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SUMMARY

This report concerns itself with the application of previously developed

mathematical temperature solutions for forced convection systems having volume

heat sources within the fluids to more general convection problems. Con

vection solutions are tabulated so that it is possible to determine the de

tailed radial temperature structure within fluids having uniform volume heat

sources and being uniformly cooled at the duct walls; the detailed tempera

ture profile of a specific system is presented. The derivation of equations

describing the temperature structure and heat transfer rates in a duct system

in which the wall is nonuniformly cooled is given; the temperature structure

of a specific heat exchange system is also presented.
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NOMENCLATURE

Letters

A cross sectional heat transfer area, ft2

Cp fluid heat capacity, Btu/lb °F

CpC heat capacity of coolant, Btu/lb °F

Cpf heat capacity of volume-heat-source fluid, Btu/lb °F

h heat transfer conductance or coefficient, Btu/hr ft2 °F

hc heat transfer conductance or coefficient of coolant, Btu/hr ft2 °F

hf heat transfer conductance or coefficient of volume-heat-source fluid,
Btu/hr ft2 °F

k fluid thermal conductivity, Btu/hr ft2 (°F/ft)

k^. pipe wall thermal conductivity, Btu/hr ft2 (°F/ft)

L axial heat exchanger length, ft

mc mass flow rate of coolant, lb/hr

mf mass flow rate of volume-heat-source fluid, lb/hr

q heat transfer rate, Btu/hr

qj, total heat transfer rate for heat exchanger of length L, Btu/hr

rQ pipe radius or half the distance between parallel plates, ft

tc mixed mean coolant temperature of heat exchanger in figure 8, °F

tci mixed mean coolant temperature at entrance of heat exchanger, °F

t _ mixed mean coolant temperature at exit of heat exchanger, °F

ti fluid temperature at duct center, °F

tf mixed mean temperature of the fluid with the volume heat source of the
heat exchanger in figure 8, °F

tfi mixed mean temperature of the fluid with the volume heat source at the
entrance of the heat exchanger, °F



t~ mixed mean temperature of the fluid with the volume heat source at the
exit of the heat exchanger, °F

tm mixed mean fluid temperature, °F

t0 fluid temperature at duct wall, °F

t^ wall temperature in figure 8, °F

t2 wall temperature in figure 8, °F

^*VHS the wall temperature rise above the mixed mean fluid temperature that
exists for the fluid with the volume heat source with no wall heat flux,
°F

U overall heat transfer conductance or coefficient, Btu/hr ft2 °F

Uj,! mean fluid velocity, ft/hr

W uniform volume heat source, Btu/hr ft^

x axial distance, ft

y radial distance from duct wall, ft

y fluid weight density, lbs/ft5

8 pipe wall thickness, ft

i> kinematic viscosity, ft2/hr

M = Wnr02
mf cpf

N = _!__+ i
mf ^f mc cpc

T - tf - tc

Terms
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Dimensionless Moduli

h 2r
Nu = o , Nusselt Modulus for a pipe

n -JL
r
o

Pr = ycp ^ ,Prandtl Modulus

u 2r
Re = m o , Reynolds Modulus for a pipe

om ratio of the difference between wall and mixed mean fluid

At , temperatures to the difference between wall and centerline
°*- temperature for a duct system being cooled at the wall

(from reference 3)«
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INTRODUCTION

Laminar and turbulent forced-convection solutions were derived in

references 1 and 2 for the case where fluids with uniform volume heat sources

were flowing through circular pipes and between parallel plates respectively;

heat was being added to or subtracted from the fluids in a uniform manner at

the duct walls. These duct systems were postulated to be long so that the

thermal and hydrodynamic patterns were established and the physical properties

were stipulated to be invariant with temperature. The turbulent flow solution

for each system was accomplished by separating the general boundary value

problem into two simpler ones whose solutions were superposed yielding the

solution to the original boundary value problem. One boundary value problem

defined a flow system with a volume heat source but with no wall heat flux and

the second one defined a flow system without a volume heat source but with a

uniform wall heat flux. In the superposition process, temperatures above datum

temperatures are added; for example, the radial temperature distribution above

the centerline temperature for the general boundary value problem is obtained

by adding the radial temperature distributions above the centerline tempera

tures for the two specific boundary value problems.

The present report gives 1) detailed tabulations of the turbulent tempera

ture profiles for volume-heat-source and wall-heat-flux pipe and parallel

plates systemsfor a series of Reynolds and Prandtl moduli and 2) applications

of these temperature solutions to two types of convection systems, namely,

uniformly and nonuniformly cooled ducts containing flowing fluids with volume

heat sources.

