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I. INTRODUCTION

Many experimental problems in the natural sciences result in
data which can best be represented by linear combinations of exponen-
tials of the form

b ‘}‘kt *
f(t) = 2 o e . (1.1.1)
k=1

Among such problems are those dealing with growth, decay, ibn concen-
tration, and survival and mortality. Also, in general, the solution to
any problem which may be represented by linear differential eguations
with constant coefficients is a linear combination of exponentials.
In most problems like those which have been mentioned, the parameters
o and lk in equation (1.1.1) have biological or physical signifi-
cance. Therefore, in fitting a function of the form (1.1.1) to the
data it is not only necessary that the function approximate the data
closely, but it is also hecessary that the parameters of (1.1.1) be
accurately estimated. Furthermore, a measure of the accuracy of the
estimation of the parameters is required.

The present methods of estimating the parameters of a linear
combination of exponentials are often inadequate. Some of these
methods will be discussed in Chapter TII. However, the primary purpose

of this paper is to introduce a new estimation procedure which will

= th
(a, b, ¢) denotes the cbh equation in the bth section of the a

chapter.
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overcome some of the present difficulties, at least for special cases.
This new estimation procedure will be developed in Chapter III.

Included will be a discussion of the basic model for which the method

is derived. Chapter IV will be concerned with the limiting distribution
of the estimators obtained from the new procedure. Then in Chapter V,
the statistical properties of the estimators will be considered.

The small sample distribution of the estimators from the new
procedure will be studied in Chapter VI. Results from some empirical
sampling work will be reported in that chapter. Then in Chapter VII
possible extensions of the method will be considered and ways will be
described in which the new procedure may be applied to a greater
number of experimental situations. Chapter VII will also contain
several illustrations of the application of the new method as well as
a limited empirical comparison of the new procedure with presently
existing methods. Finally, Chapter VIII will be devoted to a critical
evaluation of the new procedure relative to other estimation procedures

for linear combinations of exponentials.



ITI. REVIEW OF LITERATURE

2.1 Iterative Maximum Likelihood Methods

Before turning to the development of the new Procedure, let us
look briefly at some of the estimation Procedures now in existence.
The first method that we will consider is an iterative procedure for
calculating maximum likelihood estimates which has been presented by
Fisher [7] * and illustrated by Koshal [éo, 21} . A detailed
discussion of this method and a few examples of its use are given by
Garwood [9] . Although the presentation is applicable to fitting the
parameters of any distribution, the particular application of the
method to a linear combination of exponentials follows directly from
the general development.

In general, let yl R y2 3 mee, yN be a sample drawn at .
random from a population of known form s0 that the sample has the
Joint density function P(y, ©) , where o represents a row vector
of parameters (Gl, O e, es) and y is a row vector of the
observations. For example, suppose the variates yi are independently
and normally distributed with means f(ti) » Where the function f is

given by (1.1.1), and with common variance 02 . That is, let

v, = f(ti) +e i=1,2, ..., n, (2.1.1)

*
Numbers in square brackets refer to the bibliography.

B T RO B A S o
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where the errors ei are independent, normally distributed variates.

In this instance,

N
2,3 1 3 4 Ny 2}
P( ) 9) = (2 ) . - z ( - X e ) .
’ " o { 22 11 % g E

Now if we let L(y, ©) be the natural logerithm of P and ’6 be the

row vector of maximum likelihood estimators /9\

X of the parameters ©

k

0 ’ k.=l, 2, seey 8 0(20102)

ﬁ; L(y, ©)

*
For our example,

N D 2
L(y, 6) = - 2,25(2‘ﬁ02) - ;EQ 121 (v; - ;Zl o e g’ l)2
’ g = =

So if we let Gk represent Q condition (2.1.2) implies that in

this case
A A
N A t, P -kkt
1l 1 i
5 L et (y-LBe ") =0, (2.1.3)
o i=1 k=1

where the 6& and the ai are maximum likelihood estimators.
Now let us postulate, in the general development, that an

approximation

*
/n denotes a natural logarithm.

)
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to '@ is available. Then each partial derivative given by (2.1.2)

AN

may be expanded in a Taylor series in terms of the elements of 6

about the corresponding elements of a If terms which involve

1 -
partial derivatives of L of order greater than two are ignored, the

resulting linear equations may be solved for the vector

_ _ A
5, = (al e ) .
Then a new vector of estimates
8, = (al + 8y)

may be formed and the process repeated. If after, say, h iterations,
5h is sufficiently close to a null vector, the resultant elements

of &, are taken to be the maximum likelihood estimates of the
elements of © .

The expansion of equation (2.1.2) in a truncated Taylor series

gives rise to coefficients

5)
broin T 39 os, LY ©) '




The L. 5. @are functions of the observations in the vector y as
b P A

well as the approximations in the vector 8 - Garwood observes that

the calculations are simplified if in the expression for the Lr s:h
P 4

in each iteration the yi observations are replaced by the values
which they would be expected to have if in fact © were equal to its
current approximation a - For instance, in the example introduced

earlier let us set 03 = sz-l and kj = gaj s d=1,2, ..., D .

