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THE GENERATION OF ERROR IN DIGITAL COMPUTATION

A. S. Householder
Mathematics Panel

Oak Ridge National Laboratory
Oak Ridge, Tennessee

1. Statement of the problem. Suppose it is required to evaluate a given

function f(x) for a particular x , where x may be a single variable or a
vector of n components. The problem to be considered here is to determine bounds,
as smell as possible in magnitude, for the possible deviation of the computed
number from the theoretically correct value of f(x) . It is clear, of course,
that the attainment of a theoretical limit in eny instance is highly improbable
except for very short routines. On the other hand a probabilistic analysis is’
beset with many sneres and is apt to come to grief. For one thing, it is quite
obvious that certain numbers, such as the simple rationals, their square roots,
basic transcendentals like e and x , and some others occur with more than
average frequency. It is not clear how a probabilistic theory could take proper
account of this, or how useful it could be if it does not do so. Moreover,
rigorous limits are sometimes needed even should probabilities be available.
Consequently we shall here take our departure from the Hypothesis of Nature's
Universal Malevolence (the NUM Hypothesis), which may be phrased: The worst that
can possibly happen can happen (at least in computing).

Often one computes simultaneously several functions. Thus in solving
a system of n equations there are n functions of n2 + n' variables; in

inverting a matrix there are n2 functions of n2 variables; the latent roots
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and vectors of a general matrix are represented by 2n2 + n functions of n2
varisbles. The fact that these are not functionally independent does not relieve
the computer of the requirement to exhibit that many rumbers. Nevertheless, it
is sufficient in most cases to direct attention to one function f , whether or
not it is computed in conjunction with others.

The consideration of only a finite number of elements in the vector
X does not in itself represent a real restriction for present purposes. Although
a definite integral, for example, is, from one point of view, a function of
infinitely many verisbles, we can equally well consider the integral as defining
a particular function in terms of certain functional values of the integrand.

The simplest paradigm is provided by a function f(x) given explicitly,
perhaps as an infinite series, but approximated for computational purposes by a
rstional algebraic expression fa , perhaps the series truncated at some stage.
The approximation fa requires for its evaluation only a finite number of
arithmetic operations. The error in the final result will be made up of three

components:
£(x) - £x(x%) = [£(x) - 2] + [20e) - £,()] [0 - £x000)]

This allows for the possibility that the data x* actually used in the computation
mey themselves deviate from the theoretically correct values x , through errors
in measurement, previous roundings, or otherwise. These three components will

be called propagated error, truncation error, and generated error, respectively.
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We are concerned here with the determination of two numbers, o'

and ¢" , such that
€' < f(x) - £22(x*) L 9" .

It is not necessary, and sometimes not true, that ¢' and ¢" should be equal,

or even of the same sign. Necessarily, though

In plenning & computation the first concern would be to make ¢ as small as

possible. If ¢' and ¢" are known, then the computed fg establishes an

interval with endpoints f} - o' and T* + 9" wupon which the theoretically
correct value f(x) must lie. This interval will be called the interval of
uncertainty and its length the uncertainty. Given two routines for computing
the same quantity, we shall say that one is preferred if its uncerteinty is
less. Whether in a given instance one will indeed prefer it will, of course,
depend upon tolerance and speed requirements.

A number that is representable exactly by the mechine will be called

a digital number. For a binary machine like the Oracle such a number may be of

the form




.
where each a; is 0 or 1, and o = 39 . Given any number b with

-1 < b < 1, it is always possible to represent b in the form

with possibly infinitely many terms. The number

b* = -BO + Bl . 2-.l + cee + BU -

o
obtained on replacing Bo+l and all subsequent coefficients by O will be
said to be the result of digitalizing b with truncation. The number

-fl=] ¥
b = (b + 2791y

will be the result of digitalizing b with rounding. For convenience the

letter € will be used to denote

which will be called the unit uncertainty. Analogous definitions can be made for
a decimal representation.
The decomposition into the three components of error as indicated above

corresponds to the stages through which the analysis of the problem is usually
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carried, but it does not follow that the combined uncertainties separately
arrived at represent the narrowest valid limits, and there are occasions when

it is best to proceed otherwise. The equation

f(x) = ¢,

where ¢ 1is a constant, represents a surface in a space of n + 1 dimensions.

The computational problem is to obtain the closest possible approximation to

¢ for a fixed x . ' Let

represent the value actually obtained. The equation

£f(x) = c¥*

ig elso a surface. In special cases it may have no real points, but if it has

and if X represents any point on the surface, then

£f(x) - f£(x)

represents the error, not resolved into components. Any X whatever on the

given surface can be used, and & happy choice may show the uncertainty to be
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much less in fact than it appears to be on compounding the separate components.
Often f is not given, or not conveniently given, explicitly, but

only implicitly to satisfy an equation
For simplicity, suppose that the function F 1is continuous, and has a continuous
first derivative (a Lipschitz condition will do as well) over the range to be

considered. Suppose points f' and f" are known at which F takes on

opposite signs and between which the derivative of F 1is known to satisfy

|

> m > 0 .

Then F is monotonic and vanishes once and only once on the interval. One can
apply Horner's method in binary form as follows: Assume f' =0, £" = +1 .

This is always possible after a change of variable, although it need not be carried
out explicitly by the machine. The object will be to obtain the digits in sequence

in

It is sufficient to consider the case of F increasing. Evaluate F*(Z-l) taking

¢, =0 1if F*(2-l) > 0, and otherwise ¢, =1 . If F*(2-l) = 0 , terminate
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the iteration and take @, = @5 = ... =0 ; otherwise, if @, = O , test F*(2-2) ,
and if ?, = 1l test F*(2":L + 2-2) . The process continues by successive bisections
and is actually more efficient than the strict application of Hormer's method in
the decimal systen.
The process will terminate after at most o steps. Let the uncertainty

in F be n =qn' +q" , with

-n' g F_Fl* g n“ .

The sequence has terminated at a value £* which yields a computed F* , and

this may or may not be O . In any event, by the law of the mean
0 = F(£) = F(£) 4+ (£-20) F [£rs0(f-11)]
where 0 { © < 1. Hence
F(f*) = -(f - f*)F' ,
and therefore

NI CEEO B I (P LI
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Consequently, if F' > m > O,

-+ F)/m £ £ - < (' - F¥)/m

Likewise, when -F¥* > > 0,

(F* =n")/m £ £-8¢ (M +1")/m .

The need for an estimate of the derivative can be avoided, at the

cost of a little extra programming. By definition a digital number is an integral

multiple of 2 e= 2 ° . Begimnning with f£* , evaluate F* for f£* -2¢ ,
f* -Le | P* . 6€, ... until reaching an £x for which (it F' > 0)

F*(fg) +1" £ O 3

and evaluate F* for f* + 2¢, f* + he, £f*x + 6, ... until reaching an f;

for which

Then certainly
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Another classical method for solving an equation (and one which
generalizes to systems) is that of Newton. This is only one of a large class

of methods, as follows: Write the equation in the form

f =f - O(E) .

