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CHAPTER I

INTRODUCTION

Factor analysis has been a recognized problem among psychologists

for the past fifty years. Since the very early 1900"s mathematical

statisticians have generally avoided the field, only in recent times

again becoming interested in the problem. Beginning with Hotelling

15 and continuing through to Anderson and Rubin 1 , factor

analysis has been attacked in many ways usually yielding quite different

results. It is not the purpose of this paper to give the history and

details of the various approaches, since this has been very adequately

covered in several papers 1, 8, 11 Nor will relations between

factor analysis and newly discovered techniques in multivariate analysis

be discussed at any length, since they too have been covered in papers

by Bartlett [3, 4J ,Burt \J> ,Kendall 19 ,and in the previously

mentioned thesis of Danford 11 . They will be considered only in

cases where there is a direct bearing on the model herein proposed.

1.1 Statement of the Problem

The usual method of stating the problem is: can a p-dimensional

complex of random variables be represented adequately by m < p

variables? Obviously, "adequately" is the ambiguous word which causes

the different interpretations. A linear relationship is then assumed

**[umbers in square brackets refer to bibliography.



and the model is expressed:

m i - 1, ..., p
x ^ / a v + e

U k=l ik k,J iJ j- 1, ..., H

where N is the sample size; x.. is the value of the random variable

x. for the jth individual; y.. is the value of the kth common factor

for the jth individual; a„ is the factor loading of the ith random

variable for the kth common factor; and e . is a random error such

that E[eu] =0-E[e^ ej-E[e^ ynJ], i+n.
From this point on, assumptions differ. For example, some

consider the y, . fixed parameters 35j , others consider the y. .

random normal variates with variance one and mean zero 20 However,

most authors agree that m , a., and y. . are to be estimated.

Once the estimates are obtained, the procedures diverge even

farther. American psychologists are inclined to "rotate" to simple

structure, a concept developed by Thurstone and carefully discussed in

his book Multiple Factor Analysis 33 . Simple structure is equivalent

to a new model wherein each x. . may be expressed as a linear combination

of not m common factors plus an error, but r < m common factors

plus an error; however, m common factors still exist in the model as

a whole. For example, suppose two common factors had been estimated.

Then simple structure in this case would mean that the p variables

could be divided into two sets such that:



x±i m ail ylj + eii i= 1, ..., q ;

xiJ = fti2y2J + eij i=*+1' ..., P

The rotation consists in applying a linear transformation S ,
•" " ° m x m

where S S' has unities in the diagonal, to the matrix (a-M,),, x m to

obtain new loadings (aik)S . If simple structure does exist, some

of these new loadings will be close to zero. Except under certain

rather restrictive assumptions no statistical formulation or solution

of this particular problem has yet been published even for the case

where the y*s are assumed orthogonal ( E y.. y . = 0 , n £ i). In

Chapters IV and V, this problem will be considered more extensively.

A concise statement of the problem is as follows:

1. Derive a satisfactory model both for orthogonal and oblique

(correlated) factors with as few assumptions as possible and yet still

obtain a solution.

2. Estimate the parameters in the model.

3. Test hypotheses concerning these parameters, particularly m .

4. Estimate the parameters under the a priori assumption that

some of the a., are zero.

5. Test the simple structure hypothesis.

1.2 Importance of the Study

It cannot be denied that rotation and to a lesser extent factor

analysis as a whole have been long considered in disrepute by mathematicians



and mathematical statisticians 16

4

; there is good cause for this

attitude. To say that simple structure is evident because the rotated

loadings are close to zero is not enough; sampling considerations must

be taken into account. It is the endeavor of this paper to accomplish

this and to derive a simple model on which most factor analysts can agree

and one which will allow tests of various hypotheses. In the Uppsala

Symposium on Psychological Factor Analysis, this is listed as one of

the recommended directions for research.

1.3 Review of Related Literature

Lawley's papers 20, 21

1950 papers.

Whittle 35 , Young 37

have been closely followed throughout

the thesis. The model to be proposed, although more general than his,

reduces, in the case of orthogonal factors, to the same population

covariance or correlation matrix. Estimation and test procedures are

also similar, although a new method is proposed whose convergence is a

good bit faster for all the examples attempted. In reality, this paper

is an extension and generalization of his 1940 and 1941 work at least

as regards his Method I. In Lawley's later papers [23, 24, 25J formulae
for asymptotic variances and covariances are derived under the assumption

that the residual variances f E e. .j =a. =residual variancej are

known. The 1953 paper is to be regarded as superseding the 1949 and

, and Lawley 21 consider the

yv. as fixed parameters. If the residual variances or at least their

ratios are not assumed known, no method of solution is available.
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A priori knowledge of the residual variances seems a rather drastic

restriction. In Chapter II, the advantages and disadvantages of this

will be further discussed.

Rippe 29 is concerned only with explaining the covariance

matrix, not with estimation of the parameters. Thus, given a solution

arrived at by any method, one tests the generated covariance matrix

against the sample covariance matrix to see if they are significantly

different. For example, the characteristic vector associated with the

largest root may explain the covariance matrix while perhaps three

vectors obtained by Thurstone's centroid method may not be sufficient.

There is also quite a bit of trouble involved in going from the covari

ance matrix to the correlation matrix since the sample values r..

must be regarded as having a sampling distribution. The r.. are,

of course, equal to one, since they are the diagonal elements of the

sample correlation matrix. Therefore, this method does not answer the

questions involved at all.

In reading through the literature one is amazed at the many

approximate methods that have been devised to escape the computation

involved in the more rigorous methods. This is particularly applicable

to Lawley's Method I and to the computation of principal components.

With the advent of high speed electronic computers to which many

psychologists have or shortly will have access, this difficulty has

been largely overcome. Also, as Emmett 13 points out, if the large

amount of labor and expense involved in devising, administering, and



6

scoring the tests together with that in the computation of the correlation

matrix, is considered, the extra time involved in analysis by a much

better method is certainly worth while.

In this vein, Rao (28 , in a discussion of the problem, proposes

a solution equivalent to Lawley's. This has been coded and run on the

University of Illinois digital computer and the code is available.

Perhaps the most comprehensive paper on the subject is that of

Anderson and Rubin 1 . Unfortunately, it did not come to the author's

attention until this paper was close to completion and therefore, there

is some overlap between the two. However, the results were obtained

independently and each paper contains new material not discussed in

the other. Moreover, this thesis is concerned with computational

methods, while Anderson and Rubin do not consider this aspect to any

extent.

1.4 Organization of the Study by Chapters

In Chapter II the model is proposed and compared with previous

models. The maximum likelihood equations are derived and an alternate

approach is considered which results in the same equations. Finally,

two other conceptions of the likelihood equations are discussed.

Chapter III considers computational methods in the general case.

By the general case shall be meant that in which no a priori zeros

are assumed. The estimation equations and computational methods for

orthogonal factors after rotation are considered in Chapter IV.

Chapter V utilizes some of the results in Anderson and Rubin's paper
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in the original Chapter V the likelihood equations were obtained for two

special cases only. In Chapter VI the prediction of the y's from the

x's is considered. This chapter also presents a method for obtaining

approximate estimates if one variable is added to the complex, without

going through the whole factorization again.

Chapter VII is entitled Testing and contains a discussion of

possible tests of the fit of the model and some remarks on asymptotic

variances and covariances of the maximum likelihood estimates.

Throughout Chapters III-VI numerical examples are given to illustrate

the computational techniques.

Chapter VIII contains general conclusions and suggestions for

further research.



CHAPTER II

THE MODEL

2.1 Derivation of the Model

The first question that arises in a factor analysis is, does

correlation exist? Or, is the population correlation matrix different

from the identity matrix? If not, there is no point in proceeding

further. The next step, if it were proved there were correlation,

would be to ask, is there a random variable y, such that the partial

correlation coefficients between pairs of the original p variables

after eliminating the effect of y. are zero? (Pj* y B0 ; i, j=

1, 2, ..., p ; i ^ j). If the population correlation matrix were

still unexplained, then the question would be, are there two random

variables, y1 and y2 , correlated or uncorrelated, such that the

partial correlation coefficients between pairs of the original p

variables after eliminating y1 and y2 , are zero? (p-M.y y =° >

i, j = 1, 2, ..., p ; i / j). One may proceed further, say up to ym .

The y. (k = 1, 2, ..., m) would be the common factors. Thus, the

hypothesis of m random variables explaining the correlation matrix

of the original p variables is equivalent to

P-M.v v v "° i, -j =1, 2, ..., p jifj
i«J Y-^2 '" °m
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It is convenient to express the hypothesis in terms of matrices,

and this involves the following two vectors: X , the p x 1 vector

of the random variables x. (i • 1, 2, ..., p) , and Y , the m x 1

vector of random variables y. . Now, without any loss of generality,

it can be assumed that

a =1 k = 1, 2, ..., m
yk yk

E(X) - 0

E(Y) - 0 ,

since the y's are unknown in practice. Then the population partial

correlation matrix of the x. after eliminating the y's is defined as

U BJ(X -PT) (X -pY)»J U

Here U is a p x p diagonal matrix whose typical element, u.. ,

is the corresponding diagonal element of Ej(X -PY)(X -PY)' }.

6 is defined by
Kp x m *

P E(Y Y') » E(X Y') = X'

The hypothesis may then be stated



E IjX -PY)(X -PY)'J -*
10

where t is a diagonal matrix. Then,

E(X X') = C = if + p E(Y Y') p' ,

and C is obviously the population covariance matrix. If E(Y Y') = I ,

the identity matrix, then p = X' , and hence,

C » if + X' X ,

which is equivalent to Lawley's model. However, if E(Y Y') = F ^ I ,

-1 -1
then p m X' F , and C » f + X1 F X .

Now, if W , = S Y , where S is any non-singular linear
' m x 1 m x m ' " °

transformation,

E(X -P(1)W)(X -p(1)W)' « E(X X') -P(l) E(W W') p(l)' ,

(1) -1where p ' = p S . Hence ,

E(X X') -p^ E(W W') p'1^' = E(X X*) -PFp' -+

This was to be expected, since, if m common factors result in zero

partial correlation coefficients, then m factors, formed by a non-
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singular linear transformation of the original m factors, will also

accomplish this. Hence, in the general case, there is no necessity of

employing correlated factors, since orthogonal factors will do just as

well, and involve fewer parameters. Yet the problem does exist when the

simple structure hypothesis is specified. This problem and other forms

of the population covariance matrix that arise under simple structure

hypotheses, will be discussed in succeeding chapters.

2.2 Advantages of the Model

It will be advantageous to give a brief discussion of the

relationship between the usual model and that proposed in this paper.

For a more complete coverage of partial correlation and linear mean

square regression, Cramer 10, pp. 302-307J is recommended.

If tj =X-P Y , where P , X , and Y are defined as

before, then

E(n Y') = E(X Y') - p E(Y Y») = 0 .

Now it has been assumed in the hypothesis that E(t| tj ') = ^ > where t

is a diagonal matrix. Therefore, the usual model in factor analysis

is obtained,

X = p Y + tj ,

subject to the restrictions E(tj Y') • 0 , and E(^ tj *) is a diagonal
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matrix. On the other hand, starting with X = GY + <p , E(cpY') =0 ,

and E(cp q>') = £ , a diagonal matrix, one can easily show, in the

following manner, that the population partial covariance matrix of X

after eliminating Y , is a diagonal matrix:

E(XY') = GE(YY') = pE(YY')

Thus, p = G , and hence,

E|(X -PY)(X -PY)'J - E(cpqp') =g .

The two models are therefore equivalent. However, throughout this

derivation no assumption, except finite second order moments, has been

made on the joint distribution of X and Y . Now, let it be assumed

that X has a multivariate normal distribution. Then the model still

holds and there is no need to assume that either Y or tj is normally

distributed. Herein lies the chief advantage of this formulation;

Y and H are not necessarily normal, and E(Y Y') is not necessarily

the identity matrix. However, if it is assumed that the y's are

independent among themselves and that Y and r\ are independently

distributed, then it follows from atheorem of Cramer [10, pp. 213J >

that Y and *l are normally distributed. Under the assumption that

X alone has a multivariate normal distribution, estimates and tests

may be obtained for the various hypotheses, including those of simple
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structure. In addition, for the maximum likelihood estimates, the

problem of standardization does not arise in this model, since, as

will be shown, results are independent of the scale of measurement.

From the model it is evident that either the matrix p or the

matrix X can be estimated, the two being identical if E(YY') = I .

Simple structure hypotheses are usually made on p , but the equivalence

permits the use of either.

It should be noted that the model still contains the restrictions

of linearity and monotonicity; this point will be further considered

in Chapter VI.

2.3 Comparison with Previous Models

Lawley, in Method I, assumes that Y and i\ are distributed

normally with zero expectations. This assumption has been criticized

quite strongly 35, 36, 37 Wold states:

This requirement is a drastic one, since there are
cases in practice, the analysis of a truncated population
is the most striking example, where the factor values are
definitely far from normal.

The proposed model seems to avoid this objection. Moreover, as Lawley

states in the same discussion, there is a great distinction between

conceiving the factor values as statistical variates and as fixed

parameters. Both Lawley (Method II) and Whittle have worked under the

assumption of the y's as fixed parameters. As it was noted in Chapter I,

a method of solving the resulting maximum likelihood equations has not

been found. Kendall 18, 19 and others have pointed out that this
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is probably because there are more parameters than observations. However,

Whittle 35

of variance

, by additional a priori assumptions on the residual

variances has been able to reach a solution.

The question is similar to that of Model I or Model II in analysis

12 . If, as Thurstone says

biased samples are used, there would seem to be no recourse but to

Lawley's Method II (unacceptable solution) or to Whittle if enough were

known about the residual variances. In this case, of course, nothing

could be inferred beyond the actual group of individuals involved.

