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THE GENERATION OF ERROR IN DIGITAL COMPUTATION

A. S. Householder

Mathematics Panel

Oak Ridge National Laboratory
Oak Ridge, Tennessee

!• Statement of the problem. Suppose it is required to evaluate a given

function f(x) for a particular x , where x may be a single variable or a

vector of n components. The problem to be considered here is to determine bounds,

as small as possible in magnitude, for the possible deviation of the computed

number from the theoretically corrfect value of f(x) . It is clear, of course,

that the attainment of a theoretical limit in any instance is highly improbable

except for very short routines. On the other hand a probabilistic analysis is

beset with many snares and is apt to come to grief. For one thing, it is quite

obvious that certain numbers, such as the simple rationals, their square roots,

basic transcendentals like e and jt , and some others occur with more than

average frequency. It is not clear how a probabilistic theory could take proper

account of this, or how useful it could be if it does not do so. Moreover,

rigorous limits are sometimes needed even should probabilities be available.

Consequently we shall here take our departure from the Hypothesis of Nature's

Universal Malevolence (the NUM Hypothesis), which may be phrased: The worst that

can possibly happen can happen (at least in computing).

Often one computes simultaneously several functions. Thus in solving

p
a system of n equations there are n functions of n + n variables; in

2 2
inverting a matrix there are n functions of n variables; the latent roots
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2 2
and vectors of a general matrix are represented by 2n + n functions of n

variables. The fact that these are not functionally independent does not relieve

the computer of the requirement to exhibit that many numbers. Nevertheless, it

is sufficient in most cases to direct attention to one function f , whether or

not it is computed in conjunction with others.

The consideration of only a finite number of elements in the vector

x does not in itself represent a real restriction for present purposes„ Although

a definite integral, for example, is, from one point of view, a function of

infinitely many variables, we can equally well consider the integral as defining

a particular function in terms of certain functional values of the integrand.

The simplest paradigm is provided by a function f(x) given explicitly,

perhaps as an infinite series, but approximated for computational purposes by a

rational algebraic expression f , perhaps the series truncated at some stage.

The approximation f requires for its evaluation only a finite number of

arithmetic operations. The error in the final result will be made up of three

components:

f(x)-f*(x») = [f(x)-f(x*)] + [f(x*) -fa(x*)] + [fa(x») -f*(x*)]

This allows for the possibility that the data x* actually used in the computation

may themselves deviate from the theoretically correct values x , through errors

in measurement, previous roundings, or otherwise. These three components will

be called propagated error, truncation error, and generated error, respectively.
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We are concerned here with the determination of two numbers, cp'

and cp" , such that

V ^ f(x) - f*(x*) ^ cp"

It is not necessary, and sometimes not true, that cp* and cp" should be equal,

or even of the same sign. Necessarily, though

cp' + cp" = cp > 0

In planning a computation the first concern would be to make cp as small as

possible. If cp' and cp" are known, then the computed f* establishes an
EL

interval with endpoints f* - cp' and f* + cp" upon which the theoretically

correct value f(x) must lie. This interval will be called the interval of

uncertainty and its length the uncertainty. Given two routines for computing

the same quantity, we shall say that one is preferred if its uncertainty is

less. Whether in a given instance one will indeed prefer it will, of course,

depend upon tolerance and speed requirements.

A number that is representable exactly by the machine will be called

a digital number. For a binary machine like the Oracle such a number may be of

the form

-1 . . _ _ n-o
a

a = -a + a, • 2 + ... + a_ • 2
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where each a. is 0 or 1 , and a = 39 • Given any number b with

-1 ^ b < 1 , it is always possible to represent b in the form

b = -pQ + px •2"1 + 32 •2" + ..

with possibly infinitely many terms. The number

b* = -pQ +(3X •2"1 +... +PQ •2"0

obtained on replacing p , and all subsequent coefficients by 0 will be

said to be the result of digitalizing b with truncation. The number

-rr-1 *
b* = (b + 2 ° L)
r v '

will be the result of digitalizing b with rounding. For convenience the

letter € will be used to denote

. . 2-1 ,

which will be called the unit uncertainty. Analogous definitions can be made for

a decimal representation.

The decomposition into the three components of error as indicated above

corresponds to the stages through which the analysis of the problem is usually
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carried, but it does not follow that the combined uncertainties separately

arrived at represent the narrowest valid limits, and there are occasions when

it is best to proceed otherwise. The equation

f(x) = c ,

where c is a constant, represents a surface in a space of n + 1 dimensions.

The computational problem is to obtain the closest possible approximation to

c for a fixed x . ' Let

c* = c + 7

represent the value actually obtained. The equation

f(x) = c*

is also a surface. In special cases it may have no real points, but if it has

and if x represents any point on the surface, then

f(x) - f(x)

represents the error, not resolved into components. Any x whatever on the

given surface can be used, and a happy choice may show the uncertainty to be



-6-

much less in fact than it appears to be on compounding the separate components.

Often f is not given, or not conveniently given, explicitly, but

only implicitly to satisfy an equation

F(f) = 0

For simplicity, suppose that the function F is continuous, and has a continuous

first derivative (a Lipschitz condition will do as well) over the range to be

considered. Suppose points f* and f" are known at which F takes on

opposite signs and between which the derivative of F is known to satisfy

|f'| > m > 0

Then F is monotonic and vanishes once and only once on the interval. One can

apply Horner's method in binary form as follows: Assume f' = 0 , f" = +1 .

This is always possible after a change of variable, although it need not be carried

out explicitly by the machine. The object will be to obtain the digits in sequence

in

-1 -2f* = cp1 • 2 + 92 •2 +

It is sufficient to consider the case of F increasing. Evaluate F*(2 ) taking

cp, =0 if F*(2-1) > 0,and otherwise ^ =1. If F*(2" )=0,terminate
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_2
the iteration and take cp2 = cp, = ... =0 ;otherwise, if cpx = 0 ,test F*(2 ),

-1 -2
and if cp, = 1 test F*(2 +2 ) . The process continues by successive bisections

and is actually more efficient than the strict application of Horner's method in

the decimal system.

The process will terminate after at most a steps. Let the uncertainty

in F be i\ = r\ ' + t) " , with

-T)' ^ F - F* ^ V

The sequence has terminated at a value f* which yields a computed F* , and

this may or may not be 0 . In any event, by the law of the mean

0 = F(f) = F(f*) +(f -f*) F' [f* +6(f -f*)] ,

where 0 ^ 9 ^ 1 . Hence

F(f*) = -(f - f*) F' ,

and therefore

-V < -(f - f*) f' - f* < n"
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Consequently, if F' > m > 0 ,

•(11" + F")/m ^ f - f* ^ (tj« - F*)/im

Likewise, when -F* > m > 0 ,

(F*-V)/m < f - f* < (F* + T]")/m

The need for an estimate of the derivative can be avoided, at the

cost of a little extra programming. By definition a digital number is an integral

multiple of 2 e= 2"° . Beginning with f* , evaluate F* for f* - 2 e ,

f* _ k € f f* _ 6 €, ... until reaching an f* for which (if F' > 0)

F*(f») +tj" ^ 0 ;

and evaluate F* for f* + 2 €, f* + 4 e, f* + 6e, ... until reaching an f*

for which

Then certainly

P»(f*) " V > 0 .

f* < f < f*
e ^ ^ u
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Another classical method for solving an equation (and one which

generalizes to systems) is that of Newton. This is only one of a large class

of methods, as follows: Write the equation in the form

f = f -A (f)

For Newton's method one takes

A(f) = F(f)/F'(f)

but many other choices are possible. If, starting with some fQ the sequence

defined by the recursion

fi+l " fi - Mfl>

has a limit, then this limit satisfies the equation. For Newton's method if

f is a simple root, then there exists an interval containing f such that

the sequence converges if fQ lies anywhere on that interval. In fact, at

least the sequence that begins with f, (but not necessarily with f ) is

monotonic, so that the sequence A(^) , A (f2) > vanishes monotonically.

