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SUMMARY

The code described in this report has served as an intermediate step

to the multi-region, multi-group, two-dimensional reactor calculation. The

particular geometry of the code was chosen since there was an Immediate need

for results from a code of this type. The problem solved is, in general, a

three region cylindrical problem using two groups of neutrons. Provision is

also made for a thin shell surrounding the core. This shell is considered to

be transparent to fast neutrons and an absorber of thermal neutrons. The code

can be run with or without the shell and as a two-region problem if so desired.

The code has been made as general as possible so that it may be applied to

any problem which can be suitably approximated by a two-group three-region

cylindrical model.

MATHEMATICAL DESCRIPTION OF THE PROBLEM

The problem solved by the code is indicated by the following figure,

differential equations and boundary conditions:
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The figure indicates that cylindrical coordinates (r , z) are used and that

symmetry is assumed about the z-axis.

Differential equations:

2 ki
(1) D V q> + - Z cp - Z q> = 0

i l *i l i i l

2

s. S. 1 f. f± s± s±

i = If 2, 3 refers to the three regions, s and f to the two neutron groups,

slow and fast.

Boundary conditions:

Sep.
(3-a) h

r=0

(3-h) cp (r = R1,z) =0 ; 1=2,3 ; 0=f, s .
Ji

(3-c) cp (r, z = 0) = 0 ; j = f, s
J3

(3-d) 9 (r, z = H) = 0 ; J = f, s

(3-e) 9^ (^>R0, z = b) = cp (r >R ,z =b) ; j = f, s .

(3-f) n (J§ ) =D. (Jl , ; J-f, b
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(3-g)

(3-h)

(3-i)

(5-J)

(3-k)

(3-i)

(3-m)

(3-n)

9j (r < RQ, z =c) =cp^ (r < Rq, z = c) ;

Sep

*P
S2
31

r <R0>Z=C

• D.

*P,

'f0 \ dz / / _ "ft \ dz / y _2 \ /r < R ,z=c 1 y y r < R , z=c

&P.

"•A-a? r < R ,z=c

+ Ea t \<r <V z=c)

i -t, b

cpj (r< RQ, z =a) = cpj (r < RQ, z = a) ; j = f, s

'Sep

'fA ~~3z
3 r < R , z=a

o

» D.

d?

fx V ^5z"
r < R , z = a

•&p.
S3^ = D f "1

&P.
./ i —r— / = u \ —r— / -Zt<p(r<lR ,z=a)
s,\ oz / s-. \ dz / a Tsn x o' '
3\ J S -r. 1\ / • „ 1yr<R ,z=a / r < R ,z=a

9j (R0> *> ^ z <c) = <Pj (RQ> h < z < c) ; j = f, s

cp, (R , a< z <b) = cp (R , a< z < b) ;
«1 ili °

-3-
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(3.o)

(3-p)

(5-1) -\[ Tr) =\{-^) +Zatcp (R0, b<z<c)
/R0,b < z<c dX /R0,b <z<c

METHOD OF SOLUTION

It is assumed that the material make-up of the three regions is known and

that one is interested in finding the effective multiplication constant for the given

reactor system, in order to produce this number k , ( which will in all

subsequent references be called simply K) , the set of differential equations is -

replaced by a finite difference system and this difference system is solved numerically.

The numerical method requires the solution of two large systems of algebraic

equations (one for each of the two groups) several times to gain the required

convergence to K . An outline of the determination of K is as follows:

A. The differential system is replaced by a difference system

using approximations of the form,



qp = -75 (m , - 2cpra + cpTO , ) etc.
Yzz .2 VYm+l,n Ym,n Ym-l,n/

The boundary conditions are carried over and applied to the

difference system. Mesh points which lie on interfaces, in

particular corner points, are the most difficult to approximate.

For this reason a somewhat different mesh system is used in

which no mesh points are allowed to fall along interfaces. This

mesh was suggested by A. C. Downing and has the property that

all interfaces are located midway between adjacent lines of the

lattice of mesh points. This is discussed in more detail in

a subsequent section.

