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TEMPERATURE DISTRIBUTION IN FLAT PLATE WITH

EXPONENTIAL HEAT SOURCE

F. T. Binford M. L. Nelson

1. STATEMENT OF THE PROBLEM

One of the important problems attendant to the design of a nuclear reactor is the calcu

lation of the temperature distribution, due to gamma ray heating, in structural members

in the vicinity of the core. In many cases these structural members can be represented

as plates which are cooled by either natural or forced connection on one or on both sides

and in some cases also on the ends.

The present discussion is concerned with the case of a thin plate cooled on both sides

and on one end by connection and in which an exponential source of heat exists. Such

a situation might arise in the case of a vertical plate oriented radially with respect to a

reactor core as illustrated in Fig. 1. Under these circumstances one would expect a heat

source to exist in the plate which varies exponentially in the y direction, is nearly uni

form in the x direction and is symmetric about the mid-point of the core in the z direction

provided that the distribution of power density in the z direction is symmetric about the

mid-point. Under this assumption, there will be no heat flow in the z direction at z = 0

and the maximum temperatures will occur in the xy plane of the plate. We will confine

our attention to this case, and make the further assumption that the plate is thin enough

so that variations of the heat source are negligible in the x direction. The latter assump

tion will result in a small positive error in the temperatures calculated and so the results

will be conservative.
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Fig. 1. Thin Vertical Plate Oriented Radially with Respect to a Reactor Core.
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For the case outlined above the Fourier heat equation at equilibrium may be written

(1-D Txx(*>y) + Tyy(xty) + — e-W = 0,-L<x<L, 0<y .

Here the heat source is taken to be SQe~^y, where SQ is the energy absorbed per unit
volume at the end of the plate nearest the core and /x is a constant depending upon the

absorption cross section of the plate material. K is the thermal conductivity of the plate

and is assumed to be independent of x and y.

For the case of cooling on both sides and at the end nearest the core the boundary

conditions are the standard radiation conditions:

(1-2) Tx(L>y) + aT(L,y) = 0 , 0<y ;

d.3') Tx(-L,y)-aT(-L,y) = 0 , 0 < y ;

(1-4) Ty(Xl0) - aT(x,0) = 0 , -L <x < L ,

where here L is the half width of the plate and the assumption has been introduced that

the coolant temperature is everywhere zero. If h is the over-all heat-transfer coefficient

assumed to be identical at all surfaces, then the constant a is defined by

a = h/K .

The fourth boundary condition is supplied by introducing the assumption that the plate is

infinite in length in the positive y direction and that as y becomes large the temperature

of the plate approaches that of the coolant. This assumption is valid if jx is large enough

so that fiy becomes negligible when y is small compared to the actual y-dimension of the

plate. Thus the last boundary condition becomes

(1.5) lim T{x,y) = 0 , -L < x < L .
y-»00

From the symmetry of the problem it is clear that condition 1.3'may be replaced by

(1.3) Tx(0,y) = 0 , 0<y .

2. SOLUTION OF THE PROBLEM

Methods for the solution of the system of Eqs. 1.1 through 1.5 which is illustrated in

Fig. 2 are well known1 but specific solutions are not readily available in the literature.
The solution can be accomplished by assuming

(2.1) V{x,y) + F(x)e-fjy = T(x,y) .

Introducing this transformation into Eqs. 1.1 through 1.5 we obtain

(2.2) Vxx(*.y) + Uyy(x,y) +[F"(x) + M2F(*) + A] e~^ = 0 ,

]H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, Chap. XIII, Clarendon Press,
Oxford, England, 1947.



(2.3)

(2.4)

(2.5)

and

(2.6)

r = o

o

II

"=\
o"

i y

////////
Ty(x,Q)-aT(x,0) = 0'

T = 0
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Fig. 2. Boundary Value Problem (1.1) Through (1.5).

Ux(L,y) + F'(L)e-W + aU(L,y) + aF(L) e~^ = 0 ,

fx(0,y) + F'{0)e-^ = 0 ,

Uy(x,0) - /iF(x) - al/(x,0) - aF(x) = 0 ,

lim U(x,y) = 0 ,

where for convenience we have set

A = S0/K .

These equations are satisfied if the following relations hold:

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

F "(x) + n2F(x) + A. = 0 ,

F'(0) = 0 , F'(L) + aF(L) = 0 ,

VVL.y) + aU(L,y) = 0 ,Ux(0,y) = 0 ,

lim U(x,y) = 0 ,
y-*00

Uy(x,0) - a(/(x,0) - 0* + a) F(x)

Solution of the system of Eqs. 2.7 and 2.8 yields

a cos fix
(2.12)

A
F(x) = —

2 la cos ixL - ft sin /*L

The system (2.9), (2.10) and (2.11) can now be handled by separation of the variables.