But, if it can be assumed that within some particular group, the

individuals are selected at random and the distribution of X within

this group is multivariate normal, then the proposed model still applies.

Also, conclusions may be extended to the entire group, not merely

restricted to the observed group.

The factor analyst himself must decide on the method to be used

which is determined by his selection of samples and the assumptions he is

willing to make. It is not possible to state that one or the other of

the two assumptions is the only correct interpretation.

Bartlett 4, 5 has minor objections to Lawley's Method I, in

that for p = 2 , m = 1 , the method does not work; in addition, that

for p - 3 , no test is available. This is entirely owing to insuffi

cient data; there is just not enough information to test or draw any

conclusions. He gives an example 118J of amatrix,

33, pp. xii , badly
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.60 -.28

.6o

which is incompatible with one general factor and asks, "How do we decide

whether, on the basis of one general factor, it arose by chance, when

the large sample X. is inoperative?". The question may be answered

by another question. If there are two observations from a bivariate

normal population, how is it decided if p = 0 ? Under the model,

the Wishart distribution furnishes the information, not the multivariate

normal distribution.

2.4 The Maximum Likelihood Equations

Lawley derived the maximum likelihood equations in his 1940

paper; however, for later use it is advantageous to arrive at them in

a different way.

The logarithm of the likelihood function for Wishart"s distribution

may be written as follows:

Log L » -5li (log |c| + trace c" A) + a function independent of

the elements of C ,

where C is the population covariance matrix, A is the sample

covariance matrix, and N is the sample size. Then,



14-i Trace c"1 A = LjJ: Z c^a,.
d * i,j=l 1J

1 P 11 N
" 2 E c Z (xin "Xi) (xjn "xj)i,j=l n=l m i jn j

1 N -1

n»l

16

c^ and a are the elements of c" and A respectively; xq is

the 1 x p row vector with elements x. - x. (i = 1, 2, ..., p) .

The partial derivative of log L with respect to some element,

z , of C is

Now

Therefore,

n -1 aid 1 5 c-l <£ -1 ,
-2TcT ~te~ + 2 L Xn C S C Xn

n=l

-l tV" -i Sr -1 -1x cX i£ C x' = Trace ^ C x' ac C
n oz n oz n n

N

Z x C"1 r C1 x' = (N -1) Trace £ c"1 Ac"
, n oz n x oz
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Then, if z = >jr.. , the likelihood equations are

17T " ^ii " ° i - 1» 2, ..., p ;
lei

where %. is the cofactor of /c\, in ^ , and /£\. is the element

in the ith row and jth column of 'G " AC . Similarly, if z = Xik ,

then

P A & , P A a i=1, 2, ..., p

j»l & lei j=l Jk iJ k-l, 2, ..., m

If B=& " A$ " -$ ,with typical element b., 1,the equations

may be written

ij

X B = 0 or XC A = X

and

b^ - 0 1 - 1, 2, ..., p

This implies that y B has zeros in the diagonal and that 'X ' X B = 0

£=^+^ '̂ ,and hence [^ *̂ +^ B-^B^A^"1-! has zeros

in the diagonal. Therefore, AT has ones in the diagonal.



To show that a. = &. (1 = 1, 2, ..., p) , one need only

consider the diagonal elements of

£ '^^A = A-^^A = £-^

since 'C A has unities in the diagonal.

Moreover, by defining transformations

and

$ =v'5£v"
1

2

A
£- * v

where V is the diagonal matrix

•u

22

1

2

1 1

~ 2" "5
R m V A V

PP

18
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the equations become

^6 -1 „ ^
/P R • /

Here P is the estimate of the population correlation matrix and R is

the sample correlation matrix with typical element r . Therefore,
ij

the results are independent of the scale of the x's in that one can go

directly from one solution to the other, and standardization ceases to

be a problem.

The above results are identical with Lawley's.

2.5 An Alternate Approach to Factor Analysis

It has been shown that the usual factor analysis model and the

proposed model are both equivalent to the assumption that the matrix

of population partial correlations of the x's after eliminating the y's,

is the identity matrix. Therefore, a quite reasonable estimation

procedure would be the maximization of the determinant of the matrix

of partial correlations in order to make it as close to one as possible.

This is almost equivalent to minimizing the sum of squares of the partial

correlations, especially when the correlations are small.

If it is assumed that E(Y Y') = I , the typical non-diagonal

element of the matrix of partial correlations is of the form



ij

X
k=l

m

Z p
k=l

ik pjk

Jik

» 2

L pikk=l JK

20

i, j = 1,2,...,p;

1 ^ J •

The p's are unknown, and are the correlations of the x's with the

various unknown common factors. Then the problem is to maximize the

determinant of these partials with respect to the p's. In matrix

notation, the determinant is

since the matrix itself is

X' X

_ 1

* Tr X' X t

1

2

R is the sample correlation matrix; X is the m x p matrix of

unknown correlations; and i? is the diagonal matrix whose terms are

one minus the diagonal terms of X' X . If the determinant is now

differentiated with respect to some element of X , say p., , the

resulting equation is

[ik
t
i-l

R - X' X -

. p i = 1,2,..„,p

+1" ^ p1k 5iij=l J* 1J k = 1,2,...,m



where the 6. . are the appropriate cofactors of R - X• X
lj L.

D = R - X' X , the equation in matrix form is

xd"1 m x if'1

Then,

X = X t D = X if R - X if" X' X

21

. If

The maximum likelihood equation derived in the preceding section is

Since P = gA . ^">

AA -1 A
iP R - i

f-f^f + f E-^'f

-lA'
Then, if the above equation is postmultiplied by £ X >

jV\f . i-E"1 f + ft1?f^P

Hence,

JV^' r1/ [i ♦ 11-1 f -l
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Now

U1* - P+fx^fft-1* ,

and substituting for IB~ si in the equation, one is led to

A -1(i) T\x* = i+Tt
A -1 A< A

This is the same equation that was derived by maximizing the determinant

of the partial correlations. Thus, the two approaches are equivalent.

To the author this is a most interesting result in that, to his

knowledge, this approach has not been tried before. It is approximately

equivalent to minimizing the sum of squares of the partial correlations

and thus, would seem a logical method, since the hypothesis states

that these are zero in the population. Quensel [27j has shown that

under a similar hypothesis, the distribution of sample partial

correlation coefficients (the y's are assumed known) is independent of

the distribution of the variables X and Y . He also shows that under

certain conditions the determinant of the sample partial correlation

matrix has the same distribution as the sample correlation determinant

of variables drawn from a p-variate normal population in which the

variables are all independent, but with N now reduced by m . This

suggests another reason why maximization of the determinant is a

logical procedure.
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Chapter VII will discuss this method further.

2.6 Alternate Interpretations of the Maximum Likelihood Equations

It must be stated at the outset of this section that its purpose

is only to suggest possible relations with other starting points in

factor analysis and directions for further investigation. The results

are in no way to be interpreted as mathematical derivations; however,

they do tie up certain approaches to the problem.

If the N observations are considered as a scatter of N points

in a p dimensional space, another line of attack is possible.

Hotelling 15 solved the problem by fitting a line through the

points byminimizing the sum of squares of the distances of the points

from the line. This results in the familiar equation XA = vX , where

v is a constant. This method consists in weighting all the variables

equally. On the other hand, suppose a weighted sum of squares of

distances is minimized. The problem then is to find the line in p

space,

——= ~^r~ v~

P 2
where E ©. = 1 , that minimizes the weighted sum of squares of

1=1 1
distances from the line. The use of weights is equivalent to imposing

a new metric on the space, and from a generalization of Hotelling*s

result it follows that
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where the diagonal matrix

311

=22

S =

SPP

5 is the matrix of weights and

H =

-1 -1 '
Q £ a c o

e g"1 9'
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If g is actually known, then the solutions amount to the characteristic

vectors of £ A . Suppose £ is now assumed unknown, a function of

0 and A such that t±i - &i± - G± • Then one case of the above

equation reduces to the maximum likelihood equations of Lawley's

Method I, derived previously, while another case reduces to the equations

for Method II where the y's are assumed fixed parameters 21, 35

It is assumed that only one factor (m = 1) is involved in the model,

but generalization to m > 1 is easily visualized.

Equation (2) has an infinite number of solutions as it stands,

since £ is now a function of 0 . To obtain a unique solution u
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must be further specified. If u = 1 + © £ ©',a comparison of

equations (1) and (2) for m = 1 shows that they are equivalent;

while, if (i = 9 f ©' , the equations for Method II arise.

Obviously, if it is assumed that all £.. are equal, the usual

characteristic equation, © A = n © , is obtained.

The point should again be made that this derivation is not to be

considered as a rigorous proof that the maximum likelihood equations

can be obtained by weighting the distances with the residual variances.

It is only intended to indicate the type of weighting that does occur.

A more realistic line of attack would be weighting with the unknown

residual variances given as functions of © , and then minimizing the

sum of squares; however, this leads to equations difficult to handle.

Another possible approach that indicates aspects of the prediction

of the y's from the x's, may be derived thusly, again assuming m = 1 .

Predicting y, from the x's so as to minimize the linear mean square

regression is accomplished by using the following equation:

y± mX« c'1 X

where X' is the row vector of population covariances of y1 and X ;

C is the population covariance matrix of X . The regression sum of

squares if X' c" X llOj . However, X,C,and y1 are unknown
in the factor analysis model; therefore, A , the sample covariance

matrix, is substituted for C . The problem is to maximize X' A X
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with respect to the elements X of X , subject to the condition that

P 2
\f\ =~TT (a.. - X ) equals a constant; that is, the object is to

1=1 " 1
predict yn as well as possible subject to the condition on t . This

yields

$'A-H - v£

where 'X is the estimate of X . Since ^ is a function of 'ft ,

these equations also have an infinite number of solutions. However,

specializing as before, if v = 1 -T* A~ It , one is led to the

Method I equation, and if v = -r -—r-r- , to the Method II equation.
T '^ XX

General remarks made about the first interpretation also apply

here. Only broad relationships are meant to be indicated.



CHAPTER III

COMPUTATIONAL METHODS IN THE GENERAL CASE

In this chapter carets will be omitted from C , t > and X

for the sake of simplicity, but it should be remembered that these are

only estimates of the population quantities involved. It is also

assumed that m is known a priori; otherwise testing problems would

have to be considered in this chapter. The actual procedure when m

is unknown will be discussed in Chapter VII.

3«1 Lawley's Methods of Computation

It will first be necessary to show the likelihood equation does

not give a unique solution for m > 1 . The likelihood equation is

X C_1 A = X

If an orthogonal transformation, S , is applied to X , where W = S X ,

then

X' X = W' S' S W = W' W

This implies that if is also invariant under this transformation and it

follows that C is invariant. Therefore, if the likelihood equation is

premultiplied by S , it is evident that W is also a solution of the

equation.
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Referring to Section 2.1, one sees that this is equivalent to

applying an orthogonal transformation, S , to Y . If E(YY') = I ,

then E(S Y Y' S°) = I , and the new factors are uncorrelated.

Moreover, if it is now supposed only that S is a non-singular

linear transformation such that S S' has unities in the diagonal,

cp = SX will also be a solution of the equation. For, in this case,

Then,

X' X = 9' S S'
-1

9

C = t + <?' S S>
-1

9

and this is the form of C if it is assumed that the y's are correlated

and such that E(Y Y') = S S' . However, the estimation will be

restricted to the case of orthogonal factors for reasons previously

given, principally the fact that in the general case, the assumption of

oblique factors leads back to orthogonal factors.

Hence, for m > 1 , there are an infinite number of solutions.

A particular solution may be selected by further restrictions on the

likelihood equation, and this is what Lawley does.

In his 1940 paper Lawley proposes a method of calculation that

involves the computation of the inverse of the sample correlation or

covariance matrix. However, to avoid the calculation of A , he has
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proposed a new method in his 1941 paper which supersedes the 1940 method.

The derivation proceeds in the following manner: it has been shown

in Section 2.5 that the likelihood equation can be written

-1 1X i|r A = |_I + X i|r X'jX

The derivation of the equation was actually for the correlation estimates,

but is obviously exactly the same for the covariance case.

The particular solution selected by Lawley is

X i|r~ A = ZX + X

where Z is the lower triangular matrix containing only the

corresponding sub-diagonal terms of Xy" X' . Then,

x if"1 a i|f-1 x» - x iiT1 x' * z x if"1 x'

Since the matrix on the left side of the equation is symmetric, the

matrix on the right must also be symmetric. If the element in the

first row and second column and the element in the second row and first

column are considered, then because of the symmetry,

h *_1 H Xl *"1 X2 -h ^ H h +"1 X2 +X2 +"1 X2 Xl +'1 X2
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Hence, X.. if XI must be zero, and by next considering the element in

the first row and third column and the element in the third row and first

column, one can show that X, if X* is zero, since X.. i[r X' is

zero. Proceeding in this manner, one can show that X ty X' is a

diagonal matrix. Therefore, a solution of

X ilr"1 A = Z X + X

is also a solution of the likelihood equation.

The method of computation, say for m = 2 , consists in starting

(1)
with an initial approximation Xv , obtained by some such method as

centroid or principal component analysis. Then i|r ' is computed by

using the relation

S1S> - a - X^^ - X(l)2 i-12fii " aii Ail K±2 1 ~ X>d>

(2)
The next approximation, Xv , is given by

(1) (If1 _ (1)
(2) Xl •* A Xl
Xl

4i)^i)"1AtW"141)1 -4i)^"1x|1)'
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(a) ^♦w'11.^t(1)'1f'f-41'

4D ,(1)-^ jar141)•. r,(D .(i)'1 ^s -14XV1J *<]X^' ify" X^

(2) (2)A new f , \|T ; , is then calculated from X1 ' and the computations

proceed in the same manner to obtain X^ , continuing until X

converges. Examples of the technique are contained in Lawley's 1941

(m = 1) and 1943 (m = 2) papers, and in a paper of Emmett's 13 >

m = 3

Both of these methods appear to converge in every case but that

in which one of the +.. in the solution is zero. In this situation

the iterations literally bound all over, and do not converge to the

correct solution. Another drawback is the sometimes exceedingly slow

rate of convergence; it is possible to stop at a point in the iteration

where there is no change in the value at the decimal place to which

accuracy is desired, and yet the correct estimate is a long way off.