1. Although the detailed radial temperature profiles for turbulent flow had
been evaluated at the writing of the earlier reports they were not included
at that time; only the dimensionless differences between the wall and mixed
mean fluid temperatures were presented because they are generally of more
interest.
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GENERALIZED RADIAL TEMPERATURE PROFILES

The dimensionless radial temperature profiles within fluids having uniform

volume heat sources and that are flowing in circular pipes and between parallel

plates under turbulent conditions with no wall heat transfer have been evaluated

from the solutions given in references 1 and 2 and are tabulated in Tables I

and II. The corresponding temperature profiles for the case where there are

uniform wall heat fluxes but no volume heat sources have been evaluated from

Martinelli's solutions (reference 3) and are tabulated in Tables III and IV.

Some typical normalized radial temperature profiles for turbulent flow

in a pipe for both the volume heat source and wall heat flux cases for Pr • 1

and Pr » .01 are shown plotted in Figures 1, 2, 3, and k. Note how the

shapes of these profiles vary with Reynolds and Prandtl moduli as well as the

manner in which heat is added to the fluids. The radial temperature distri

butions are dependent upon the radial heat flow and eddy diffusivity distri

butions in addition to the boundary layer thicknesses and Prandtl moduli.

The dimensionless radial heat flow distribution for the wall heat flux case

varies linearly from a mayIran value at the wall to zero at the duct center;

its shape is essentially not a function of Reynolds modulus. However, the

dimensionless radial heat flow distributions for the volume-heat-source case

vary from zero at the wall, to a maximum value between the wall and duct

center to zero at the duct center; their shapes vary significantly with

Reynolds modulus. The dimensionless eddy diffusivity profiles vary with radial

distance from the wall and Reynolds modulus, and the dimensionless boundary

layer thicknesses are dependent on Reynolds modulus. The Prandtl modulus

significantly influences the thermal resistances in the various flow layers.



- 10 -

For example, in Figure 1 (where several temperature profiles are plotted

for Pr = 1 for the volume-heat-source case) it can be seen that the fraction

of the total temperature drop across the laminar sublayer and buffer layer in

creases as Reynolds modulus decreases; this occurs because the radial heat flow

is proportionately larger in the boundary layers at the lower Reynolds moduli

as well as because these layers are thicker under such circumstances. Figure 2

reveals several temperature profiles for Pr = .01 for the volume-heat-source

case; the thermal resistances are much lower in the boundary layers for low

Prandtl moduli fluids and hence the temperature differences across these

layers are relatively smaller. The temperature profiles in Figure 2

asymptotically approach the laminar flow temperature profile as the Reynolds

moduli decrease.
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Fig. 4. Radial Temperature Distributions Within a Fluid
Flowing in a Pipe with Wall Heat Flux but No Volume Heat
Source in the Fluid (Pr=0.01; Re=10,000; 100,000; 1,000,000)
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TABLE I

DIMENSIONLESS RADIAL TEMPERATURE DISTRIBUTION FOR A PIPE
SYSTEM CONTAINING A UNIFORM VOLUMETRIC HEAT SOURCE
BUT HAVING NO HEAT TRANSFERRED AT THE PIPE WALL

t - tj

Wr02
k

Re • 5000

n Pr = .001 Pr m .01 Pr = 1 Pr » 4 Pr * 7 Pr • 10

0 4.1703xlO-2 3.7591X10-2 5.1021x10-3 1.9956X10"5 1.4l97xlO"5 I.l438xl0"5
.025 4.1424 3.7302 4.8143 1.7076 1.1318 .8559
.05 4.0665 3.6542 4.1949 1.2528 •7371 .5271

.075 3.9601 3.5399 3.7000 1.0407 .5978 .4179

.1 3.8404 3.4200 3.2000 .8998 .5209 .3560

•15 3.5652 3.164O 2.5429 .6975 .3898 .2745

.2 3.2603 2.8701 2.2000 .5759 .3240 .2290

•3 2.6761 2.3479 I.6189 .4239 .2438 .1712

.k 2.0772 I.8179 1.2311 .3219 .1851 .1299

•5 1.5130 1.3240 .8934 .2335 .1343 .0942

.6 1.0100 .8838 .5964 .1559 .0897 .0630

.8 .2715 .2368 .1602 .0417 .0241 .0170

1.0 0 0 0

Re = 10

0

,000

0 0

0 3.3566xl0"2 2.7680x10-2 2.1094X10"5 7.4364X10"4 5.0511X10-4 4.0573xl0-4
.025 3.3287 2.7409 1.8643 5.3594 3-1499 2.2433