We set

(2.13) U(x,y) s X(x) Y(y) .

Thus we have

and from the first of Eqs. 2.11

Y"(y) - ^y(y) = 0 .

Mm y(y) = 0 .
y-*00

Therefore

(2.14) Y(y) = cye~Ky .
Similarly

X"(x) + A2X(x) = 0 ,

and from (2.10)

(2.15) X'(0) = 0 X'(L) + aX(L) = 0 ,

so that

(2.16) X(x) = c2 cos Ax .

In order to obtain a nontrivial solution satisfying the second of Eqs. 2.15 it is necessary

that A be such that

(2.17) XL tan AL = a.L .

Therefore U(x,y) is the sum of solutions of the form

(2-18) Un(x,y) =c„e~A"ycosA„x ,
where the A^ are the solutions of Eq. 2.17. These solutions form an infinite discrete set

of eigenvalues but since L is positive by definition and since V(x,y) must be finite for all

values of y, it is clear that negative values of An are excluded. The eigenfunctions are
of the form

(2.19) A„cos A„x ,

and it can be shown that if

(2.20) A?, = ,
AjjL + a cos2 An

they are orthonormal on the interval (0,L).

In order to apply the condi-tion 2.11 to (2.18) and thus evaluate the cn, we expand F(x)



in terms of the eigenfunctions 2.19:

00

(2.21) F(x) = £ AlcosKx f F(x)cos\nxdx

00

= 2Aa £

n=0 J°

cos AnL cos Anx

«=0 (A2 - ^2)(a cos2 knL +A2L)

Application of conditions 2.11 to Eq. 2.18, using the expansion 2.21 of F(x), yields

n 00. 2A(a + ^) a cos A„L
(2.2i) c = • f

a +K (X2„ - ii2)(a cos2 XnL + A2L)
whence

(2.23) (/(x,y) = -24(a + p)a £
cos XL cos A„xe~My

n n

»=o (a + X„)(A2 - ,x2)(a cos2 A„L + A2L)

Substituting from Eqs. 2.23 and 2.12 into Eq. 2.1 gives

A \ a cos ux 1(2.24) T(x,y) = — ft 1[e-M
2 [a. cos (iL - n sin fiL J

m cos AnL cos Anxe
- 2A(a + /x) a £ —

*=° (a + A„)(A2 - ^2)(a cos2 A„L + A2L)

That this function satisfies Eqs. 1.1 through 1.5 on the interval (0,L) can be easily

verified by differentiation and substitution. The extension to {~L,L) by symmetry is

obvious.

3. VARIATIONS OF THE PROBLEM

The problem solved in Sec. 2 is in reality the problem of a semi-infinite slab of thick

ness L cooled on one side and on the end and insulated on the other side. From consid

erations of symmetry, the solution is identical to that in the case of a slab of thickness

1L cooled on both sides and on the end.

Consider now the case where the end is insulated but both sides are cooled.

Eqs. 1.1, 1.2, 1.3, and 1.5 still apply but 1.4 is replaced by

(3.1) Ty(x,0) = 0 .

Again using the transformation 2.1 we obtain (2.9) and (2.12), The second boundary con

dition of 2.11 however is replaced by

(3.2) Uy{x,0) = iiF(x) .



Solving (2.9) by separation of variables we again have (2.18)

-A y
u„(x,y) = cne " cos Xnx ,

where the eigenvalues are again the solutions of XnL tan XnL = aL, and the eigenfunc-
tions are of the form An cos A„x in which An is given by (2.20). Thus F(x) is given by
(2.21). Using (2.21) together with (2.18) in (3.2) we find that

(3.3)
24/xa cos A„L

n

Kn (A2 - fx2)(acos2A„L +A2L)

For this situation

,„ ^ ~, A \ a cos ixx .(3.4) T(x,y) = \ ^ _ 1<• e-W
2 [a cos fiL - ix sin fiL

-X„y
cos XL cos A_xe

2An<x £
"=0 K^l - M2)(a «s2 XnL + A2L)

as can be easily verified by differentiation and substitution.

As in the previous case the solution applies either to a plate of thickness L cooled

on one face, insulated on the other face and insulated on the end, or to a plate of thick

ness 2L insulated on the end and cooled on both faces.