This point, with an example, will be discussed in more detail in

Section 3.3,

3.2 Modifications of Lawley's Methods

An obvious modification of Lawley's methods is as follows:

Starting with an initial approximation X^ ' ,one computes \jr in

the same manner as before» Then a second approximation to X is given by



,(2) (1) ,„(lf\(l)

(2) (2)
\|r is then calculated from Xx ' , and

,1 -1

j

-1

,(5) XW,W\W

xM i(1)
-1
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,(1)"

\ A2) (2)"1 . .(2)

The method is continued until X ' converges. For m > 1 , this will

not give the same result as Lawley's method, since it has not been

assumed that X \|r X' is a diagonal matrix. An iterative method

which gives this particular solution may be specified as follows:

x(n+l) = z(n)' X(n) *(n)" A-X<n> ,,

where Z is the lower triangular matrix defined in the previous

section. However, this method (utilizing Z) does not have any

advantages over the other method. A solution arrived at by the first

method can be easily transformed to a solution satisfying the condition

that X i|r" X' is a diagonal matrix. In addition, the convergence may

be slower since the solution has been restricted.

An alternative method may be given by the following equation:

(n+l) i+x<a>t(n) x(n)f !x(n> t(n) a
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This method is not recommended, since the convergence is slower than in

the preceding methods.

The computational schemes proposed in this section have certain

advantages over Lawley's methods, notably, less computation. It is

also believed that convergence is faster, although no proof of this is

advanced. Therefore, the methods of this section are recommended

over those of Lawley.

3.3 A Gauss-Seidel Iterative Method

The Gauss-Seidel iterative method is usually applied to obtain

the solution of simultaneous linear equations 17, 34 For

example, if there are p linear equations in p unknowns, x,, x_,

..., x , say, one solves the first equation for x.. in terms of the

other p - 1 unknowns. Then the second equation is solved for Xp in

terms of x., x.,, ..., x , the third for x, in terms of x,, Xp, ...,

x , and so forth. Starting with an initial approximation: x?n, x,_,

..., x . , say, one then obtains x. by substituting the initial

approximation for Xp, x.,, ..., x in the first equation. One then

obtains x21 by substituting x-0, x , ..., x for x., x , ..., x

in the second equation. This process is continued until x , is

obtained. Then x11 is calculated by again substituting Xp,, x,-,, ...,

x . for Xp, x,, ..., x in the first equation. One continues the

procedure until x. , xp , ..., x converge„

The method may be immediately extended to p non-linear equations

in p unknowns. However, for Lawley's maximum likelihood equations,



3k

X-, x2> ..., x are now all vectors of the following form:

hi

2i

1 = 1, G. j .»., P .

mi

Each x. may be expressed as a function of the remaining vectors,

x,, Xp, ..., x , , x. ., ..., x , and the computations then proceed

exactly as outlined in the previous paragraph.

For the case m = 2 these equations may be derived as follows:

the likelihood equations are

X1 if"1 A=Xj^ +^ if'1 X£ X± +Xx if'1 X^ x2

X2 t_1 A=X2 +X2 if'1 Xi Xx +X2 t"1 X' X2 ,

or in scalar notation,

p x1±

1=1 *ii {&ii ' >li X±i "X2i ^ "^

p x2i

i=l *il (&iJ "X]L1 Xlj "X2i X2j) =Xsj

j=l,2,...,p

.2 ,2Now +. =a. -X.. -Xp. , so that the equations may also be written
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i=i +17(&iJ" hl XlJ"X2i ^ " °

j « 1,2,..., p

P X2i
1=1 +ii ^ "Xli X±i "X2i X2j) = °

Hence, for j = 1, 2, ..., p ,

»lj
v Xli aij

i^i *U

hi
v *ii xai , y x2i

iil +11 ^ i^j+ii

X a
v 21 ij

i/j *il

Generalization to m > 2 is obvious. For m = 1 , the equations become

X a
y 11 ij

z -ii
i^j *ii

i& ": j=1, 2, ..., p
x:
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Computation would start with an initial approximation; then

X^ ' and X2 ' would be computed from the V,' (k =1, 2; j=2,
(2) (2) (2)3, ..., p) . X2p' and Xp' would then be computed from X.*.' ,

X^ ,and X£,' (k =1, 2; j=3, 4, ..., p) ,and so forth.

Although an entire iteration involves more work, the increase

in speed of convergence is much more than enough to offset the extra

labor. Particularly for those cases in which convergence is extremely

slow, the saving is very large. As an example, the correlation matrix

in Lawley's 1943 paper will be considered with m assumed equal to two.

It is reproduced below, omitting the lower non-diagonal elements.

1.000 .312 .405 .457 .500 .350 •521 .564

1.000 .460 .316 .279 .173 •339 .288

1.000 .394 .380 .258 .433 .323

1.000 .460 .222 .516 .486

1.000 .239

1.000

.441

.302

1.000

.417

.262

.547

1.000

As a first approximation one takes

Xj1' m .73 .50 .66 .66 .62 .40 .73 .70

X(1)X2 .17 -.27 -.47 .08 .06 .02 .10 .29
'J
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Then,

.4382

.6771

.3435

.5580

,(D ,6120

.8396

.4571

.4259

The calculation then proceeds as follows:

T Xli - (-5°)2 + (»66)2 (.70)2^ t^" " "Wtr + ~7$m + ••• + -^259 = 5.553

X, .X.y 11 2i (.50x-.27) (,66x-.47) (.70 x .29)
Ml"~+iT = 7W!r + 3535~+**'+ HJ259

T Xsi = (-27)2 . (-.47)2 . . (;29)2 _ g88
L ~ = .6771 + .3^35 + *•• + T525F ~ *9 '1/1 *ii

••301 ,

X,,ay li il (-50 x .312) x (.66 x .405) ^ . (.70 x 564) _ 8
i/l vii "3771 73W 74259



z
i/1

X2i ail

♦il

Finally,

and
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(-.27 x .312) (-.47 x .405) A
TEffl 3^35

+ (-29 x .564) _ ^

5.553

-.301

42) - .726 ,

.301 r x<2> 1 " 3.981

.988 x(2)
LX21 _

=

-.058

x22) = .162

(2) (2)The same procedure is followed, using X: ' and Xp ' , to obtain

(2) (2)Xj ' and Xpp' . Continuing for a good number of iterations, one is

led to the following results:

Xl - .722 .499 .691 .658 .621 .398 .723 .689]

.183 -.216 -.527 .110 .090 .037 .126 .291

In Lawley's method it will be remembered that X, if X• = 0 ; therefore,

an orthogonal transformation must be applied to X so that L, if LA = 0

The resulting vectors, L. and L? , given below, will still satisfy

the equations as shown previously.
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L± = [.706 .515 .731 .648 .612 .394 .711 .663]

L2 .240 -.176 -.471 .161 .139 .069 .183 .344

Lawley states in his paper, "In general very great accuracy is not

essential, and the final estimates of the factor loadings and specific

(residual) variances are not necessarily correct as regards the third

decimal place. They are, however, sufficiently accurate for our

purposes." His results are

725 .503 .664 .661 .623 .399 .726 .694J

172 -.261 -.468 .087 .069 .027 .106 .291

It is evident that there is a large discrepancy in the results.

L, and L„ are accurate to three decimals and should agree with the

fectors obtained by Lawley. The difference is probably caused by the

extremely slow convergence of Lawley's method in this case, and by the

failure to carry enough places to observe the convergence. First

differences of the order of .0003 may be obtained from iterate to

iterate, and yet the second differences may be one hundredth of this

size. This might, if the computer were working to three place accuracy,

cause him to stop at an iteration where, in reality, he was much farther

than .001 from the correct result. It is believed that this was the case

in the example discussed above.
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On the other hand, it Is perfectly possible that for testing

purposes, the iteration has proceeded far enough and more iterations

do not change the value of the statistic to any large extent. This

also seems to be the case here. However, in prediction or rotation

a more accurate estimate should be obtained; this implies a necessity

for carrying more places than the number to which accuracy is desired.

Another advantage of the Gauss-Seidel scheme and the methods of

Section 3.2 is that a particular solution is not specified by further

restrictions on the likelihood equations. Thus, there is no necessity

for attempting to find an initial approximation in which the

X. t X* (k / j) are close to zero so as to speed the

convergence. It must be observed, however, that when m becomes large,

say greater than or equal to four, the amount of work in inverting the

matrix becomes quite large and probably impractical unless electronic

digital computers are available. Yet in this case, other methods would

also be impractical for desk computers.

3«4 Other Methods of Computation

Rao 28 has also proposed a method which gives a solution to

the likelihood equations. As mentioned in the Chapter I, this has

been coded for the Illiac and the code is available. The method seems

impractical for desk computers, Rao himself making this point. To obtain

the solution, for m = 2 say, one solves the determinantal equation

IGRG - VII = 0 ,
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where the elements g. of the p x p diagonal matrix, G , are such

that

2 - r

g<_ =Ny/(v1 -1)\ +(v2 -l)c± +1 i-1,2,..., p;

v1 and Vg are the two largest characteristic roots of the equation and

b. and c. are the ith elements of the associated characteristic

vectors, b and c ; R is the sample correlation matrix. Beginning

with an initial approximation, G , for G , one obtains a new G ,

(2)
G , by solving the determinantal equation

qWrg'1' - VI 0 .

The process is repeated until convergence is obtained. Estimated

factor loadings corresponding to X1 and Xp of the previous case,

are defined as

I ' -1 / > -1y v1 •1 bG and /v2 -1 cG ,

and these estimates satisfy the likelihood equations. For a derivation

of these equations and an interesting discussion of the principal

component method and what Rao calls canonical factor analysis, equivalent

to Lawley's Method I but derived differently, his 1954 paper is

recommended.
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As far as general conclusions are concerned, for m less than

or equal to three, the Gauss-Seidel scheme is definitely recommended

over the other methods discussed in this chapter. It is superior

because first, it can be conveniently carried out on a desk computer

and second, its convergence is much faster than other available methods,

at least in all numerical examples tried by the author.



CHAPTER IV

ORTHOGONAL FACTORS AND ROTATION

Throughout this paper orthogonal will be considered interchangeable

with uncorrelated, and oblique interchangeable with correlated. This

convention has been and will be followed in order to maintain the usual

factor analysis terminology. In this chapter it is assumed that the

y. (k = 1, 2, ..., m) , are all uncorrelated; E(Y Y') = I . The

following chapter will take up the problem of correlated factors.

4.1 General Comments on Rotation

It has been shown in Chapter II that, under the model with

orthogonal factors, the matrix of regression coefficients, p , is the

same as the matrix of covariances, X' . Thus, hypotheses on the form

of 0 are equivalent to hypotheses on the form of X' . Simple

structure specifies; the form of the population regression matrix, p .

Therefore, in this and the following chapters, hypotheses and equations

will be formulated in terms of p , rather than in terms of X' .

To illustrate the subject of rotation, it will be advantageous

to give an example of the procedure of the psychologists. Suppose the

maximum likelihood estimate for a 6x6 correlation matrix of test

scores for m = 2 , is

4 - £• =

.4 .3 .5 .7 .4 .8

-.6 -.5 -.8 .4 .3 .5
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It has been shown in the preceding chapter that if /BX' is a
Km x p

solution of the likelihood equations, then S/pN* , where S is an

m x m orthogonal matrix, is also a solution. The psychologists look

for amatrix S which results in S$• having small quantities,

close to zero, in specified locations which give an indication of

simple structure. In this case, by applying graphical or analytical

methods 33 they find an orthogonal matrix,

Then,

S -

.846

-.533

•533

.846

A.
.02 -.01 .00 .81 .50 .9*

S B' =

-.72 -.58 -.94 -.03 .04 .00

-J

On observing SB', they conclude that tests 1,2, and 3 contain

one common factor, and tests 4,5, and 6 , another. S$' satisfies

the likelihood equations and who is to say that the sample estimates

close to zero, are not actually zero in the population? It is then

assumed simple structure exists and the particular experiment is over.

Of course, what is needed is a test of the hypothesis that these

parameters are zero in the population.



For this example the hypothesis can be stated:

EHi -BY)(X -BY)1 J = if

B =

3

3

1 1
1 ~1

*11 i o
r

0

i

|B22

*5

Here f is a diagonal matrix; B,, and pp? are 3x1 column

vectors. The resulting population covariance matrix is, in partitioned

form,

+(1) + pll Pil 0

C = f + BB»=

!+(2) + P22 622

Estimates would then have to be made of these parameters and a test

developed.

At this point an important fact arises; namely, since this

hypothesis was made from the data, the same data cannot be used to test

it. A new sample should be used for this purpose. Thus, if simple

structure is the object of the analysis, the initial data should be

randomly divided into two sets, one to generate the hypothesis, the

other to test it. Because of the large sample sizes usually involved

in psychological studies, this should involve no handicap, except for
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the extra computation necessitated by two correlation matrices. On the

other hand, if the hypothesis, which involves specifying the form of the

population covariance matrix, can be made a priori, this problem does

not arise.

The determination of the S transformation is a problem in

itself. Analytical solutions, calling for no judgment, have been

proposed, but the general consensus seems to be that at the present

time, graphical or other methods calling for human judgment, are

better 9 • Presently then, it is the factor analyst's problem to

make the simple structure hypothesis by using developed rotational

techniques, and the statistician may then devise tests for the

hypotheses and estimation procedures for the parameters involved.