For Newton's method one takes

A () = F(L2)/F'(£)

but many other choices are possible. If, starting with some f. the sequence

0
defined by the recursion

£ = £, - O(f)

has a limit, then this limit satisfies the equation. For Newton's method if
f 1is a simple root, then there exists an interval containing f such that
the sequence converges 1if fo lies anywhere on that interval. In fact, at
least the sequence that begins with fl (but not necessarily with fo) is
monotonic, so that the sequence z;(fl) VAN (f2) , vanishes monotonically.

The computed sequence, of course, has the form

- - *
i £, - orEy) ’
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and the sequence [5*(fl) s 15*(f2) , o+o , mAy be expected to be monotonic

at the outset. It may ultimately vanish, or it may go to some negative value,
thereafter becoming periodic. In any event, the programmer must establish some

criterion for terminating the sequence with some £, = f* , and the uncertainty

i

can be determined as in the previous case. A simple special case (for the square

root) will be discussed later.




-11-

2. Some elementary routines. The sum or difference of two digital

numbers is always digital or else out of range. Hereafter the qualifying phrase
will be omitted and it is to be understood throughout that any assertion holds
only when the theoretically correct result falls within range. Thus in referring
to the result of a division, a/b , it is tacitly assumed that l al <:‘ b‘.

Then the machine yields a truncated product (ab)* , or a rounded product (ab): s

which satisfy, vhen a and b are both digital,
0 £ a - (ab)* < 2 € ,
- e £ & - (ab); < €
In the Oracle there is no rounded division as a special operation, although it

could certainly be programmed. There is the peculiarity that the sign of the

divisor makes a slight difference:

0 K a/b - (a/fp)x < 2e , b > 0 ,
0 < afb - (a/b)x { 2€, b < 0
e  ald-(af)x < e, b > 0

- < a(b - (a/p)%

N
o
o'
N
o
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The Oracle has the ability to utilize an exact product as a dividend:A

0 < ab/e - (ab/e)*x < 2e€ |, c > 0

o0 < abfe - (ab/ec)* £ 2€ , c < 0 .
Hence if ¢ =mn - 277 , where n 1is an integer, one can form, effectively,

a/n by taking b = 2% . When n 1is nmot too large, the more precise limits are

sometimes useful:

0 < a/n - (a/n)* < 2(n - 1l)e/n

*

-2¢/n ¢ 8af(-n) - [a/(-n)] < 2e .
Each of these limits can be achieved. This completes the list of basic arithmetic
operations.

As an example of the difficulties that can arise, consider the evaluation

of a/(bc) . The operations can be carried out in the order indicated, or in the

order (a/b)/c , or else (a/c)/b . ILet

a = 2¢€ , be

1]
W
m

A
P
o'
0
g
H %
|
=
m
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Evidently a/(bc) = 2/3 , whereas [a/(bc);] = 1/2 . On the other hand, let

Then a/(be) = (1 + he)-l , whereas
(a/o)x = [be/(1+4e)]" = 2¢

((a/0)x/c]” = 2¢/(he) = 27

It is quite possible to obtain general estimates for the errors by the

two methods. Assuming all quantities positive, let
x = af(be) .
Then one has by the first method
x - [a/(ve)2 ] ¥ e ox [(be)x - be] /(be)x + o/ (be)x - [a/(bc);]* ,

whence

-xe/(bc); < x - [a./(bc);]* < [2 + x/(bc);] € .
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For the second method one obtains in an analogous way,
* -1
0 < x- [(am)x/e] < 2a+cHe .

Evidently if b > ¢ the second method should not be used until b and c

are interchanged. If, however, Db < ¢ , the second method will be preferred when

e < x/(ve)x ;

or when

b < a/(bc); .

Hence if one computes x* by the first method and finds that

b < [s/00)z] "

then a recomputation by the other method will give a better result in the sense
that the uncertainty is less, except only when a/(bc); is digital, in which
case uncertainties will be the same.

When e number is to be raised to a power, one finds by induction that

‘xz - (xz);l < €
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[ - @] ¢ el a-x) < (von e,

where

(x)x = [(xv'l); x] .

It a, is any digital number, and

then

‘ u, - u%, < (lavl +v-1)¢ < ve .

This assumes only that |av| < 1 and [x I < 1, although the uncertainty

will be less in cases where smaller bounds for a.v and x are known. In the more

general case, if

P a. + X + + a xn
— 0 ﬁ e e e n ,
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and if P* 1is formed by evaluating terms as sbove and summing, then
[P - P*\ < € n(n - 1)/2 .

On the other hand, let

yn= a-n )
Yio1 = ¥y ot %0
Then
P o= v,
It
i, o= (x¥ypE o+ o8y, ’
and
vioW| og oy o
then
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whence
n, =0 ’
1]n-l'g L ’
n ¢ @ —.I.J.cln)/(l-[xl) < mn .
Hence

v - 5| < e -[xM/@-[x)) < ne .

The uncertainty is therefore reduced by the factor (n-1)/2 . If P comes
from truncating a Taylor series, the second method of evaluation requires that
n be fixed in advance.

In some particular cases the uncertainty is even less. Consider the

truncated exponential series for x 2> 0,

L, = 1l-x+ x2/2! - x5/3! + oeee + (—x)n/n! ,

and let

n+l
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Vg =l -wya/t

Then

Let 2 ny € represent the uncertainty in vy - Then

(n-1)/n < 1

=
1

=
1]

i L+ x mg /i
Hence
20, n-1 '
n; < l+x+x /20 4+ «.. +x J(n-1)! < expx

Hence the uncertainty in L, is less than 2¢ exp x , which is independent of n .

A similar method can be used for the sine and cosine. Let

vy, = -x/n , Yoo = l+y,x/(n-1) ,

Yoo = Vyq ¥/(n-2) ,

l+y, %/(n-3)

. . & o . e s e . . . . e
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Then if n is even, ¥ is the truncated cosine, and if n is odd, n 1is
the negative truncated sine. Again the uncertainty cannot exceed 2 ¢ exp‘xl s
for any n .

Slightly more complicated is the following:
2 n
L = u [l +v/3+7v/5+ c. + v /(2n + l)] = u P(v)

u = 2(1 - x)/(1 + x) v = ue/h ’

This is, of course, a truncated logarithm series. The analysis can be simplified
by the following observation: For any digital x , there is a unique x s iIn

general not digital, such that
u(x) = u*(x) .
Hence, since L(x) approximates -log x ,

-log x - L*(x) = log(x/x) + [-log X - L(Ef] + [L(E) - L*(E)] .