The extension to a semi-infinite rod cooled at the curved surfaces and on one end is

obvious. The solution in this case will of course be in terms of Bessel functions.

4. APPLICATION OF THE RESULTS

We consider Eq. 2.17

AL tan AL = aL .

The positive values of AnL, which satisfy Eq. 2.17, form an infinite discrete set which

approach nn as a limit as A„L becomes large. Thus it is easily seen that the series in

(2.24) and in (3.4) converge more rapidly than A~4 once A^ becomes large in comparison
to ji. In fact, for most practical cases it is necessary to consider only the first term in

the series. Therefore, to a very high degree of approximation Eq. 2.24 becomes

i. ,v ~, x ~ A f a cos ixx 1(4.1) T(x,y) = \ £ _ lie-/**
2 (^a cos fiL —n sin ixL

-A y2/4(a + n) a cos AQL cos Anxe °

(a + A0)(Ao " M2)^ cos2 V + A0L)



and Eq. 3.4 becomes

,, _, , ^ A a cos ux |(4.2) T(x,y) = — \ £ _ ! I e-w
2 [a cos fiL - fji sin pL J

M

-Aoy2A(ia cos AqL cos AQxe

AQ(A2 - ,x2)(a cos2 AQL + A2L)

The quantity aL = 6L//C is known as Biot's number. For convenience we have tabu

lated in Table 1 values of A.L, cos AQL and a cos A0L/(a cos A-L + AqL) for various
values of Biot's number.

As an illustration of the use of these equations, consider the case of an aluminum plate

cooled by water at 100°F. We take

h = 300 Btu/ft2'hr.°F

K = 82 Btu/ft-hr-°F

L = 0.146 ft (1.75 in.)

H = 4.8 ft-'

S0 = 2.61 x 105 Btu/ft3-hr (1 w/g)

Then A= 3183 °F/ft2, a = 3.658 ft"1, AQL = 0.6718, and AQ - 4.60 ft"1.

TABLE 1. VALUES OF PARAMETERS AS A FUNCTION OF BIOT'S NUMBER

Biot's Number, aL AQL cos X-L acos AqL/(Aq L + acos X-L)

0.515

0.529

0.540

0.551

0.559

0.567

0.574

0.580

0.585

0.589

0.593

0.597

0.600

0.603

0.605

0.2 0.433 0.9077

0.4 0.593 0.8293

0.6 0.705 0.7616

0.8 0.791 0.7031

1.0 0.860 0.6524

1.2 0.918 0.6074

1.4 0.967 0.5678

1.6 1.008 0.5327

1.8 1.045 0.5019

2.0 1.078 0.4740

2.2 1.105 0.4491

2.4 1.131 0.4258

2.6 1.153 0.4057

2.8 1.174 0.3865

3.0 1.193 0.3689



For the case (4.1) where the end is cooled we have

T(.x,y) = 100 + 3183[0.5889 cos 4.60xe-4'60>'- (0.5313 cos 4.80x + 0.0434) e"4-80^ ,

and for the case (4.2) where the end is insulated we have

T(x,y) = 100 + 3183C0.5999 cos 4.60xe-4-60>' - (0.5313 cos 4.80x + 0.0434) e"4-80*] .

The temperature distributions for these two cases are illustrated in Fig. 3.
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Fig. 3. Temperature Distributions in Aluminum Plate, (a) Cooled on the side and
one end. (b) Cooled on side only.

5. GENERAL SOLUTION

Consider the system of equations:

(5.1) Txx(x,y) + Tyy(x,y) + S(y) = 0 ,

(5.2') Tx(-l,y) - ar(-l,y) = 0 ,

(5-3) T(\,y) + aT(l,y) = 0 ,

-1 < x < 1 , 0 < y

0 < y

0 < y



(5.4) Ty{x,0) - aT(x,0) = 0 , -1 < x < 1

(5.5) lim T{x,y) = 0 , -1 < x < 1
y->co

It is sufficient to solve the problem obtained from the preceding one by replacing (5.2')

with

(5.2) Tx(0,y) = 0 .

The boundary conditions 5.2 and 5.3 suggest the eigenvalue problem

(5.6) X"(x,A) + A2X(x,A) = 0 ,

X'(0,A) = 0 , and X'(1,A) + aX(l,A) = 0 .