Therefore, in this development it is assumed that the hypothesis has

been made previously from another group of data, and it is now desired

to test it on a new sample..

The purpose then, of this chapter, is to translate simple

structure to statistical formulation and to derive estimation procedures

for the parameters in the resulting models. Section k.2 will derive

the maximum likelihood equations under these models; Section 4.3 will

consider the likelihood equations for three special cases discussed

by Thurstone 33 The Indeterminancy in the model is discussed in

Section 4.4, while methods of solving the equations will be covered in

Section 4.5. Finally, Section 4.6 will summarize and generalize some

of the results. Testing of the hypotheses is then only an extension

of Lawley's work and Is discussed in Chapter VII.
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k.2 The Maximum Likelihopd Equations

It is now assumed that a sample of N has been drawn from a

p-variate normal population with mean u and covariance matrix

C = if + 0 B' , where 0 is a p x m matrix, m < p , Certain

elements of p , say p , p . , 0. . , ..., p. , , are
xl Jl x2 J2 x3 J3 xr Jr

assumed zero, where r> ^LzJtL . ^ ±^} _o? ± can assume any
value from 1 to p ; and J1, jg, ..., j any value from 1 to m .

To obtain estimates of the elements of the diagonal matrix if and of

the remaining elements of p , one may use the method of maximum

likelihood to maximize the likelihood function for Wishart's distribution.

In this case, the resulting likelihood equations are

ft' (ft"1 Aft"1 -ft"1) - U'

(1)

Diagonal (ft"1 Aft"1 -ft"1) = 0 ,

-where U is a p x m matrix with zeros where p is not specified to

have zeros. If B=ft"1 Aft"1 -ft"1 with typical element b±. ,
the equations may be written
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ft' B a U°

(2)

b. . =0 i = 1, 2, .o, p .

Equation (2) implies that ft B and ft ft8 B have zeros in the

diagonal, since ft U° has zeros in the diagonal by definition of U .

Therefore $ +ft ft") B «ft B =Aft ~ -I has zeros in the diagonal
A -1

and hence A C has ones in the diagonal.

On the other hand,it is no longer true that a.. = ft.
ii ii

(1 = 1, 2, ..., p) . If equation (l) is postmultiplied by ft and

premultiplied by 0 , then

ftft'ft^A-ftft' =A-ftft"1A-ft +ft=ftu'ft +ftu'ftft« .

From a consideration of the diagonal elements in the equation above,

it is easily seen that the diagonal elements of C are not equal to

the diagonal elements of A , since the diagonal elements of 0 U' 0 0'

are not necessarily zero.

Moreover, in the same way as in Chapter II, it can be shown

that similar equations hold for the correlation matrix; thus, the

problem of standardization is still avoided.

Equation (l) is not, however, in a form suitable for computation.

The following paragraph will derive equations which are in a more

convenient form*
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If equation (l) is postmultiplied by C , then

ft' ft "X A=U' ft + U8 ftft' + ft« = ft*' ,,

say. Now proceeding exactly as in Section 2.5, one can easily show

equation (1) is equivalent to

ft' ft'1 A - (i+ftft^ft*'

(3)

Diagonal ft = Diagonal(A -ftft*") ' .

The last equation of (3) is equivalent to a.. = £\ (i = 1, 2, .,., p)

only if the diagonal elements of 0 U* 0 0! are zero. In the next

section some eases are considered where this last relationship is true.

4.3 Special Simple Structure Hypotheses and the Resulting Likelihood

Equations

The first hypothesis of interest is that discussed in Section 4.1;

in Thurstone's terminology, it is called "isolated constellation

configuration", |33, pp. 184 , and will here be called Model I.

For m = 3 , the hypothesis is



P -

E (X - BY)(X -0lW = +

p-q-r

pll 0 0

0 B22 0

0 0 P33
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In this case the population covariance matrix, C = if + 0 0" , will have

three blocks down the diagonal of the same form as for m = 2 , and

zeros elsehwere. Generalization to m greater than three is obvioxiSo

Model II will designate what has been called "incomplete

triangular configuration". For m = 3 » the hypothesis takes the

following form:

Ej(X -0Y)<X -01)' - f

hi P12

0 =

p-q P21 ° '23

This results in a population covariance matrix, C = i|r + 0 0° , which

in partitioned form may be written



q

C -

p-q

q

+(i) + pii pii + P12 P12

p2i pii

P-q

Pll P21

+(2) + P21 P21 + P23 %
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Model II is equivalent to the Spearman model (with uncorrelated factors)

where a general intelligence factor is assumed for all tests, while the

tests are assumed to have zero or positive loadings on other factors

called "specifics". The general factor here corresponds to that common

factor on which all the tests are assumed to have non-zero regression

coefficients; the other two are the specifics. This model is also

easily generalized to m greater than three.

For Model III the hypothesis is

q

P = r

p-q-r

E MX - BY)(X - BY)' j - if

_ J\l _P12 0

P21 0 P23

0 P32 P33

This implies that the population covariance matrix, in partitioned

form, is
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r

*(l)+PllPll + P12^°12 Pll P21

p-q-r

P12 Pj2

C= r

p-q-r

P21 Pll

P32 P12

+(2)^21^21 + P23P23 P23 P33
r

i
i

r

P33 % ;+(3)+P32P32 +P33P33

Thurstone calls this a "complete triangular configuration". Again,

generalization to m greater than three is readily apparent.

The likelihood equations for Model I may be greatly simplified,

for if

q r p-q-r q r P-q-r

q

C- r

Cu ! ci2 ; ci3n

C12 'C22 i C23

p-q-ip{5 ; o^3 i c53

and A-

q *u A12
A
A13

r A'
12 A22 A23

p-q-r A0
A13 Act2*j

V

then the elements Of C.0 , C,, , and C~, are all zero. Hence, the
12 * 13 23

logarithm of the likelihood function of Wishart*s distribution may be

written as

Log L = -
N - 1 1 I ii

log|C,J + trace C A...

a function independent of the elements of the C
ii

for i = 1, 2, 3 ;
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ii
where C is the inverse of C„, ° This implies that each set of

variables may be treated separately, since a maximization of the sum is

equivalent in this case to a maximization of each of the three components.

Thus, this is equivalent to estimating one common factor from each group

of variables, and is therefore identical to the problem in Chapter II.

Hence, the maximum likelihood equations are

A, All * _ At
hi c *u " pn

£. ft 22 . _ A,
P22 ° *22 " P22

A, A 33 . _ A,
P33 ^ A33 " P33

Diagonal C = Diagonal A

Model II also produces some simplification in the equations for

U'ftft' is an mxp matrix with zeros where 0' is not specified

to have zeros. Therefore, if K'=U°+U'ft/^1ft"1 ,the equations

may be written

ft' ft "1 A = K' ft + ft'

Diagonal (ft -1 Aft ^ -ft ~1) = 0 ,
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where K has zeros where p is not specified to have zeros. For this

model then, the diagonal elements of C equal the diagonal elements

of A o

However, for Model III no simplification is possible and the

equations remain the same, requiring a much more complicated computational

procedure than do Models I and II. It is therefore worthwhile for the

factor analyst to ascertain whether some simplification of the likelihood

equations is possible for the particular simple structure hypothesis

to be tested. Models I and II are examples of such simplification.

4.4 Indeterminancy in the Model and in the Likelihood Equations

For the original model, C = t + 0 0' » discussed in Chapter II,

it has been shown that p is determined uniquely except for multiplication

on the right by an m x m orthogonal matrix S . The matrix S can

be determined such that two conditions are satisfiedo First, one column

of p S has no zero elements, another has one zero element, still

another has two zero elements, <,.„, and the last has m - 1 zero

elements. Thus, there are •-p" • zeros in all. The second condition

is that 0 (a « 1, 2, ..o, m) has the same rank as the number of

(a)zeros in the ath column, where 0^ ' is the submatrix of p S that

has zero elements in the arfch column. This follows from repeated

application of aresult of Roy's I30J 1 namely, that if |d /0,

there exists an orthogonal m x m matrix S such that G S = H ,

where H is a triangular matrix. It is clear that the preceding

paragraph still holds true if p is replaced by p .
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This implies that certain simple structure hypotheses are

actually equivalent to the general model discussed in Chapter II.

Hypotheses of this sort may be specified as follows: adding zeros to

the various columns in the hypothesized 0 matrix results in a matrix

which satisfies the above two conditions. This means simply that a

ft obtained under the general model (no zeros specified) may be

transformed into an estimated regression matrix of the form specified

in the simple structure hypothesis. Hence, estimation based on the

general model is sufficient in this case. If there are more than

m^m" ' zeros specified, then the methods discussed in this chapter

must be used.

In addition, simple structure hypotheses in general may not

define 0 uniquely. For example, a p x 3 0 matrix with more than

three zeros in the third column and none in the first and second

columns, is not uniquely determined. For, if 0 is postmultiplied

by an orthogonal matrix of the following form:

a
2 '

- a

a

0

-A- 2
a 0

0 0 1

a new regression matrix of the same form as 0 results. Thus, it is

sometimes possible to rotate under simple structure hypotheses.
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Conditions for unique determination of 0 and p are the

same as the two conditions listed previously except that now the first

condition specifies only the minimum number of zeros that a column may

have. There may be more than >"• ' zeros in the p matrix. This

follows easily from the fact that under these conditions, any

orthogonal matrix must be a triangular matrix to leave the form of p

unchanged, and the only orthogonal triangular matrix is the unit matrix.

If the conditions are not satisfied, p and ft are not uniquely

determined and it may be necessary to impose a condition analogous to

ft' ft"1 ft = diagonal matrix,

in order to obtain a unique solution of the likelihood equations.

In Chapter VII this point will be discussed further, since it

has a bearing on the distribution of the test statistic.

4.5 Calculation of the Estimates

In this section methods of computation for Models I-III will

first be discussed. The method of solution for the general equations

of Section 4.2 is then an obvious generalization of that for Model III

and will be considered at the conclusion of the section.

In all the orthogonal simple structure hypotheses, the initial

approximation is the rotated matrix of estimates, S X = S 0' .

For Model I the methods for m = 1 discussed in Chapter III are used

on the sample covariance matrices of the first q variables, the next
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r variables, and the last p-q-r variables. Then Model I contains

no new computational difficulties.

For Model II the likelihood equations may be written

ft' ft -1 A = K» ft + ft' = ft*' ,

say. If the equation is postmultiplied by A~ ft and ft +ft ft' is

substituted for ft , then

(4) ft' = ft*' A"1 ft + ft*' A^ftft'

Postmultiplying the above equation by ft" 0 , one obtains

ft' ft"Xft . ft*' A"1 ft +ft*' A"1 ft ft' ft"1 ft ,

or

^' A"ift=ft'ft-ift [i+ft'ft^ft;

Equation (4) is now postmultiplied by ft" A to obtain

-1

ft'ft"1A= '̂ ♦ ft'ft^ft [l +ft' ft"1 ft] _1 ftft"1 A,

or, after some simplification,
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%'$mlA - [l+ ft" ft"1 ft] ft*'

Here, one can no longer specialize to the equations where the non-diagonal

elements of ft' ft" ft are zero. However, if ft^"1^ is the (n-l)st

approximation to B , one way to obtain the solution is to use a scheme

as follows:

A*(n) "j +AU-1)' A(n-1)-1 Ajn-l) AU-l)./N(n-l)-lA f

and repeat the procedure until ft1 ' converges. The diagonal matrix

t is obtained by subtracting from the diagonal elements of A , the

corresponding elements of ft^ ft*11' . ft/n' is easily obtained from

A*(n)' =A(n)' +

q p-q

~~G 0

0 u

V 0
__

A method which gives faster convergence is specified by

A*(n)« A(n-l)' ^(n-l)-lA(n-l) A(n-l) A(n-1)-1 A _A*(u-1)

For the initial approximation in this method, u and v are assumed

zero, but after the first iteration, estimates are available.
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A Gauss-Seidel technique which seems to give the fastest

convergence with the least amount of work, can also be derived. The

likelihood equations can be written in. scalar form as

P f,
Z i

1-1 ft
ii

Kj - fi fj - h «3" hi hV * fi

p g.

\ 7T- (au - fifj - h *3 - hi hV - g;i=i ft
ii

A£- (au - fifj -%̂ -hi hV =h5 ^= 1'2'-'p
'ii

where the f. are the elements of the vector

are the elements of the vector

q

'12

p-q_

&~ : o"

the h. are the elements of the vector

0

p-q

A,
P23

ki :%iJ 'the %

the g* are the elements of the second row of ft*' $ h* are the

elements of the third row of ft** . Hence,
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gj = g. x = J., c, ..., q

h* = h. i = q+1, ..o, p

Since g± =0 (i = q+1, ..., p) ,and b^ =0 (1=1, 2, ..., q) ,

the equations are, for j = 1, 2, ..., p ,

Now

A §~ ^ •** ** •Ei *?+X l~ <a« •f* fj •h* h3'=fj
3 6.

^'•n-'i'i^^
*ii

i-L fc (a» -** '* -** ^ • h5

A 2 2
*ii " aii " fi " Sl 1 = 1, 2, ..., q

%i = aJJ "*J "hJ J"*f1' —' P



Therefore, for j =1, 2, ..., q ,

q *

E A~ (aiJ
8*"

f f
1 J ^^lir^"'1^^1ii

q g±
Z (a. .

1-1 ft, U
ik

'ii

= 0-fifj"gi^ -

P h
Z -=- (a - f f - h. h*) = h*

i=q+lftii iJ i -5 1 «5 J

Hence, they may also be written, for j = 1, 2, ..., q ,

P f.