.05 3.2677 2.6800 1.5863 4.2700 2.4659 I.8501

.075 3.1797 2.6099 1.3975 3.5204 2.0502 1.4801

.1 3.1055 2.5230 1.2192 3.1441 1.8043 1.2679

•15 2.9095 2.3401 1.0503 2.7403 1.5401 1.0999

.2 2.6927 2.1590 .9564 2.4562 1.4082 .9888

.3 2.0079 1.7560 .7505 1.9238 1.1042 .7749

.4 1.7377 1.3760 •5754 1.4739 .8461 .5936

.5 1.2738 1.0081 .4208 1.0760 .6183 .4341

.6 .8559 .6773 .2827 .7228 .4152 .2921

.8 .2319 .1835 .0768 .1956 .1131 .0795

1.0 0 0 0 0 0 0
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TABLE II (Con't.)

Re « 100,000

n Pr > .001 Pr = .01 Pr • 1 Pr = 4

1.2476xl0"4

Pr - 7

7.5890x10-5

Pr • 10

0 3.H95xlO"2 1.7325xl0"2 4.4400x10-4 5.7150xlO"5
.025 3.0995 1.7145 3.8060 .9607 5.4550 3.9451
•05 3.0615 1.6816 3.5760 •8993 5.1097 3.6947
•075 3.0075 I.6384 3.3762 .8482 4.8251 3.4902
.1 2.9426 1.5875 3.19to .8013 4.5648 3.2850
•15 2.7776 1.4744 2.8820 .7192 4.1003 2.9598
.2 2.5917 1.3574 2.5952 .6473 3.6898 2.6552
.3 2.1637 1.1123 2.0761 .5169 2.9552 2.1248
.4 1.7117 .8728 1.59J*0 .4019 2.3146 1.6551
.5 I.2687 .6467 i:i88l .2974 I.7098 1.2299
.6 .8585 .4387 .8081 .2000 1.1550 .8498
.8 .2340 .1211 .2180 .0555 .3096 .2452

1.0 0 0 0

Re • 1,000

0

,000

0 0

0 1.8578xl0"2 4.0304x10-5 5.0065x10-5 1.2458x10-5 7.6610x10-6 5.2055xlO"6
.025 1.8468 3.9216 4.6405 1.1179 6.8949 4.6147
.050 1.8179 3.7745 4.3647 1.0498 6.5180 4.3747
.075 1.7759 3.6133 4.1364 .9959 6.1901 4.1347
.1 1.7259 3.4593 3.9206 .9438 5.8821 3.9218
.15 1.6139 3.1433 3.5386 .8519 5.3221 3.5345
.2 I.4879 2.8443 3.1861 .7578 4.8203 3.I878
•3 1.2319 2,2961 2.5563 .6119 3.9217 2.5517
.4 .9724 1.7972 1.9961 .4679 3.1104 1.9947
•5 •7193 1.3341 1.4779 .3460 2.3703 1.4800
.6 .4890 .9032 1.0043 .2039 1.4349 .9974
.8 .1339 .2519 .2699 .0620 .3899 .2650

1.0 0 0 0 0 0 0
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RADIAL TEMPERATURE PROFILES FOR A PIPE SYSTEM WHOSE
WALL IS UNIFORMLY COOLED (AN EXAMPLE)

The temperature profiles tabulated in Tables I, II, HE and IV can be UBed

to determine the detailed radial temperature structure in composite convection

systems. Consider the case where a fluid with a uniform volume heat source is

flowing turbulently in a long pipe whose wall is being cooled uniformly along

its length. The specific conditions of the problem follow:

W-0.5 x107 Btu/hr ft3

r0 - 0.15 ft

(||) =30,000 Btu/hr ft2
o

k -1.0 Btu/hr ft2 °F/ft

Re • 10,000

Pr - 1.0

Determine the detailed radial temperature profile in the fluid.

Upon multiplying the dimensionless radial temperature profile given in
W r ^

Table I at Re = 10,000, Pr • 1.0 by the term —~ = 1.13 x 10 °F, a plot of

the actual radial temperature profile, above the centerline temperature, can

be graphed for the case where a uniform volume heat source exists in the flowing

fluid but with no heat transfer occurring at the wall (see Figure 5). Upon

multiplying the dimensionless radial temperature profile given in Table III at
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2
Re = 10,000, Pr = 1.0 by the negative of the term

a plot of the actual radial temperature profile, above the centerline tempera

ture, can be graphed for the case where a uniform wall heat flux but no volume

heat source exists (see Figure 5)« This temperature difference is negative

because heat is being extracted from the fluid through the duct wall. A

superposition of these two curves yields the temperature profile of the

composite system above its centerline temperature.