An expansion of the partial derivative given by (2.1.3) in a truncated

Taylor series about some vector a , say a , would include a

1
coefficient of the form

52
- 1 771 o=a.
- 1
- I e-}‘lti( T P e ti) !
=7z 1 S | " e %
o 1i=1 k=1 ;
e=a
1
N -a,..t -a,.t P -8 t,
1 5 21 1 21 1 2J,1°1
s - t, e (y, -a.. e - L a,. e T 7)
2y 1 17”11 jo1 21,1
(2.1.4)
Now if © were in fact equal to 8 » then aj would equal a2j-l,l
and kj would equal 84,1 7 J=1,2, ..., p . Furthermore, in
o 2

each case yi would have as its expectation
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-a.. t,
Z a e 2:]:1 1 .
501 23711

e

£ ;) = 1(t,)

Thus, if the observaticns y; are replaced by their expectations for

© equal to a, , equation (2.1.4) reduces to

a N -2a,.t
11 217i
= . 2.1.
L1251 + = ;?l t; e (2.1.5)

Two quite similar iterative methods have Jjust been indicated
for calculating maximum likelihood estimates for the parameters in a
linear combination of exponentials. The first one involves carrying
out the iterations described above without making any simplifying
substitutions for the yi and will be called Method 1. The second,
designated Method 2, is the modification introduced when the approxi-
mations suggested for the vi o such as those which led to (2.1.5),
are utilized. In the non-linear estimation examples which he tried,
Garwood observed that Method 1 converged in fewer iterations than did
Method 2, but that Method 2 entailed less work per iteration.

A more detailed eiposition of these iterative methods may be
found in Garwood's paper.' However, a few more remarks are in order
here. Firstly, if the observations y; are postulated to have
independent, normally distributed errors as in our example, these

iterative procedures lead to the least squares estimates of the
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parameters as well as to the maximum likelihood estimates. In this instance,

Method 2 is the same as that developed for least squares estimation by
Deming [3] » even though the approach is different. Secondly,
experience here in the Oak Ridge National Laboratory indicates that
these methods, when applied to linear combinations of exponentials, are
not in general amenable to calculation on desk computers because the
convergence is too slow. This is especially true of Method 2. In fact,
because the methods presented by Garwood have not been tried very
extensively even though fast automatic computers are now available,

little is known about their convergence properties.

2.2 The Prony Method

Another method for estimating the paremeters of a linear combi-
nation of exponentials is presented by Prony [23] as a method of

interpolation. Whittaker and Robinson [36] describe a modification of

.Prony's method while Householder [li] discusses the Whittaker and

Robinson version of the method as an estimation procedure. Householder
also suggests an extension of this estimation procedure.

The model underlying Prony's method is similar to that given by
equation (2.1.1) for the observations ¥y in our earlier example.
However, the method requires that the. Yy be taken at equally spaced
intervals of time, so to the model given before we add the restriction
that ti = Ki for constant K . Also, the errors are now only
required to have zero means.

The first step in the Prony procedure is to set each Yy equal

to its expectation. That is, set
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P -lei
y. = L o e , i=1,2, .., N . (2.2.1)
k=1

i
Now, when (2.2.1) holds, it is shown by Prony on the basis of some
results from the calculus of finite differences that each Y

satisfies a pth order difference equation of the form

-1
Ng -y E, + ... + (1) y

p =
WP wip-1 "1 w+l Ep—l + (-1) Y Ep =0

W = O, l, 2, ceey N-p ) (2.2.2)

where the Er functions are the elementary symmetric functions of the
exponentials JALk = exp. (-xk K) . That is, E. equals the sum of all
possible distinct products of the JAgk taken r at a time. The next
step in the Prony method is to solve the equations (2.2.2), which are
linear in the functions Er , for estimates gt_ of these functions.

It is at this point that Prony's original presentation differs from

the estimation version given by Whittaker and Robinson. However, once
estimates @g are obtained, both versions proceed in the same manner.
Since the Er are the elementary symmetric functions of the exponentials
exp.(-}\k K) , the estimates exp.(-’%k K) are determined by finding

the p roots of the polynomial equation,

T N +(-1)P@p =0.

Finally, after the lk are estimated, estimates 6% of the coefficients

in (2.1.1) are determined by least squares.
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In his presentation of this method, Prony requires that as many
parameters be included in the model as there are observations available.
In this case (2.2.2) leads to as many linear equations in the function
E. as there are such functions. Hence, the equations (2.2.2) can be
solved exactly for the estimates @a_. From an interpolation point of
view Prony's approach does not impose a severe limitation on the method,
but it is not acceptable from a statistical viewpoint. Then it is
usually desirable to make many more observations than there are
parameters to be estimated. Also, for large numbers of observations
Prony's original method becomes too cumbersome computationally.
However, the adaptation of Prony's method given in [iﬁ] and [Bd
is suitable for statistical estimation purposes. In this version of
the method the number of observations is allowed to be larger than the
nurber of paremeters to be estimated. Thus, equation (2.2.2) yields
more equations for the functions Er than there are such functions.
But these equations are regarded as equations of condition, and from
them estimates of the Er are obtained by least squares calculations.

The estimates of the Er in the estimation ‘version of Prony's
method are not the same as the estimates which would result if the

least squares technique were applied directly to the model for a

- linear combination of exponentials. As pointed out by Householder,

both the coefficients ¥i and the Er of the set of equations (2.2.2)
are subject to error, while in the usual least squares situation only
the E. would be subject to error. Therefore, we cannot attribute

any of the usual least squares properties to estimators obtained by
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the Prony method, and, in fact, little is known regarding the properties
of these estimatofs. In particular, we have no measure of the
variances of such estimators.,

Householder modifies the estimation version of the Prony method
so that valid least squares estimates may be obtained. He essentially
applies the method as it is currently used to obtain initial estimates
of the exponents, and then he goes through an iterative procedure to
arrive at least squares estimates. The iterative method is that given
by Deming, which, as we have already observed, is the same as Method 2
in Garwood's paper if the observations are subject to normally distributed
errors. Householder also incorporates a test to determine how many
exponentials are needed to adequately represent the data in his modifi-
cation. Unfortunately, Householder's adaption of Prony's method not
only fails to converge sometimes, but it also has been known to converge
to unreasonable estimates. Whether this difficulty is inherent in the
iterative least squares method or is due to a failure of the Prony

estimation procedure to produce satisfactory initial estimates is not

known.