B. Taking the steps as indicated in (A), two systems of algebraic

equations are obtained. In matrix notation these take the form,

W A„ <pf + P. cpS

(5) As 9s + Fg cp = 0

A- and A are square matrices, the order of both being equal

to the number of mesh points used I . F„ and F are

f
diagonal matrices with order the same as A- and A . cp and

cp are the fast and slow flux vectors (one component for each

point in the mesh).

-5-



C. The iterative scheme used to solve the system (k) and (5) is

as follows:

1. A first estimate for cp and K is made. From (k)
To o

we then have a system of the form,

(6) Af cp + DQ = 0

(7)

2. cp is obtained from the system (6) using the iterative

method of Richardson. The recursive formula of Richardson

can be written as

f N l
cp. = cp. + 0 J L a. . cp. + D. r , i = 1, 2, ..., N ,
^i ri nI j=i 1J J J

where the {3 are properly chosen relaxation factors (factors

chosen to increase the rate of convergence).

f
3. cp is inserted into the system (5) with the result

A cp, + D, =0
s \L 1

g

and this system is solved for cp.. .

k. A new estimate of K is obtained from

K ^+1Kn+1

-6-
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The vector cp , is normalized by dividing by K , and

the cycle is reentered at (1). This is repeated until the

desired convergence to K is complete.

When the evaluation of K has been completed, the code then computes

the following integrals in order to obtain a neutron balance.

(8.a) A* = Z_ / q> dV ; i=1, 2, 3 •
i i v

(8-b) aJ = Z_ (1 -p.) /cp_ dV ; i=1, 2, 3 •
Ii Ii V

(8.c) A^(shell) =Vghell •Za •<ps ; i-2, 3 •

(9-a) L* = -D /(-^ ) •dS , 1-2, 3 •
i l s \ /r

(9.h) l^ --D^ /\-£r)r •as ., 1-2, 3.

(9.c) L* =-D /Ugi•) •dS ; I-2, 3.
i i s ^ z

(9.d) lsz =-D /(Ji) .dS , 1-2, 3.
i i s ^ ^ z

THE DIFFERENCE SYSTEM

In cylindrical coordinates (r - z)

2 2
2 d cp 1 en d cp

dr dz



Using a second order approximation for the derivative, we have

(10) v
2 Vl,n -^n +Vl,n 1 W,n\l,n

<P — ~ "*5 + — o-A^
(Ar)'

2Ar
m

cp .. - 2cp + cp ,
^m,n+l ^m,n Tm,n-1

(Azf

Making this approximation in equation (1) and (2), the following difference

equations result:

f.
l

1 +
A:

2r
m

Vl,n +Df
Ar

2r
m

Vl,nMDf. ^(|f)2 -^%\<n

(11)

D

(12)

,, /Ars2 fi /Ar^2 fi A .2 ki « si
+ D- (-tt— ) cp , + D_ (-r—) cp , + (Ar) — L cp = 0

f. Az' Ym,n+1 f. Az vm,n-l v ' p. s. Tm,n
l ' i ' ii

1 +
A:
2r Mn+l,n s.

1 -
Ar

2r 'm-1,11 + 1 D -2-2<£f)2 •(Ar)2S L1
s,\ Tm,n

m. m.

_ ,Ar>2 si _ ,Ar,2 Si ,A .2 v fi
+ D (-7T—) <P n + D (-*—) cp , + (Ar) p, L- cp = 0s.vAz' Ym,n+1 s.^Az Ym,n-1 v 'if, rm,n

The general case, in so far as multi-regions are concerned, is considered

in the application of the boundary conditions. The mesh scheme employed has

already been mentioned and its application to the boundary conditions will be

described with the aid of Figure 2.

-8-



Region L e.