«s)2. The functions|-xe— from Martinelli's analyses, reference 3, are graphed

in Figures 6 and 7 for the pipe and parallel plates system. The heat
transfer conductances or coefficients can be obtained in references 1, 2,
or 3, For the particular problem being considered here, i.e., Re = 10,000,
Pr = 1.0, k = 1.0, rQ « .15

h 2r

Nu = —~ = 36

or h = 120 Btu/hr ft2 °F
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ANALYSIS OF THE THERMAL STRUCTURE IN A PIPE SYSTEM

WHOSE WALL IS NONUNIFORMLY COOLED

Consider the case where a fluid with a uniform volume heat source is

flowing turbulently in a pipe whose wall is being cooled, nonuniformly along

its length, by a coolant which is flowing in an annular space around the pipe

(see Figure 8a). The heat transferred from the wall to the coolant through

the differential heat transfer area 2nr0dx is (see Figure 8b),

dq = he 2nr0dx (t2 - te) (l)

The heat transferred through the pipe wall is

dq *= Is* 2*r0dx ^2^Jb) (2)
The heat transferred from the fluid with the heat source to the wall is

dq *hf 2jtr0 dx[AtVHS +(tf -t^)] (3)

From equations (l), (2) and (3) one can obtain

_2*rQ dx[(tf -tc) +AtvBS]

hc K Ef

=U(tf - tc + Atygg) 2jtT0 dX (k)

Two additional equations arise when making a heat rate balance on the two

fluid streams in a length dx (see Figure 8c ). The heat gained by the coolant

in a parallel flow system is

d* ""c cpc dtc (5)

3. The term Atygg represents the wall temperature rise above the mixed mean
fluid temperature that exists for the fluid with the volume heat source
with no wall heat flux. In order to cool the wall temperature to ti (see
Figure 8b) it is necessary to superpose a wall cooling flux equal to that
given in equation (3).
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The heat lost by the fluid with the heat source is

p
dq = Wjtr0 dx - mf Cpf dt„

From equations (5) and (6) one can obtain

d(tf -tc) =-dq [—i + X
Wjov

dx
% Cpf % cpcy mf cpf

or dT = -Ndq + Mdx

where T = tf - t(

or

H--i- + 1

M -

Bf cpf me cpc

W*r02
*f V

Upon substituting equation (k) into equation (8) there results,

dT = -NU(T + AtyHS) 2nr0 dx + Mdx

dT

NU 2*r0 (T + At-™) - M

(6)

(7)

(8)

(9)

x = In
NU 2«r0T + NU 2*rQ Atygg - M (10)

NU 2jtr0 NU 2itr0 T0 + NU 2jtr0 Atygg - M

or T + AtVHS = To + AtVHS "
M e-NU 2*r0x + M

NU 2nr0 J ~ T NU 2nr0 (11)

The heat transfer rate q can be obtained by substituting equation (ll) into

equation (k) and integrating

q ^x

dq = 2«rQUy
O v-^O

M
Tn + At.

VHS NU 2«r,

or q = - T0 + t, M

VHS NU 2itrr 1 - e

-NU 2*r0x M
NU 2nr,

•NU 2itr0x\ Mv
J NX

dx

(12)



- 31 -

The coolant temperature variation can be obtained by substituting equation (12)

into equation (5)>

dt„ = —c mc cpc

M

dq

or t„ - t T„ + AtTc ci " mg Cpc n Ixo ^""VHS NU 2*r,
x _ e-NU 2ar0x M

N m,c ^c
* (13)

The mixed mean fluid temperature variation of the fluid containing the heat

source can be obtained by substituting equation (12) into equation (6),

'fi

or tf - tf^

and

dt-p » - —————
1 mf °pf

dq +
Wsr,

Of cpf
dx

T0 + At
M A /, -NU 2ar0tf

VHS " NU 2*rJ
«\ M
y Nmf <mf Cpf N

W xr0d
+ x
mf Cpf

The surface temperatures of the heat exchanger wall may be obtained from

equations (l), (2), and (k),

U(tf - tc + AtyggJ
tg - tc - r-r-

tx - t2
U(tf - tc + AtyHg)

6

•pf

(Ifc)

(15)

(16)

The terms tc and (tf - tc + Atyas) were previously derived in equations (13)

and (ll), respectively.
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TEMPERATURE STRUCTURE IN A PIPE SYSTEM WHOSE WALL IS

NONUNIFORMLY COOLED (AN EXAMPLE)

An illustrative example of a pipe-annulus system whose wall is nonuniformly

cooled by parallel coolant flow follows:

Given,

W •0.5 x107 Btu/hr ft5 8 •0.005 ft

r0* 0.15 ft \ -2° BWhr ft °F

kf -1Btu/hr ft °F L-Uft.