2.3 A Graphical Procedure

Perhaps the most common way of fitting lineér combinations of
exponentials is a graphical "peeling off" procedure applied to a plot
of the logarithms of the data against time. For the simplest case of
one exponential term, this procedure reduces to fitting a straight
line, usually by least squares, to such a semi-logarithmic plot of the

data. This method of fitting a single exponential with its coefficient

e e e e
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requires the assumption that the errors in the logarithms of the data

are homogeneous. For more than one exponential term, the data must be
such that a plot of the logarithms of the last few observations is
essentially linear. This situation often obtains in a linear combination
of exponentials when one of the exponents lk in (1.1.1) is appreciably
smaller than any of the others, for beyond a certain point that
exponential would be expected to be the only one contributing markedly

to the total.

The first step in the graphical procedure is to determine the
linear relationship which exists on the tail of the semi-logarithmic
curve from any two points on the tail. From this linear relationship
one of the terms in the linear combination of exponentials is found by
taking into account the linearity of the data on a semi-logarithmic
plot. Next a semi-logarithmic plot is made of the difference between
the experimental points and the corresponding calculated points determined
from the term which has already been found. Then another linear fit is
made on the tail of this plot in order to obtain another term of the
linear combination of exponentials. The procedure is repeated until
all the experimental points are included in the partitioning process.

| Feurzeig and Tyler [4] note that although this method of fitting
linear combinations of exponentials is well known, it has received very
little attention in the literature. Therefore, they give a detailed
description of the method with seversl illustrations. Previous to
Feurzeig and Tyler's paper, Smith and Morsales [?6] presented an

application of the method. This graphical method is computationally
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easy and it frequently gives a good fit to the data. However, no indi-

cation of the accuracy of the estimation of the parameters is available. -
In fact, the number of exponential terms included and the values of the

estimates obtained depend greatly cn the judgment of the statistician

in partitioning the data to obtain linear relationships on the semi-

logarithmic plots. Although the method may be carried out easily on

desk computers, it is not easily adaptable to calculation on automatic

computers because of the judgment decisions required.
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III. THE NEW ESTIMATION PROCEDURE

3.1 The Model

A new non-iterative method for fitting linear combinations of
exponentials will be developed in this chapter. The new method leads
to relatively simple estimators of the parameters of the model presented
in this section. Under this model observations yij are specified

such that

i
Vig=oy € +a, e + ce0o + Q€ t ey (3.1.1)

[y
|

=0,1, 2, ..., 2np-1; j=1,2, ..., m

Also, we require that ti =Ki where K 1is a constant. Thus we have
a linear combination of p exponentials with observations taken at
2n p equal intervals of length K , and with m observations made at
each point Ki . The total number of parameters is 2p , while the
number of points at which observations are made in 2n p , an integral
multiple of the number of parameters.

It is required in the model that o #0 and M > 0,
k=1, 2, ..., p, and this is realistic in most practical situations.
However, a procedure like that presented in this paper could be
developed for negative Ak . The lk are further restricted so that
lr £ ls when r # s . Moreover, the errors eij are assumed to be

identically and independently distributed with mean zero and common

variance 02 . Actually, in order to carry out the estimation procedure
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developed in this chapter, it is only necessary to assume that the
errors eij each have zero mean and a finite variance. However, the
additional conditicns given here for the eij make it possible to
study the distributions and properties of the estimators of the new
procedure in later chapters.

The specificaticn in the model that the number of observation
points ti be an integral multiple of the number of parameters imposes
a severe practical limitation on the new method if it is to be applied
exactly. This specification essentially requires that the experimenter
decide how many exponential terms to fit before conducting his
experiment. Otherwise, the number of observation roints might not be
an integral multiple of 2p . However, approximate methods of circum-
venting this limitation will be introduced in Chapter VII. Two other
conditions of the model which are subject to criticism are the require-
ments that the observation points be evenly spaced and that the same
number, m , of observations be made at each observation point. Experi-
menters naturally tend to take more observations in intervals where the
data seem more variable than in intervals where the data appear to
level off near an asymptote. The model will be modified in Chapter VII
so0 that the value of m may vary to some extent during an experiment
and an approximate solution will be given for some situations in which
the ti are not evenly spaced.

Note that since the errors eij are only specified to be

identically and independently distributed, negetive observations are

not precluded by our model. In most practical applications of
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exponential fitting, only positive observations are possible. However,
we may want to specify a distribution for the eij admitting negative
observations, and that is not too unrealistic, for if the error
variance 02 is reasonably small, very few negative observations would
be expected. Observe that the model also requires that the yij have
homogeneous variances. This is in contrast to the assumption that the
logarithms of the yij have homogeneous errors. As mentioned in
Chapter II , the latter assumption is made when a single exponential
is fitted by fitting a straight line to a semi-logarithmic plot of the
data. Furthermore, the assumption in the model presented in this

section that the e have zero means gives the expectation,

ij

-).lti -kzti At

é?(yij) = o e +a, € + oo 0 e- i (3.1.2)

In order to simplify the exposition of the new estimation
procedure, three special cases of the basic model as well as three
slight modifications of these three cases are differentiated throughout
this paper. Case 1l refers to a single exponential with its coefficient
while Case 2 denotes a linear combination of two exponentials. The
general case, where p may be any positive integer, is referred to as
Case 3. Thus the models for yij for these three cases are as follows:
i=0,1, 2, ..., 2n-1; (3.1.3)

Case 1: e

L]
Q
{
+

¥4 13 7

; 1=0,1, 2, ..., bn-1;
(3.1.4)

Case 2: yij

!

o
+
Q
o
+
o

C



p
Case 3: y,. = o, o e +e,,; i=0,1,2, ..., 2n p-1 .