93 * *3

9

cpc

Region U

<Pn

Region C

Region B

eh ' %

FIGURE 2

h
interfaces

Region R

©5 * <P5

In Figure 2, the cp. represent the true flux value and the ©, represent

fictitious values of flux. By fictitious it is meant that the flux would take

on this value were there no interface. As an example, ©2 indicates the value

of the flux at mesh point 2 if there were no interface between regions U and C ,

2
and the material were all made of the type as in C . 9, indicates the flux

Q
at mesh point 1 assuming no interface and all the material of type U . D-

2i
indicates the diffusion coefficient associated with region C • Similar notation

p U B L R
is used for Z- etc. Also D„ , D- , D„ and D_ are used. For the

fi fi fi fi fi
general point (11) is as follows:



(13)

mj 1

Ar'
2r

m
63 +

^C /Arv2 _c /Ar^2

-d: ^&s

(Ar)2 7 ^

•(Ar)2 Z°
i
J

cp - o

<Pi

Applying the given boundary conditions to the general point the following relations

are obtained:

(1*)
I

(15) <

(16) <

e2 + <Pi
_2
©! + <P2

.c e2 cp

1 = d! ^2-ei
Az*± Az

e5 + qp-L q>5 + e£

D
C <Pl-S
'fi "St = D

L Ql-^
f± Ar

2 = 2

D
c *i'°k
f\ Az

D
B Ql -%
t± Az

-10-



9l + 95 ^5 + ei

(17)
<

,C 65 "'l Jt ^ "Gl
f± Ar » d:f± Ar

The above systems can be readily solved for the four fictitious values of flux,

92 ' e3 ' 9k and 65 '

(18) 9.

(19)

(20)

(21)

D^ (292 -9l) +D^ 9X

Dfi (% "<pl) + Dri *!
7cX~Df + D

I i

Df (294 -<px) +i>£ 9L

S r~D?
i i

Df (29^ -9X) +Df 9X

Ii 1

Substituting these values for the fictitious flux in equation (13), and rearranging

gives the result,

-11-



(22)

'< 4. <>• ♦ &
i i m

4. ♦ 4.
i i

f.
i

^m+l,n

" U C fAr,2

4,*•?, 'm,n+l

(» D"-)D?i(1 +̂ )i i ni

dJ +dJ
i *i

< 4. u - &i l m_

Df + Df
i i

<P,m-l,n

_B C ,Ar>2
^ Dfi W

Df. +£
i i

f.
i

^m,n-1

(d:
f.

i

d£ ) dJ (1
i i

E?, +4.
i l

(d:

A]_
2r

m

+ -2D (1+(||)2) .(Ar,^ > +

f.
i

U . C ,Ar.2

Df.} Df, (7^)
l i

4. ♦ *
i i

(D'

9,m.n

i

(Ar)2 %ZC
P± i

s.
i

9,m,n
= 0

f i
Setting A equal to the coefficient of 9 .. etc., the following syste:

m-rx f n

be written:

(23)

m can

Af t -f f „ f „f f „f f _f B
Tm+l,n xm-l,n f xm,n-fl Tm,n-1 Tm,n Tm,n

-12-



or in matrix notation,

(24) A- 9- + F„ 9c = 0
f Yf f Ts

Equation (22) is an expression for the flux at any point in the reactor as a

function of the four surrounding points. In the code each point is considered to

be a general point, as far as regions are concerned, and equation (22) will

degenerate to the proper relation if any or all of the interfaces are removed.

In an exactly analogous manner, a general expression is determined for

the slow flux. The only additional difficulty is the application of the boundary

conditions which holds for the slow flux aqross the thin shell. The expression

similar to (Ik) is,

(25)

'l + 92 ^2 + 91
2 = 2

siVAz / si

/92 - <*{ n
V\*

r*i + e2i
2

The relation which holds for the slow flux is,

(26)
i i m

+ n
R

L °±
-Z 4£ tR Vl,n +

-13-
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Si Si

Ar,
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m

^C IE v Ar Ju 9m-l,n



(B
sJ

Vn+l +

2DB DC (^)2
si sj Az

^C IB v Az +B
Ds. +Ds. ^alT*

u 1 1

si
^m,n-1

£ *^-f *R> 4. <* ♦£-> < -1 -\% *L> 4M
i l m l l l

+ —

si si
Z 4E tR^a ^ X 4.

tJ- v Ar ALD_ + D + L_ Hr t
Si

A£)
2r ;

m

(DC . DU +Z ^ tU) DC (^)2 (DC - DB - Z% tB) DC (^)2
v si si a 2 si Az' s± si a 2 si ^z

