1l.16 in VI.1.10 yields




e 2 b ] S,
VI.1.19 ]1; [1+-2—(vp) + o(e)) |av, >

2
4
]J;* [1+%—(VP*)2 + 0%(e )] av, .
Since vn(D) = V (D*) , VI.1.19 implies
VI.1.20 ) [62 (Vp)2 + 2x O(eh)] av, >
D
]J;* ["32 (v P*)2 + 2x 0*(€h)]dvn .

Dividing both sides of VI.1l.20 by 62 gives

"
VI.1.21 f [(vp)2 + 2—"%—"'—1] v >
D €

4
2 . 2
[ [wm? . 22e) Jay
D* €
Letting € go to zero in VI.1l.21 ylelds
2 2
vI.1l.22 J(vp) av, > [ (Up¥) av, .
D D*

By Theorem IIT.3, given an € > 0O, p may be chosen such that




b1

2
/] (Up)” av,
D
2
]j; P av,

VI.1l.23 p(d) + € >

By VI.l.5, VI.1l.22, and VI.1l.23 and Theorem III.3, it follows that

[ (vp)? av, J (v p*)° av,
VI.l.24 p(d) + e > D " > D= N >p(o*) .
av av.
].g P av, If)* (p*)~ av,
But € 18 arbitrary, and so
VI.1.25 u(d) > u(d*) .

Q.E.D.

Section VII. A Minimal Property of the Sphere.

Lemma VII.l. If S and B are two convex solids in En s with
surfaces s and b , and if ShC Bh for some h > 0, then S CB.
Proof. Assume S ¢ B . Then there exists a point Xe(S - B) .

Let
VII.1l.1l D = d4d(X, B) = d4a(X, Q) ’

where QeB . Clearly Qeéb . Iet L be the line such that Qel and

. XeL and let E , be the (n-1)-space such that E, 1 C E 5 QE 5,

1
and L is orthogomal to E_, . Iet T(X, D) be the sphere in E
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of radius D and center X . Then T(X, D) is tangent to En-l and

on the same side of En— as X . Thus En—l seperates X and B .

1

For if En- did not seperate X and B , then there exists a point

1
YeB such that Y 1is on the same side of E 1 as X . But then the
line segment between Y and Q must be contained in B and must
intersect T(X, D) . Then d(X, B) < D , which is a contradiction.
If ZeL and Z is on the same side of E , as X, let n(Z) =
d(Qy, Z) « Then n(X) =D . Let s and b be the boundaries of B
and Bh , and let L' be the part of L on the same side of En—l
as X . Let Y=10'[) b® . Then n(¥) =h . Iet Z =1 Ns®.
Since XeS , n(z) > n(X) + h . This is a contradiction since
h > 0. Therefore S - B is empty, and thus S C B .
Qe.E.D.

It has been shown by R. Courantl5 that of all simply connected
plane domains, with piecewise analytic boundary curve of a given
length, the circle has the smallest fundamental eigenvalue. G. Fa.ber16
has obtained the stronger result that of all simply connected plane
domains of a given area and with a pilecewise analytic boundary curve
the circle has the smallest fundemental eigenvalue. Unfortunately their
proofs depend strongly on the use of the theory of an amalytic function

of a complex variable and therefore do not generalize directly to n-space.

15R. CO‘ln'ant, Matho ZeitSO, l’ PP. 321"328.

16G. Feber, Sitzs. Bayer. Akad. Wissen., (1923), pp. 169-172.
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However, using Stelner symmetrization and the preceding theorems it 1s
shown, in Theorem VII.3, that of all solids of a given volume, which
can be made convex by a finite number of symmetrizations, the sphere
has the smallest fundamental eigenvalue., The following result is
proved by A. Dinghas%'(
Lemms VII.2. If K 1is a body in En and S 1s a sphere in

En such that
VII.2.1 Vn(K) = vn(s) N

and if K = ﬁ* [K* is the image of K after a finite number of
Steiner symetrizatione] s then given numbers h and k such that

h > k > 0O there exists a K*eK such that

VII.2.2 = (s NxxP .