(3.1.5)

In addition to the cases already defined, the new estimation
procedure may be applied to what Keeping EU{] calls a modified
exponential function. The model for this function is the same as that
for Case 1 except for the addition of a constant term. A modified linear
combination of exponentials may be defined similarly for p greater
than one. Thus, corresponding to Cases 1, 2 and 3, we have Cases Uk,

5 and 6 respectively, where the models for yij are as follows:

St
Case k4: Vig=ay+oge teys i=0,1,2, ..., 3n-1 ;
(3.1.6)
ca . _ e—llti e—leti .
se 5: yij = ob + o + 0y + iy’
i=0,1,2, ..., 50-1 ; (3.1.7)
P -At.
Case 6: y..=¢a. + 7, e lk 1, e .
) iJ 0 % ij’?
k=1
i=0,1,2, ..., (2p+1l)n-1 . (3.1.8)

For each of the six cases defined above, the subscript j ranges from
one to m . The conditions Presented in this section for the
coefficients @ the exponents lk » the observation points ti

and the errors e

ij

apply, of course, to each of the six special
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cases and are the same throughout this paper unless otherwise stated.

3.2 The Estimation Procedure for Case 3

The new estimation procedure associated with the model presented
in Section 3.1 is conceptually simple. Pirst the domain of the obser-
vation points ti is divided into as many intervals of equal length
T as there are parameters in the model. Thus, for Case 3 the ti

are separated into 2p groups. Since there are 2p n equally spaced

points ti , each such group will contain n points ti . Included

in the first group will be to ) tl, ceny tn-l s> included in the
second will be tn B tn+l’ “ey t2n-l , and in general t(q—l)n’
t will be included in the qth group. There are

t(q—l)n+l’ ***? "gn-l
several other ways in which the ti could be grouped without

essentially changing the estimation procedure, but in Section 5.5 it
will be shown that the grouping given here is in certain respects
optimum.

The next step in the estimation procedure is to let Sq be
the sum of all the observations made at the points ti included in the
qth group. That is, set

qn-1

m
S = z z yij y a=1,2, ..., 2p , (3.2.1)
9 i=(q-1)n j=1

where according to the model for Case 3 given by (3.1.5),
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Since each eij has mean zero in accordance with the assumptions listed

for our model in Section 3.1, the expectation of yij is given by

(3.2.2)

fl
1o

R
®

Elyyy)

But ti = Ki in our model. Therefore substitution of (3.2.2) into

(3.2.1) yields

D qﬁ-l i
Es) =m = i % N (3.2.3)

where

= e . (32')4')

The right side of equation (3.2.3) is a geometric series which may be

summed to give

P
-1 k
g(sq) =m X ak/\']fcq )= _———;\— s a=1,2, ..., 2p
k=1 1 - K

(3.2.5)

The equation (3.2.5) is actually a set of 2p equations for
the 2p parameters of our model in terms of the expectations éf(sq)
In order that estimators for the' parameters may be obtained from these
equations, we set the observation sums Sq equal to their expected

values é?(sq) - The result is the set of equations,



, a=1,2, ..., 2p , (3.2.6)

which define the estimators QK and /A\k = exp.(-/ik K) , k=1,2, «.o, D -
It is interesting to note that our procedure of reducing the observations
to as many sums as there are parameters in the model, substituting
observations for their expectations, and then solving for estimates of
the parameters is similar to Wald's method [29] for fitting a linear
regression with error in both of the variates.

In order to complete the new estimation procedure we need only
solve the set of equations (3.2.6) for 6% and ’Qk . In the next
section we shall represent (3.2.6) in matrix notation and proceed with
a direct solution for Case 3 which makes extensive use of properties
of certain symmetric functions. Then in Section 3.4 a much shorter
solution will be given which utilizes certain results from the calculus
of finite differences. TIllustrations of the procedure for the special
Cases 1 and 2 will be presented in Section 3.5 before the development
of the procedure for Case 6 is given in Section 3.6. Section 3.7 will
be concerned with the relationship of the new estimation procedure

to the Prony method outlined in Chapter II.

3.3 A Solution for Case 3 Estimators

To facilitate the solution of the set of equations (3.2.6) for
estimators of lk and Q. , ve shall represent the equations in matrix
notation. Also, in order to simplify the writing of this section, the

carets which designate the estimators in equation (3.2.6) will be dropped
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until the final steps in the solution of (3.2.6) for the estimators

G% and /%k .

*
Let o be a column vector of the coefficients o , SO that

aTw(os Q. cey O)
- 1.9 "'}p

Also, define column vectors s and s 1in such a way that

T

fw
i
P

*%
et L bea pbyp matrix with elements

J =/\_(r-l)n
rs

]

Then define two p by p diagonal matrices W and V with elements

m(1 - A7)
Vs = 5rs 4
1 -/\
T
Pn
Yrs = j\'r 8rs 4

*
A superscript T denotes the transpose of the matrix indicated.

*%
Unless otherwise indicated, when an element of a matrix or a determinant
is defined in this baper, r refers to the row and s to the column in which
the element is located.




e e g en =

25

where ars =1, r=s8, and ars =0, r#s . Nowwe may represent

the equations (3.2.6) which involve S15 B cens SP as

N = 85 . (3.3.1)

Moreover, the equations involving 8§ seey S may be written

p+1’ Sp+2’ 2p

as
IWa = s . (3.3.2)

Now the inverse of W is a diagonal matrix with diagonal elements
(1 -./xk)/m(l -.f\;) , k=1,2, ..., P, and hence the inverse of W
exists provided that JN.k # 1l . This is also a necessary condition for
W itself to be defined. However, ./\k = exp.(-}\k K) and cannot equal
one in accordance with our model since we have specified that the
exponent A K > 0 . Therefore, both W and Wl exist. Further-
more, the matrix L 1is an alternant matr;x. Its inverse also exists
under our model and is given below by (3.3.8). Since both W-l and
L-l exist, it is permissible to premultiply both sides of equation