' ^ ftii
Mj

q g,f, p f h p f a

1-1 V,, d l-q+l ft,. 1-1 y
il*J

Fii 'ii
1/J

2 -igi
__— + **,

q

7,
gi q

= Z
gi a

ij

ftvii
»j

1=1

i/d
Yil i»i

ik
*i±

fihi P h?
-i

P

+ h* z
X

1 — z
ft
♦ii

J i=q+l *11+ i=q+l

i=l

1/J

P

z
i=q+l

ii

h a

f,ii

6l

= 0
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Similarly, for j = q+1, ..., p ,

5 fl q
f3 Z 2T + gI ZJ 1=1 ft,, J 1=1

1^ "

figi + ._ ? fihi+ h* L ~7r-
J 1-q+l ft,A

P

z
1-1

±k

fiaij
ftii

ik
'ii ii

q tA gi °i

2
q g,
Z —

i=i t1±

q

Z
i=l

? ah ij
A
yxx

f.

ii
•s

p f h p h
Z -±-± + h* Z -i-

J ,_„.-, A J i=q+1 A
^ *« ik

ii

+ l

l=q+l ft
1*1

ii

Computation then proceeds as described in Chapter III for the Gauss-

Seidel method.

As an example the 8x8 correlation matrix in Chapter III

obtained from Lawley's 1943 paper, will be considered. Let it be

supposed that the estimate

.706 .515 .731 .648 .612 .394 .711 .663

fr
.240 -.176 -.471 .161 .139 .069 .183 .344

has been obtained from another sample drawn from the same population.

Moreover, suppose that by one or the other rotational methods operating
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Aon '01 , the factor analyst has arrived at the orthogonal matrix S , where

Then,

sft' =

S =

.9549

.2967

.2967

>95^9

.745 .439 .558 .666 .626 .396 .733 .736

-.019 0321 .667 .038 .049 .051 .036 -.132

The factor analyst now makes the hypothesis that there is a general

factor, y. , which is correlated with all the variables, and that there

is a second factor, y2 , uncorrelated with y. , such that p.
Xjr p

for i = 1, 4, 5, 6, 7, 8 j p. is the correlation coefficient of x,
J-"2 3.

with y2 . Now the object is to estimate the parameters under this

model. As a first approximation, let

.745 .439 .558 .666 .626 .396 .733 °736

ft(D

.321 .667 0 0 0

• 0
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Therefore,

.4451

.7040

.2440

.(1) .5562

.6087

.8428

.4630

,4587

(2) (2)Then to obtain f? ' and gl ' , the following quantities are needed;

E 1= (-7^5)2 + («558)2 , + 1$$.. 6.4895
1^2 ft

ii

z i i
1^2 ft.

ii

2
g,

Z JL
Ai/2 ft
ii

f1 ai2
Aife. y
ii

gia12

i/2 VA
ii

.4451 ~^40"

^Li^T) = 1-5BW

(.667)*
.2440

1.8221

(.7*5)(o312) . . (.736)(.288)
7W51 + •°'+-i .4587 5°319°

-667 (A60) _
.2440 " 1^:?'0'



Finally,

6.4895 1.5248

1.5248 1.8221

,(2)

gi2)gg

3.3190

1.2510
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or fjp -.4394 ,gg2' -,3208 . Then l)^' and g^2' are obtained
(2) (2)in the same manner, but fp ' and gl are used in the calculations,

(2)rather than f„ and gp ' To obtain new estimates f

(i = 1, 4, 5> 6, 7, 8) , the same procedure is followed, except that

1 +

is used, not

g
J

J/1 VA jj

Z JL
H. a
^ ♦jj

AThe matrix, f , is, of course, changed with each new estimate,

a few iterations, the results are, accurate to three decimals;

After

.742 .437 .554 .674 .636 .403 »739 -710

0'

0 .324 .672 0

As far as the possible divergence of the methods is concerned,

both computational schemes described above have converged to correct
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solutions in all examples attempted, but it should be noted that a proof

of convergence has not been obtained. This also applies to computational

methods in the general case, as discussed in Chapter III, and to the

scheme for Model III discussed in the following pages.

The likelihood equations for Model III are

ft' ft -1 A - ft*' ,

where ft*' =ft' + U'ftft' + U'ft ,and U is of the form specified

previously. Proceeding exactly as for Model II, one can show that the

equations may be written

A. a-1^ft"XA - I+ft'ft^ft ft*-

If the above equation is postmultiplied by | p , then

A£• ft"1 Aft"1 ft = [l +ft' ft"1 ft] [ft ft"1 ft +U'ftft' ft"1 ft +U'ft]

This is equivalent to

0X'ft"1Aft"1ft+ [i+ft'ft^ft] = [l+ft'ft^ftlwfl+ft'ft-H

where

W, , - I + U'ft
3x3
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Therefore,

-1

W- [i +ft' ft^ft] ft' ft"1 Aft"1 ft [i +ft' ft^ft"
-1 ..-1

I+ft' ft'1 ft

The computation proceeds as follows: take an initial approximation

0^ ; compute t , assuming W is the identity matrix. This

implies that the elements of ft* ' are the diagonal elements of A

minus the diagonal elements of ft* ' 0* ' Now compute W by

using the above equation for W . Then obtain

ft*(l)* - [i^1)'^1)-^1)]"1^'^* ;

(1)both of these matrices have been obtained in computing W

ft*' is of the following form:

q

ft**
pn

ft*«
P12

ft*-

Now

ftsA
22'p:

p-q-r

ft-"

&*1'0

q

Pll + W12 p12

r

^21 +W13 %
p-q-r

aC33

%2 +W12 %i hc22 V'^33
CC11 % +v13 %l %} *"23 %2 0!

13

32

33B23 p

where the w.. are the elements of the symmetric matrix W . It will

be noticed that the estimates of W are also symmetric matrices. Since

an estimate of W is now available, the second approximations to 0'.

and 0' are obtained by



(1)
12

w.

to ft^ and ft25 by

(1)
13

w.

(1)
12

w.

(1)
13

w.

-1

A,and finally to 0' and 'B' by
32

A.
33

(1)
23

w,

(1)
23

w.

-r _1

A*(D
p
11

A*(l)
612

A*(l)
p2l

A*(l)
p23

A*(l)!
632

A*(l)
P33
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Thus, p* ' is obtained. To compute ft* ' the non-zero values of

the elements of W must be considered. The diagonal elements of

A(2) A*(l)*
p ' P * ' are obtained, and these are subtracted from the diagonal

elements of A ; the resulting differences are the t\i (i =1,2,...,p).

Then W* ' is computed from ft* ^ and ft* ',with the use of the

same equation as before. At this point a procedure slightly different

from that in the first iteration, is followed, since convergence is

increased to some extent. The following expression is computed for an
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ft*(2)estimate of 0

^(2)'A(2)-1^(2) ^(2)^(2)-lA_0l) Af(2)

Then one proceeds exactly as before with fT* ' to obtain ft**' . The

iteration is continued until convergence is obtained. It may seem

somewhat surprising that such a complex scheme does converge, but

examples have resulted in solutions satisfying the original likelihood

equations. One example with an artificially constructed correlation

matrix follows.

The 6x6 correlation matrix, A , with lower non-diagonal

terms omitted is

1.00 .58 .15 • 34 .19 .05

1.00 .14 .31 .37 .04

1.00 .44 .16 .46

1.00 .17

1.00

•36

.26

1.00

As an initial approximation, take

£(l)
•7 =6 .2 .5 0 0

•3 »5 0 0 .7 »1

L- 0 0 .6 .5 .3 .7.
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Then,

.50
,42

>50

.42

ft*1*-
•39

.60

"1.6667 1.5385

A(1)'A(1)-1 m
•7143 1.2821

- 0 0

.5333 1.0000 0 0

0 0 1.6667 .2000

1.0000 1.000 .7143 1.4000 J

ft^'ft*^"^

-2.9490 2.8618 I.2387 2.1903 1.1092 .6582"

1.7846 2.3211 .6453 .9957 2.3288 .7203

_ .6957 .7703 2.1983 2.0654 1.4083 2.4057

A(l)'/*>(!)-1A^(1)-1AU) .
"11.9211 7.7559 5.1428"

—

8.2761 4.3129

8.6376_

~3.65645 1.26926 .69998

3.04203 .64001

— 3,29429

I+^(1)«A(1)-1^(1)



Hence,

"1.00150 .00280 .01267"

w<« s 1.00311 -.00917

- 1.01432 . •

"7043 .6046 .2239 .4957 .0038 .0159"

01)' . .2918 .5094 -.0122 .0112 .7029 .0805

.0048 .0064 .6221 .5194 .2901 •7112_

Therefore,

r 1 w^nx 12

-1

"1.00001 -.00280"

w^ 1w12 x
f 1.00001

' 1 w*1*"x w15
-1

1.00016 -.01267

w*X> 1
_ 13 -

1.00016_

"1 w*1*"
x 23

-1

1.00008 .00917

w<X> 1w23 x _,

1.00008

71



The result is

ft*"2>'

.7035 .6032 .2161 .4892 0 0 -

.2898 .5077 0 0 .7056 .0870

L 0 0 .6194 .5132 .2966 .7120.

72

Then ftj^ ,say, =1-.7043 (.7035)-.29l8 (.2898) ,and

,41996

.37668

#2> .56629

.49095

=41799

,48662

For the second iteration the following matrices are computed;

#2)'Q(2)-1

£(2)^(2)-!^

1.6752 1.6014

.6901 1.3478

0 0

.3816 .9964

0 0

1.0938 1.0453

0 0 "

1.6881 .1788

.7096 1.4632J

3.0000 2.9353 lo2955 2.2305 1.1412 .6821

1.8015 2.3798 .6446 1.0038 2.3644 .7061

.7275 .7983 2.3403 2.1740 1.4427 2.5272



ft(2)^(2)-lA^(2)-^(2)
12.4428 8.0749 5.5562

8.5683 4.4653

9.5538J

3o71437 1.29850 .747721

3.09095 062800

3.46621J

I+A/2)'A(2)-1£(2)

Therefore,

and

A*(2)

(2)
W

I.00350 .00261 .00904"

1.00023 -.00506

1.00191

.7106 .6118 .2294 .4888 .0016 .0119

.2787 .5131 -.0181 .0154 .7075 .0777

.0066 .0049 .6317 .5188 .2867 .7130

73



Then, proceeding as before, one obtains

ft<5)'
•7099 .6105 .2237 .4841 0 0 "

.2768 .5115 0 0 .7090 .0813

. 0 0 .6297 .5144 .2903 .7131*-

The process is continued until p* ' converges to

ft' =

.694 .644 .219 .469 0 0 -

.253 .508 0 0 .715 .089

0 0 .647 .51* .277 -703
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which is the solution of the likelihood equations.

The likelihood equations for Model III are identical with the

general equations derived in Section 4.2. Therefore, the computational

method for Model III is applicable in the general case, except that

the form of p* must be examined and expressed in terms of p . This

determines what submatrlces of W must be inverted in order to obtain

an estimate of p . Otherwise, the computation proceeds exactly as

with Model III.

A Gauss-Seidel type of iterative technique can also be used for

the general case. However, because of two difficulties the scheme is

not generally recommended. First, W = I + U' p must be computed

for each new estimate of a row of p . This may change every element
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in the estimated f matrix, leading to exqessive calculation. The

second difficulty is that the elements of ft are the diagonal elements

of A minus the diagonal elements of 0' W 0 . Thus, it is not

usually possible to obtain a row of ft in terms of A and the other

m(p - 1) elements of 0" alone, since the elements of ft may all

depend on that particular row of p . If, however, W = I or the

diagonal elements of fc equal the diagonal elements of A , this

technique is to be recommended; an example has been given for Model II.

The general formula may be worked out quite easily from equation

(3) and is given by

ft' ft"1 A
P(«j) * Ai %)^W --1 ft' +

j = 1, 2, ..., p

T ,At A-l A
1+ P(j)* P(J)

Here 0, * is the p x m matrix obtained from '0 by inserting zeros

in the jth row; ft. is the jth row of ft j A. is the jth row of A ;

Q. is the jth column of U' if . 0! and Q. between them contain
j —- j J

m non-zero quantities, since U is specified to have zeros where p

is not specified to have zeros. Therefore, the equation above may be

thought of as giving the jth row of ft in terms of A. and the other

elements of 0 ; however, it is subject to the two difficulties mentioned

previously. The computational equations for Model II may be easily

derived from this relation.

Qj
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It should also be noted that, although computational methods have

been discussed only for m = 3 > generalization to m greater than

three is immediate.

4.6 General Remarks

Throughout this chapter simple structure hypotheses specifying

zeros in the 0 matrix have been considered. However, there is no

reason to restrict oneself to such a definition of simple structure.

For example, if the hypothesis states that a block of tests have

identical factor loadings on some factor, the form of 0 is determined

and the likelihood equations are found exactly as before. Moreover, it

is felt that with the aid of this paper the factor analyst can

translate any simple structure hypothesis, such as that in the example

above, into a hypothesis on the form of the 0 matrix, obtain the

likelihood equations and their solution.

It is unfortunate that no better method is available for solving

the likelihood equationsj however, the author was unable to find a

better iterative technique. The proposed method is not simple, but it

can be done on desk computers. For large p high speed electronic

computers would almost be a necessity.

In the next chapter simple structure hypotheses for oblique

factors will be considered.



CHAPTER V

OBLIQUE FACTORS AND ROTATION

5.1 Oblique Factors

In Chapter II it has been shown that

0 E(Y Y') - X'

If it is assumed that E(YY') = I , then one can go directly from 0

to X , and estimates of 0 are estimates of X' . On the other hand,

if E(YY') = F / I , where F is a symmetric matrix with ones in the

diagonal, this relationship no longer holds. If

E|(X -0Y)(X -0Y)« i=+

E(YY') = I ,

where t Is a diagonal matrix, and if a non-singular linear transforma

tion S is applied to Y , W = S Y , then

p^E(O') = E(XW') = X*1)' = X'S"
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Therefore,

pS1' SS1 = X' Sf or 0*1' S = 0

Hence, applying a linear transformation to X is equivalent to applying

the same transformation to Y , but applying a linear transformation to

0 is equivalent to applying the inverse of that transformation to Y .

