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GEOMETRICAL CORRECTIONS FOR ANISOTROPICALLY EMITTING SOURCES

M. E. Rose

In connection with the analysis of recent experiments on the angular

distribution of alpha-particles emitted from aligned nuclei , the question of

geometry corrections arose. Since the conclusions reached are of interest in

a more general context it seems worthwhile to record them and that is the

2
purpose of this note . It will be clear that given the assumed geometry

the considerations presented below apply to the emission of other types of

radiation emitted with an anisotropic angular distribution. For example,

fission products may also be detected in the manner described herein when the

fissioning nucleus is aligned. The only restrictions as to the nature of the

radiation lies in the assumptions made concerning the detector efficiency.

The assumptions on which the following is based are:

(l) Both the detector and the effective source (see below) are coaxial circular

discs. Since it is desirable to make geometry corrections for both detector

and source size simultaneously and since this would present an unwieldy problem

for a source of arbitrary size and shape, it is assumed that an absorbing screen

with a circular aperture is placed between the actual source and the detector.

This circular aperture is the effective source. It is necessary that from any

and all points on the detector, on looking through the (effective) source one

1. L. D. Roberts and J. W. T. Dabbs, unpublished.

2. Corresponding results for angular correlation, but with a point source, are
given by Feingold and Frankel, Phys. Rev. 97, 1025 (1955). The source is
here considered to be finite in size.



sees only portions of the real source. This imposes certain geometrical

restrictions affecting intensity if, as in the experiment under consideration,

the source is rotated.

(2) The source emits uniformly. In the case under consideration the active

material is a uniform coating on a substrate crystal and the thickness of

the coating is greater than the alpha-particle range. In principle it would

be possible to include effects due to non-uniform emissivity but this is an

unnecessary complication and in the present instance with a rotated source

the emissivity would depend on the orientation of the source.

(3) The detector efficiency may vary in an arbitrary way from point to point

but for radiation of a given energy it is constant. That is, it does not depend

on the angle of incidence of the radiation - except insofar as this is dependent

on the position on the detector at which the radiation is received. For

reasons given below it may be important to investigate the question of detector

efficiency if there is any suspicion of an appreciable degree of non-uniformity.

(k) The emissivity from the real and also from the effective source is given

fcy

I = / B P (cos V) ; ^ even (l)
0 *- X. I

n

where N is the angle between the direction of the alpha-partides (or other

radiation) and a direction fixed in the single crystal source - c axis. These

coefficients B^ , for the ideal geometry distribution, are given in a number

of references . In practice the maximum t, is almost always k or less. However,

3. For example, M. E. Rose, Theory of Angular Momentum, unpublished. See p. 235.



-3-

we need make no restrictions on this point.

(5) Good geometry will be assumed. This means that the solid angles subtended

by the source (or detector) from any point on the detector (or source) are

sufficiently small as to permit the series expansions given below. Actually,

the results given below are quite accurate over a fairly wide range of solid

angles.

i. >r

Anticipating the results, we may say at this point that for a symmetric

detector the observed angular distribution will have the same form as (l) but

the coefficients Bfl are replaced by Bh = Q B where Q e are certain

w v
smearing coefficients. What is meant by a symmetric detector can be stated

by referring to Fig. 1. As indicated there the common axis of the two circular

real source

Fig. 1

detector

X effective source
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dises is called the z-axis. The plane in which the c-axis rotates is the

x - z plane. Consequently a Cartesian coordinate system is defined in both

the plane of the source and detector. Then a symmetric detector is one with

square symmetry. This means that if the efficiency is used as a weight function,

the following relations hold between the average values of powers of x, y

etc:

</x) = (Yy =0 ; ^x2n> = <y2n> ,ninteger

If relations of this type do not hold the observed angular distribution

contains associated Legendre functions but the highest degree remains -C^^^

as would be expected.

The notation of Fig. 1 is completed by using r^ (P 1as circular

polar coordinates of a point in A^ r2 *f 2 corresPondinS1y in A2 and the

disc radii are a, and a with areas A, and A respectively. The angle between

the z-axis and the direction of propagation Is ft ,between the z and c axes

& and between the c-axis and the direction of propagation it is p. The

distance between the point of emission and detection is R and the distance

between planes is L. With u ,uR, u, representing unit vectors along z, R

and c we have the spherical triangle in Fig. 2

&

Fig. 2



see Eq. (k) below.

We let S(rp, CP p) "be the local detector efficiency. Then the observed

angular distribution is

where

(2)

1K- ffdA.dA,^ P4 (o» (.) B(rB }f a) (3)

1 *1 ' rl tol d<f 1J 4 *2 • r2 *£ 4f 2-
Of course, from Fig. 2,

m

We need

- ^ A r2cos(f2-r1cosyicos If - ux . u^^ (5)

p- k -ril - [4+ *? -*i*2cos (P2 - ^j <5a>
and

cosft =|; R2=L2+ f2 (6)

The expansion to be made now is based on the assumption p/L £. 1.