Theorem VII.3. Glven a solid B in En s 1if

VII.3.1 B = /]3* EB* is the convex image of B after

a finite number of Steiner Symetrizations] s

is not empty, and if S 1is a sphere in En such that

17A. Dinghas, op. cit., p. 111. See also Math. Rev., 11, p. 386

which is a review by P. Scherk of this article.




VII.3.2 v.(B) = Vv, (8) ,
then
VII.3.3 w(B) > wuls)

and given an € > O there exists a B*cB such that
VIIQBQ)'I' M(B*) - € < IJ,(S) .

Proof. Note that, under symmetrization, any image of a convex
solid is again convex. If h > k > O , then by Lemma VII.2 there
exists a B*eB such that
VII.3.5 s"EC (sNen®
and obviously
VII.3.6 (s Np)? — m® .,

If D 1is a solid with surface C , let

VII.3.7 f .} [XeD and a(x, oy > 4] .
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Since B* is convex, by Lemma VII.2,
-k
VII.3.8 s C B* .

By Theorenm V.5, Vn(S-k) < Vn(B*) , and B¥ - s® is not empty.

Let X be a point of B¥* - s™®  such that a(x, S-k) = max d4(Y, S-k) ,
YeB*

and let v = d(X, s"k) o« Let G De the cone with vertex X each ray

of which is tangent to S-k and let K be the solid consisting of the

part of G between X and S° ., Since B* is convex
VII.3.9 K C B* ’

and, therefore,

VII.3.10 v (B*) > vn(s'k) + v (k) .

Since k is arbitrary and Vn(B) = V(8) , it follows that as k—> O+ ,

Vn(K)—-> 0 , and this implies v —> O . Therefore gilvenan € > 0,
VII.3.11 sT¢c * C g*¢ .

But, Theorem VI.l implies

VII.3.12 p(®) 2> u(3¥) ’
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and Theorem IV.l implies

-e) +e)

VII.3.13 u(s™) > u(B*) > uls

Therefore, by Theorem IV.3
VII.3.14 u(B) > u(B*) > —u®)
and since € 1s arbitrary,

VII.3.15 p(B) > n(s) .

Moreover, VII.3.13 implies

VII.3.16 p(B9) < —u(8) _ .

(1=~ ¢)?

Thus, for sufficiently small h and k , Dinghas' Lemma (Lemma VII.2)
furnishes a B*eB such that the fundemental eigenvalue of B* 1is
arbitrarily close to the fundamental eigenvalue of a sphere of equsal
volume.

Q.E.D.




CHAPTER IIT

SOME NUMERICAL RESULTS FOR ONE AND TWO REGION PROBLEMS

Section I. Some Examples of Steiner Symmetrization

In this section, all work ié done in the Euclidean plane. By
using some of the results of Chapter II and the known fundamental
eigenvalues of certain plane regions, bounds are obtained for the
fundamental eigenvalue of a rhombus with diameters a and ‘Zg: a .
By similar techniques, bounds can be obtained for the fundamental
eigenvalue of many plane regions.

Table I is, to the best of the author's knowledge, a complete
listing of those fundamental eigenvalues of plane regions which are

known exactly. This tabulation is given by G. Polya and G. SzegG%B

Table I
Region , Fundamental Eigenvalue

J2
(1) Circlel9, radius a . g
a
2
(2) Square, side a . 2“2
. a

2 2

(3) Rectangle, sides a and b . x (a 5 +2 b )

a b

lBG. Polya and G. Szego, op. cit., pp. 251-274. The fundamental

eigenvalue is denoted by'.lke in their notation.

19 2.4048,

J. 1is the first zero of the Jb Bessel function,

(o]




48

2
20 'jl
(4) Semicirele”, radius a . =
a
32 2
(5) Sector of a circle, radius a 1"
and angle (of opening) 7 . 72 2
(6) Equilateral triangle, 161t2
gide a . 2
3a
(1) 45°, 45°, 90° triangle, sides 52
a,a, /Ea. . 2
a
(8) 3o°, 60°, 90° triangle, sides 112,;2
3)3/2’\/?/23*’ 98.2

Example I.l. Let T be an equilateral triangle with gide a

and let L be a line parallel to one of the sides of T . Let

Iolol R = SL(T) .