The greatest values of u and v occur for x = 2_1:

we™) = 2/3, vy = 19 .
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Actually (assuming ¢ oddas it is in the Oracle)
we(2™) = uw(@™) - 2¢/3
Now consider

u = u(x) = ux(x)

to be digitel. Then

Hence

-e/h L v-v L Te/E

and the total uncertainty is 2 € . Let
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and let

Then

> ! = bn/(2n+1),

=3
B
[}
o

R A MR RUAR R

=val +T/hel b /(21 41) .

=
oyt
{l

Without attempting to solve this difference equation exactly, it is clear that
nt <2, v < 1/9 , v, < 9/16 < 1 .
Hence
o < 3/2, gy < 6 .
Hence

3¢fe < P - P < 6e€ .
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Rext,
L(X) - L*(X) = u*(P - P*) + ux Px - (u*x P*¥)X
2e < LX) - 1xx) < 5¢

The difference -log X - L(x) represents a truncation error and depends

upon the number of terms to be included. This is always positive. Let
0 < -logx - L(x) < 7v€ ,
and consider, finsally, log(;c/x) . Assuming x to be digital, it follows that since
1-x/1+x° < 29
therefore
-8¢/9 £ uwu-uw < 2¢ .
We require the maximum and minimum values of log(x/x) for 2-1 £ x ¢ 1 and

8e/9 < u(x) -ux) < 2e .




-23-

Let w = u/2 and consider

v -Q) .z

l+w/ l+wv+e _ (L+w) (1
1 -w lewe-a (1-w)(1

+

(1 -w)/(1+w) ’

]
]

(L-w-a)/(1+w

K1
h
+

As & function of w , this fraction is increasing

for a < O . Hence for

w =1/3, a=e¢ , x/x
and for

w = 1/3 , a=-4%/9, X/x
Hence

- e < log(x/x) <

Finelly, therefore,

3 e < -logx - L*(x) <

v+ a) x/x

a) .

for a > 0 and decreasing

(1 - 3€/2)/(1 + 3/4) ,

(1 +2e/3)/(1 - €/3)

€

(6 +7) €
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Since these are overestimates throughout, and T can be made arbitrarily small

without affecting the other terms, one can write, for sufficiently large n,
-3¢ < -logx - L¥(x) < 6e .

Continued fractions are perhaps in less general use than they deserve,

although they do offer complications. Let

g
I

n = bO + al/ bl + ae/ b2 + eee + an/ b

n

= A /B, )
where An and Bn are polynomials in the a's and b's. Then the Ai and Bi
satisfy a well known two-term recursion which it is natural to use in evaluating
Fn . But this is not necessarily the best way.
Note that if el 5 Co s enes c ~are any non-null constants, then
Fn = bo + ¢ al/cl bl + ¢y ¢y 8.2/c2 52 + eee+Co gy an/cn En

One can assume ‘Fnl < 1 since if !Fnl > 1, F;l could be computed, and
scaling can be taken care of by choice of the c¢'s. But if the Ai and Bi are

computed, a choice of the c's that prevents getting out of range is apt to cause

the A's and B's to diminish until allsignificance is lost. However, let
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Supposing the scale factors to have been selected already so that everything is
in range, and that the a's and b's are digital, let 2¢ 51 be the uncertainty in

D Since

i'
Dyy - Dy = #(Dy-D)/(D; D}) + e/D} - (a,/09)% ,
one has
Bja1 = [a1' o/pyox] + 1 .
If it 1s possible to scale so that
oyl /py 23] < o < 2,

then one finds readily that

5, < (L-oM)/(1-0) < 1(@-p) ,




T
and the uncertainty has a bound that is independent of n . Such scaling is

possible in particuler for

x/T + x2/3— + x2/5— + eoe

tanh x

tan™! x x/T + 12 x2/3— 4+ 2° x2/5— P

log(l+x) = x/T + 12 x/2 + 12 x/3 + o2 x/T + o2 X/5 4 ees

exp(-x) = 1 -x/1+ x/2 + x?/h * 3+ xe/ﬁft—ig oeee
for each of which the uncertainty is not greater than 2-0+3 .

The length of the interval of uncertainty is not, of course, the complete
story. It may be in order'to recall what is meant by the term. We have been
considering the digital computation of a function f(x) , assuming x to be
digital and exact, thus neglecting initial errors. A given computational routine
will yield a value f*(x) which, in general, will not coincide with f(x) . Ome

hopes, however, to assign numbers 7' and 7' such that
f(x) - Vv < £(x) < £(x) + 0 ;

that is, f* together with 7' and n" define an interval of length 1 = ' + 7"

upon which we can be sure that the true value of f(x) must lie. The length 7
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is the uncertainty. Clearly it is essential to know either n' or n" as
well as 7 . GCenerally speaking, 71 will be determined by the order in which
the operations are performed. The choice of simple or rounded multiplication
will not generally affect n but will affect n' and n" . Hence having
chosen a sequence that mekes 7 as small as possible, one can then select
rounded or simple multiplication according to convenience.

This is true for direct calculations, but for indirect calculations

one must be more careful. As an example, consider Newton's method for extracting

a square root. Mathematically, the sequence

X X. - A (Xi) )

i+l i

(x - a/x)/2

A (%)

converges to ,‘a , provided the initial X, is not too far removed, and if

X 'a the approach is monotonic from above. Hence A (x) decreases

0 2
monotonically to the limit O . It is natural, therefore, to take Xy = l, or,

what emounts to the same, x, =2 7 + a/2 .

In the actual sequence,

X = % 0 aME)
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where A¥* 1is yet to be defined, we would hope that A * would decrease,
at least until A 1is close to zero, but ultimately A* must become stationary
with the value 0 , or else cyclic. If it becomes stationary at some x with
the value O , how close is this x to the true square root? And if it becomes
cyclic, at which value does one obtain the best result? The first question is,
to what extent will the monotonicity of A(x) imply the monotonicity of A*(x) ?
0f the severel routines that suggest themselves for computing A ,
only one will be considered here. It turns out that the others are less favorable.

To verify the fact is straightforward but tedious. For digital x let
1 *
- AX(x) = {2 -X - (-a/X)*] ;

and consider first the monotonicity. Let

For digital x and y , if y > x then y > x + 2E€ , and it is

sufficient to consider the case
Yy = X + 2E€ .

Then

a/x - aly 2e a/(xy) )
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Since
0 £ -a/x - (-a/x)* < 2 e ,
2e < (-afy)* - (-afy) < 0 ,
therefore
-2e < (-afy)* - (-a/x)* - 2¢a/(xy) < 2€ ,
-2€+2¢ g(xy) < (-afy)* - (-a/x)* < 2¢€+ 2¢a/(xy) ,
2ca/(xy) < [—x - (-a/x)*] - [—y - (-a/y)*] < hes+ 2¢a/(xy)
since y > x » Ja , therefore a < xy . Since the quantities

within brackets are digital, they can differ only by even multiples of € , and

hence
2e & [=x - (-o/x)] - [ - (-afyx] < ke .