(3.3.1) by w1l to obtain

This result, substituted in (3.3.2), gives

WL ts = s . (3.3.3)
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But WVW-l = ww"lv = V Dbecause diagonal matrices are cormutable in

multiplication. Hence equation (3.3.3) reduces to
VWL s =85 . (3.3.4)

Since the matrix W does not appear in (3.3.4), we no longer
have to deal with terms of the form (1 - ./\_E)/(l -/\,) in the
solution for the kk , and each time a._/\k appears in (3.3.4) it has

a multiple of n as an exponent. Therefore, as a further simplification,

we let

X = = e . (3.3.5)

Now the elements of the matrices L and V of (3.3.4) may be written

respectively as

,Z _ xr—l
rs  °s ’

v = XP 6 .
rs r “rs

To solve (3.3.4) for estimates of the kk , We need to know L_l .
But since L is an alternant matrix, the form of its inverse is well
known and is indicated, for instance, by Aitken [l, PE. 118] . However,
in order to write L"l in a concise form, we must first define several

terms. Denote by € +the set of elements Xy, x2, ceey xp and by Ci
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the set C with the element X, deleted. Then let Er(C) and
Er(ci) be the sums of all possible distinct products of the elements
of the sets C Aand Ci. respectively taken r at a time. That is,
define Er(C) and Er(ci) to be the r'* order elementary symmetric
functions of C 'and Ci respectively. Er was defined previously in
Section 2.2, but with respect to a different set of elements than those
considered here. An elementary symmetric function of order zero is

defined to be one. Now, if we let

D = TT (x; - x;) (3.3.6)
1 <5 Y
and
T
Dh = 1<y (xj - xi) ’ (3'3°7)
i,J#h

we can show as an extension of Aitken's discussion that L-l has

elements

D
Jlrs - (_l)r+s 7; Ep-s (Cr) . (3.3.8)

Continuing with our solution of (3.3.4), let us consider the
elements urs of the » by p matrix U = LVL-l . Carrying out the

matrix multiplication indicated by the definition of U , we find that

P
T (-1 i+s-2 xp+r -1 p-s(ci)i r,8=1,2,.00, P . (3.3.9)
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We wish to simplify the expression (3.3.9) for these elements urS .
To do this, we shall meke extensive use of two mathematical properties.

The first property with which we are concerned is given by the

equation

x; B (cy) = B (C)-E , (¢) , (3.3.10)

and it follows directly from the definitions of ¢ s Ci and Er .
The second property is concerned with the quotient
‘ p-1 p
| =1 i-1 k
Q = (1) - z (-1) X, D, , (3.3.11)
D i=1 i~7i

where k 1is a non-negative integer. It is shown below that

% = Bepy o+ k>
(3.3.12)
= 0 , k < p-1 ,
given that
2. » o
Bo= TTxi ) (3.3.13)
i=1
2 o =r
i=1
o, >/ 0

where the summation is over all possible permutations of the non-negative
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integers ai for which the sum of the Qy is r . Hr is called the
complete homogeneous symmetric function of degree r , and Ho is
defined to be one.

To prove the relstionship given by (3.3.12) in conjunction with
(3.3.13), we first note that D , as defined by (3.3.6), equals the
alternant |L| . This result is given, for instance, in [i, PE. 112] .
Also, each minor of |L| is an alternant determinant. In particular,
the cofactor of any element l;s in the last row of |Ll is an
alternant of order (p - 1) and equals D, as defined by (3.3.T)
Now let us define another slternant |L,| which is like |L] except
that the elements in the last row of lLkl are raised to the kth
pover instead of the (p - l)St power. If we expand ILkl in terms

of the elements of its last row, each element has the same cofactor as

the corresponding element of |L| , and therefore

k

k -1k
Ll = X, Dy = X, ) Dy eee (-1)%

xl D

1

(3.3.14)

P
(-1)Pt T (cntt oo,
j=1 1 1

Hence, since D = |L| , & glance at (3.3.11) reveals that

= %‘—‘ : (3.3.15)

But when k < (p - 1) , two rows of ILkl are the same, and therefore

Ll = q =0, ¥ <(p-1). Andwhen k 3 (p-1),
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%;ﬁl = B (3.3.16)

a result given in [28, PL. 150] . Therefore, referring tc (3.3.15), we
conclude that Qe = Hk—p+l , k ;} P -1 . Thus equation (3.3.12) is
correct.

Now that the properties given by equations (3.3.10) and (3.3.12)
have been established, let us proceed with our work on the elements
W.. ©of the U matrix, as given by (3.3.9). Applying (3.3.10) and

(3.3.12) to (3.3.9) repeatedly, we deduce that

= (-1)P°8
u, o= (-1) E

. (€) a,. o+ (-1)P™5 g

p-s+1 D+ D=5+2 (c) Qp+r-3 o

cer + (--1)13"l Ep(c) Q r,s=1,2,..., p . (3.3.17)

p+r—s-l;
Let us refer to Er(C) simply as Er . Now we may bring equation
(3.3.12) into play to evaluate the Qk factors in (3.3.17) giving the

general result that

u = ()P g H .+ (-1)P5* g

r p-s+l “r-1 D-5+2 UL

1

p-
oo 4+ (=1) Ep Hr-s 3 rys =1,2, cu., D (3.3.18)

where a function Er with r > p or a function Hr with r < 0

is defined to be zero.
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Each term in the expression (3.3.18) is the product of an E.
function and an Hr function. Furthermore, for any element w.o in
the rth row of U , the Hf function in the first term has subscript
(r - 1) , and this subscript decreases by one with each successive term
until for some term either Hr or Er vanishes. Similarly, the
subscripts on the Er functions increase by one with each successive

term. Hence, the matrix U , which has the urs as elements, may be

represented as the product of two triangular matrices. For if we define

P by p triangular matrices E and H with elements (_l)r-s+l E

P+r-S
and Hr—s respectively, we can see that
HE_ = TJ ° (3”5'19)
. -1

Since U = LVL = , (3.3.4) now may be written as

HEs = s . (3.3.20)
But the matrix H has a simple inverse [l, PE. 115] , nemely the
P by p triangular metrix E with elements (ml)r-s E.g * Thus,
premultiplying both sides of (3.3.20) by E , we have