43

Then R 1is a rhombus with diameters a and 5 a. let M be s

line perpendicular to one of the sides of R . Then, if

I.l.2 Q = SM(R) »

3 Vil

Q 1is a rectangle with sides \/,: a and re- Table I yields

20 J, 1is the first zero of the J, Bessel Function, = 3.8317.




%9

2
I.1.3 w(T) = 1—6“—2 ;
3a
and
2
T.1l.h p,(Q) = 2—;— [LE-:I o
3a
By Theorem IV.1l of Chapter II,
I.1.5 w(T) > w@® > w@) o
Therefore
2 2
I.1.6 l6<§—§>>p.(R) > 271 <5—2—> °
a 3a
That is
1.1.7 2—“—23 S uR) > 2238 .

a

One is tempted to find a much more general cless of transformations
which will provide similar bounds orn the fundamental eigenvalue. It is
clear from the arguments of the preceding chapter that the fundamental
eigenvalue is rather intimately related to the volume to surface area
ratio. Unfortunately, as the following example shows, this relatlonship

i8 not simply a proportionality.
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Example I.2. In the Euclidean plane, the volume of a solid is
the plane area and the surface area of a solid is its perimeter. If
two solids can be constructed which have equal areas and equal
Perimeters but different fundamental eigenvalues, then the following

is true. There exist three solids, Fi 2 Fy and F3 s such that

I.2.1 Vo(Fy) = V(Fy) = V(F)
I.2.2 MF) 2 a(F) > a(F)
I.2.3 u(Fy) > u(F)

and

I.2.4 u(Fs) > () .

Iet T be an equilateral triangle of side a and let R be a

rectangle with sides ,‘}(3-\/9-h/3') and ,%(3 +/9-4./3) .

Then
I.2.5 Vo(R) = v (T) )
I.2.6 A, (R) = A/(T) )




but

12 12
I.2.7 p(R) = =5 (36-8/3) > u(T) = 16(=%)

3a 3a
Therefore let Fl be the equilateral triangle T , let F2 be a
rectangle with sides E—%Czl and %? , and let F3 be a rectangle
with sides \égz a and a , Then

2

I.2.8 Vo(F) = Vu(Fp) = Vu(F,) a——ﬁ—? ,
I.2.9 A (F,) = a(?—-—-"53 + Z) > (F)) = 32

2 2
‘ 6
1.2.10 w(F) = -136- 5 < u(F,) = %% .,
a a
and
2 2
1.2.11 wr) = L <ury) - ¥ L

a a
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Section IT. An Approximate Computation of the Fundamental Eigenvalues

of Certain Circular Segments

Let S be a semicirele of radius sixteen, where the origin is

at the midpoint of the diameter of S . Let
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IT.1l.1l 8, = (x/,\y) [(x, y)es amd x > k] :
The problem is to obtain the fundamental eigenvalue of Sk for

0 £ k¥ € 5 . The solution of this problem is known only when

k =0, i.e. when the region is a semicircle. The differential equation

which an eigenfunction f must satisfy 1s
IIolo2 f}(x + fy_y + [J,(Sk)f = 0 °

To obtain approximate values of p(Sk) recourse was had to
numerical teechniques., It was noted from the symmetry of Sk about

the line y = 0 , that if f were an eigenfunction then
IT.1l.3 f(x, y) = £(x, -y) o

A mesh was then placed on the square with vertices (0, 0), (0, 16),
(16,0), and (16, 16) with the mesh points being the poinmts in the
square with integers for coordinates. Figure I is a diagram of the
mesh employed. While not all of these points lie in Sk it was
convenient for computational purposes to retain all the points of the
mesh,

The differential equation (II.l.2) was then replaced by a

difference equation which gave rise to a set of two hundred and seventy-two
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similtaneous equations of the form

II.loh' ")'H.l)i,'j + mi"‘l,d + mi-l,d + wi,J+l + mi’J-l

= 'l—’-(sk) wi,,j ’

where Wy 3 is the value of the function at the point (i, J) .
2

The boundary conditions for the difference equation are

II.1.5 wy 4 = O for 1 < k ,
»J
2 2
II.1.6 Wy 3 = 0 for 1° + S 2 256 ,
2
and
IIolo s = °
T Wy s Wy _j