The computed sequence, of course, has the form

fi+l - fi " A*<fi>
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and the sequence A*(f-,) , A*(f2) > ••<• > ™&Y be expected to be monotonic

at the outset. It may ultimately vanish, or it may go to some negative value,

thereafter becoming periodic. In any event, the programmer must establish some

criterion for terminating the sequence with some f. = f* , and the uncertainty

can be determined as in the previous case. A simple special case (for the square

root) will be discussed later.
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2. Some elementary routines. The sum or difference of two digital

numbers is always digital or else out of range. Hereafter the qualifying phrase

will be omitted and it is to be understood throughout that any assertion holds

only when the theoretically correct result falls within range. Thus in referring

to the result of a division, a/b , it is tacitly assumed that a <

Then the machine yields a truncated product (ab) , or a rounded product (ab)r ,

which satisfy, when a and b are both digital,

0 ^ ab - (ab)* < 2 €

- € ^ ab - (ab)* < e

In the Oracle there is no rounded division as a special operation, although it

could certainly be programmed. There is the peculiarity that the sign of the

divisor makes a slight difference:

0 ^ a/b - (a/b)* < 2e , b > 0 ,

0 < a/b - (a/b)* < 2e , b < 0 ;

-e < a(b - (a/b)* < e , b > 0 ,

-e < a(b - (a/b)* ^ e , b < 0
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The Oracle has the ability to utilize an exact product as a dividend:

0 <J ab/c - (ab/c)* < 2 € , c > 0

0 < ab/c - (ab/c)* ^ 2 e , c < 0

Hence if c = n • 2~CT , where n is an integer, one can form, effectively,

a/n by taking b = 2~a . When n is not too large, the more precise limits are

sometimes useful:

0 £ a/n - (a/n)* ^ 2(n - l)€/n ,

-2€/n £ a/(-n) - [a/(-n)] ^ 2e

Each of these limits can be achieved. This completes the list of basic arithmetic

operations.

As an example of the difficulties that can arise, consider the evaluation

of a/(bc) . The operations can be carried out in the order indicated, or in the

order (a/b)/c , or else (a/c)/b . Let

a = 2e, bc = 3e, (be)* = 4 e
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Evidently a/(bc) =2/3 ,whereas ["a/(bc)*l =l/2 . On the other hand, let

a = 2 e , b = 2"+2e , c = 4e

Then a/(bc) = (1 + 4e)~ , whereas

(a/b)* = [fce/U +k€)}* = 26 ,

[(a/b)*/c]* = 2€/(4e) - 2"1

It is quite possible to obtain general estimates for the errors by the

two methods. Assuming all quantities positive, let

x = a/(bc)

Then one has by the first method

-[a/(bc)*]* . x[(be)* -be] /(be)*. +a/(bc)*. -[a/(bc)*]* ,

whence

-xe/(bc)* < *"[a/(bc)*]* < [2 +x/(bc)*] 6
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For the second method one obtains in an analogous way,

0 £ x- [(a/b)*/c] < 2(1 +c'1) € .

Evidently if b > c the second method should not be used until b and c

interchanged. If, however, b < c ,the second method will be preferred when
are

c'1 < x/(bc)*

or when

b < a/(bc)*

Hence if one computes x* by the first method and finds that

b< [a/0>c)»] *

then a recomputation by the other method will give a better result in the sense

that the uncertainty is less, except only when a/(bc)* is digital, in which

case uncertainties will be the same.

When a number is to be raised to a power, one finds by induction that

x2 - (x2)* ^ €
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/ V\* I ^ /n I V-l(X )*| ^ €(1 -|X

(xv)* = / v_1w(x )* X

)/(l - Ixl) < (V - 1) €

If a is any digital number, and

then

Vl.

Uv

u - u*
v v

avx

av(xV)*
r

^ (av| +v-l)e < v€ .

This assumes only that a < 1 and |x < 1 , although the uncertainty

will be less in cases where smaller bounds for a and x are known. In the more

general case, if

lo + ai
n

P = a„ + a,x+... + ax
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and if P* is formed by evaluating terms as above and summing, then

On the other hand, let

Then

If

and

then

P - P* < e n(n - l)/2

y = a ,
Jn n '

*!-! * ^i + ai-l

P = 7r

4-i = (xy!}? + ai-i

Ti-n <: \ €

\-i £ 1 + \ Ix
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whence

nn = 0 ,

Vi< x

1q ^ (1 -|x|n)/(l -|x|) < n

Hence

y0-y$|^; e(i-|x|n)/(i -|x|) < nG .

The uncertainty is therefore reduced by the factor (n - l)/2 . If P comes

from truncating a Taylor series, the second method of evaluation requires that

n be fixed in advance.

In some particular cases the uncertainty is even less. Consider the

truncated exponential series for x ^ 0 ,

L = 1 -x+ x2/2I -x5/3l + ... + (-x)n/n! ,
n

and let

yn+l = 1 '
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yi -x"^i+l71

Then

Ln " yl

Let 2 t\. e represent the uncertainty in y. . Then

t> = (n - l)/n < 1
'n

Hence

ni = i+x ni+1/i

2 n—1
r\, < 1 + x + x /2! + ... + x /(n - 1)1 < exp

Hence the uncertainty in L is less than 2e exp x , which is independent of n

A similar method can be used for the sine and cosine. Let

yn = "X//n ' yn-l = X+yn x^n "^ '

yn-2 ""yn-l x/(n "2> ' yn-3 = 1+yn-2x/<n "5> >
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Then if n is even, y1 is the truncated cosine, and if n is odd, n is

the negative truncated sine. Again the uncertainty cannot exceed 2eexp|x[ ,

for any n .

Slightly more complicated is the following:

L = u 1+ v/3 + v2/5 + ... + vU/(2n +1) = u P(v)

2

u = 2(1 - x)/(l + x) v = u /4 ,

2_± < x < 1

This is, of course, a truncated logarithm series. The analysis can be simplified

by the following observation: For any digital x , there is a unique x , in

general not digital, such that

u(x) = u*(x)

Hence, since L(x) approximates -log x ,

-log x-L*(x) =log(x/x) +[-log x-L(x)] +[l(x) -L*(x)J .