Es = Es (3.3.21)

The matrix equation (3.3.21) when multiplied out yields a set

of p linear equations in the p elementary symmetric functions Er
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These equations are

The sums Sq are known functions of the observations and therefore
the equations (3.3.22) may be solved by elementary means for an

estimator ﬁ; of any Er . This solution may be presented as

VA IRp-r+ll
Er=——I—RT—,I‘=O,l,2,...,p,

(3.3.23)
Where |R| is a p by p persymmetric determinant with elements
sr+s-l and IRkl is a p by p determinant with elements sr+s—l s
r< k-1, and Spug 7 T D k.

Since the functions Er are the elementary symmetric functions

of the X, > each X is a root of the equation

-1 -2 -1
£ - Ex 4 B - a(-1)F B, 1% + (-1)? Ey, =0 . (3.3.24)

Thus, after substitution of @;, for Er in this equation for
r=1,2, ..., p, estimators Q% of the X, may be obtained by

finding the p roots of the equation

R LY
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Because of the symmetry of the coefficients in equation (3.3.25), the
subscripts of the estimators ‘Qk may be assigned in any order.

During the preceding exposition we have seen how the new

estimation procedure leads to estimators 'Qk of the exponentials xk .
In the remainder of this chapter we shall assume that these Qi
solutions yielded by equation (3.3.25) are admissible estimators.
That is, we will assume that each root Qk is real with 0 < Qk < 1,
the range dictated by the model for the parameters xk . Conditions
vwhich are necessary for equation (3.3.25) to have such admissible roots
are discussed in Section 5.6.

Now we wish to make use of the Qi to compute estimators of the

parameters in our model. Since by definitionm, X = exp.(-lk Kn) ,

we take as our estimators of the lk s
1
A = -z ok, k=12, ., p . (3.3.26)
Then substitution of the Qi in (3.3.1) determines a set of linear

equations in Q which may be solved easily for estimators 6% of

the coefficients @ - In summation notation, these equations are

n% = Sq ’ a=1,2, «e., . (3.3.27)

3.4 An Alternative Solution for Case 3 Estimators

In this section the equation (3.2.6) will be transformed into

the set of equations (3.3.22) by another method. Suppose we let



. (3.4.1)

Now recalling the definition of X given by equation (3.3.5), we may

write equation (3.2.6) as

D
s 1

8, = X Gk/x\.g , a=1,2, ..., 2 . (3.h.2)
=1

But functions, such as the Sq > of a discontinuous variable which,
like q , takes on only integral values are known to satisfy a
difference equation which is of the same order as the nunber of unknown
parameters in each function <;ee {;61>. Therefore, if we consider the
Q% as known, the Sq satisfy a pth order difference equation which -
may be used to find the estimators Qi . Moreover, for a polynomial
such as (3.4.2), Householder [LQ] shows that this difference equation -
is of the form (3.3.22) provided that the ‘Q% are all distinct.
Now the parameters X, are all distinct since our model specifies that
AL # A, , T £5 . Therefore, if the @% are admissible estimators of
the X, , they are also distinct, and equation (3.3.22) is correct.
Now that we have again arrived at the difference equation (3.3.22),
the estimators Q%‘,‘a% » and 6& may be obtained in the same manner
as before. However, the calculus of finite differences [16} does lead
to the further results that the Qk are linearly independent and that
both the @%‘ and the G& are unique provided that the Q& are all .-

distinct.
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3.5 Estimation for Cases 1 and 2

We shall now illustrate the new estimation procedure for Cases 1

and 2. Additional exemples are given in Chapter VII. The models for
these two cases, as defined in Section 3.1, may be obtained from the
model for Case 3 by setting p equal to one and two respectively.
For Case 1 we have estimators 4 ,/§ and @ to calculate for
the parameters given in equation (3.1.3). Note that the subscript k
is dropped for Case 1 because it always equals one in this instance.

Now there are two parameters in the model for Case 1, so we need to

calculate two sums Sq . These sums are

n-l m

s, = :"LZ:O jél Yij o (3.5.1)
2n-1 m

8, = ién jz‘,l Vij - (3.5.2)

Also, for Case 1 there is only one elementary symmetric function,
namely El , and therefore @E_=‘§‘. S0, substitution in equation
(3.%.23) with p = 1 vyields

L - 2 (3.5.3)

Furthermore, from equations (3.3.26) and (3.3.27) we have that

5]
A 1 2
No= - o ﬂn <§‘i‘> ’ (5-5-14‘)
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S
2\/n| 2
] * <§I>l 51
- oy

m(Sl -

@ (3.5.5)

Let us apply these Case 1 estimation equations to the data in
Table 1. This data is not actual experimental data, but it is typical
of data, say, for successive determinations of the activity present in
a solution containing a pure radioactive substance. There are an even
number of points ti 5 50 the number of observation points is an integral
multiple of the number of parameters as required by our model. This

integral multiple, n , is equal to four. K , the constant length of the

Table 1

ACTIVITY DETERMINATIONS VERSUS TIME

|
| Time ty 0 1 2 3 4 5 6 7

Dosage ¥ 6.81 | 4.70 | 3,23 [2.24 [1.55 |1.07 0.7k 0.51

intervals between successive ti » is one. Also, m , the number of
observations for each ti »1s one, so we drop the subscript j - Now

if we group the +t as suggested in Section 3.2, we shall put t

i 0] )

tl ’ t2 and t5 in the first group and th ’ t5 , t6 and t7 in the

second. The corresponding observation sums, as given by (3.5.1) and

(3.5.2), are

S; = 6.8l + L.70 + 3.23 + 2,24 = 16.98 ,
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S, = 1.55+ 1.07 + Th 4+ .51 = 3.87 .