— + —

DC +DU _Z Az.U
s. s. a 2

♦ *<« • <>2
2 ^C(Ar)"Z' 9 +Ym,n

„B v Az . B
D + D + L ^=W t

si a 2

,A v2 C yC(Ar) p± Lf 9,m,n
= 0

The system can be written as,

(27)

or

(28)

.s s s s ,s s s s ,s s -S f
A9- + B 9 n +C9 -+D9 .. + E 9 + F 9 „ =vm+l,n Ym-l,n Ym,n+1 Ym,n-1 rm,n Ym,n

Ag cp + Fs 9 =0

-14-
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THE CODE

The code is divided into six parts, according to the logical procedure

of the problem. The code considers the mesh points as being numbered according

to the notation in Figure 3.

•

•

I ♦

»

•

•

*

•3

. 2 .

-1 - N^ +1 4

FIGURE 3

Figure k is a general flow chart of the complete problem.

The function of each of the six parts of the code is discussed in the

following:

PART I. This part of the code computes the coefficients for the two

equations (22) and (26). The fast coefficients are computed first, six at a

time, for all of the mesh points starting at point number 1. The computation

is done in a packed floating point (8-32) number system and the coefficients

are stored on magnetic tape drive zero in this form. As soon as all of the fast

-15-



(START )—»-
MANUALLY

LOAD PART I

(90-3E9)

INPUT TAPE

UNDER READER

BEGIN PROBLEM (43-OC9)

LOADS: P,,P2,N,,N2,N3,N4,NO.
Ar, Az, k|, p;, t, Za

COMPUTES FAST

COEFFICIENTS AND

STORES ON

MAGNETIC TAPE

DRIVE NO. 0

LOADS'. «,,e2, 4>0,<f>0

Pi. Pi.t, 2a, Ds

PUNCHES

Xn; NO.

ITERATION NO.

COMPUTES

K Tsn+1 <An/K„

READS PART IV

FROM MAGNETIC

TAPE

SOLVES

As<£s + FV=0
FOR

(stopV

Df„2s
'f|

PUNCHES

RESULTS

CHECK CONVERGENCE\ YES
STOP

INPUT TAPE

UNDER READER

NO

TRANSFERS INTO

PART III

LOADS PARTS V, VI AND
IV TO MEMORY AND

SUBSEQUENTLY TO TAPE

DRIVE NO. 3. LOADS PART

III TO MEMORY

COMPUTES

NEUTRON LEAKAGES

AND ABSORPTIONS

43-395

READS PART

V FROM

MAGNETIC TAPE

GENERATES

*0 AND <t>0
TO MAGNETIC

TAPE DRIVES

NO. I AND NO. 2

FIGURE 4

READS PART

VI FROM

MAGNETIC TAPE
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VECTORS INTO

FLOATING POINT

43-100

SCALES SLOW

COEFFICIENTS
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ORNL-LR-DWG 11476

PARTS II, III,IV,V, VI
UNDER READER

COMPUTES SLOW

COEFFICIENTS AND

STORES ON

MAGNETIC TAPE

DRIVE NO. 0

LOAD PART II

TO READER

SEARCHES FAST COEFFICIENTS
FOR AMOUNT OF SHIFT

PUNCHES SHIFT FACTORS

43-100

SCALES FAST

COEFFICIENTS

SEARCHES SLOW COEFFICIENTS

FOR AMOUNT OF SHIFT

PUNCHES SHIFT FACTORS



coefficients are computed, the code then reads into the memory the necessary

information from the parameter tape and readjusts itself so as to compute the slow

coefficients. The slow coefficients are stored immediately following the fast

coefficients on tape drive zero and are placed on the tape in exactly the same

manner as the fast coefficients.

It is in this part of the code that all of the boundary conditions are

imposed and all of the controls for the geometry are set up.

The storage requirements for Part I are as follows:

000 - OB1!- — 8-32 Packed Floating Point System

0B5 - 225 — Part I Code

226 - 3A5 — Coeff. as generated

3A6 - 3E8 — Temporary storage and input data

3E9 - 3FF — Program constants.