The greatest values of u and v occur for x = 2 :

,-ls „/-. /«-lu^) = 2/3 , v(2"X) = 1/9 •
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Actually (assuming ci odd as it is in the Oracle)

u*(2_1) = u(2"1) - 2€ /3

Now consider

u = u(x) = ii*(x)

to be digital. Then

- v* = 2"2 [u2 -(u2)*] +2"2 (u2)* -[2"2 (u2)*

Hence

.e/k < v - v* < je/k ,

and the total uncertainty is 2 e . Let

yn = (2n+ l)"1

'i - 'i+l~ " "'i " "_1y,- = y,-.i v + (2i + i)' ,

y0 - p ,
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and let

ti±'« < y± - y| ^ ^ e

Then

\ = 0 , t^ = 4 n/(2 n + 1) ,

*! " V^i+1 + 3t+l^ + X'

^i = v ^i+1 + T4+1^ + 1 + k ^2 ±+ 1)

Without attempting to solve this difference equation exactly, it is clear that

t£ < 2 , v < 1/9 , 7± < 9/16 < 1

Hence

n0 < 3/2 , *• < 6

Hence

-3e/2 < P - P* < 6 e
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Next,

*L(x) - L*(x) = u*(P - P*) + u* P* - (u* P*)

2 6 < L(x) - L*(x) < 5 e •

The difference -log x - L(x) represents a truncation error and depends

upon the number of terms to be included. This is always positive. Let

0 < -log x - L(x) < T e ,

and consider, finally, log(x/x) • Assuming x to be digital, it follows that since

(1 -x)/(l + x)2 < 2/9

therefore

-8e/9 < u - u* < 2 e

We require the maximum and minimum values of log(x/x) for 2 <C x < 1 and

-8e/9 ^ u(x) - u(x) < 2 e
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Let w = u/2 and consider

1 + w / 1 + w+ a _ (1 + w) (1 - w - a) _ —
T^~~Z / i _w- o = (1 - w) (l +w+a) ~ X^X '

x = (1 - w)/(l + w)

x = (1 - w - a)/(l + w + or)

As a function of w , this fraction is increasing for a > 0 and decreasing

for a < 0 . Hence for

v - 1/3 , a = e , x/x = (1 - 3€/2)/(l + 3^/4) ,

and for

v - 1/3 , a = -4e/9 > */* = (1 + 2e/3)/(l - e/3)

Hence

- 6 < log(x/x) < € •

Finally, therefore,

-3 e < -log x - L*(x) < (6 +t) 6
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Since these are overestimates throughout, and x can be made arbitrarily small

without affecting the other terms, one can write, for sufficiently large n ,

-3 e < -log x - L*(x) < 6 e

Continued fractions are perhaps in less general use than they deserve,

although they do offer complications. Let

Fn = b0 +a/15l + a2^2 +••* + *J~\

- VBn '

where A and B are polynomials in the a's and b's. Then the A. and B
n n

satisfy a well known two-term recursion which it is natural to use in evaluating

F . But this is not necessarily the best way.
n

Note that if c. , c , ..., c are any non-null constants, then

Fn = b0 +Cl &1^\ +°1 °2 VC2 b2 +•'• +Cn-1 Cn ai/5^

One can assume IF I< 1 since if |FQ | > 1, F^ could be computed, and

scaling can be taken care of by choice of the c's. But if the A± and B^^ are

computed, a choice of the c's that prevents getting out of range is apt to cause

the A's and B's to diminish until allsignificance is lost. However, let
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Di-1 " bi-l + ai/Di '

F a D„
n 0

Supposing the scale factors to have been selected already so that everything is

in range, and that the a's and b's are digital, let 2e 5. be the uncertainty in

D. . Since

Di-1 "Di-1 = ai(Di 'Di)/(Di D|) +ai/Di "^i/ty* >

one has

h-i - lail5i/ B± D* | + 1

If it is possible to scale so that

a-* /\d± D* ^ p < 1 ,

then one finds readily that

60 £ (1 -pn)/(l -p) < 1/(1 -p) ,
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and the uncertainty has a bound that is independent of n . Such scaling is

possible in particular for

i— 2 /—— 21—
tanh x = x/l~ + x fS~ + x /5~ + •••

tan"1 x = x/T +l2 x2/T +22 x2/3~ + ...

log(l+x) = x/T~ + 1 x/2" + 1 x/T + 2 x/4~~ + 2 x/5" + ... ,

2 2
exp(-x) = 1 - x/1 + x/2 + x /4 • 3 + x /4 • 15 +

for each of which the uncertainty is not greater than 2

The length of the interval of uncertainty is not, of course, the complete

story. It may be in order to recall what is meant by the term. We have been

considering the digital computation of a function f(x) , assuming x to be

digital and exact, thus neglecting initial errors. A given computational routine

will yield a value f*(x) which, in general, will not coincide with f(x) . One

hopes, however, to assign numbers tj' and T]" such that

f*(x) - V ^ f(x) ^ f*(x) + r\" ;

that is, f* together with tj1 and r\" define an interval of length T] = T|' + ti"

upon which we can be sure that the true value of f(x) must lie. The length r\
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is the uncertainty. Clearly it is essential to know either V or ti" as

well as r\ . Generally speaking, t\ will be determined by the order in which

the operations are performed. The choice of simple or rounded multiplication

will not generally affect r\ but will affect tj' and tj" . Hence having

chosen a sequence that makes i\ as small as possible, one can then select

rounded or simple multiplication according to convenience.

This is true for direct calculations, but for indirect calculations

one must be more careful. As an example, consider Newton's method for extracting

a square root. Mathematically, the sequence

Xi+1 = Xi " A(xi} '

A(x) = (x - a/x)/2

converges to JIT ,provided the initial xQ is not too far removed, and if

x > fsT the approach is monotonic from above. Hence A(x) decreases

monotonically to the limit 0 . It is natural, therefore, to take xQ = 1 , or,

what amounts to the same, x± =2 + a/2 .

In the actual sequence,

*(*,)xi+l = xi " A
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where A* is yet to be defined, we would hope that a* would decrease,

at least until A is close to zero, but ultimately a* must become stationary

with the value 0 , or else cyclic. If it becomes stationary at some x with

the value 0 , how close is this x to the true square root? And if it becomes

cyclic, at which value does one obtain the best result? The first question is,

to what extent will the monotonicity of A(x) imply the monotonicity of A*(x) ?

Of the several routines that suggest themselves for computing A ,

only one will be considered here. It turns out that the others are less favorable.

To verify the fact is straightforward but tedious. For digital x let

- A Kx) ={V1 [-x -(-a/x)*]j

and consider first the monotonicity. Let

y > x >

For digital x and y , if y > x then y ^ x + 2 e , and it is

sufficient to consider the case

y = x + 2 e

Then

a/x - a/y = 26 a/(xy)
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Since

0 <! -a/x - (-a/x)* < 2 e ,

-2 6 < (-a/y)* - (-a/y) £ 0 ,

therefore

-2 6 < (-a/y)* - (-a/x)* - 2ea/(xy) < 26 ,

-26+26 a/(xy) < (-a/y)* - (-a/x)* < 2e+2ea/(xy) ,

2ea/(xy) < [-x - (-a/x)*] - [-y - (-a/y)*] < 4e+ 2ea/(xy)

Since y > x > Ja , therefore a < xy . Since the quantities

within brackets are digital, they can differ only by even multiples of e , and

hence

2e ^ [-x -(-a/x)*] - [-y -(-a/y)*] < he .