However, II.l.4t and IT.l.6 would provide a poor approximetion of the

boundary. Therefore, II.l.4 was replaced by

1 1

, B, R P i T 0Y il 7 (5. )6

1,3 T 1 = w8 )uy 4
’ 2+5+5F ’

II.1.8 TR

where A 1is the distance from (i, J) to the boundary in the x

direction, or the distance to the next point in the x direction, which
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ever is smaller, and B 1is the distance from (i, j) to the boundary
in the ¥y diréction, or the distance to the next point in the ¥y
direction, which ever is smaller,

The matrix D of the coefficients of II.1l.8 was found. Thus
the approximate problem was to find the smallest eigenvalue of D . If
-p is the smallest eigenvalue of D and -2 is the largest eigenvalue
of D then, if m > |a| and @ is the largest root of I + i-n =E,

the eigenvectors of E and D are the same and

II¢1.9 ®n = (l - W)m °

The largest root of E was computed by the Aitken21’22

Iteration
process, Figure 2 shows p plotted as a function of k . The exact
value for the semicircle is given and indicates, roughly, the error im
the computed values. All values have been normalized to those for the
case where the radius of S 1is one. From Chapter ITI, it is clear that
a simple multiplication by 256 performs this normalization. Figure 3
shows the estimate of . as a function of the number of iterations
performed. Figure 4 is a plot of the level lines of the eigenfunction

obtained by interpolating between the values of the eigenvector

components.,

Q;Aa C. Aitken, Proc. Roy. Soc. Edinburgh, 57 (1937) pp. 269-304.

%°x, Hotelling, Ann. Math. Stat., 1% (1945), pp. 1-3k.
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Section III. Two Boundary Problems

Consider a pair of solids T and R in En with surfaces t

and r such that R is contained in the interior of T . ILet

ITI.1.1 s = (T-R) Ur ,

and then

I1I.1.2 s = tUJ r .

Let

ITT.1.3 F = ? Ef is a continuous function of Xyy ooy X

and a parameter A , with piecewise
continuous first derivatives with respect

to X , and defined on R] ’

and let

IIT.1l.k G = & [g is a continuous function of X, «ee, X,
and a parameter A s with piecewise
continuous first derivatives with respect

to X , defined on S and which vanishes

on le .
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The two boundary problem consists of finding a funetion feF

and a function geG such that

IIT.1.5 g2f +32tr =0 ,

in R,

III.1.6 V2 + 22 g =0 ,

in 8,

IIT.1.7 £7(x) = (X)) ,

where Xer, and

III.1.8 k —g—§+ . %_ . ,

where %Ef' is the outer normal derivative and gﬁ— is the inner

normal derivative, k is a constant, and III.1l.7 and III.1l.8 are
satisfied for all Xer .

Assume feF and geG satisfy IIT.l.5 and IIT.1.6 respectively.
Then, if & and b are arbitrary constants, afeF , bgeG , af
satisfies IIT.1.5 and bg satisfies IIT.l.6. If af and bg are to

be solutions of the two boundary problem they must satisfy ITI.l.7 and
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IIT.1.8 for some value of A . That is

III.1.9 af(X) = bve(x) ,
and
of of
IIT.1.10 ka = b ,
I8, | 4 5 |y

for all Xer . For III.l.9 and III.l.10 to have a non-trivial solution,

it 1s necessary that

£(X) g(x)
TIT.1.11 =0 ,
)
- é§§+ X 7;§; X
for all Xer . That is
TIT.1.12 £(X) é;g; - kg(X) égéi . o ,

for all Xer . Then IIT.l.l2 is an equation in A and is celled the
characteristic equation of the two boundery problem. It is clear that
the square of the roots of this equation are the eigenvalues of the

two boundary problem and it is assumed that the smallest non-zero
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root of this equation is the smallest (fundamental) eigenvalue of the
two boundary problem. Once A 1is determined a and b are
determined by III.1l.9 and IIT.1.10 and af and bg form an eigen-
function associated with the fundamental eigenvalue. As in the one
boundary problem, any multiple of an eigenfunction 1s again an
eigenfunction.