Hence the quantity |-x - (-a/x)*:l is a monotonic function of x for x >Ja,

and the formation of the pseudo-quotient cannot destroy the monotonicity. Hence
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with A* as so defined, if y > x 2> J_a?, it follows that A*(y) > A*(x) .

Next consider the uncertainty. Since

0 £ -a/x - (-a/x)* < 2¢€

therefore
0 € 28 - [x-(2/x)%] < 2¢€,
0 ¢ o -2 [x- (] < e
But
e o< o[- (-a/x>*]} et [ - e <0
whence

e £ A=-0% < €.

Thus A and A* can differ by at most € .

Now suppose that for some x = X, , one has

A*¥(x) = 0
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Tt will be shown later that this must always occur. When this is so,

- €

N
>
VAN
m

’
2e( x-8a/x < 2¢ ,
a+e - ¢ £ xK< a+ € + €,
and conversely, when x lies on this range
A¥(x) = 0 .

To show that A* will always vanish for some X5 s it is necessary only to

show that if

then

x- A*¥x) 2 Ja i+ e _e.

For this it is sufficient to show that

x -A(x) 2 \Ia.+e2 ’
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and since
x - O(x) = [x+a/x]/2

is monotonically increasing in x for x > J a , if the last inequality holds

when

it will hold for larger values of x . But this is readily verified and the
theorem is proved.

This routine is optimal in the sense that associated with every a ,
there is & uniquely defined half-open interval of length 2 € which contains
both the true square root and the computed square root. Hence if it happens
that \ & is digital the routine always gives this value. The possibly

more natural definition

n* = {[x - (a/x)%] /2}*

has the disadvantage of ylelding 2 € when a = O . Other definitions have

less desirable features.
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If x is the computed square root, then
-2e\<x-a./x< 2 e ’

-2€x<x2-a.<2ex.

Since

e < () - x & e

*
(1r)e < (X)) -8 < (Q+2me .
-1 2, % .
Hence wvhen x £ 2~ , (x )r=a. , and in all cases

-2e<(x2);-ag2e .

The error bounds as given do not indicate in any simple way by how

much x differs from ’a . Write

Ja+62 -\/_a.ﬁ-eyg x-J? <\/a.+€2 -\/?+€

and note that

\Ja+€2 -J:\ €2/[\/a.+ €2+\/?] .
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Evidently this is smaller for larger values of a . If
a > o2 Ja s+l -ﬁ( 62,
whence
-e<x-\/:<€+€2 for a22-2 .

If a=0, then x = 0 , but for the smallest non-null value of a ,
/ 2"
a = 2¢€¢ a+e- -Ja < (6/2)3/2 .

Hence in all cases

ce g x-Ja < (/227 4 .

Unfortunately, Newton's method for extracting a kth root requires
division by xk-l , and we have already seen the pitfalls that arise in repeated
division. For k > 2 very special precautions seem to be required for keeping
the uncertainty to the order of a few €'s .

For some matrix calculations (to be described later), it is necessary

to compute the sine and cosine of an angle given its tangent. The angle can be assumed
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to lie in either the first quedrant or the fourth, and, in fact, one can

suppose that if © 1s the angle, then
-x/h < o < /b .

Let s, c and t represent the required sine and cosine and the given
tangent, respectively. What are the "best" digitel aspproximations s* and
c* to s and ¢ ?

The formula that naturally suggests itself is

c=[l+t2] ’

v

modified, to keep things in range, to the form

1
c = [2-1/(2-1 s 27t te)] 2

to be followed by

Fortunately, since c2 > 82 , its root involves less uncertainty. However,
-1.,2
it can happen that although t # 0 , nevertheless (2 L t )* =0 . In this

case one obtains ¢ =1, s =t . The point, of course, in not taking s =0

5




-36-
as might be suggested by having ¢ = 1 , is that a small angle is more accurately

determined by the sine than by the cosine.

Let
w o= 27t 4 24P ,
v = 2-1/u .
Then
*
w - ow o= 2t [42 . (t2):]+ 2™ (+%)) - 27 ],
and hence
-efe & u-uwr < 3€/2.
Next
v o« v o= 27  (ur c W /(uw) + 27hwx o (27H/ux)x
But

=}
A\
n
]
-
VvV
n
]
[

u*




so that
-3€ < V-V* < 36.
Now
c - c* = vl/2 - v"*l/2 + v"*l/2 ~ c¥*
= (v-v*)/(vl/2+v*l/2) + v"('l/2 - c*
If t = -1, one can take at once
- %
2
c = =8 = 2

t\<l-l+e+l+€2 .

Hence

ug l-2e+2e2

b

v >2-l+ €

v1/2

> (1L+€ - 62/2)/\/? .
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For the digitalized quantities

o %

(t )r g 1 - be »

w 1 - 2¢€ ,
-1

v* 2 2 L

Hence

vl/2 + v*l/2 > (2 +€ - 62/2)/\/2_v ,
T e R YN
v - v /(vl/2 + v*l/z) < 3 €(1 - e/2)/\[2? .

The other term in the expression for c¢ - c* 1s the difference
between the true and computed square roots of v¥* . For this we have
-e < v*l/2 - c* < €+ ee/\/e .

On combining we obtain

’c-c*'( (l+5/\/?)€ .
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Finally

8 - 8% = (c =-c*¥)t + c*t - (c*t):
Is-s*l( (2+3/ 2)e .

If t 4is the result of a division, let T , o and 7y represent
the values of t , s and ¢ that would be obtained from the true quotient.

Then

0 T-t%t < 2¢e

~

(t2- 12)7c/[\'l+t2 + \Jl+ 'rej'

(t ~7) (t +T)7c/[\‘l+t2 +dl+ T ] .
(t -1) (s7'+ac)/[\[l+t2 +N1 4 ‘1'2:'.