Hence the quantity [-x -(-a/x)*J is amonotonic function of x for x ^ J&,
and the formation of the pseudo-quotient cannot destroy the monotonicity. Hence
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with A* as so defined, if y > x > Ja1, it follows that A *(y) ^ A*U)

Next consider the uncertainty. Since

0 ^ -a/x - (-a/x)* < 2 6 ,

therefore

But

whence

0 < 2A - [x -(-a/x)*] < 2e ,

0^ A -2"1 [x -(-a/x)*] < e.

e^ {V1 [-x -(-a/x)*]j -2'1 [-x -(-a/x)*] < 0

-€<A-A*< e.

Thus A and A* can differ by at most 6 .

Now suppose that for some x = x. , one has

A*(x) = 0
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It will be shown later that this must always occur. When this is so,

- e ^ A < e ,

-2 e < x - a/x < 2 e ,

Ja+e - e ^ x<Ja+e + 6,

and conversely, when x lies on this range

A*(x) = 0 .

To show that A* will always vanish for some x± , it is necessary only to

show that if

then

x > I 21 e•J a + e +e ,

x- A*(x) > J ?^ a + e -«

For this it is sufficient to show that

/2
x -A(x) ^ sla + 6 >
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and since

x - A(x) = [x +a/x] /2

is monotonically increasing in x for x ^ J a , if the last inequality holds

when

6
2}

= J a + 6 +

it will hold for larger values of x . But this is readily verified and the

theorem is proved.

This routine is optimal in the sense that associated with every a ,

there is a uniquely defined half-open interval of length 2 6 which contains

both the true square root and the computed square root. Hence if it happens

that \T~& is digital the routine always gives this value. The possibly

more natural definition

*

A * = x - (a/x)* /2

has the disadvantage of yielding 2 e when a = 0 . Other definitions have

less desirable features.
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If x is the computed square root, then

-2e ^ x - a/x < 2 e ,

2
-2ex < x - a < 2ex

2 * 2-6<(x)r-X^ 6 ,

.(1 +2x) 6 < (x2)* - a < (1 +2x) e

-1 2 *
Hence when x ^ 2 , (x ) = a , and in all cases

-2 6< (x2)* -a ^ 2 6

The error bounds as given do not indicate in any simple way by how

much x differs from J a' . Write

and note that

Ja+e2 - v/a -e < x - Ja? < Va+
2

6 - J a + €

^ a+e - J~& = e/|ya+ e +J~& ] •
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Evidently this is smaller for larger values of a . If

whence

s-2 / 2 r-> ^ 2
I , v a + ea ^ 2 , va + e -s/a<e ,

/—> 2 -2
6 < x - sj a. < e+e for a > 2

If a = 0 , then x = 0 , but for the smallest non-null value of a ,

a = 26 , J a +e2' - J~b7 < (e/2)5/2

Hence in all cases

- 6 < X- JT < (6/2)3/2 + 6

Unfortunately, Newton's method for extracting a kth root requires

k-1
division by x , and we have already seen the pitfalls that arise in repeated

division. For k > 2 very special precautions seem to be required for keeping

the uncertainty to the order of a few e's .

For some matrix calculations (to be described later), it is necessary

to compute the sine and cosine of an angle given its tangent. The angle can be assumed
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to lie in either the first quadrant or the fourth, and, in fact, one can

suppose that if 9 is the angle, then

- «/4 < 6 < */4 .

Let s , c and t represent the required sine and cosine and the given

tangent, respectively. What are the "best" digital approximations s* and

c* to s and c ?

The formula that naturally suggests itself is

- [i ♦ *2]

1

2

modified, to keep things in range, to the form

c = [2"1/(2"1 +2_1 t2)

to be followed by

s = ct

2 2
Fortunately, since c > s , its root involves less uncertainty. However,

-1 2
it can happen that although t ^ 0 , nevertheless (2 t )* = 0 . In this

case one obtains c = 1 , s = t . The point, of course, in not taking s = 0 ,
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as might be suggested by having c = 1 , is that a small angle is more accurately

determined by the sine than by the cosine.

Let

u . 2"1 + 2-1t2 ,

v = 2"Vii

Then

u - u* = 2 t2 . (t2>;] ♦ 2-1 (t2,; - [s-1 (t2)*J * ,

and hence

- e/2 < u - u* < 3e/2.

Next

v - v* = 2"1 (u* -u)/(u u*) + 2~1/u* - (2~1/u*y

But

u > 2"1 , u* > 2"1 ,
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36<v-v*< 36

1/2 „l/2 „l/2
C - C* = V _v* + V* -c*

= (v -v*)/(vl/2 +v*l/2) + v*l/2

If t = -1 , one can take at once

c = -s =2

1

2

Otherwise t < 1 , and since t is supposed to be digital,

t < 1 - 2 e

t2^ i-4e+ 4e2 .

Hence

u < l-2e+ 2 e ,

v > 2"1 + 6

,1/2 > (l+6 . e2/a)/>/7

c*
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For the digitalized quantities

(t2£ ^1-46

u* <: i-2e

-1
v* > 2

Hence

VV2 + ^1/2 > (2 +e. e2/2)/>/r ,

(V L/2 +^1/2)-! < (1 _ e/2)/

- v* /(vl/2 + v*l/2) < 36(1 -e/2)/JT

The other term in the expression for c - c* is the difference

between the true and computed square roots of v* . For this we have

< v*1/2 - c* < e + 62/s7 2

On combining we obtain

- c* < (1 + 3/J~2) 6



-39-

Finally

s - s* = (c - c*)t + c*t - (c*t)

s - s* < (2+3/2)6

If t is the result of a division, let t , o and y represent

the values of t , s and c that would be obtained from the true quotient.

Then

0 < T-t< 2e ,

7 - c = (t - T )yc/ ' \——21 r t'Jl+t + v)l+ T

= (t -T) (t +T)7c/

= (t -t) (s7 + oc)/

TJl +t2 +Jl + T

I 21 / 2"Jl + t +nJi+t

The coefficient of t -t is essentially sin 2 9/cos 9 . Hence if t ) 0

0 < 7 - c < 2

and if t < 0

-2e< r-c<: 0
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o - s
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1 1

2 2
2= (T-t) (T +t) (1 + t ) (1 +T ) /

Hence for either sign

0 < a - s < 2e

Hence

-(2 +3/j2)e < o - s* < (4 +3/J2)

and either

.J1 +t2 +t^1 + t2

-(1 + l/J~2)e < 7 - c* < (3 + 3/n/ 2 ) e , t > 0 ,

or

-(3 + 3A^2~1) 6 < 7 - c* < (l + 3/^2~,)e , t < 0
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3- Some operations with matrices. Given two vectors u and v with

Tdigital elements, the product u v may be formed by summing the digitalized

products, in which case

T , T w
u v - (u v)* ^ n e

(assuming rounded multiplication), or, perhaps by extra programming, one may be

able to sum the complete products and digitalize the result. In this case,

assuming rounding,

T
u v (uT v)* 4 6

so that the uncertainty is only n~ as great. In either case let us assume

a 5 such that

u v - (u v)* < 5

Given a matrix A of digital elements, in general

Ax - (Ax)* .< 6e

where the absolute value signs are used in the natural way. As for the vector

e , if e. is the ith column of the identity matrix, then e = E e. . For
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certain special matrices, e,g. those which arise in the finite difference

approximations to differential equations, these relations can sometimes be

improved, but only the general case will be considered here.