PART II. Since, as has already been stated, Part I incorporates the

geometry requirements of the problem there results only a mathematical system to

solve. This can be done in a fixed point number system and the only scaling

necessary is the initial scaling of the elements of the matrices A„ , A , F-

and F. . The code first searches for the largest (in magnitude) element in the
s

two matrices Af and Ff . At this stage the necessary scaling, to make each

element a fixed point machine number, is punched (in binary) along with the

maximum loss of significance in any one element. There is a coded stop following

this punch-out which affords an opportunity to examine the scale factors and to

make sure there is no extreme loss of significance. When operation is resumed

each of the fast coefficients will be scaled and transformed into a fixed point

-17-



number. This is done in such a way that a shift of 8 binary bits can be affected

without loss of any of the 32 bits of significant information in a particular

element. Experience has shown that in most cases none of the 32 bits of significant

information is lost.

The code will perform the same operation as indicated above on the slow

coefficients as soon as the scaling of the fast coefficients is complete.

' s
Part II also generates the flat source 9 and the first estimate of

f
the fast flux 9 to tape drives No. 2 and Ho. 1 respectively. This part of

the code also loads Part IV, V and VI to the memory and subsequently to magnetic

tape drive No. 3. Part III is loaded into the memory and control is transferred

to the beginning of Part III.

The storage requirements of Part II are as follows:

000 - OB1)- —- Packed 8-32 Floating Point System

0B5 - 184 — Part II code

185 - 224 — Free

225 - 3A5 — Coefficients for Scaling

3A6 - 3E8 — Temporaries

3E9 - 3FF — Constants.

PART III. This part of the code, the so-called equation solver, solves

the system

A9 + D = 0

The method used is that of Richardson with the recursive formula as indicated earlier.

At the present time the relaxation factors, 6 , are built into the code. A better
' "n '

,18-



rate of convergence can be obtained by varying these depending upon certain

properties of the matrices A- and A . It was not deemed advisable to include
I s

this as a variable part of the code at the present time.

The number of equations that can be handled by Part III is arbitrary

(the one limitation is that there shall not be more than 39 rows in the mesh;

the number of columns is unlimited). All of the information concerning the size

of the system to be solved is supplied by Part II from the input data.

Upon entry into Part III, the system

f s
A- 9 + F- 9 =0

f s
is solved for 9 , using the 9 presently stored on magnetic tape as given.

The condition for convergence of this system is set by the input number e.. .

Since in the beginning a flat source is generated it has been found advisable to

begin with a very lax €. and to make this successively more strict on subsequent

passes through the major computing loop. This scaling of e. is built into

f
Part IV of the code. As soon as the vector 9 is found to the desired degree

of accuracy, the code readjusts itself to solve the system,

s f
for 9 using the new 9 .

s f
As <p + Fs 9 =0

-19-



There are two coded stops in Part III. These are stops which are set

in the code to check for overflow in computing successive flux values. In case

of stops at these stages it is necessary to scale the flux vectors.

Part IV is automatically read from magnetic tape drive No. 3 Bud control

is transferred to Part TV. The storage requirements of Part III are,

000 - ODF Part III code

0E0 - 260 Storage for fast (slow) coeff.

26l - 2E0 Storage for fast (slow) flux values

2E1 - 360 — Storage for slow (fast) flux values

361 - 3AE Temporaries

3AF - 3FF — Temporaries and constants.

PART IV. The first function of this part of the code is to compute

K , . This is done by dividing the vector sum of 9 by the vector sum of

9 /K . A check is then made to determine if convergence to K is complete. The
S XX

requirement here is that Kn+1 " *n < e , where e is an input number.

The quantities K , (in two words, an integer and a fractional part), the number

s f
of iterations required to solve the system A 9 + F 9 = 0 , and the problem

s s

number are punched. If convergence to K is complete the code stops, otherwise

the vector 9 is normalized to cp /k , and Part III is reentered. The
Ys rs ' n+1

storage requirements for Part IV are as follows:

300 - 39F — Part IV code

All others as in Part III.