The psychologists look for a transformation matrix, S , which, when

applied to 0 will give an indication of simple structure. S is

usually determined such that S S' has unities in the diagonal.

As an example, consider the following estimate for m = 2 ,

obtained from a 5x5 matrix:

.483 .579 .664 .277 .708*1

.174 .173 -206 -.167 -.385

I = $' =

*

Then, by the use of rotational methods, they arrive at the matrix S

such that

S -

.3030 -9530

.4830 .8756

, where SS' =

1.000 -.688

-.688 1.000
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Hence,

A A
SX . S 0* = H =

.019 .011 .005 .243 .581

.386 .431 .501 -.012 .005

On an examination of the matrix, H , the factor analysts then

hypothesize simple structure. The question then arises, under what

conditions does H satisfy the likelihood equations? The likelihood

equations are

i e -1 a = ^

Now

^4 +H4 +h-[ssj """h .

A

If H = S X is considered as an estimate of the covariance of X and

W , then E(W W) = S S* . However, if H = S 0' is considered as an

estimate of the regression coefficients of X on W , then E(W W') =

(S S') . The psychologists consider H as an estimate of the

regression matrix, since the simple structure hypothesis usually

specified blocks of zeros in the regression matrix, 0 . A variable x,
• x

may be correlated with more than one common factor, but the factor
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analysts are interested in whether the correlations among x. and m - 1

common factors may be explained by the remaining common factor. This

can be expressed as

k = <£, 5, ..«, m ,

which implies that

'i*.
= 0 k = 2, 3> «••, m

Therefore, the interest of the psychologists is in the regression

matrix, 0 , not X . This implies that if H =S ft' is a solution

of the equations, then E(W W') -(S S')""" . Now throughout this paper

it has been assumed that the common factors have unit variances. Hence,

(S S') must have unities in the diagonal, but the factor analysts

have determined S such that S S' has unities in the diagonal. The

matrix D = M S is then to be determined, where M is a diagonal

matrix so that (D D')" has unities in the diagonal. For the example

presented previously

n-1(S S')
1.8993

-I.3069

-I.3069

1.8993



DJP' =

M

(DD')"1 =

1.3780 0

0 1.3780

.4175

.6656

1.000

.688

-1.3132

1.2066

.688

1.000

-.027 .015 .007 .335 .801

.531 -59^ .691 -.017 .007
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The estimate of the correlation of the two common factors is .688 , the

non-diagonal element of (DD1)" • This is equivalent to Thurstone's

approach 33> PP>137| ; however, in his method S P' is used as an

estimate of 0' , not M S 0' = D 0' , which should be used.

Most of the general remarks in Section 4.1 also apply to oblique

factors. The point is again made that the hypothesis should not be

tested on the same data which generated it. As before, it is assumed

that the factor analyst has obtained the D matrix, has made his

hypothesis, and is now ready to test it on a new sample.
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5-2 The Maximum Likelihood Equations

Simple structure hypotheses for oblique factors may be stated

as follows: a sample of N has been drawn from a p-variate normal

population with mean [± and covariance matrix C = f + 0 F 0' , where

0 is a p x m matrix, m < p, f is a pxp diagonal matrix,

and F is a positive definite symmetric matrix with ones in the

diagonal. Certain elements of 0 , say 0 . ,0 . , ..., 0„ . ,
Xl h {2 J2 \ Jr

are assumed zero, where r > m(m - 1) ; i.., ip, ..., i can assume

any value from 1 to p j and j , jp, ..., j any value from 1 to

m . F is the moment matrix of the common factors Y , standardized to

unit variance, and 0 is the linear mean square regression matrix of

X on Y .

Exactly as in Section 4.2 one may use the method of maximum

likelihood to obtain estimates of the elements of if , 0 , and F .

Maximizing the likelihood function for Wishart's distribution leads to

the following equations:

A A„ ,A-1 A-l A-l.
F 0' (C AC - C ) - J'

(i) p (t1 a r1 -C"1^ = V

,A-1 A-l A-l,
Diagonal (CAC - C ) = 0 ,

where V is a diagonal matrix and J is a p x m matrix with zeros
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A-l A-l A-l
where 0 is not specified to have zeros. If B = C AC -C with

typical element b.. , the equations may be written

A A

F 0' B = J'

(2) 0' B 0 = V

b.. = 0 i = 1, 2, ..., p .
xx ' ' '

/ A A A A
Equation (2) implies that if B and 0 F 0' B have zeros in the diagonal,

since 0 J' has zeros in the diagonal by definition of J. Hence,

(\|r + 0F0')B = CB = AC~ -I has zeros in the diagonal and therefore

A C has ones in the diagonal.

If the first equation of (l) is postmultiplied by 0 , it is clear

A a .A
that J' 0 = F V , and since the diagonal elements of J 0 are zero,

A

the diagonal elements of V are zero, else F would have zeros in the

diagonal. Hence, J' 0 = 0 = V . Equation (l) is then premultiplied

A A

by 0 and postmultiplied by C to obtain

$ F ^(C'1 A- I) - (8 - tXc"1 A- I) - $ J' C=$ J' $

From a consideration of the diagonal elements of the above relation it

is then apparent that the diagonal elements of C equal the diagonal

elements of A , since the diagonal elements of 0 J' are zero.
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Equation (1) is not suitable for computation in its present form;

therefore, it will be advantageous to derive a more convenient expression

for the likelihood equations. To this end, the first equation of (1) is

postmultiplied by & A~ & to obtain

Aa aa -1a a -1a
F0' = F0'AC + J'"AC ,

since J* 0 = 0 . In the above equation t + 0 F 0' is substituted

_ A

for C and the resulting equation is

(3) F0' =(F 0' + J' ^A"1 U (F 0' + J' JjA-1 0F 0' .

If equation (3) is postmultiplied by $" 0 , one obtains after some

simplification

(4) (F^j'^^Fp-r^Mi +r^r1?) .

By postmultiplying equation (3) by $" A and substituting for

(F 0 + J* if)A 0 the expression in (4), after a little manipulation

one obtains

n'r1A = d +F0'r10) (H- + j- *) .



Hence, the likelihood equations may also be written

A A /\_1 AA A-l A .,A A A.
F 0' t A = (I + F 0' t 0)(F 0' + J' f)

(5) J* 0 = 0

/ A.
Diagonal (A - C) = 0 ,
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where J is defined as before. The equations above were derived by

Anderson and Rubin in their joint paper to be published in the Third

Berkeley Symposium |l j . They have also shown that 0 is independent

of the scale of measurement in the same sense as before.

The three special models discussed in Section 4.3 will carry

the same designation in the case of oblique factors; that is, Models

I, II, and III. Here the corresponding regression matrices 0 will

have the same form, but the common factors will be assumed correlated.

5-3 Indeterminancy for Oblique Factors

For the model with oblique factors, C = t + P F 0' , it has

been shown that 0 is uniquely determined except for multiplication

on the right by an m x m non-singular matrix D such that D D'

has ones in the diagonal. In this case the matrix D has m(m - 1)

independent elements and again a particular matrix D can be determined

such that the following conditions are satisfied: each column of 0 D

(a)has m - 1 zero elements and 0* ' (a = 1, 2, ..., m) , as defined
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before in 4.4, has rank m - 1 . Here there are m(m - 1) zeros in

all. This can be shown by repeated application of the following

theorem: if JGJm m £0 ,there exists a non-singular matrix D

such that G D = H , where H is a diagonal matrix. As before it is

clear that the above result still holds true if p is replaced by 0 .

Therefore, certain simple structure hypotheses are again equivalent

to the general model. For the oblique case hypotheses of this type

are specified as follows: adding zeros to the various columns of the

hypothesized 0 matrix results in a 0 matrix satisfying the conditions

given above. A simple structure hypothesis of this type may be tested

by applying the methods used in the general case; there is no necessity

for using the methods outlined in this chapter.

It is again possible that simple structure hypotheses do not

define 0 uniquely. Therefore, it may be possible to rotate even under

simple structure. For example, a p x 2 0 matrix with three zeros in

the first column and none in the second is not uniquely determined, for

a matrix of the same form results from postmultiplying 0 by a matrix

D of the following form:

x/T •21
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(a)
If there are at least m - 1 zeros in every column of 0 and 0* '

(a = 1, 2, ..„, m) has rank m - 1 , then 0 and 0 are uniquely

determined. The proof follows from the fact that D , under these

conditions, must be the identity matrix to leave the form of 0 unchanged.

If the conditions are not satisfied, 0 and 0 are not uniquely

determined and additional conditions must be imposed to obtain a unique

determination. Thus, in the example given above the added restriction

that Fi I determines a unique solution, but for other simple structure

hypotheses it may be necessary to impose other conditions as well, such

as 0' t 0 = a diagonal matrix. The uniqueness of the 0 matrix

under the particular simple structure hypothesis should be checked by

the factor analyst who may then determine the added restrictions that

insure uniqueness.

The number of restrictions necessary to obtain uniqueness affects

the distribution of the test statistic; the effect will be discussed

further in Chapter VII.

5.4 Solution of the Maximum Likelihood Equations

If the first equation of (5) in this chapter is premultiplied

A-l A-l a
by F and postmultiplied by if 0 , the result is

A, A-l . A-l A A, A-l A a, A-l A £ £t A"l A,
0't At 0 = 0' f 0 + 0' t 0F0't P >
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A.
since J' 0=0 . This implies

(6)
A ,A A-l A,-1
F = (P« * p) X

A. A-l A-lA
p' t A * 0

/A. A-lA.-l ,A. A-l A\
(0' t 0) - (0' t 0)

-1

There is a rather striking resemblance between (6) and the equation

defining W in Chapter IV. As a matter of fact, F in the computation

for oblique factors plays almost the same role as W in the computation

for orthogonal factors. The likelihood equations may now be written

(7)

A. A-l . ,A_1 a. A-l A. .A A. .A.
0' t A - (F + 0' if 0)(F 0' + J' t)

0, A, A~l A. -1
F = (0' t P)

£ i A-l . A-l A
0' t A if 0

A .AAA.
t = Diagonal (A - 0 F 0')

,A . A-l A .-1
(0' t p)

,A. A-l A-l
(0« if 0)

If 0*' -F$' + J' $ ,then $ = diagonal (A -0 0*') , since £ J'

has zeros in the diagonal.

Actual computation starts with an initial estimate of 0 and F ,

0* ' and F , obtained as outlined in Section 5«1. Then t* ' is

obtained by subtracting from the diagonal elements of A the diagonal

a(1) a(i) a(i)
elements of 0* " F 0 . The next step is to compute

-1

p,(D. =[J(D-1 +J(D. ^(D-l^(l)] g(D. $(D-1 A
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Now, exactly as in Section 4.4, the form of p* is examined to determine

A(l) a(2)
what submatrices of F* ' should be inverted to obtain p* ' from

P,*(D
a(2) a(2)

After 0* ' is determined, i}r* ' is calculated by subtracting

fi(2) «(D.from the diagonal elements of A the diagonal elements of 0X~' 0

One then computes F* with the aid of the second equation of (7),

a(2) a(2) a a
substituting 0 ' and ty* ' for 0 and f in the expression on

the right. At this point a procedure slightly different from that

«(2)outlined above, is used to compute 0* ; namely,

&
,(2), _ g(2). j(2)-lg(2) -1 a(2), a(2)-1 a_a(2)-1 p,(l)

a(3)
One then obtains 0* ' in the same manner as before. The procedure is

repeated until 0* ' converges to $ . It is evident that this

procedure is very similar to that discussed in the preceding chapter,

F taking the role of W . The numerical example in that chapter also

illustrates the computational method for oblique factors.

For certain hypotheses some simplification is possible. For

example, for the analogue of Model I, P' t 0 is a diagonal matrix

and t = Diagonal (A - 0 0') . This leads to much simpler equations and

hence much less complicated computations.

It was mentioned at the end of the preceding chapter that one

can derive a Gauss-Seidel type of iterative scheme to obtain the solution

of the general maximum likelihood equations derived in that chapter.

This is also the case with oblique factors. However, the same objections
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apply here as did in the orthogonal case, and the scheme is not generally

recommended. If certain simplifications result from the particular

hypothesis, say p' f" p is a diagonal matrix, then the method may

profitably be employed. Starting with equation (5) one can derive the

following general formula to be used with this method:

Hi)
A-l iA A-l A ( AA. IA-l A A-l A,FP«+LF +P(J)t p(j) Q,

A A

P(j) ' ^j * and A1 are defined as in Section 4.5 and Q. is the

jth column of J* f . This method can be used advantageously with

either Model I or Model II. For Model I, with m = 2 say, 0' has

the following form:

x x

P-q

0 0 ... 0

00...0 ! xx...x

q

~pii
p-q

0

0 P22_

where x denotes some non-zero number. Therefore,

t = Diagonal (A - 0 0')

A , A -1 A
0' if 0 = Diagonal matrix.
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A

If the elements of 0 are d.. and the elements of Q' are q..
x j x j

(1=1, 2, ..., p ; j = 1, 2, ..., m) , the equations for i = 1, 2,

..., q may be written

a dji aa a dji aij
d h — + q12 f = L —^

j=l Mr " j=l *
j^i JJ J,*i Jt)

j=q+l tjj J^+1*jj ^+1 *jj

*ij A-l
where the f are the elements of F . Similarly, for 1 =

q+1, q+2, ..., p , the equations are

d2
,aii 3 aji A

^1 (f + £ a~) + d12 f12

£12 ? ^2 I
Hlf +di2 * A~ - *

j=q+l *,. j=q+l

*2

2 ^i -
1=1 *«

q

= Z
j=i

dj2 &ij

*U
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Starting with an initial approximation, 0*""' to 0 , one calculates

fid) by subtracting from the diagonal elements of A the diagonal

elements of $* ' 0* '' . F* ' is then calculated with the aid of

the second equation of (7). In this case the equation reduces to

12

A, A-l A-l A

Pil* A* p22
, A-l Ar& . A-X A -I rA A-l A -,

[pil * Pll] LP22 * P22J

The computation then proceeds exactly as it is outlined in the previous

Gauss-Seidel calculations. However, at each step a new estimate of F

should be computed; that is, an estimate of F should be computed with

each new estimate of a row of 0 , not merely with each complete

iteration. The method seems to converge rather quickly, and the

computations are not as bad as one might gather from a quick look at

the equations.