When solving a single equation F = 0 , the uncertainty in the

solution was seen to depend upon the uncertainty in F and upon the derivative

of F in the neighborhood of the solution. Given a system of linear equations

Ax = k ,

the uncertainty in x will depend upon the uncertainty in the product Ax ,

and also upon the latent root of smallest modulus. Since this may be complex,

even when A is real, let it be X + i u , and let u + iv be the associated

vector. Then

A(u + iv) = (X + ip) (u + iv) ,

or

Au = Xu - |i v ,

Av = u u - Xv

Suppose that A and k are both digital, but that x is the true

solution, and hence not necessarily digital. Suppose, however, that one has

found a digital vector x. such that
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(A xQ)* = k

By how much can x and x differ? Since

A xQ - (A xQ)* < 5e ,

therefore

Ax0 - k < 6e ,

A(xQ -x) < 8e

The worst case can occur if x - xQ is in the plane of u and v

x = x + au + pv ,

A(x -xQ) = X(au + pv) + u(pu -ov)

If, for example,u = 0 and the latent root real, then v = 0 . We can suppose

u normalized to have its largest element unity:

xiI ^ e but not |u| < e

Let

Xa = 6
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Then

A(x - xQ) = 5u ,

A(x -xQ) / be

But

x - x = cca = (5/x)u

Hence one can say only that

|x - x0| < (S/X)e

or that the uncertainty in each element is 25/X .

Before continuing with the more general case it is convenient to

introduce the notion of norms. A norm ||x|| of a vector x is a real-valued

function of the elements of x satisfying the three conditions:

I) Ijxjj > 0 when x ^ 0 ;

II) Ijoxj! = |a| . ||x|j ;

III) ||x + yj| <. !x|| + Ijyjj .

Since II is to hold for any scalar a , it follows that ||o|!= 0 , and it can

be shown that the norm is a continuous function of the elements.
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A norm ||a|| of a matrix A is a real-valued function of the elements

of A satisfying the analogous three conditions along with one other:

I) ||a|| > 0 when A/ 0 ;

II) ||c*H = |a| • || A|| ;

III) ||A + B|( < ||A|| + ||b1| i

iv) ||ab|| < IUII • ||b|| .

A matrix norm is said to be consistent with a vector norm in case for any matrix

A and vector x it is true that

C) ||Ax|| 4 ||A|| • || x|| ;

it is subordinate to the vector norm if it is consistent and for any A there

exists an x such that equality holds:

s) ||Ax|| = ||a|| . IUII

For a subordinate matrix norm one has

Hill - i •

The vector norm in most common use is the Euclidean norm ||x|| , defined

||x||E = xT x .

This is the ordinary Euclidean length. The Euclidean matrix norm ||a|| ,

analogously defined, is consistent but not subordinate. In fact
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ll!llE =W2

T T
But the positive square root of the largest latent root of A A (or of A A )

is a. norm and it is subordinate. This will be called the spectral norm, ||a|L •
D

For any x , the least v such that

4 ve

is a norm which will be called the e-norm, ||x|| . This is simply the modulus

of an element of largest modulus. Subordinate to it is ||aII , defined to be

the largest row-sum of IAI . Likewise the e'-norm of x is defined to be

I- =
T I l

e x

the sum of the moduli of the elements, and the subordinate matrix norm |[A|| ,

is the largest column sum of |A|. These are natural norms to use for present

p-urposes, although it is to be observed that given any vector norm ||x|| and any

matrix norm ||a|| , and a nonsingular matrix G , one can define

l|x||G = Hg^xII ,

IIa|I0 = Hg^agII ,

and these are also norms. Moreover ||a|L is consistent with (or subordinate

to) ||x!|_ if and only if ||a|| is consistent with (or subordinate to) ||x|| .
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It can be shown that with any norm, if X is a latent root of A ,

then

M < IUII .

Conversely if X is a latent root of largest modulus of a given matrix A ,

then for any e > 0 there exists a norm such that for this matrix A ,

UAH < |X| + 6 .

Now to return to the previous problem, let

with

Then

A(x - xQ) = w ,

w < 5e

-1
X - X„ = A w >

and for any norm it is true that

|z - x0|| 4 ||A_1j| * ,w.
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In particular ||e|| = 1 , whence

Mle < 5 >

and therefore

|x-x0||e < b\\A-\

If X + i|i. is a latent root of smallest modulus of A , then (X + irj) is

a latent root of largest modulus of A - Hence

A ^ |X + in

Since for any nonsingular A there exists a vector w such that

-1 -1
A w

e
= A e * IWe

if the discrepancy x - xn is to be measured by its largest element, this can

be as large as 5
,-li , which is at least as large as 5|X + iul . And

while other norms may be more suitable, in particular circumstances, for measuring

the discrepancy x -xQ , in any event the factor |x + ijj.| will occur in

the same way.
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It was assumed that the vector xn satisfied

(A xQ)* = k

exactly. This, of course, need not be the case. More generally, let

(A xQ)* = k + r*

where rn is presumably small, and let

(A xQ)* - A xQ = d

Then

A(x -xQ) = d - r* ,

x-xQ = A" (d -r*)

Hence

|x -x0|| < -1
Id - r*|

4
-l

*p + II*

If

l*8l < 5' e •»
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then

||x -x0||e 4 (8 +5«) Ia-1

The classic paper on errors in matrix inversion is, of course, the

one by von Neumann and Goldstine which appeared in 1947 in the BAMS, treating

the standard method of elimination as applied to a positive definite matrix.

Even for this rather special case the analysis becomes quite involved, and it

is indicated that the treatment of the inversion of a nonsymmetric, or even

a symmetric but indefinite, matrix is virtually out of the question. However,

the iterative solution of a system of equations is somewhat simpler.

Most iterative methods are equivalent to the following: One forms,

implicitly or explicitly, a matrix B such that for an arbitrary xQ the

iteration defined by

Xv+1 = h + Bxv

converges to the desired solution. Actually, if the sequence converges at all,

it converges independently of x , and to a solution of the system

(I - B)x = h ,

which must therefore be equivalent to the given system. For any choice of norm,

convergence is assured when

IIbII < i ,
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and, conversely, convergence does not occur unless there is some norm for which

this holds.