~
[}

[¢]
[l

The coefficient of t - T is essentially sin 2 ©/cos @ . Hence if t 2 O

and if t < O

-2¢e £ y~-c L 0 .
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Likewise

1
ol =~

c -5 = (1T-t) (1+1t) (l+t2)

Hence for either sign

(1 +12)

ol

Hence

2+3/2)e < a-sx < (hi3fl2) e
and either

a3 2)e < g < (3382 €
or

_(3+3/\/_2—1)e< y - c*¥ < (l+3/\[;)€

’ t

/ [t\/l—+—12_‘+ T

A\

\Jl+‘t2_‘1.
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3. Some operations with matrices. Given two vectors u and v with

digital elements, the product u? v may be formed by summing the digitalized

products, in which case
wov - (u? v)*‘ £ ne

(assuming rounded multiplication), or, perhaps by extra programming, one may be
able to sum the complete products and digitalize the result. In this case,

assuming rounding,
luT v - (uT v)*‘ £ e 5

so that the uncertainty is only n”l as great. In either case let us assume

a 8 such that

ul v - (uT v)*l £ °

Given a matrix A of digital elements, in general
’Ax - (Ax)* | £ ©de s

where the absolute value signs are used in the natural way. As for the vector

e , if e is the ith column of the identity matrix, then e = z ej . For

i
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certain special matrices, e.g. those which arise in the finite difference
approximations to differentisl equations, these relations can sometimes be
improved, but only the general case will be considered here.
When solving a single equation F = O , the uncertainty in the
solution was seen to depend upon the uncertainty in F and upon the derivative

of F in the neighborhood of the solution. Given a system of linear equations

A = k

the uncertainty in x will depend upon the uncertainty in the product Ax ,
and also upon the latent root of smallest modulus. Since this may be complex,
even when A is real, let it be A + i ju, and let u + iv be the associated

vector. Then

Alu + iv) (X + i (u+ tv)

or

Au = Mu - pv |,

Av = pu - Av o

Suppose that A and k are both digital, but that =x is the true
solution, and hence not necessarily digital. Suppose, however, that one has

found a digital vector xo such that
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(Axo)* = k .

By how much can x and X, differ? Since

Ax, - (A xo)*, < de |,

therefore

I A(x0 - x) ' £ Be .

The worst case can occur if x - Xq is in the plane of u and v .

X = xo + aqu + PBv ’

A(x - xo) = AMou + pv) + p(pu - ov)

If, for example,p = O and the latent root real, then v = O . We can suppose

u normalized to have its largest element unity:

| ul R but not lul < e .

Let




il o

Then

Alx - x

A(x - xo) L de

But

Hence one can say only that

|x - xo| < (8/A)e )

or that the uncertainty in each element is 25/\ .

Before continuing with the more general case it is convenient to
introduce the notion of norms. A norm “xH of a vector x 1is a real-valued
function of the elements of x satisfying the three conditions:

I) |xjl > 0 when x £0 ;

1) fiexll = Jof - [ixll
) lx + yll < Ixll + [y
Since II is to hold for any scalar ¢ , it follows that HOH: O, and it can

be shown that the norm is a continuous function of the elements.




45-

A norm ||A]] of a matrix A 1is a real-valued function of the elements
of A satisfying the anaslogous three conditions along with one other:

I) |all > 0 when A#0 ;

m) el = Jef - (|l

111)  |]a + B < Al + Bl ;

) sl < llall - |zl
A matrix norm is said to be consistent with a vector norm in case for any matrix

A and vector x 1t is true that

c) llaxll < flall - U=l

it is subordinate to the vector norm if it 1s consistent and for any A there

exlsts an x such that equality holds:
s) llaxil = |lall - il

For a subordinate matrix norm one has

Izl = 2

The vector norm in most common use 1s the Euclidean norm Hx“E » defined

by

2 T
"x"E = X X

This is the ordinary Euclidean length. The Euclidean matrix norm ”A“E ,

analogously defined, is consistent but not subordinate. In fact
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- M2

But the positive square root of the largest latent root of AT A (or of A AT)

is a norm and it is subordinate. This will be celled the spectral norm, “AHS .

For any x , the least v such that

| x| < ve

is a norm which will be called the e-norm, llx“e . This is simply the modulus
of an element of largest modulus. Subordinate to it is ”A“e , defined to be

the largest row-sum of lAl . Likewise the e'-norm of x 1is defined to be

Ixly, = ¢ x|

the sum of the moduli of the elements, and the subordinate matrix norm HAHe,
is the largest column sum of |A| . These are natural norms to use for present
purposes, although it is to be observed that given any vector norm l!xll and any

matrix norm |lAH , and a nonsingular matrix G , one can define

-1

le™ x||

]

Il

laly = lle™ acll

and these are also norms. Moreover “A“G is consistent with (or subordinate

to) ]!xHG if and only if I’A|l is consistent with (or subordinate to) Hx“
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It can be shown that with any norm, if A is a latent root of A,

then

Il < lall .

Conversely if A 1is a latent root of largest modulus of a given matrix A ,

then for any € > O there exists a norm such that for this matrix A ,

lall € [+ e .

Now to return to the previous problem, let

Alx - xo) = W ,
with
vl < &
Then
X - x5 = st w ;

and for any norm it is true that

-1 -
Hx - xol| < IIA s Wy
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In particular “e“e = 1 , whence
”W“e < 8 ’
and therefore

-1
llx - x < s llaTl, .

OHe
If M+ ip is a latent root of smallest modulus of A , then (XA + iu)-l is

a latent root of largest modulus of A-l - Hence
- -1
[ > 1o s

Since for any nonsingular A there exists a vector w such that

[ e = B -l

if the discrepancy x - x. 1s to be measured by its largest element, this can

0
be as large as B HA-l”e , Which is at least as large as 5]1 + iui-l . And

while other norms may be more suitable, in particular circumstances, for measuring

the discrepancy x -~ x. , in any event the factor |\ + iul_l will occur in

¢

the same way.




exactly.

where r

Then

Hence

It
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It was assumed that the vector x satisfied

0

]
=

(A x )*

This, of course, need not be the case. More generally, let

(A xo)*, = k + rf ,

is presumably small, and let

* - =
(A xo) Ax, = a
- = - 2 3
Alx - x,) a o S
X -x, = At (a - rg)

x - xo Il < & -l - =l

< & Qg+ pal)
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then

I - %l < (580 (a7,

The classic paper on errors in matrix inversion is, of course, the
one by von Neumann and Goldstine which appeared in 1947 in the BAMS, treating
the standard method of elimination as applied to a positive definite matrix.
Even for this rather special case the analysis becomes quite involved, and it
is indicated that the treatment of the inversion of a nonsymmetric, or even
a symmetric but indefinite, matrix is virtually out of the question. However,
the iterative solution of a system of equations is somewhat simpler.

Most iterative methods are equivalent to the following: One forms,
implicitly or explicitly, a matrix B such that for an arbitrary x, the

0
iteration defined by

xv+l = h + B xv

converges to the desired solution. Actually, if the sequence converges at all,

it converges independently of xo , and to a solution of the system

(I-B)x = h ,

which must therefore be equivalent to the given system. For any choice of norm,

convergence is assured when

sl < 1,
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and, conversely, convergence does not occur unless there is some norm for which
this holds.

Let x represent the true solution and define
s, =X -XxX, r,=h- (I - B) x, = (I - B) 5

Hence

X = X + T .
v+l Y v

We wish to determine how close one can approach the true solution by using the
iteration so defined. Otherwise put, given a digital approximation to the
solution, when will its digitalized iterate represent a real improvement?