Cpf .1.0 Btu/lb. °F "c =* l60° lbAr
Prf -1 cpc =-5 Btu/lb °F

mf =2,360 lb/hr hc =^ Btu/hr ft2 Op

Ref = 10,000

tci = 0

tfi m150°F

TQ - 150°F

Determine the total amount of heat transferred to the coolant flowing through

the annulus as well as the temperature structure of the system.

At^ =1.3 x10-5 ^2! „1#3 x10-3 (.5 xl07)(2.25x10-2) „lJ+6oF
NUf = 36

hf =120 Btu/hr ft2 °F

H•iFc^:+ et^ " (2360K1) +1600 (5) =°-00167
bl =(.5xl07jU)(225xlO-2) m o,
cpf (2360) (l) X5U ft

Witr,
M •

mf Cpf



1 +£-+ XU hc kv hf
1 , «005 , 1
123 20 120

U - 59.7 Btu/hr ft2 °F

Thus, from equation (12),

33 -

0.0228
hr ft2 °F
Btu

qL - 0.00167 150 + li+6 - 150
(0.00167)(59.7)2*(.15)

1 -
(0.00167)(59.7)2«(.15)(47

(150)(^
0.00167+is

- 115,500 Btu/hr

Also, from equation (13)

*cL-" tci

and from equation (lk)

115,000 _ lJtc<>-
1600 (.5) " lk5 F

115,000 (0.5 x 107)fl(2.25 x 10-2)(1|)
*fL " *fi = " (2360)(1) + (2360) 1)(2360) (1) = 551°F

The detailed temperature structure of the pipe-annulus system is graphed in

Figure 9. The fraction of the total heat generated within the fluid flowing

in the pipe which is extracted by the coolant flowing in the annulus is

1coolant *L 115,000

^generated W*r02L (.5 x 107)fl(2.25 x !D~2)k
= 0.082



-34-

800

700

UNCLASSIFIED
ORNL-LR-DWG S229

tf

600

500

a.

0 400 • US

^t2

300

Xi i

200

T

lOO tc

0

X(ft)

Fig. 9. Temperature Structure in a Pipe System Whose Wall is
Nonuniformity Cooled (an example)



- 35 -

CLOSING REMARKS

The forced-flow volumetric-heat-source solutions which were previously

developed were applied to two specific heat exchange systems. They may also

be applied to other types of convection systems, several of which are suggested

below:

1) Parallel plates system whose wall is nonuniformly cooled: The

analysis presented for the nonuniformly cooled pipe system may

be modified to obtain a solution for a parallel plates system by

replacing the pipe heat transfer area, 2«r0dx, by a corresponding

one for the parallel plates system.

2) Pipe and parallel plates systems whose walls are being cooled by

fluids having volumetric heat sources: The analysis presented

for the nonuniformly cooled pipe system may be modified to obtain

the temperature solutions for general convection systems in which

the coolants also contain volumetric heat sources. Under these

circumstances a At™-, term for the coolant is included in equation (l),
VHS

and a volumetric heat source is included in equation (5); the

analysis is accomplished as before. The new equation for T now

contains a modified form of the parameter M and also a At^g

for the coolant has been added. The same modifications occur

in the equation for the heat transfer rate, q.

3) Pipe and parallel plates systems which are being nonuniformly

cooled by counter flow: In this case it is merely necessary to

insert a minus sign in equation (5) and carry it through the

remaining analysis.
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This report has stressed only the turbulent flow regime although both

laminar and turbulent flow analyses were presented in references 1 and 2.

Applications for laminar-flow volume-heat-source systems parallel those pre

sented here for turbulent flow. It is interesting to note, however, that the

heat extraction or cooling rates necessary to reduce wall temperatures to

mixed mean fluid or centerline temperatures in the case of laminar flow are

much greater than those for turbulent flow. For example, it is necessary to

extract 33 1/3 percent of the heat generated within a laminarly flowing fluid

in a pipe system to bring its wall temperature down to the centerline tempera

ture, whereas for turbulently flowing ordinary fluids the corresponding heat

extraction rate is only several percent.
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