Let x represent the true solution and define

sv=x"xv ' ry =h - (I - B) xy = (I -B) sy

Hence

xv+l - xv + rv

We wish to determine how close one can approach the true solution by using the

iteration so defined. Otherwise put, given a digital approximation to the

solution, when will its digitalized iterate represent a real improvement?
t

Since the number of iterations that have gone before is of no

relevance, it is sufficient to consider a digital xQ and ask whether

x* = xQ + r*

represents a real improvement. Note first that

(I -B)"1 = I + B(I -B)"1 ,

|(I -B)-1
4 1 + B (I -B)-1
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Hence if ||b|| < 1 ,

(i - b)"1 < 1/(1 - ||b||)

Hence if, as above, we set

(x0-Bx0)* - (x0-Bx0) = d0

then

!! s
0 < (l|rg|| +Kli)/(l- !NJ)

The next iterate actually obtained will be

Then

Hence

xl - X0 + ro

rQ - (I -B) r*

= <ro " TP + B r0 '

r** = (r*-r) + (r*-r)-Br*1 ^rl rl' + *• 0 0' o

|rf|| < llrj -rjj + ||r* - rQ\\ + ||B| r*
01
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One is assured of an s.. = x - x.. for which a better estimate will be had so

long as

1*511 > Kl

and this will be so provided

1*811 > i*i-in + H-o - -an 1 - B

In terms of the e-norm, if

r - r*
rl 1 < & > r - r*

0 0
4 5 ,

then an improvement is assured, in the sense of providing a better estimate for

s, than for s provided

ra > 25/ [l -||b||]

If r* has value equal to the right member or smaller, there is no assurance

that a subsequent iteration will yield any improvement.

As an example, let

"^

r-^0 1-2

h = 0 , B = ^0

-P
1-2 -2

-T
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Then

.2-t + 2-P-t

BxQ =

-2"T + 2-P"T

Ifp <0,T<;a,p+T^.cr, then

,-T

<1 » (Bxo}* "
-2

= X.

Further improvement is impossible by this algorithm, although, of course,

B < 1

Thus a large value of ||b|| , while retarding the speed of convergence,

also limits the extent of the possible convergence. However, by special

programming a closer approach can be made possible.

Suppose is small enough so that the elements of 2 r0 are
6 (J

within range, where a is some positive integer. By accumulating the complete

products in B x and adding h - x , one can form r exactly, and thence

(2 r_)* which is digital. In fact, one has



-55-

(2ar0) - (2ar0)*| 4 2ee ,

and even the factor 2 could be eliminated. Let

h' = (2arQ)*

Apply the iteration to the equations

(I - B)x' = h«

until one obtains an approximation with a remainder r** for which

ro* 4 25/ |"l -||b|

Let x' be the corresponding approximate solution. Then

xx = x0 + (2"ax')*

should be a closer approximation to x than is x^

In fact, the true solution is

x = xQ + (I -B)~ rQ
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Now on the basis of the foregoing analysis

(I - B)"1 h« ^ ro* + 8 1 - B

< (5' +8)/ [l - ||B||] ,

where

5' = 28/ [l - ||B||~

But from the definition of h' ,

2 r
0

< 2e ,

,-1(I -BfX (h» -2ar. < 26/(1 -||B|i) ,

whence

(I - B)-1 (2° rQ) - x^ < (8' + 8 + 2e)/(l - ||B||) ,

-1

0

-a(I-B) r0-2"ux'| 4 2"° (8' + 5+26)/(l - B ) ,

and

(2-° »J) (2-" *$• < 2e
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But since

(I - B)"1 rQ - (2"ax^))* = x - xx = sx

we have, finally,

||sj < 26 + 2-a (8' +8 +26)/(l - ||B|| ) •

It is worth while to note that the double precision accumulation needs to be

done only once, in forming r , with the result that the uncertainty can

be reduced by the factor 2~a , nearly.

The equations in the form

(I - B)x = h

will often represent a transformation of the original set

Ax = k ,

and in any event it is relevant to enquire about propogated error. Hence if

x satisfies exactly the system just written, and y satisfies the system

A(I - E)y = k + d ,
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where E is a matrix and d a vector of small elements, we require a measure

of the discrepancy x - y . Then

y - x = (I -E)"1 (E x + A-1 d) ,

ly - x II < -li
x| + A Nl '(1 -INI )

or

ly* <
-ii

E k + di /(i - INII )

A standard method for computing a numerically largest latent root and

its associated vector is to iterate from an arbitrary initial vector. Consider

the case of a symmetric matrix A . It is well known that there exists an

orthogonal matrix V such that

VT AV = -A. ,

where _A is a diagonal matrix whose elements are the latent roots of A , and

where the columns of V are the latent vectors. If x is any vector whatever

(not null), then

m m rp rp

x Ax = x V AV x = y j\_ y ,



•59-

where

x = V y

If x is normalized so that

T T T T
l = xx = yVVy = yy,

Tthen the quadratic form y Ay is a mean of the X's, whence

x. 4yy = xAx4^ >min ^ J J ^ max '

where X _, and X are the least and greatest of the X's. Let
min max

Hence

xv+l - Axv '

y • y0 ' yv+l = ^ yv

^v - xv-axa
T

yv-a ya
T A v

yn A yr

It is no restriction to suppose that

S. > X2 > '" > \ \ > ^ 0
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Then in the limit

^v+lK —* Xl '

and x approaches the associated latent vector (not necessarily normalized),

provided the initial vector x_ had a component in this direction. In

computational practice it is inevitable that generated errors will introduce

such a component even were none present at the start, although the convergence

would be slow.

The value of v is irrelevant in the analysis of the results. Hence

let x and x, designate any two vectors in the sequence, and define

t = x, - x.

n-2 +T +/ TT = t t/X()X0

Then by a theorem of Weinstein there exists a latent root X such that

|x - X'| ^ t .

In fact, if

yl " X' y0 '
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u = y1 - y1

2 T / T
t = « Vy0y0

*

= yo(A-x« D2y0/yjy0

2 2
Hence t in a weighted mean of the quantities (X. - X') and therefore

cannot exceed the greatest of these differences.

If the iteration has been carried sufficiently far, we can suppose that

0 4 X - X' 4 t

Assuming A and x to be digital, let

x =» x* + d

Then

ux - u* = xQ d + xQ x* - (xQ x*)
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It is readily verified that for any two vectors a and b ,

Hence

Evidently

Finally,

T Va b < H« •llb^

t-h - n1 ^1 I <̂ (1 +

u„ - u*. <C 8 .
p0 F0 ^

xoll ,} 5
e'

X' - X* = ^1/u0 -(u*/u*)'

X'(n* -nQ) +(ux -u*) /n* +u*/u* -(uf/u*)1

In order to prevent overflow it will have been necessary to normalize A so that

A 4 1

Hence

X' 4 1
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Therefore

.(2 + ||xJ| ) 8yd* 4 X'-X* 4 (2 + ||x0|| )&/u* + 26 ,

and hence

-T-(2 +||x0|| ^8^* 4 X- X* 4 26 + (2.+ UxqII )»/|ig '

The problem of assessing the error in the vector is much more difficult

and will not be discussed. Note, however, that if

then

A ^1 ~ Xl Ul ' '

A Ug = X2 u2 >

A(u1 +Ug) = X1(u1 +Ug) - (\ -Ag)^

Consequently, if \^ and X£ are very nearly equal, acomponent in the direction

of Up will not only be slow to disappear during the course of the iterations, but

may, indeed, be submerged in the generated error.
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4. The characteristic equation of a symmetric matrix. A direct

method for obtaining latent roots of a symmetric matrix has been programmed

and analyzed by J. W„ Givens. Details can be found in a report of the Oak Ridge

National Laboratory (ORNL-1574) issued in 1954. The method will be summarized

here and limits of uncertainty obtained, somewhat less favorable than those

found by Givens but by means of a rather simpler analysis.