PART V. The lone function of this part of the code is to transform

the elements of the two flux vectors from fixed point numbers to floating point

numbers. Prior to the transfer command which is given to enter Part V, the input

-20-



tape should again be placed under the reader. The storage requirements of

Part V are,

300 - 33F Part V.

PART VI. The function of this part of the code is to perform the

numerical integration to evaluate the integrals (8) and (9). The parameters

are again loaded from the input tape to be used in the calculation of these

integrals. In all parts of the calculation up to this point the overall

dimensions of the reactor (Rx and H) have included the extrapolation distance,

with no reference to the true reactor dimensions. In computing the neutron

absorptions and leakages this must be considered.

<- e-»|

*

1

1

•

•

•

I
1

•

•

J] Az

extrapolated distance

FIGURE 5
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The input numbers which take into consideration the extrapolated distance

are A ,M, and NL . The number A^ = 2(R - e) (H - 2e) is simply the

lateral area (with the factor n omitted since this is a common factor in

all of the areas and volumes) of the cylinder and is used in computing leakages

in the radial direction. M, is the number of mesh points per column which

lie between the extrapolated boundary and the true boundary (on one end of

the reactor), and Mp is the number per row. These are control numbers used

so that the absorptions in a given region will not include points in the

extrapolated area and so that leakages will be computed from the first flux

value immediately outside the true boundary. All of the computation in this

part of the code is done in floating point. The output (in decimal floating

point) is the value of the 16 integrals indicated in (8) and (9). The storage

requirement of Part VI is

000 - 0B4 Packed Floating Point

0B5 - 1F1 — Part VI code

1F2 - IFF Free

200 - 280 128 Fast Flux Values

281 - 28F --- 128 Slow Flux Values

300 - 37F — Free

380 - 3BF — Temporaries

3C0 - 3FF Constants.

PREPARATION OF INPUT DATA

Preparation of the input tape can perhaps be best illustrated by use

of an example. With reference to Figures 1 and 5> suppose the following dimensions
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and material data are given:

Dimensions Region 1 Region 2

Rq = 70 cm. Df = 1.87 Df = 1-57

R, = 150 cm. Ds = 1.43 Dg - 1.23

a = 80 cm. p - 1.00 p - 1.00

b = l4o cm. Zf =8.68 x10"5 Zf =7.62 x10'2
c = 200 cm. Ze =2.91627 x 10"5

S
Z -4.45 X10"^

s

H = 300 cm. k = 1.499 k = 0

e = 15 cm.

Region 3 Shell

Df = 1.25 t = 1.37

Ds = 1.13 Z„ -6.417 x 10"5
a.

p = o.4o

Zf =6.17 x 10-3

Zs - 3.119 x 10*

k = .159996 Extrapolated distance = 15 cm.

The first thing to establish is the mesh to be used. It is not necessary to have

the same number of mesh points in the rows as in the columns, nor is it necessary

to have A r equal A z . It has been found that in the average problem a mesh

in the order of 20 x 20 is sufficient. It is not possible in many cases to

set up the mesh in such a way that the exact dimensions will be realized; however,

any variation (which can be made quite small through the proper choice of a mesh)
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can be incorporated into the extrapolation distance. A suitable mesh for the

example might be as follows:

Ar = 7-0 cm.

A z = 15-0 cm.

P, = 10

21 (note that (21.5)(A r) = 150.5. Inspection
of Figure 5 will indicate the reason for
the factor 21.5)

N,

N„

5

9

N, = 13

Ni, = 19

(5.5)(Az) *82.5]

(9.5)(Az) =142.5]

_(13.5)( A z) =202.5]

(20)( A z) = 300.O

The dimensions of the core have been left unchanged, but the 2.5 cm. have been

incorporated into the extrapolation distance.

Ar = 7-29 x 10

M1 = 1

"2 = 2

s f
Experience has shown that .001 is a good beginning value for 9 , 9 and e.

e can of course vary with the degree of accuracy one wishes for K , but .0005
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is considered good enough to give K correct to 3 or 4 figures.

The complete input tape and the manner in which it should be typed is

indicated in a table below. The following should be noted:

1. The quantities P1 , Pg ,^ , N2 , N_ , N^ are typed as decimal

integers.