As a numerical example the following artificially constructed

5x5 correlation matrix will be considered:

1.00 M

1.00

• 50 .35 • 30

•56 .4o •37

1.00 .44 .41

1.00 •58

1.00



Then, as an initial approximation, one takes

g(D. , .6 .7 .8 0 0

0 0 0 .8 .7
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In this case q=3 ,m =2 ,and p =5 • From 0**1'* the following

matrices are computed:

.64

$D

£<D. $(D-1 .

g(D.^(l)-lg(l)

.51

.36

.36

.51

•9375 1.3725 2.2222 0 0

0 0 0 2.2222 1.3725

3.3010 0

0 2.7386

In order to compute F* ' , it is necessary to multiply the first row

of 0* '* \(r* by the last two columns of A . The result is a

1x2 vector, [1.8549 1.7002 . Then



f*1) (1.8549)(2.2222) + (l.7002)(1.3725) _ 7lkl
12 " (3-3010)(2.73B6) " ''•LH"J-

The quantities needed for a second estimate of d are

E -jii « .7(1.3725) + .8(2.2222) = 2.7386 ;

it **

5 d2
f _J£ „ .8(2.2222) + .7(1.3725) = 2.7386 ;

3 d a
Z ^ J = .43(1.3725) + .50(2.2222) = 1.7013 ;

j=l *,,

5 di? aii
Z J JX = .35(2.2222) + .30(1.3725) = 1.1895 ;

^k hi

P2™ = -1.4572 ;

f*2*1* - 2.0406 .

94



Then

2.7386 -1.4572

1.9556 4.7792

|~1.7013'

1.1895
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(2)
or d* = .6189 . The following matrices are then needed for the next

11

step:

£<2)' =

.6170

$<2)

.6189 .7000 .8000 0 0

000 .8000 .7000

.5100

.3600

.3600

.5100

J(2).)(2)-l = 1.0031 1.3725 2.2222 0 0

0 0 0 2.2222 1.3725



g(2), $(2)-1a(2) = 3-3593 0

0 2.7386

a(2) (2)Hence, f^„' = .7102 , and the resulting equation for dpi ' is

"2.3986 -1.4330"

1.9449 4.7562

The process is then continued until 0

21
" 106758

ql2)L- ^2 J _1.3967_

n),
converges to

0» s
.6190

0

.7032

0

.7987 0 0

0 .7958 .7288
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A(n) aand f* ' converges to t 9 = .7022 .

This method, however, is not recommended unless ty = Diagonal

(A - 0 0') . Otherwise, as mentioned before, the elements of \|r

depend on all the elements of 0 , not just on those of the corresponding

row. For Model II it can be shown that this condition is satisfied;

therefore, the Gauss-Seidel method has certain advantages in this case also.

In conclusion, it should be noted that the principal purpose of

Chapters IV and V is to illustrate the manner in which the factor analyst

should proceed to test his hypothesis. The purpose is not to give a

step-by-step computing procedure for every possible hypothesis, but

rather to indicate the general method of approach to the problem.



CHAPTER VI

PREDICTION

6.1 Prediction of Y from X

Bartlett , Thomson 31

considered this problem. However, it will be advantageous to arrive

at the prediction equations in a different manner. Now X and Y ,

where E(X) = 0 = E(Y) , have a joint multivariate distribution. The

linear mean square regression of Y on X is specified by y ,

where

, and Lawley 21 have all

7 E(X X') = E(Y X')

Then y X is taken as an estimate of Y .

In the actual factor analysis problem neither Y nor E(X X')

is known. However, under the hypothesis proposed in this paper, estimates

of both E(X X*) and E(YX') are available. These are C and X

respectively. Therefore, as an estimate of y , one takes

A A £-1
7 = X C
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Then if X* is the p x N matrix of sample values of X ,

/ x A A-l
(1) Y* _ - X C X* ,
* ' m x N '

say, is the estimate of the common factor values for each individual.

The population regression sum of squares matrix is X C X'

and therefore, the estimated residual covariance matrix of Y is

A „
, where F is the estimate of F = E(Y Y') . This

residual matrix indicates how well the common factors are predicted

A A A-l A
F - X C X*

by a linear regression on X . However, in the simple structure case

the matrix 0 = X' F has been estimated, and not X itself. Hence,

the equation for Y* given in terms of 0 is

. v A A A-l
(2) Y* = F 0' C X* ,

A A A -1 A A
and the estimated regression sum of squares matrix is F 0' C 0 F .

For the general case, where no zeros are assumed in the 0

matrix, these equations can be written such that only the inverse of

an m x m matrix is involved, not the inverse of the p x p matrix,

A

C . The likelihood equations for the general case are

A A-l A
X C A = X



A A A

where C = y + X' X . Hence,

and

A A-l A -1
X C = X A

A A -1 A A -1 A A
X= X A * + XAX'X
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Then, in exactly the same manner as in the preceding chapters, it can

be shown that

Therefore,

A -1 A A A-l A T A A-l A - _1X A X' - i'j.Mvi It.wMir1 * [i +i r1 X-]

. . A -1 r A A-l A 1 A A-l A A-l(3) XA = [i +Xtf X'J XT = XC .

This Implies that

-1
,. v r A A-l A 1 A A-l(4) Y* = [I + Xt lfJ Xt X* .

Thomson 31 and Lawley 21 have also derived this particular

prediction equation, which is evidently much better suited for computation.

Furthermore, by postmultiplying equation (3) by X' , one obtains
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A A-l A r A A-l A -) ~x A A-l aXCX' = ll+X^X'J XtX'

the estimated regression sum of squares matrix.

In the simple structure case the equations can also be simplified

in this manner. From equations (l) and (3) of Chapter IV

A. A_l A . -1 r- A A-l Al A A-l0' C = 0*' A =[i +0' if 0j 0' t •

A. A
Since 0' = X for orthogonal factors, the prediction equation for

simple structure with orthogonal factors is

r A A-l A "I -1 A A-lY* = [i +X1r X'J X^rX*

Similarly, from equations (l) and (5) of Chapter V

A A. A-l r .A A A "I -1 1— A A a-1 a ~1F 0' C - J»t +F 0'J A =|l +F 0' f 0

Therefore, from equation (2) of this chapter

-1 AA# A-l
F 0' *

LA A. A-l A"| A A A-l
I + F 0' t Pj F 0' t X* ,

or in terms of X ,

r A A-l A A_l-1 * A A-l= [i +Xf x X' F J XfX*
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The estimated regression sum of squares matrices for orthogonal and

oblique factors respectively are

-1
p A A-l A "I - A A-l AI+Xt X'J Xt X'

"1 a a i a f- a a a n a ~l "-•- a, A-l A A
• -A, "*" ft ~

ATA A A-l A n •'"A A-l A. TA A# A-l AF [_F + Xi(r X'J X if X' = |_P + 0« t P 0' t 0 F

All of the foregoing equations are of necessity somewhat

arbitrary, since the y's are not actually known. However, they do give

some degree of information, and the prediction of Y from X is

usually considered as one of the objectives of factor analysis.

6.2 Non-Llnearity and Monotonicity

In order to investigate non-linear properties, Y* should be

computed. Then the factor analyst can look for relations among the

various common factors. For example, if m = 2 , and the model actually

2
involves only y, and y., , say, then a plot of y* against y|

should reveal the relationship. Here y* and y* are the first and

second rows of Y* respectively, and are normally distributed, since

they are linear functions of normal variates. In this scheme one would

2 2actually be plotting ay + by. against cy. + dy1 , but a definite

relationship should show up if one really exists. If there is no

relationship of this kind between the common factors, the y**s should

plot as a random scatter in an ellipse, since the y*'s are normal and

may be correlated. The closeness of the functional relationship could
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be checked with the residual covariance matrix of Y .

As far as the author is aware, no investigation of this type

has been undertaken, but it seems to be a promising line of attack on

the joint problem of non-linearity and monotonicity.

6«3 Prediction of the Factor Loadings

In factor analysis terminology this section is concerned with

predicting the factor loadings on a new test when it is added to the

battery, without going through the whole estimation procedure a second

time. This can be accomplished by using the Gauss-Seidel technique

outlined in Chapter III. As an example, suppose a test is added to

the eight test battery discussed in Chapter III. The new test has the

following correlations with the original eight tests:

123^5678

.600 .150 .360 .550 .500 .300 .600 .580

The estimate of X obtained for the original eight tests is

A

X =

.706 .515 .731 .648 .612 .394 .711 .663

.24o -.176 -.471 .161 .139 .069 .183 .344
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Then

x if
1.5902 .7317 2.9984 1.1693 1.0097 .4690 1.5423 1A997

.5^06 -.2501 -1.9319 .2905 .2293 -0821 .3970 .7781

The following quantities are also computed:

1-1 *il

9
Z

1=1

Xli X2i
♦ll

9
Z

1=1

4
♦11 =

i/9

9
Z

1=1

tf9

hi ai9
♦11

9
Z

1=1

1/9

X2i ai9
♦11

.706(1.5902) + .515(-7317) + ... + .663(1.4997) = 7.3^3 J

= .240(1.5902) - .176(.7317) + ... + .344(1.4997) = 0

•24o(.54o6) - .176(-.2501) + ... + .344(.778l) = 1.508 ;

= .600(1.5902) + .150(.7317) + ... + .580(1.4997) = 5.227 ;

.6oo(.54o6) + .150(-.2501) + ... + .58o(.778l) = .580 .



Therefore,

7.3^3

0

0 X19 "5.227

1.508_ _^j .580 _
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or X1q = .712 and X2„ = .385 . These two quantities are the desired

estimates.



CHAPTER VII

TESTING

In the preceding chapters it has been assumed that m is known

a priori; however, in practice this will not always be the case. The

first section of this chapter will consider the testing problem when

m is known, while Section 7»2 will consider the problem when m also

must be estimated. In the last section certain related topics will be

discussed.

7.1 Test of the Fit bf the Model

In the general case the null hypothesis is that the population

covariance matrix, C , equals f + 0 0' , where f is a diagonal matrix

and 0 is a p x m matrix, m <( p , while the alternative hypothesis

is that C is any positive definite matrix. One possible test statistic

is the likelihood ratio criterion. The likelihood function for Wishart's

distribution is

5- "p" 7T- Trace A C
K |C| IA I e

A A A A
Under the null and alternative hypotheses respectively, C = if + 0 0'

A

and C = A . Therefore, the likelihood ratio criterion is
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It has been shown in Section 2.4 that the diagonal elements of

A(t + 0 P')~ are ones and hence, the likelihood ratio criterion may

be written as follows:

N-l

i 2

L
m N-l

,A A A , 2
|* + P Pi

Under certain conditions T = -2 log L is asymptotically distributed
m em

as V with p*|" '-pm +m**g* ' degrees of freedom when the null

hypothesis is true. These conditions have been determined by Anderson

and Rubin 1 and will be discussed in Section 7.3 in connection with

the asymptotic normality of 0 and t • The test procedure itself is

then to reject the hypothesis if T is greater than some preassigned

quantity which is chosen to give the desired probability level.

The likelihood ratio criterion for simple structure hypotheses

may be derived in a similar manner, whether with orthogonal or oblique

factors, and is identical to L , since the diagonal elements of

A(ijr +00')"1 and A($ +0F0')"1 are still unity. Again -2 loge Lffi
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o

is asymptotically distributed as 'Y subject to conditions similar

to those in the general case. However, the degrees of freedom associated

~ 2
with the V vary, depending on the particular simple structure

hypothesis. If 0 is uniquely determined as discussed in Section 4.4,

p(p-1)
then for the orthogonal case the degrees of freedom are £-ij%—- - pm

plus the number of zeros specified in 0 . If 0 is not uniquely

determined but is of the type discussed in the second paragraph of 4.4,
2

the degrees of freedom associated with the asymptotic 1/ are

g"* -pm + *m~ / . Therefore, a simple structure hypothesis of

this form is equivalent in all respects to the general case; testing

and estimation procedures are exactly the same. However, for other

types of hypotheses which do not determine p uniquely these formulas

no longer apply. Thus, in the example given in that Section, 4.4,

the degrees of freedom are P*a" - 3p + 3 + 1 • The three is the

number of zeros specified, while the 1 is necessary because of the

remaining freedom to rotate. In situations of this kind the factor

analyst is obliged to determine the degrees of freedom by examining the

possible transformations which leave the form of p unchanged.

The same problem arises for oblique factors. If p is uniquely

determined by the hypothesis (Section 5.3), then the degrees of freedom

associated with the asymptotic V are •£~ ' - pm '-„"• plus

the number of zeros specified in p . On the other hand, if p is of

the form specified in the second paragraph of 5«3> the degrees of
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freedom are P^|"1) -pm +m^"1) . Therefore, any simple structure
hypothesis specifying correlated factors and a p of this form, is

equivalent to the general case, and may be tested by the methods in

Chapters II and III and in the first part of this section. For other

types of hypotheses that do not determine p uniquely the remarks

concerning orthogonal factors apply. Thus, the statistic for the

example given in Section 5-3 has P*^"1' -2p -1+3+1 degrees of
freedom, since there is one degree of freedom available for rotation.