Since the number of iterations that have gone before is of no

relevance, it is sufficient to comsider a digital Xq and ask whether

represents a real improvement. Note first that

(1-8)2F =1 + B(1-B)"% ,

N - < 2+ I8l - [z-»7Y
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Hence if [|B]| < 1,

-3 < i -sh
Hence if, as above, we set
(xo - B xo)* - (xo - B xo) = &

then

lsoll < (=gl + ool / (2 - Ne) -

The next iterate actually obtained will be

1 0 0
Then
r, o= Ty - (I - B) r¥
= (rO - rs) + B rs ,
ry = (rf - rl) + (rg - ro) - B r¥
Hence

lexll < Hlex = oyl + fm% -zl + Bl

Ik

%

0

I
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One is assured of an sl =X - xl for which a better estimate will be had so

long as

=2l > li=tll s

and this will be so provided

gl > |l - ol uro-rglﬂ/ -l -

In terms of the e-norm, if
ey -=t <80 ol < 2
e e

then an improvement is assured, in the sense of providing a better estimate for

81 than for so provided

lesll > 28/ [1 - HB"] .

It Hrg“ has value equal to the right member or smeller, there is no assurance
that a subsequent iteration will yield sny improvement.

As an example, let

) oD

0 1-2"P -2

1 -27P 0 277
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Then

2T 4 2t

If o <0,'r<o,p+'r>o,then

-2-1.' >
= X
(6]
27T

Further improvement is impossible by this algorithm, although, of course,

X, = (B xo)*

sl < 1 .

Thus a large value of “Bll, while retarding the speed of convergence,
also limits the extent of the possible convergence. However, by special
bprogremming & closer approach can be made possible.

Suppose “rone is small enough so that the elements of 2@ r, are
within range, wvhere « 1is some positive integer. By accumulating the complete
, one can form r,. exactly, and thence

products in B x. and adding h - x

0 0
*¥ which is digital. In fact, one has

0

(2% r,)
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(2% r) - (P < 2ee

and even the facfor 2 could be eliminated. Let

v a *
ht = (2 ro)

Apply the iteration to the equations
(I -B)x' = h'
until one obtains an approximation with a remainder ré* for which

| < es/ [1-1isl]

T'*
(£

Let xé be the corresponding approximate solution. Then .

should be a closer approximation to x than is xo .

In fact, the true solution is
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Now on the basis of the foregoing analysis

+Q/@wm

< (st wv)/ [1-Bl]

“(I-B) h' - x(')“ < Q

'y
%o

where
o' = 25/ [1 -] -
But from the definition of h' ,

”h' - 2%l € 2¢

ol
[z -3 @ -2%x || < o2/ IBl)

whence

|z - Byt (&® r) - x| < (' +s+29/ B ,

lz-®Fr -2 ]| < 2 (5 + 5 +2¢)/(1 -] 8])

0 (0]

and

Il(a"’ x) - (2% x)x | < =
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But since

(I - B)-l I'o - (2.0'2[')* = X - Xl = 8

we have, finally,
sl < 2e + 27% (8" + & +29/(1 - B ) -
It is worth while to note that the double precision accumulation needs to be
done only once, in forming ro , with the result that the uncertainty can
be reduced by the factor o~¢ , pearly.
The equations in the form

(1 -B)x =_.h

will often represent a transformation of the original set

and in any event it is relevant to enquire about propogated error. Hence if

x satisfies exactly the system jusi written, and y satisfies the system

AT -E)y = k + 4 ,
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where E 1s a matrix and 4 a vector of small elements, we require a measure

of the discrepancy x - y . Then

by ==l < [lele el o - g - pm

or

I e [T P ) /ORI A

A standard method for computing a numerically largest latent root and
its associated vector is to iterate from an arbitrary initial vector. Consider
the case of a symmetric matrix A . It is well known that there exists an

orthogonal matrix V such that

where ./\ 1is a diagonal matrix whose elements are the latent roots of A , and

where the columns of V are the latent vectors. If x is any vector whatever

(not null), then




where

If x 1s normalized so that

then the quadratic form yT./&y' is
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T T
y v vy y v

a mean of the A's, whence

T T
Ay $ Y ¥Y = X A& & X,
where X and A are the least and greatest of the iA's.
min mex
X = Xo y xwl = Axv ’
y = Y5 Yy = Ny, -
Hence
T T T v
Hy = L a¥ = Yv-a’a Yo 4 Yy
It is no restriction to suppose that
A W L >‘1>|>‘nl

A\v4

Let
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Then in the limit

w%uv > ’
and X, approaches the associated latent vector (not necessarily normalized),

provided the initial vector x_. had a component in this direction. In

0
computational practice it is inevitable that generated errors will introduce
such a component even were none present at the start, although the convergence
would be slow.

The value of v 1is irrelevant in the analysis of the results. Hence

let x and x

0 al designate any two vectors in the sequence, and define

EI = M xy o, At = ”1/”0 s

2 T T
T =t t/xo X, .

Then by a theorem of Weinstein there exists a latent root A such that

S ) P

In fact, if

o= My,




then

]
{

o u/ T
Yo Yo

s S

2
Hence T in a weighted mean of the quantities (li - l')e and therefore

cannot exceed the greatest of these differences.

If the iteration has been carried sufficiently far, we can suppose that
0 £ 2= K 7T

Assuming A and x. to be digital, let

0]

= xX¥ .
xl xl + d
Then
T T T *
- ¥ = x* - .
My = B X9 &+ Xo X] (x5 x})
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It is readily verified that for any two vectors a and b ,

|Fu] < flall, - Il

Hence
T PR
Evidently
-“o a5 S 5.
Finally,

*
A - my/hg = (w3/u)

]

' */ * */ %)

* o - ¥ * - .
A (“O “O) * (”1 ”1) /“0 * Hi/Mo (“l “O)
In order to prevent overflow it will have been necessary to normalize A so that

lall € 1

Hence
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Therefore

“@wllxll ) eky < x - @il I8/ ug v 2,
e e!

and hence

cre(2 4 Ixgl Ay ¢ A - < 2e w2 llxgll J8/uy
e' e’

The problem of assessing the error in the vector is much more difficult

and will not be discussed. Note, however, that if

]

Auy = MW o

then

A(uy + u2) = ll(ul + u2) - (ll - 12)112 S

Consequently, if ll and 12 are very nearly equal, a component in the direction
of u, will not only be slow to disappear during fhe course of the iterations, but

may, indeed, be submerged in the generated error.
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4, The characteristic equation of a symmetric matrix. A direct

method for obtaining latent roots of a symmetric matrix has been progremmed

and analyzed by J. Wn Givens. Detalls can be found in a report of the Oak Ridge
National Laboratory (ORNL-15T74) issued in 1954. The method will be summarized
here and limits of uncertainty obtained, somewhat less favorable than those
found by Givens but by means of a rather simpler analysis.