2. The problem number can be any ten decimal digits and will be punched

out exactly as it appears on the input tape.

3. The quantities A r through the second N. are typed in a decimal

floating point form to be used with Oracle Subroutine No. 035. These numbers

are of the form

0 0
p xxx xxx F yy

+y
representing the number + x • 10 . The exponent range is limited to 0 ^ y

^ 37 and the fractional part to .1 4 x ^. .999999 • The representation

of zero is 00 000 00 000 .

4. The quantities M][ and Mg are typed as decimal integers.

00 000 00 010 P

00 000 00 021 P

00 000 00 005 Nx

00 000 00 009 N2

00 000 00 013 N,
3

00 000 00 019 N^

oi 234 56 789 "#

Double Space

-25-



07 000 00 001 A r

01 500 00 002 Az

01 499 00 001 k

00 000 00 000 k2

01 599 96 000 k_
3

01 000 00 001 v±

01 000 00 001 p2

04 000 00 000 p_
3

00 000 00 000 zero

00 000 00 000 zero

01 870 00 001 D.p
rl

01 570 00 001 D„
r2

01 250 00 001 D-

3
02 916 27 F02 Z

Sl
o4 450 00 F03 Z,

03 119 00 FOl Z
S2

s3
08 680 00 F02 Z-

1

07 620 00 FOl Z-
X2

06 170 00 F02 Z-
3

01 000 00 F02 e

05 000 00 F03 €

01 000 00 F02 9s
ro

01 000 00 F02 9f
Yo

01 000 00 001 p2
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01 000 00 001 p|
01 600 00 000 p2

3

01 000 00 ooo px

01 000 00 ooo p2

04 000 00 000 p,
3

01 370 00 001 t

06 417 00 F02 ZD

01 430 00 001 D

01 230 00 001 D
S2

01 130 00 001 D

s3
08 680 00 F02 Z-

1

07 620 00 FOl Z_
x2

06 170 00 F02 Z-
3

sl

02 916 27 F02 Z
1

o4 450 00 F03 Z

03 119 00 FOl Z
s3

07 290 00 005 Ar

01 900 00 002 N^

00 000 00 001 Mx

00 000 00 002 Mg

Double Space

Sl

S2
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THE PROBLEM OUTPUT

The first output from the code will be the scaling factors. These

are four numbers punched for each of the two groups. They are,

(a) The amount by which each element of the matrices A_ and

F„ (or A and F in case of the slow group) must be
X s s

scaled. This is punched out in starred hexadecimal form.

(b) The amount of shift that will occur in the worst case. In

other words, the maximum loss of significance. This again

is punched in starred hexadecimal form.

(c) The largest element in the matrices A„ and F„ (or A
IIS

and F ) punched in decimal floating point form,
s

(d) The smallest element in the matrices A_ and F„ (or A
f f s

and F ).
s'

The next output information is the successive values of K . A new

K is punched each time an iteration is completed, that is, each time that Part IV

of the code is entered. The K is punched in the form of two words, an integer

part and a fractional part. Along with each K there is also punched the number

of iterations that were necessary in solving the system A 9 + D = 0 at the
s

preceding stage. The problem number is also punched.

The final output information is the value of each of the l6 integrals.

These are punched in floating decimal form. They are arranged as follows:



AT
sl

AT

AT
s3 >%

LZ
S2 \

Lr
S2 **

LIMITATIONS OF THE CODE

AT
S2

AT
f2

A2 (shell) A^ (shell)

LZ
S3 %

Lr
s3 % •

There are certain limitations to the code that may not have been

specifically mentioned previously. The following is an attempt to summarize the

limitations and in so doing point out the generalities:

a. N^ < 39

b. Nl > 2

c. N3 -\ > 3

d. N4 -h > 3

e. N2 -\ > 2

f. N3 -N2 > 2

g. Ml > 1 , Mg

h. pi 1

i. P2 "pi > 2

OPERATING PROCEDURE

The complete operating procedure can be summarized as follows:

a. Load Part I of the code. 90 - 3E9.

b. Parameter tape under reader. 43 - 0C9« B.P. off.

c. As soon as parameter tape is read in, place Part II of code under

reader.
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d. At punch out of scale information for fast group, 43 - 100.

e. At punch out of scale information for slow group, 43 - 100.

f. There are no other coded stops (except for overflow) until convergence

to K is complete.

g. The machine will stop when K has been calculated to the desired

degree of accuracy. At this time if it is desired to calculate

the neutron balance, place the parameter tape again under the

reader and 43 - 395*

h. The machine will stop when all integrals have been calculated and

punched.