An intuitive idea of the test can be given as follows: in

Section 2.4 it has been shown that

A A-l A a . a A
tCA = A-C + t = A-PP* •

This implies that the determinant of c" A equals the determinant

of a matrix with ones in the diagonal and the following typical non-

diagonal element:

m

1 )

^TT *«

where dik (1 =1, 2, ..., p; k=1, 2, ..., m) are the elements of

p. Since JAL is independent of the scale of the p variables, one
161

can as well use the sample correlation matrix, R , and the estimated
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A A £ A A
population correlation matrix, P . Hence, if ? => L + y y ,

IA
c

R equals the determinant of the following symmetric matrix:

M =

m

ri2 "J". 7lk 72k
k=l

m

rlp "J^ 7lk 7pk
•

/A A /A A

m

r2p "̂ 72k 7pk

V K2 %v

A
where 7., (i = 1, 2, ..., p; k = 1, 2, ..., m) are the elements of 7 .

From the form of the non-diagonal elements of M it is evident that they

are estimate^ of the population partial correlation coefficients among

the p variables after the effect of the common factors, Y , has been

removed. Therefore,

of the estimated partial correlation matrix. This agrees with the

approach that would be taken if the y's were actually known. The sample

partial correlation matrix would be computed in this case and then checked

to see if it were significantly different from the identity matrix.

Quensel 27 has shown that under certain conditions, if a sample of N

is taken from the joint distribution of X and Y (X = p Y + G) , the

|AI

Icl
l-^~ may be thought of as the determinant
IpI
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distribution of the sample partial correlation coefficients among the

x's after eliminating the y's, is the same as the distribution of the

correlation coefficients in a sample of Nl - m drawn from a multivariate

normal population of independent variables. These conditions are

1. G has a multivariate normal distribution such that

E(GG') is a diagonal matrix.

2. Y and G are distributed independently of each other.

The moments of |R| under this hypothesis are derived in

Cramer's Mathematical Methods of Statistics 10

has derived a test employing

P(P-D

N
2p + 5

and Bartlett

log |R |as a J

with -t'*p "' degrees of freedom. Therefore, if the y's are known,

no difficulty arises, since the same test can be utilized by merely

replacing N by N - m and |R | by the determinant of the partial

correlation matrix.

In factor analysis, the y's are, of course, unknown; however, for

m = 0, T breaks down into Trt = - (N - 1) log |R| . T is only
2

asymptotically distributed as 'Y and for small sample sizes a

different multiplying factor may make the actual distribution of Tffi

2 r n
closer to that of 'Y . Therefore, Bartlett

statistic

recommends as a

..x.a^.^ui
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From the above discussion the author is inclined to prefer m rather

than -=- in the multiplying constant. Either of these expressions
3

reduces to Bartlett*s other statistic for m = 0 , and the difference

between them is probably too small for concern.

IAl
For simple structure hypotheses it can be shown that ~^- is

|c|
again equivalent to this type of determinant. In the orthogonal factor

lA I
case •—- equals the determinant of a matrix with ones in the diagonal

|c|
and typical non-diagonal terms of the following form:

m

rij " ^ 'ik Wkn 7jn
(1) ^=±

£ A
7 y
ii jj

where the v. are the elements of W as defined in Section 4.5. For
kn

lAl
oblique factors —— is the determinant of a matrix with ones in the

|c|
diagonal and typical non-diagonal terms of the following form:

m

rij " ^ 7ik fkn 7jn
(2) K'n~X

A A

7 7
^ii ^jj

A A

where the f. are the elements of F , the estimated covariance
kn

matrix of the common factors standardized to unit variances. Hence, for

simple structure hypotheses one is essentially testing whether the matrix
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of estimated partial correlations is significantly different from the

identity matrix. Also,
i 2p + 5 ) |RI1 z m j log -7— is again

iPl
recommended as the statistic to be used.

The computation of the test statistic itself is a rather tedious

procedure, since the determinants of two p x p matrices must be

calculated. However, some simplification is possible, because

A

P = Z + 7 7' may be written in a form more suited for computation:

L + 7 y'
A II A A A 1

Z||l +7 7' Z"1 = lzlli + 7-z-L9

This follows from the fact that

p m

A B

C B

DIIA - Bd"1 c I - IAIId - c a"1 BI ,
m

a result of Roy's [30_ , and therefore |l+BC| = I+CB In a

similar manner it can be shown that for oblique factors

A

P
IV AAA,

= L + 7 F 7'
1 A=|Z||i +9f?'Z-1| =|Z||i +f£- Z"1?

A

This saves some labor since the determinant of Z is easy to compute

and the other determinant involves only an m x m matrix, not a p x p .

Yet the computation of IR | still may involve an excessive amount of

computation. For this reason Lawley I20J has proposed an approximation
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to this statistic for large N . He suggests N Z m . as an
i<j 1J

approximation to T , where the m . are the elements of the matrix

Ia
M whose determinant is +—- . One can sustain the approximation by

observing that for large N all the non-diagonal elements are small

if the null hypothesis is true. If the products of three or more non-

diagonal elements are neglected, |m| =" 1 - Z m. . and log |M|="
2 2 ±< * 6

Z m , for Z m sufficiently small. However, it would
<i iJ 1<J iJx

still seem advantageous to use n-i -2^L3 *V as a multiplying

factor. The same approximation can also be derived for simple

structure hypotheses, where M is defined by (1) and (2) for orthogonal

and oblique factors respectively.

Another possible approximation is (N - m - 3)

1 + m,

z
i <j

log -^
'e 1 " mij

This is equivalent to applying Fisher's z

transformation to each of the m.. and summing the squares of the z's,

It seems that this is a much better approximation to T , especially

when the null hypothesis is false. There are also some theoretical

grounds for this approximation. If m., were a sample partial

2
correlation coefficient, then under the null hypothesis (N - m - 3)^..

2
would be approximately distributed as a ^ with 1 degree of

freedom. Therefore, the proposed statistic would be approximately

distributed as V with p*^"?• ' degrees of freedom, if the various

z. 's were independent. For large N this is the case. Since the

actual correlations are only estimated, one may subtract the number of
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the quantities estimated from £±Ep~J- and claim some sort of validity

for the process. This is precisely the manner in which this approximation

2
is constructed. No claims of asymptotic Y distributions are

advanced, but it nevertheless offers certain advantages over Z m., ,
1 < j J

particularly as regards the power of the test.

Lawley 13 j maintains that a sample size of 200 is sufficient
2

for a close enough approximation to "V and is also sufficient to

permit use of the first approximation above. From sampling studies

l4, 26 I this would seem to be substantiated.

Numerical examples of the techniques discussed in this section

are to be found in papers by Lawley 20, 22, 26 and Emmett 13 .

7.2 Determination of m

In the preceding section it has been assumed that m is known

a priori; for simple structure hypotheses this will be the case.

However, in practice m must sometimes be estimated from the sample.

This is accomplished by a sequential type of procedure. Quite naturally

the first thing that should be done is to test the sample covariance

(correlation) matrix to see if it departs significantly from a diagonal

matrix. Thus, the null hypothesis is that the population correlation

matrix is the identity matrix, and the alternative hypothesis is

m ^ 1 . If the test rejects this hypothesis, one next proceeds to

test m = 1 against the alternative hypothesis m ^ 2 , and so on.

The procedure is terminated when the test accepts a null hypothesis

and this gives an estimate of m . Hence, Tn is computed and tested
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for significance, then T,, ..., and finally Tm . No probabilities

can be assigned to the test as a whole, even asymptotically, although

for each separate test it can be done. However, this may not be of

2too much concern, since the 'Y will usually have an extremely small

associated probability if the null hypothesis is false. A real draw

back is the terrific amount of computation, for at each stage new

estimates of the parameters must be calculated. In practice, it is

advantageous to obtain some indication of m ahead of time, say by the

centroid method. Then one can test this hypothesis, specifying m ,

using Lawley's method. Yet even here probabilities are altered somewhat,

since a hypothesis has been made from the data and the same data is used

to test it.

Nevertheless, with electronic digital computers and readily

available codes for the method, this is no longer such a problem.

7.3 Asymptotic Variances and Covariances of the Maximum Likelihood Estimates

1 I have considered this problem in someAnderson and Rubin

detail. They reach the following conclusion: "the variances and

covariances of the elements of 0 are so complicated that they cannot

be used for all the usual purposes." It is much easier to give the

inverse matrix of these quantities. This inverse matrix is

A = E
clog L cLog L

i
"3T! 3""^

Sk - 90k
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where G. and 9, are the parameters to be estimated and 9_. and
j k Oj

©0, are the values of the parameters under the null hypothesis. For

the null hypothesis in the general case, C = if + 0 0' , this results

in a p(m + 1) matrix which must be inverted to obtain the matrix of

asymptotic variances and covariances. In partitioned form

A

¥0
elements of the ith column of 0 are denoted by d . (j = 1, 2, ..., p)

and the column vector itself is denoted by 0' , then B.. is the

ij

p P P p

p A *1 • ♦ • 1%• • • • Aj •••

p A'
Al Bll ... Bli •'• Bu •••
•

• •

• •

•

•

•

p A'
Ai Bii • • 0 Bii *•• Bu •••

:'
•

•

• •

p A'
Aj *'u • » » Bij '•• Bjj *••
•

•

•

•

•

•

p

A'
m im

» • • B. • • •
im

B4_ ...

p x p matrix E
5 log L

L^ii
o" log L

6^ii J

m

B.
Im

B.
xm

B
jm

B
mm

with typical element

2 ii -1
, where the c v are the elements of C .If the

p x p matrix E
d log L d log L
mr~ Ti^ and B , = (N-l)

Jii
(0i C"1 0£) +

+C"1 0' P± c"1 . A. is the p x p matrix
3 log L d log L
"cT

k̂k
dd

ji
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If C. denotes the jth column of C ,

P± c1 0

0 0± c2

Ai = (N-l)

0

0

P. o-1
1 p

-1

B. . is the p x p matrix E
d log L d log L

~^kT ~^n7

l"

and B
ij
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(N-l) (0. C"1 0') C"1 + C"1 0» 0 c
j' " " " rx ' j

the asymptotic variances and covariances under certain conditions which
2

will also guarantee T being distributed asymptotically as T

These conditions are

The inverse will then give

1. X have a multivariate normal distribution.

2 i -1-1
2. IcpT. / 0 , where cp = t - P(P' t 0) £'

I XJ

-1
3. 0 is uniquely determined by specifying that 0' if 0 is

a. diagonal matrix with different and ordered elements.

The conditions also imply that x/N (0 - 0) ,n/N~ (t - t) nave a

limiting normal distribution. Anderson and Rubin TlJ have proved

the above results.

Similarly for simple structure hypotheses they have proved that

if Y and G , as defined previously in this chapter, are normally
/\ A

distributed, and 0 is uniquely determined,\f$ (0 - 0) ,\/r (F - F) ,
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and \/n (t - if) are asymptotically normally distributed; this implies
2

that T is asymptotically distributed as ^f for simple structure

hypotheses. Asymptotic variances and covariances have not been obtained

for this case; the expressions are probably much more complicated than

in the general case. It is unfortunate that the factor analysis model

gives rise to such complicated expressions. However, if one cares to

invert an (m + l)p matrix, an estimate of the asymptotic variances

A a

and covariances can be obtained by substituting 0 and C for 0

and C .

Many of the results in this chapter have been obtained by Anderson

and Rubin, but a good bit of the material is not contained in their paper.

In addition, this chapter is obviously necessary to give a well-rounded

presentation of the theory and the actual computational procedure.

The next and concluding chapter will discuss some of the advantages

of Lawley's method as opposed to other techniques, and will also give

some suggestions for further research.



CHAPTER VIII

SUMMARY AND CONCLUSIONS

in Chapter Ithe factor analysis problem has been divided into

the following five sections:

1. Model.

2. Estimation of the parameters in the model.

3. Testing of the fit of the model.

4. Estimation of the parameters under simple structure

hypotheses.

5. Testing of simple structure hypotheses.

Apartial correlation model has been proposed which has been shown to

be equivalent to the usual factor analysis model. The method of
maximum likelihood has been used to obtain estimates of the parameters

in the model, and the resulting maximum likelihood equations are those

of Lawley 20
Then as a test of the fit of the model, the likelihood

ratio criterion is employed as the test statistic. For simple structure

hypotheses an analogous procedure is followed.

This approach to factor analysis is recommended over all others

for several reasons. First, under the conditions given in the previous

chapter the maximum likelihood estimates are asymptotically efficient
and asymptotically normal. Second, the results are in asense independent
of scale; in particular, one may go directly from results obtained
utilizing covariance matrices to those obtained utilizing correlation
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matrices, Other methods do not possess this obviously desirable

characteristic. Third, statistical tests can be devised which assess

the fit of the model, and when to stop factoring. Finally, with this

formulation simple structure hypotheses may be tested. The principal

disadvantage of the method is the large amount of computation necessary

to obtain a solution of the maximum likelihood equations. Hcvevor,

as previously noted, with increasing availability of electronic digital

computers and coded routines, this difficulty is largely overcome. In

effect, if the usual factor analysis model is specified and the observed

variables are assumed to have a multivariate normal distribution, other

available methods of factor analysis cannot be recommended or even

defended on any statistical or mathematical grounds.

The normality assumption is a rather restrictive one. Even though

psychological tests are usually constructed to be approximately normally

distributed, the observed variables may have, say, a truncated normal

distribution. This may be the case in many applied studies. It would

be of interest to examine the estimation and testing aspects under this

assumption. Another important problem is the distribution of the test

statistic, T , for small samples. This is a difficult problem to
m

solve analytically and may, perhaps, be solved only through the use of

sampling techniques on high-speed computers. Another important direction

for further research is the problem of non-linearity. Some suggestions

have been given in Chapter VI, but nothing has actually been done along

this line. The Uppsala Symposium on Psychological Factor Analysis lists

additional suggestions for research in the field.
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