The computation proceeds in two stages, and only the first will be
discussed in any detail. 1In the first stage the matrix is reduced in a finite
sequence of plane rotations to a form in which the only non-null elements are
located along and just bordering the main diagonal, For a matrix of order n
this can be effected in at most (n - 1)(n - 2)/2 rotations, each of which
annihilates an element not so located without affecting the nullity of an
element previously annihilated. By a standard theorem the resultant of these
rotations is an orthogonal transformetion which leaves the latent roots invariant.

The transformed matrix, called the "Jacobi form" of the original, is
such that its characteristic polynomial can be computed by a simple two-term
recursion, and, indeed, the terms of the recursion form a Sturm sequence for
the equation. Hence if the terms of the sequence are evaluated for any A,
and if V( A) 1is the number of variations of sign exhibited by the sequence,
then the difference between V(2 ) and V(2') is the number of roots between
A and A’ . It is not necessary to expand the characteristic polynomial

explicitly since the recursion itself provides a suitable algorithm for
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evaluating it together with the functions of the Sturm sequence. Hence the
equation is solved by the binary Horner's method, guided by the added information
provided by the sequence. This stage of the computation will not be discussed
further here except for mention of the method of obtaining limits of uncertainty.
Use will be made later on of a theorem which relates the latent roots of two
symmetric metrices to the difference of these matrices. Givens defines a Jacobi
matrix for which exact calculation would yleld precisely the Sturmian values
obtained in any particular digital evaluation. By applying the theofem to this
metrix and to the given Jacobi matrix, Givens is able to obtain remarkably
favorable limits of uncertainty, and to show, in fact, that the maximum
uncertainty for any root of a Jacobi matrix is independent of the order.

Return now to the reduction to the Jacobi form. A simple induction
establishes the possibility and describes the plan of the computation. First
suppose the matrix partitioned symmetrically into one, two, and n - 3 rows

and columns, respectively:

ﬂ
/_ T T
Q 8.2 8.3
T
A = 8.2 A22 A32 ’
83 A g3
_ _J

where A22 is 2x 2, and let
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1 0 O©
g, = Qg
2 2
R = ol’“o,P=12,c+c=1,
g g 1 2
2 1
0o 0 I

Then R 1is an orthogonsl matrix representing a rotation in the (2, 3)-plane.

This matrix transforms A into

T T
a &, " a3
At=RTAR = [ Ta, AT A‘ge
53 Apll Ay

which is again symmetric and has the same latent roots as A . It is important
to note that no element is affected unless it is in the second or third Tow,
or the second or third column.

In A' the element a! in particular is a linear combination of

13
9 and gy
1 p— - = ' o
Ny = " He % ¥ %30 O3 -
Hence 9y and g, can be chosen to make Ji3 = 0 , and the choice is unique

except for signs. This selection made, rq, and hence R and A' , are
determined. The complete transformation is made up of a sequence of (n - 1)(n - 2)

such rotations,




-67-

In fact, if the second column and second row are moved to last the
same kind of a rotation can be applied to the new matrix, and the zero previously
created will not be destroyed. A total of n - 2 rotations and interchanges

result in a matrix of the form

"
a CI12 O soo

n o _ n " "
A = CI12 a22 023 ces
" ]
O a23 a33 LN

cee

where, in the first row (column) at moet the first two elements are non-null.

To complete the induction one needs only continue with the principal submatrix

For computational purposes an actual interchange of.rows and of columns may or

may not be desirable, but the notation can be made simpler if this is assumed.

It 1s sufficient to confine attention to the rotation in the (2, 3)-plane.
Since A and A' = RT A R differ at most in the second and third

rows and columns, a single rotation will introduce errors in no position other

than these. If it is possible to place a bound on the uncertainty introduced
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in a latent root as the result of a single such rotation, then by summation one
can obtain a bound for the uncertainty due to all. This will now be done. In
addition, as a measure of the over-all, total error, a formula can be obtained
for the sum of squares of the deviations of the roots of the computed matrix
from those of A .

Consider, then, an individual rotation. The error matrix has the

form
= )
0 * * O oo 0
* ¥* * 2ee
A' "A* = E' = * * * * eea
O * * O L
N o

where possibly non-null elements are designated by asterisks. Consider the matrix

of non-negative elements

7 7 Q, .

£ - % 2
B, 7 14 By  eee
0 a2 62 0 es e

g D

where the a's, the B's, and 7y are chosen so that it is assured that

E > E'.




-69-
The latent roots of A and of A! aie strictly equal; Iet these be

N > 2% > e+ > A, and let the roots of A* be A 2 A3 > ... > M.
2

Then it is known that )y (ki - k;) cannot exceed the sum of the squares of the
elements of E' and hence of E , and that for every 1 , ' A; - A{| cannot

exceed the largest latent root of E' and hence of E. These are known
theorems and will not be proved here. Consider first the largest latent root

of E .

By direct expansion one finds that
- n-2 '
det(E-lI):i[}\n-zy}\nl- )} Z(ai-‘-Bi)
n-3 2 n-4 o)
+ 7 2 Z(a, =B,) +2 Y (a, B.-a,B,) | .
i i 1< i"] J i

This is most easily verified if the first row and first colummn are moved to third
Place and a Laplace expansion applied. It follows from this that the largest

root of E cannot exceed the largest root ' of the quadratic
AT - 29X - Z(d§+5f)=o,
and this root has the wvalue

M o= oy o+ l:72 + % (aﬁ + Bi)] .
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We require, therefore, an estimate of this quantity.

Consider the element o}

51 ©OF any element !, or !, for § > 3

2J 34

t | — t 1 — 1 1
in A' . The elements a31 =0, Ao s a23 = a32 s, and a33 require special

consideration. Any of the non-special elements in the second and third rows of

A* are computed by a formula of the form

t -
at' = 61 01 + 62 o >

where 81 and 82 are, except possibly for sign, distinct elements of A .

If o* is the digitalized result of the computation,

t - - - -
a' - aF 61(01 c{) + 82(02 oX )

* *
+ 8 of - (8 af) +3, 8- (5, ) ,

since 61 and 82 are already digital, whereas o and 9 must be computed

digitally. Hence

lat = a*| < |81 < fo - ot | + |3

if roundoff multiplication is used. The right member can be regarded as the

scalar product of two vectors, whence, by the Schwartz inequality,




2 2 2 2
(a' - a*)” (K (61 + 8, + by 77,
2 2 2 2
o= (o - 0¥ 4+ (0, - 0%)" e .