The computation proceeds in two stages, and only the first will be

discussed in any detail. In the first stage the matrix is reduced in a finite

sequence of plane rotations to a form in which the only non-null elements are

located along and just bordering the main diagonal0 For a matrix of order n

this can be effected in at most (n - l)(n - 2)/2 rotations, each of which

annihilates an element not so located without affecting the nullity of an

element previously annihilated. By a standard theorem the resultant of these

rotations is an orthogonal transformation which leaves the latent roots invariant.

The transformed matrix, called the "Jacobi form" of the original, is

such that its characteristic polynomial can be computed by a simple two-term

recursion, and, indeed, the terms of the recursion form a Sturm sequence for

the equation. Hence if the terms of the sequence are evaluated for any X ,

and if V( X) is the number of variations of sign exhibited by the sequence,

then the difference between v( X ) and V( X») is the number of roots between

X and Xs . It is not necessary to expand the characteristic polynomial

explicitly since the recursion itself provides a suitable algorithm for
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evaluating it together with the functions of the Sturm sequence. Hence the

equation is solved by the binary Horner's method, guided by the added information

provided by the sequence. This stage of the computation will not be discussed

further here except for mention of the method of obtaining limits of uncertainty.

Use will be made later on of a theorem which relates the latent roots of two

symmetric matrices to the difference of these matrices. Givens defines a Jacobi

matrix for which exact calculation would yield precisely the Sturmian values

obtained in any particular digital evaluation. By applying the theorem to this

matrix and to the given Jacobi matrix, Givens is able to obtain remarkably

favorable limits of uncertainty, and to show, in fact, that the maximum

uncertainty for any root of a Jacobi matrix is independent of the order.

Return now to the reduction to the Jacobi form* A simple induction

establishes the possibility and describes the plan of the computation. First

suppose the matrix partitioned symmetrically into one, two, and n - 3 rows

and columns, respectively:

A »

where A,
22

is 2x2, and let

a

Ag2

A32

T

l32

V33
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CT1 " °2r- [ o r o j , r=[^2 ;j , ^ +̂ =i.

Then R is an orthogonal matrix representing a rotation in the (2, 3)-pLane.

This matrix transforms A into

a2 r

A« =rtar = ( rTap rTA22rrT^2
A32r A33

which is again symmetric and has the same latent roots as A . It is important

to note that no element is affected unless it is in the second or third row,

or the second or third column.

In A' the element a* in particular is a linear combination of

al ^ °2

°13 = " "12 CT2 + al3 al = a3'l '

Hence o^ and a^ can be chosen to make >:' = 0 , and the choice is unique

except for signs. This selection made, P ,and hence R and A' , are

determined. The complete transformation is made up of a sequence of (n - l)(n - 2)

such rotations,
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In fact, if the second column and second row are moved to last the

same kind of a rotation can be applied to the new matrix, and the zero previously

created will not be destroyed. A total of n - 2 rotations and interchanges

result in a matrix of the form

^2
A" = a,

'22
a,
'23

a,
•23

a.
'33

where, in the first row (column) at most the first two elements are non-null.

To complete the induction one needs only continue with the principal submatrix

a.
'23

a
33

For computational purposes an actual interchange of rows and of columns may or

may not be desirable, but the notation can be made simpler if this is assumed.

It is sufficient to confine attention to the rotation in the (2, 3)-plane.

rp

Since A and A' = R A R differ at most in the second and third

rows and columns, a single rotation will introduce errors in no position other

than these. If it is possible to place a bound on the uncertainty introduced
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in a latent root as the result of a single such rotation, then by summation one

can obtain a bound for the uncertainty due to all. This will now be done. In

addition, as a measure of the over-all, total error, a formula can be obtained

for the sum of squares of the deviations of the roots of the computed matrix

from those of A .

Consider, then, an individual rotation. The error matrix has the

form

|A' - A* | = E* =

0

*

#

0

*

*

*

*

*

*

0

#

0

where possibly non-null elements are designated by asterisks. Consider the matrix

of non-negative elements

E =

0
.°L Pi 0

°L 7 7 *>

h 7 7 *2

0 <*o Po 0

where the a's, the B's, and y are chosen so that it is assured that

E > E* .
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The latent roots of A and of A' are strictly equal. Let these be

Xl ^ X2 ^ *" * > Xn >and let tne roots of A* be X£ > X£ ^ ... ^. XJ

Then it is known that E (X - X") cannot exceed the sum of the squares of the

elements of E' and hence of E , and that for every i ,

exceed the largest latent root of E' and hence of E. These are known

theorems and will not be proved here. Consider first the largest latent root

of E .

By direct expansion one finds that

X. - X"
1 i

det (E - XI) = + in ^ -*n-lX - 2 y X
n-2 v , 2 Q2 .X E (a± + P± )

cannot

+7*n~3 Z(a± -p.)2 +An^ E (a± ?. -Oj B^2
i \ j

This is most easily verified if the first row and first column are moved to third

place and a Laplace expansion applied. It follows from this that the largest

root of E cannot exceed the largest root X' of the quadratic

X2 - 27X - E (a2 + B2 )=0

and this root has the value

= 7 +
2

7 + Ma2 + P2)
1/2
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We require, therefore, an estimate of this quantity.

Consider the element a', or any element a' or a' for j > 3

in A' . The elements a', = 0 , a'2 , a' = a' , and a' require special

consideration. Any of the non-special elements in the second and third rows of

A: are computed by a formula of the form

a' = 8-l a1 + 82 a2 ,

where 8, and 82 are, except possibly for sign, distinct elements of A .

If a* is the digitalized result of the computation,

a' - a* = 8.^ - a*) + 82(a2 - a* )

+ 81 a* -(8L o*)* +82 a* -(&2 a*)* ,

since &1 and 8_ are already digital, whereas a. and orp must be computed

digitally. Hence

|a' -a*| 4 |81| , ^ - o* |+ |62| •|a2 - o*| +2e

if roundoff multiplication is used. The right member can be regarded as the

scalar product of two vectors, whence, by the Schwartz inequality,



-71-

(a' -a*)2 4 (82 + 82 + 4) n2 ,

t] = (a1 - a*) + (o2 - a*) + e

The matrix A will be assumed normalized at the outset so as to make sure that

all computed quantities fall within range. This can be done by making the sum

of the squares of the elements equal to (or less than) unity. This sum of

squares remains invariant under all rotations and is, in fact, equal to the sum

of the squares of the roots. Hence all roots then certainly lie between -1

and + 1 .