The stops which are coded into the problem are as follows:

Right 0F2 After punch out of scale information. (Part II)

Right 049 — Overflow stop. (Part III)

Left 0D8 — Overflow stop. (Part III)

Right 326 Stop when convergence to K is complete. (Part IV)

Left 1F1 Stop when integrals have been punched. (Part VI)

Certain breakpoints for optional stopping are provided as follows:

Left 220 — Stop before loading Part II. (Part I)

Right 328 — Stop after punch out of K . (Part IV)

Certain precautions have been taken to prevent loss of information in

case of failure to read on one of the magnetic tapes. All of the information that

is computed is duplicated on other parts of the magnetic tape. The coefficients



generated by Part I are duplicated on Drive No. 3 immediately after they have

been scaled and transformed into fixed point numbers. This is done block for

block starting with block 20 on Drive No. 3. The correspondence is as follows:

Drive No. 0

Block 1

Block 2

Drive No. 3

Block 20

Block 21, etc.

The flux vectors are duplicated after each complete iteration. This is done by

Part IV of the code as follows:

Drive No. 1

Block 1

Block 2

Drive No. 2

Block 1

Block 2

FAST FLUX

SLOW FLUX

Drive No. 2

Block 20

Block 21, etc.

Drive No. 1

Block 20

Block 21, etc.

In case a block of the magnetic tape will not read it is always possible to find

information duplicated and the problem can be corrected without a great loss in

computing time.

The time necessary to run a typical problem (a mesh of 400 points) is

in the neighborhood of one hour. The time varies almost linearly with the number

of mesh points used.
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NOMENCLATURE

a — Distance from z = 0 to first horizontal interface, (cm.)

b — Distance from z = 0 to second horizontal interface, (cm.)

c — Distance from z = 0 to third horizontal interface, (cm.)

e — Extrapolated distance, (cm.)

H — Height of reactor including extrapolated distance, (cm.)

R — Radius of region 1. (cm.)

R, — Radius of reactor including extrapolated distance, (cm.)

t — Thickness of shell around region 1. (cm.)

r — Distance from r = 0 to variable mesh point in r-direction. (cm.)

A — Lateral area of reactor (true dimensions), (cm.)

Ar — Increment in r-direction. (cm.)

Az — Increment in z-direction, (cm.)

N, — Number of mesh points in column from z = 0 to z = a .

N2 — Number of mesh points in column from z = 0 to z = b .

N, — Number of mesh points in column from z = 0 to z = c .

N^ — Number of mesh points in column from z = 0 to z = H .

P, — Number of mesh points in row from r = 0 to r = R .

P2 — Number of mesh points in row from r = 0 to r = R.. .

I — Number of points in entire mesh.

M, — Number of mesh points in column between true dimensions and

extrapolated dimension.

Mg — Number of mesh points in row between true dimension and

extrapolated dimension.
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CLB:ih

e — Convergence criteria on A9 + D = 0 .

e — Convergence criteria on K .

9 — Flux value.

0 -- Fictitious flux value.

K — Effective multiplication constant for reactor system.

Z& — Thermal macroscopic absorption cross section of thin shell (em )

Z~ — Fast macroscopic absorption cross section of region i .

(d/t) (cm"1).

Zg — Thermal macroscopic absorption cross section of region i. (cm ).
1 2

t. — Fermi age for region i. (cm ).

D- — Fast diffusion coefficient of region i. (cm.)
Ii

Dg -- Thermal diffusion coefficient of region i. (cm.)

p. — Resonance escape probability in region i.

^ — Infinite multiplication constant for region i.
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