Then substituting Sl and 82

(3.5.5), we find that

into equations (3.5.3), (3.5.4) and

>

R = .28, = .370 , e = 6.797 .

Thus we may represent the data in Table 1 by the function

-.370ti
/}i = 6.797 e )

For Case 2, four sums Sq are required and are given by

n-1 m
S, = qz Z yij » 9=1,2,3, 4 . (3.5.6)
? (¢-1)n ja1

There are also two functions Er to be estimated using equation

(3.3.23). With p = 2 , this expression for the ﬁ} yields

Sl S3
S S S. 5 -8,85
&y " S, (3.5
1 2 Sl S5 82
82 S3
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2 3
A S5 Sh 82 Sh - S3
E = = D (3.5.8)
2 51 5 S. 8, -8
173 2
(ad
So S5
Now the exponential estimates Qﬁ and 4% for Case 2 are roots of the
equation
2
X - ’ﬁi X o+ @E = 0 5

which corresponds to equation (3.3.25) for the general Case 3. There-

fore, we may take

- 1
e %‘_@1““ (/ﬁi ‘u%\e)ej ’
) 1 (3-59)
1 2 2
Q2=§-@l - (%l-ufﬁe)] .
Finally, from (3.3.26) and (3.3.27) we find that
A = -z bR, x=1,2 , (3.5.10)
(1 -Qi/n)(sl 2, - 5,)
@1 = ) (3.5.11)
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(1 - 4%/n) (85 - 8, &)

m(l - 9&) C§é -‘Qi)

. (3.5.12)

@, =

The estimation for Case 2 may be illustrated using the fictional
data in Table 2. Suppose an experimental animal is injected with a test
material at time zero. This data purports to represent the concentration
of the injected material in the animal at time ti measured through the

cunulative per cent of excretion of that material up to time ti
Table 2

CUMULATIVE PER CENT EXCRETION ¥y VERSUS TIME ti

ty 0 1 2 3 4 5 6 7 8 9 |10 | 11

Yy 0.60|1.82|2.84|3.72|4.40(4.99 |5.49|5.86|6.19|6.42(6.65 6.76

Since there are twelve observations and four parameters to be estimated,
n=3. As before, K and m are both one. Using equation (3.5.6),

we find that

S, = 0.60 + 1.82 + 2.84

5.26

w
L]

5 3.72 + b.bho + 4.99 = 13.11 ,
S, = 5.49 +5.86 + 6.19 = 17.54 ,

SLI- = 6-!4-2 + 6.65 + 6-76 = 19-83 .
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Then from equations (3.5.7) and (3.5.8) we obtain

@l = 1.5782 , E

VAN
o = .5989 .

These estimates, substituted into equations (3.5.9), lead to the

exponential estimates

® o= 9433 %, = 6349 .

These estimates in turn substituted into equations (3.5.10), (3.5.11),

and (3.5.12) give

A = L0195 , A, = .5k,
A - -
&, = 10.784 , @, = -10.167 .

Hence the data in Table 2 may be fitted by the equation

-.0195t -.1514%
{,r\i = 10.784 e 1. 10.167 e .

3.6 Estimation for Cases 4, 5 and 6

Now that the estimation procedure has been developed for Cases
1 and 2 in particular as well as for Case 3, the results for Case 3

may be utilized to obtain estimators for Case 6. From equation (3.1.8)
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+ Zake +e..,1=0,1,2, ..., (2p+l)n-1 ,

(3.6.1)

under our Case 6 model. Sums Sq may be formed from the observations
yi,j in a manner similar to that in which they were constructed for

Case 3 to give

gn-1 m
s = X Y V..,a=1,2, ..., 2p+l ,
. . id
i={g-1)n j=1
(3.6.2)

the only difference being in the range of the subscript q . Taking

the expectations of the sums Sq , We have

D (1 -AD)
g(sq) =m g, +m % ak/\_l({q—l)n K , (3.6.3)
k=1 1 -/\k

q=l, 2, ceey 2p+l >

where /\k is still defined by equation (3.2.4). As before, we

equate the sums Sq to their expectations to arrive at the equations

1 AR
S =m@, +n § ékj\\](sq-l)n —(—-———5—)- , (3.6.4)
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At this point the solution for Case 6 diverges from the pattern
established for Case 3. We now perform a series of subtractions to

obtain the differences

Sy = Sy -8,109=1,2, ..., 2 . (3.6.5)

In forming the Sé we eliminate G% from our original set of (2p + 1)

equations, giving the 2p new equations

D )

A {g-1)n k

S'=m L ék/\l({q ) —— ,4d4=1,2, ..., 2p . (3.6.6)
9 =1 1 -A

Next we define the matrices s and s of Section 2.5 in terms of the

Sé instead of the Sq ; and we call the resulting matrices s' and

i' respectively. Then we let W' be a diagonal matrix with elements

2
m(1 -JALn)
' Ir
W g = ———————— Brs
T 1 -

Now the set of equations (3.6.6) can be represented by the two matrix

equations

LW'a = s' s (3.6.7)

LW'Va = s' |, (3.6.8)

which correspond to equations (3.3.1) and (3.3.2) for Case 3.

o A R AN

P
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Proceeding as before, we may eliminate the vector « from the equations

(3.6.7) and (3.6.8) to obtain the equation
LVL s' = s' . (3.6.9)

This equation is of the same form in terms of the S& as (3.3.4) is in
terms of the Sq , and like (3.3.4) it may be solved for estimators of
the exponents kk . Thus, the solution for estimators of the parameters
A, 1is the same for Case 6 in terms of the s& as it is for Case 3 in
terms of the sums §

From the above discussion, it follows that to estimate the
parasmeters of a Case 6 model it is first necessary to compute the
statistics Sé in accordance with equation (3.6.5). The next step is
to substitute the Sé for the corresponding Sq in the solution already
derived for Case 3 to obtain estimators 6% of the exponents kk .