The estimate (a' - a*) represents any a. , or any B* for i / 1.
p p

In the sum E a. there are n - 2 terms. The coefficient of r\ therefore

2 2includes 4(n - 2), and a sum of terms represented by the 8, and 8p which

includes elements of the second and third rows of A . This sum is certainly

less than 1, whence

Za\ ^ (lm- T) ^ '

2
If we omit p. from the corresponding sum we have

n-2

E Bj < (4n -11) n ,
i=2 1
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since there are n - 3 terms instead of n - 2 .

Now to estimate p and t] requires consideration. Since the choice

of a. and q_ is made with the intention of making a', = 0 , and this is

in fact the value taken for that element in A' , we can say that p. = 0 .

In that event

E (a2 + p2) 4 2(2n -9) t,2 .

For estimating tj we could then compare o* and cr* with the cr. and ap

we intend to compute,, This would amount to making a comparison of A* , the

matrix actually computed, with A1 , the matrix we intend to compute, which

is the natural thing to do. On the other hand, if R is any rotation matrix

whatsoever, not necessarily equal to R , it would be equally valid to compare

— T — —
A* with R A R . However, if R / R , that is, if one does not compare A*

with the matrix A' one intends to compute, then one can no longer take p, = 0.

In ORNL-1574 several choices of R are made and compared. Here only

the most favorable will be discussed. To begin with one computes cl = rj by

the routine described here in §2. It was shown there that (in present notation)

-(2 + 3//?) 6 < ox - o* < (4 +3//2) e.

In arriving at the digitalized value 0* of the sine, a value of the cosine

has been obtained, but instead of using this in forming R , one takes the
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actual o* to define strictly the angle of rotation and defines

ap = cos (sin" o*) .

This leads to a nonvanishing value for p. , but a reduction in all the other

errors since now r\ reduces to

2 / ^2 2r\ = (a2 - 0*) +e .

Consider first the value of this.

This involves the square of an error in a digitalized square root

-l/p
o* where cr > 2 ' . To simplify notation let x* = o* , y = or* . Then

21/2 ' 2l/2
(1 - y^) - x* = (1 - /) 2.*

(i - y )
1/2

(i -y2)*
1/2

_ (i -y2) -(i -y2)* + (i-yY-(x*)2
- 1/2 f^ „ ..-il/2 + 7 ~ „-|l/2

(i - y ) + (i - y2)* d-y2)* + x*

-l/2 2 -1
Since y < 2 ' ,1-y >2 and the same may be assumed for the

digitalized quantities in the denominators. Hence

/•, 2\ A / 6 2 6(1 - y ) - x* I 4 —— +
/2

= 3 fi//? ,

- x*
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which is to say that

o2-o* 4 3 e/721

Hence

TI2 4 11 e2 /2 .

To estimate p., it is necessary to obtain a bound for

2 l/2
a-jo °i " °t.2 (-1- " °i ) >since t^is would be the correct value for a!

whereas one actually takes o^ = 0 . Since, by definition of gl ,

we have

°13 Cl "«L2 <* "°f> "«L3(ot -"l> -«12

2 X/2
°13 al •°12 (1 " °1 ) = °'

1/2 o 1/2 p 1/2
(1 - cr*2) - (1 - c2)

therefore by the Schwartz inequality,

1/2

°i3 at ' °i2(1 - °i >
p p 1 p r o 1/2 o 1/24 (o£3 +o^2) J(ax -a*)^ +(1 -a2) -(1 -of)
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But

1/2 1/21 r 2 2 I T 2 1/2 1/2"
(1 - oj) - (1 - a*2) J - [(1 - a2) - (1 - of)J /[(l - c{) +(1 - of)

Hence

? 1/2 p 1/2
(1 - o2) - (1 - a*2)

and since certainly

<

l/2 1/2
= (a* - 0^(0* +o1)/ (1 - a2) +(1 - a*2)

ffl-°I < (4 +3/2l/2) 6 ,

^3 + ^2 < 1 >

therefore

1/2
^ o* -^ (1 - o* ) < (3 +4•21/2) 6

Since this is p, , it is now possible to write

E (a2 +P2) = 2(22n -29 +12 •21/2) e2

The errors represented by 7 remain to be determined. These are the
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errors in a'2 ,a' and a' =a' . Since the trace is invariant under a

true rotation, a' is computed and a' set equal to a22 +a ^-a^2 .

This forces the errors in a' and a' to be equal and opposite. But in

any event the calculation of any of the three computed elements has the form

8 = 5l ffx + 82 o2 ,

51 " 511 °1 + 512 °2 >

52 = 521 °1 + 522 °2 >

where each 8. is one of the four elements a22, a2_ = a_2 ,a__ . The

bounds

Next

for 8T -5* and 82 -8* have the form of an a± or a p± for i/1:

(81 -S*)2 4 (82x + 822 + 4) n2 ,

(82 -8*)2 ^ (8^ + 822 + 4) T]2

5-8* = a± (8L - 5*) + 8* (a1 - o*) + 8* a* - (8* a*)

+ o2 (52 -&*) + 8* (o2 -o|) + 8* o* - (8* a*)* ,
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|5 - 6*1 4 MbJ • |6X- 5*| + |o2| • |82 - S*|

+ | 8*| • \o1 - a* | + l&*| • |cr2 - 0*| + 2e

and by the Schwartz inequality,

(5 - S*)2 4 (5 +5*2 + 6|2) F(51 - 8*)2 + (S2 - 8*)2 + t]2

2 2
after making use of the fact that a. + o2 = 1 . For the second bracket,

(8X -8*)2 + (82 -B*)2' = (8^ +822 +Sg-L +§%> +8) T]

< 9 1

since certainly

5L+512 +4 +522 < 1

Moreover

2 „^2 / ,„2 J2 „2 „2 v ,2 2S
8*f + 8f < (8^ + 812 + 821 + 822) (0± + 02) 4 1
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Hence

(8 -5*)2 4 60 ti2 ,

and hence, using the expression already found for r\ ,

2 2
7 = 330 6 .

Thus, on combining everything, one has as an upper bound for the

error in any root introduced by a single rotation

K - X!
i l 4 J330l/2 + 2 lln + 68 +6 •21/2

1/2'
6 .

Likewise the error in the sum of the squares is bounded by

4 72 +2E (a2 +p2) = 4(22n +631 +12 •2X/;d).p1/2^ e2

Each of these expressions must be multiplied by (n - 2) to obtain

the total error introduced in the rotations required for the reduction of the

first row, and for the total reduction n must be replaced by n - 1, n - 2,

..., 3 and the result summed. If Xi represents the i-th root of the final

matrix,

t-,2
E <Xi "V ••< (2/3)(n- l)(n- 2) 44n + 3(653 + 12 '21'2)
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For the uncertainty in an individual root it is necessary to sum an

irrational. There is no closed expression for such a sum, but an overestimate

can be had by integration:

X. - X.
1 1

4 e ,/3W (n - l)(n - 2)/2 + 16(23 +3/2V1815

+4(33n - 125 - 12/21) (lln +35 +6yF)^2/l805

Asymptotically in n , the uncertainty is approximately

2. 7 6 r?'2 ,

However, the value 2.7 is attained only for very large n . The ratio to

n ' 6 is tabulated below for some n's of more moderate size:

n 5 10 20 50 100

ratio 3.29 2.60 1.93 1.20 0.90
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