The matrix A will be assumed normalized at the outset so as to make sure that
all computed quantities fall within range. This can be done by making the sum
of the squares of the elements equal to (or less than) unity. This sum of
squares remains invariant under all rotations and is, in fact, equal to the sum
of the squares of the roots. Hence all roots then certainly lie between -1
and +1 .,

The estimate (a' - a*) represents any a; , or any B; -for 1 £ 1.
Tn the sum X ai there are n - 2 terms, The coefficient of n2 therefore
includes 4(n - 2), and a sum of terms represented by the 6? and 5: which
includes.elements‘of the second and third rows of A . This sum is certainly

less than 1, whence

Ld; < (m-7 .

If we omit Bi from the corresponding sum we have

n-2
2 2
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since there are n - 3 terms instead of n - 2 .
Now to estimate Bl and 7 requires consideration. Since the choice
1 and 9 is made with the intention of making aél = 0 , and this is
in fact the value taken for that element in A' , we can say that Bl =0 .

of ¢
In that event
2 2 2
Z‘ (ai + Bi) é 2(2n - 9) "] hd

For estimating 7n we could then compare 0{ and 03 with the 9 and 9
we intend to compute. This would smount to meking a comparison of A¥* , the
matrix actually computed, with A' , the matrix we intend to compute, which
is the natural thing to do. On the other hand, if R 1is any rotation matrix
whatsoever, not necessarily equal to R , it would be equally valid to compare

TAR. However, if R # R , that is, if one does not compare A¥*

A* with R

with the matrix A' one intends to compute, then one can no longer take Bl = 0.
In ORNL-15T4 several choices of R are made and compared. Here only

the most favorable will be discussed. To begin with one computes 0, =0 by

the routine described here in 352. It was shown there that (in present notation)
-(2+3//2) e < o - aF < % +3//2) €.

In arriving at the digitalized value 0{ of the sine, a value of the cosine

has been obtained, but instead of using this in forming R , one takes the
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actual c{ to define strictly the angle of rotation and defines

-1
g, = cos (sin cri)” .
This leads to a nonvanishing value for Bl , but a reduction in all the other

2
errors since now 1 reduces to

Consider first the value of this,

This involves the square of an error in a digitalized square root

0% where o, > 2-1/2. To simplify notation let x* = ¢% , y = o} . Then

(- y2)1/2 ; x* = (1 - ye)l/av El - ya)*}l/z * [‘1 - yz)*}l/? -

2 2,% 2% 2
(1-y) 7(1 - 7)) o+ (1-5) -1§;*) )
1/2 l/2
2, ' 2, % 2\ *
1L-5) + [(l -y )’] [}1 -¥) ] + x¥
-1/2 2 -1
Since y <« 2 , L-y > 2 and the same may be assumed for the

digitalized quantities in the denominators. Hence

1/2

* € 2 € c
- X ' < V/Eq + \/2;1 3 /v/§1 s

I(l - ¥°)
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which is to say that

Hence

0’ < 1168 /2 .

To estimate Bl it is necessary to obtain a bound for
2,1/2
@3 0 -, (1- o)

whereas one actually takes ai3 = 0 . Since, by definition of o«

; since this would be the correct value for ai3
l J
| 1/2
o, - (1 - o° ) = 0
%3 % " %2 1 )

we have

o 1/2

)

1/2 1/2
%3 of - o, (1- of =°‘13(°*1e'°1)'012{(1'°*1t2) '(1"’%) :]’

therefore by the Schwartz inequality,

2 1/2]° 2 2 2.1/
&3 of - ap(l - o) S (o +afp) (o - of) *[(1'“1) - (1 - o)




But
1/2 1/2 | /2 1/2
[(1-0?) -1 - o)) }{(1-0?)-(1-0{2)}/[(1-0?) +(1- o) }
5 1/2 5 1/2
= (0{ - cl)(o{ + cl)/ [(1-- cl) + (1 - o¥ ) } .
Hence
1/2 1/2
I(l - ci) - (1 - 0{2) l < 'Gl - c{l < (b o+ 3/21/2) €,

and since certainly

therefore

1/o -
/ l < (3+1L- 21/2) € .

2
|a13°f'a12(1‘°f)
Since this is ﬁl , it is now possible to write

) (af + af) - o(zen - 29 + 12 - 2% &2

The errors represented by ¥ remain to be determined. These are the
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errors in aé2 ,a!, and @), =a!, . Since the trace is invarient under a

33 23 32
. [ * t - h
true rotation, as, is computed and a33 set equal to Ay + a33 022 °
This forces the errors in aé2 and aé3 to be equal and opposite. But in

any event the calculation of any of the three computed elements has the form

5 = 61 cl + 62 9
5 = 81 % *+ By %
B = By 0 + By T

where each 613 is one of the four elements Qo a23 = a32 s a33 « The

bounds for & - 8% and &, - 8% have the formof an a; ora B, for i # 1:
(61 - 8{)2 < (Sil + 8?2 + k) q2 ,
(62-6"2")2 < (621 + 822 + k) 'r]2 .
Next
5 - 8% = o (5l - 5{) + o¥ (ol - o{) + 8% of - (5{ o{)*




5o < [|ol| :

and by the Schwartz inequality,

(6-50° < 5+ + &) [(61 -e0% v (5, - 87 4 nz} ,

after making use of the fact that Gi + 02 = 1 . For the second bracket,
2 2- 2 2 2 2 2
(8, - 8)" + (52 - 8%)" = (511 + 81, + By + By + 8) n
2
£ 91

since certainly

Moreover
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Hence

(5-02 ¢ 6017° ,

and hence, using the expression already found for n2 ’

2
y = 330¢ .
Thus, on combining everything, one has as an upper bound for the

error in any root introduced by a single rotation

1/2
li - li < 3301/2 + 2 [%ln + 68 +6 - 21/2] € .

Likewise the error in the sum of the squares is bounded by
4 72 +22 (a& + 5?) = L4 (22n + 631 + 12 - 21/2) .

Each of these expressions must be multiplied by (n - 2) +to obtain
the total error introduced in the rotations required for the reduction of the
first row, and for the total reduction n must be replaced by n - 1, n - 2,
ssey 3 &nd the result summed. If i; represents the i-th root of the final

metrix,

20y =T @) - 1 - 2) [Mm + 3653 + 12 - 21/2)}2 ‘
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For the uncertainty in an individual root it is necessary to sum an
irrational. There is no closed expression for such a sum, but an overestimate

can be had by integration:

lx‘ - XT| £ € L/§§6‘ (n - 1)(n-2)/2 + 16(23 + 3/27)/1815

1 1

+ 4(33n - 125 - 12/2") (11n + 35 + 6V/E’)3/2/181§]

Asymptotically in n , the uncertainty is approximately

2. T € n5/2

e

However, the value 2.7 is attained only for very large n . The ratio to
5/2

n ¢ 1is tabulated below for some n's of more moderate size:

n |’ 5 | 10 | 20 I 50 l 100

ratio

3.29 ’ 2.60 l 1.93 ’ 1.20 l 0.90
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