Example III.2. If R 1s a sphere of radius a , O < a< 1,

with center at the origin and if S 1is the spherical shell of outer
radius one and inner radius a , then the corresponding two boundary
problem has been solved., Changing to spherical coordinates it is

clear there will be no angular depehdence in the eigenfunction., Indeed,
if there were, then by rotating any eigenfunction one obtains a non-
denumerable number of independent eigenfunctions belonging to the
eigenvalue. Since each eigenvalue has only a finite multiplicity,

this is clearly impossible. Thus, IIT,1.5 and III.1.6 become

2 2
III.Eol frr + ; fr + k f = 0 ’
and

2 2
ITT.2.2 grr + I_" gr + A g = 0] .

The interface conditions III.l.7 and III.1l.8 become
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ITI.2.3 £(a) = gla) |,
and
IIT.2.4 k frla - grla i
Let
III.2.5 £(r) = gig;lz ,
and

sin M1 - 1)
T

ITI.2.6 g(r)

Then, feF , geG , f satisfies IIT.2.1 and g satisfies ITI.2.2.

The characteristic equation is

ITI.2.7 (1 - k) sin 2ra sin A (1 - a) +
ah |sin 2a cos A(1 - a) + k cos 2a sin A(1 = a)] = 0 .
It is clear that ITT.2,7 is an equation in| ll « For k=1, the

problem reduces t¢ a one region problem since the differential

equation is satisfied at the interface. In this case, IIT.2.7 becomes




III.2.8 a) [%in 2a cos A1 -~ &) +

cos 2a sin A(1 - a{] = 0 o
That is
TII.2.9 sin Ala + (1 - a)] = slnd= 0 .

Therefore X = g 1s the smallest positive root which 1s exactly as
expected.

Using Newton's methed of epproximating the roots of an equation,
A  was computed for various values of k and a . Figure 5 shows A
as a function of a for five values of k « The slight non~linearity
in the curve for k =1 gives some indication of the amount of error
in the computation. Figure 6 shows A as a function of k for four
values of a . Unfortunately, the Newton approximation did not
converge for certain combinations of k and a , and therefore the
range In a was cut.

Example TIT.3. Relaxing the condition that R and S be

solids, consider next the situation where S is a pair of semi-
infinite slabs and R is a semi~infinite slab between the two slabs
of 8 . Specifically, R is the slab in E3 defined by

ITI.3.1 -a £ x £ a ,
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where 0 < a < 1, and S is the pair of slabs defined by

I11.3,2 <1 £ x £ -2 |,
and
I1T.3.3 a & x £ 1 ,

The eigenfunction will, as in the previous case, be independent

of two of the three variables. Therefore, IIT.1l.5 and III.l.6 become

IIT.3.4 £, +22f =0 ,
and

2 -
IIT.3.5 By * 278 = 0 .

The interface conditions IIT.1.7 and IIT.1l.8 become

III.3.6 f(a) gla) ,

IIT.3.7 £(-a) g(-a) ,

III.3.8 k fx\a = gx|a ’
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and

I11.3.9 k fx]_a = gx\_a .

Let

ITI.3.10 £(x) = cos AxXx

and let

IIT.3.11 g(x) = sin 2 (1 - |x|) .

Then feF , geG , f satisfies IIT.3.4, and g satisfies IIT.3.5.
Since f and g are both even functions of x , ITI.3.7 and III.3.9
may be omitted. The characteristic equation is then

IrI.3.12 k sin 2a sinA(l - a) - cos racos A (1 -a) =0 .

Again, if k = 1 , this becomes a single region problem. In this case

IT1T1.3.12 becomes

III.3.13 cos Ma + (1L -2a)) =cos xa = 0O .

That is A =

hv] Y

, the expected result.




63
The first positive root of III.3.12 was computed for various
values of k and a by Newton's approximation. It is clear, as in

the previous example, the characteristic equation is in Ill o The

el | o

characteristic equation in this example is also symmetric about a =
Figure 7 shows A as a function of a for twelve values of k , and

Figure 8 shows A as a function of k for five values of a . By the
symmetry mentioned above, Figure 8 actually shows X as a function of

k for nine values of a .
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- anaiytic result for semi-circle
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