The solution is

(5.7) X(x,A) = A cos (Ax) ,

where

(5.8) A sin A - a cos A = 0 ,

and

(5.9) A2 f ' cos2 (Ax) dx . A2 [A2 +a cos2 A] = 1 .
J° 2A2

Equation 5.8 defines an infinite discrete set of eigenvalues AQ, A,, A2, ..., and (5.7)
gives the corresponding eigenfunctions X(x,A_), X(x,Aj), ...,' which are orthonormal on

(0,1) if A is chosen to satisfy (5.9).

We define the transform of a function F(x) by

(5.10) f(X„) = / ' F(x) X(x,A„) dx . 3{F(x)| ,

whose inverse is

(5.11) F(x) = £ /(A„)X(x,A„) h Z-Hf(Xn)\.
(»)

The operational property of the transform, which can be obtained by differentiating

twice by parts is

(5.12) / ' F"(x) X(x,A„) dx = -A2/(A„) +X(l,An)[F'(l) +aF(l)] - X(0,A„) F'(0) .

Application of the transform to (5.1), (5.4), and (5.5) and introduction of (5.2) and (5.3)

together with (5.12) yields

(5.13) -A2mn,y) + l"'(An,y) + 3{1| S(y) = 0 ,

(5.14) i"(A„,0) - ay(A„,0) = 0 ,

(5.15) lim Y(X.y) = 0 ,
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where we have written

(5-16) Y(ktt,y)s fQ] T(x,y)X(x,Xn)dx ,
and

(5.17) 3111 = f\(x,X)dx =— cos A.
J° A2

A solution of (5.13) which meets the condition 5.14 is

(5.18) Y(A„,y) =Y(An,0) e~k"y +f* e^"0 g^,,) dt #
where

(5.19) G(Xn,t) = 3{1}/O0e-A('-T>5(r)rfr ,

provided that S(y) has no infinite discontinuities, that f °° e~^T \S(t)\ dr is convergent,
and that

(5.20) y(A .0) s —— f™ e-krS{T)dr .
X + a •'o

Moreover, if the function S(y) is such that there exist positive constants M, B, and jx
for which

\S(t)\ £ Be~^ for Mgt

the solution given by (5.18) will indeed vanish as y tends to infinity and thus satisfy

condition 5.15. In fact for y ^ M

(5.21) \Y(Xn,y)\ £ ae'^ +be-M
where a and b do not depend on y.

Application of the inversion formula 5.11 to (5.18) yields

(5.22) T(x,y) = £ x(x,A„) Y(Xn,y) .
(«)

For convenience a short table of transforms is given below:

SHORT TABLE OF TRANSFORMS

X(x,A„) = A„ cos (A„x)

Xn sin Xn - a cos An = 0

2A2
A2 = Z

n

A* + a cos2 A„



(1) 1

(2)

(3)
a + 1

(4) -/UX

(5) cosh ax

(6) sinh (vc

(7)
1

(8) cos /XX

(9) sin fix

(10) -

(11)

?(ft)

a cos /xx - p(/x)

au2p(/x)

F(x)

3{F(x)| ^ f ' F(x) X(x,A„) dx

3{F(x)j

a cos A„

A.

[(a + 1) cos A„ - 1]

K

A„

*2

[(a - /x) e-*" cos A„ + u]
A„2 - M2

A„

A2^2
p(z'/x) cos A„

p(z) = a cos z — z sin z

A_

A? + -2
L-*'?M cos Xn - u]

g(z) = a sin z + z cos z

cosh /xx —sinh itx

A2^2

cos /xx — sin /xx

A2 - ^2

A2-M2

A2 -a2

P(/x) cos A„

[?(/x) cos An - /x]

Aw cos A„

Wn ~ &

11



12

UNCLASSIFIED
6. EXAMPLE OF THE USE OF THE GENERAL METHOD

We consider the case where

(6.1) S(y) S Ae-W .

Then Eqs. 5.1 through 5.5 describe the identical problem (1.1) through (1.5) except that

the functions are defined on (-1,1) rather than (—L,L). By using (5.18) and (5.20) one

readily finds

A„y

(6.2) m„,y) =
A3{lie-^ A(/x + a)3{lJe "

*2 ~ M2 (A2 - /x2)(A„ + a)

Using the value of 3{ll and (11) of the Short Table of Transforms, together with the
inversion formula 5.11 we obtain

(6.3) T(x,y) =

M2

a cos /xx

a cos n - ft sin p
- 1 ,-fj-y

-A„y
cos Xn cos Xnxe

- 2A(n + a) a £
»=0 (A„ + a) [A2 + a cos2 A„] [A2 - /x2]

which indeed agrees with (3.4) for the case L s 1.
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