Essentially this means a^/L and a_/L 4t !• Since the correction terms axe

/L for a symmetric detector and since two correction terms

will be included, this should be quite adequate. For an asymmetric detector



term of first order, ^xS/L for instance ,appear. These should be as small

or smaller than second order terms when the degree of asymmetry is small.

It is obvious that sin £ is of order ¥/L and hence in the addition

theorem (k) the term with Iml = n is of n order in the parameter of small-

ness. Consequently, if we restrict the expansion to correction terms of order

n the polynomials which appear are P- . For a given -t , Jm[{ n ^ A, .

The expansion is based on the following well-known results:

dmp„
€ ^ m

£(*) (7)

d cos 0

_ (c+m)i sinmfl ) 1 (\, -m)(& +m+l) 1 - cos 6
2m mi (JL -m) I I m+1 2

+(l-m)(l-m-l)(l +m+l)(l H-w-2) fl - cos 0 \
1-2 (m+l)(m+2) ^ 2 /

2

= (j+m)l -m (g)
(I*) I l

^ =J^ [l-l Si +f -C ...1 (9)
R5 1? L 2 L^ 8 L* J

. mA J I -, m \ m / m . \ 1 I |sin (J = -i- 1.1 - - -*-£- + - [ - + 1 I ~ —T" ' ' ' I
L L 2 L^ 2 ^2 / 2 L* J

H. All averages of this type are defined on the detector area and the subscript
2 has been dropped.

(10)
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Finally,

P (cos p) =P (cos $ Q) P (cos 0 )+| P^ (0q) P1 (9 ) cos jp

+xdW p| <»<>> 4 <*> °°3 2y+ - • • (ii)
where

X = I {ft + 1) (12)

Corresponding to the terms in (ll) we write

*i =l(i) +I^l)+ '''+I^) (13)
and we consider explicitly only the first three terms. Inserting (ll) and

(9) in (3) we find

2 k

I(t0) --j* P* (eo. eo)ff^1^Tl(oos^)(l-llF,f LjB

m* ^t±?2 u ^P(|)(d)cos2?(1.5/!+i5JeJ)s
•£ L2 X(X-2) J^ 1 2 iT T 2 L2 8 L4

In using the expansion (8) we also use

1-cos& , i £- (i. 2 1L ...) (ia)
2 it r ^ l^

so that
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2 , „2 % A fc

ft "7 * "£ ii. l2 V. k ifI

=1_x£_ X(X +10) P +. . .
4L2 6fc L4

»2

2 X(X - 2)

We now introduce the following notation for the detector moments

jJTdA1dA2S =AlSQ ; A1 =Ita2

f/^i^3^- =AisoKo2)
Li

ij.

//X ^2s Ar =Ai so Kiu)
/jfdA1 dA2 S-f cosjp =A1SQ41)
//dA1dA2^ cosy =AiSq4^
/jTdA1 dA2 L cos 2y =Ax Sq K22)

^dA1dA2£¥ cos2y =AlSoK^ (16)
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Then 2 „ V 2 \ 2 2
J2) al +2 <r / . al +a2
K° = ~2? ^ "^

1 1). „2 / 2\ • k \ 1/^ *h 22
irCM 3al +2al <r ' + <r/ _. 3 (al * a2} +al a2Ko - JTE •> ?

(1) ^X>k; ; =—L— -* o

(3) al <x> +4X ^
1 I?

K(2) , <*g> -g </> ^ o

K(M .I4(<-g>-<;g>'-<^>-^> ^ 0 (17)
2 L

In each case the corresponding result for symmetric detector efficiency is

given after the arrow. In the foregoing S = JSdAg is the total counting

rate per unit incident flux and the averages, denoted by angular brackets,

are defined by

2Sf

In presenting the results we take B = 1 so that the interesting

quantities for the shape of the distribution are lb /l . These are, to the

order of the expansion we have considered, as follows:

if /i . !<;>/! ♦ i(iVi +i(iVi *•< ••L| X = J. a /I + X m / X + X §
K ' o to Jt o *C o
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and

I
(o)/T _ r X (2) X2 +3h\Jh) 3, fK(2)x2| /:[o =Vl [X "¥Ko +—1\ Ko "5X(Ko ' J

iW/lo -f£ [41) -̂ K(3) +|K(2) K(l)]
^o=^ib2)-fe(-^4M^Ki2)K22)] ^

Reference should be made to (12) and (17) for the definitions of the quantities

appearing in this result.

The importance of the terms in P ' and I t arises from the fact that
I l

a distribution of the form 1 + B P may simulate one containing some P^ if

these terms, arising from detector asymmetry are present. This is especially

true if the apparent P. contribution is small, as it would be expected to be.

Of course, the possibility of confusing P «-vsin 0 cos 9 and/or

2 2 i\V^r-f sin H terms with a P, contribution diminishes as the statistical
2 " o 4

uncertainties of the data diminishes.
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