These estimators, when substituted for the A, in equation (3.6.7),

_lead to a set of linear equations in the coefficients o , for k > 0,

which may be easily solved for estimators 6& of the o - If we again

let @L = exp.(-/}}k Kn) , this set of linear equations which yields the

6% may be written as

g’ 9° 1,2, eeey, D (3.6.10)

These equations correspond to the set (3.3.27) which were derived

earlier for Case 3. Finally, an estimator 6% of ¢«

o ey be found
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for Case 6 by substitution for the 'Qi and the rest of the 6% in the

equation

1 D (1-%)
&O = E Sl -m {: Qt 1—_—/}3;7?1— . (3.6.11)

Now that the new estimation procedure has been presented for the
general Case 6 model, estimators for Cases 4 and 5 may be easily
determined by setting p equal to one and two respectively in the

Case 6 derivation. In this way 1t can be shown that for Case U4,

< > , (3.6.12)

S, -8

A 1 A 1 2 3
XN = -Knjn X = - E Zn <‘é——_-—s-—-> » (3.6-13)

1 2

An 2

S, - 8, /\ S, S, -8
R e (3:6.33

m(l - A) mn(sl - 25, + 33)

e = (5 -m &) 1 -A) 51 - % < >

(3.6.15)

B T
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Also, for Case 5,

A 818y, - 8985 + 555 - SpS5 + 85 - S48
E, = 5 = (3.6.16)
8185 - 8485, + 885 + S5, - 8, 3

A

S, -8, + E (S, -8,)
AN L 1'\°3 2
E, = 5 = . (3.6.17)

2 1

Estimators /J?l 3 ’9‘2 s /}}l and /}}2 for Case 5 are obtained from é\l and
@\2 in the same way as they were for Case 2 in Section 3.5. Subsequently,

estimators Ql s 92 and 60 are given by

1/n
Gﬁ Kse -5+ %) - 55 + sl] 1-4 )
m(1 -4)° @ -2) ’
(5.6.18)

(s, -5 +&) -5, +5 Ja - 4t/my

D 371 *2
2 m(l - 4c\2)2 (/2}2 -Ql)
(5.6.19)
R (1 -%) (1-4,)
0 T mm |F1 "% e na —X1/m
-xl 1 x2

(3.6.20)



L6

As an illustration of a Case 6 type estimation, let us again fit
the data in Table 2, but this time to a Case 4 model. Since there are
now only three parameters to be estimated with the twelve observations,

n==4. As before, K=m=1. Now from (3.6.2) it follows that

5, = 0.60 + 1.82 + 2,84 + 3,72 = 8.98 5
S, = L.4bo + 4.99 + 5.49 + 5.86 = 20.7h s
53 = 6.19 + 6,42 + 6.65 + 6.76 = 26.02 .

Thus (3.6.12) yields

A _ _=5.28 ’

X = m = .’-“4-898 .
and (3.6.13) gives

R = -1 /n(.44898) = .2002 .

Then, substituting into (3.6.1%) and (3.6.15), we find that

@, = 7.5806 , & = -7.0272 .

Hence the data in Table 2 may also be fitted by the equation -

A -.2002 ti

v, = 7.5806 ~ 7.0272 e .
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3.7 A Comparison with the Prony Method

In the estimation procedure which has been presented in this
chapter, sums Sq of observations are substituted in the equation for
the expectations E(Sq) of these sums. Then in the course of the solution
of the resulting equations, the symmetric functions ét_ of the Qi may
be presented as the ratio (3.3.23) of two determinants. The elements of
these determinants are the sums Sq . But if we divide each Sq by mn ,
we shall divide both the numerator and the denominator of the ratio
(3.3.23) by (mn)P , Which will leave the equations unchanged except for
a substitution of groups means for the corresponding sums S . Thus we
may obtain the same estimators by using arithmetic means instead of sums,
and the estimation procedure may alternatively be thought of as one in
which means of observed values are substituted for their expectations.

Another interesting characteristic of the new estimation procedure
is its similarity to the Prony method outlined in chapter II. In fact,

a comparison of (3.3.22) and (2.2.2) shows that these two equations are
of the same form, but that (2.2.2) involves observations y; vhile
(3.3.22) can be expressed in terms of the sums Sq or the corresponding
arithmetic means. So it might appear that the new method is comprised of
the application of the Prony method to group means instead of individual
observations. This is not the case however, for such an application of
the Prony procedure would consist of taking each group mean to represent
the mid-point expectation for that group and then fitting these means

by Prony's method. But the expected values of the group means are not

equal to the group mid-point expectations, and hence Prony's method



L8

applied in this way amounts to fitting an exponential model with parameters'

which differ from those defined in the new procedure. Thus the new
Procedure is essentially different from the Prony method. Moreover, the
new procedure does not require that the number of parameters in the model
be equal to the numbers of observations to be fitted as did Prony's
original interpolation method. Neither does it involve questionable
least squares calculations as does the estimation version of Prony's

method presented by Whittaker and Robinson [30] .
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IV. THE LIMITING DISTRIBUTIONS OF THE ESTIMATORS

4.1 A Theorem on Limiting Distributions for Large m

Although the estimators produced by the new estimation procedure
are comparatively easy to calculate, they are not simple enough to
yield easily derived small sample distributions. Reference to analytical
investigations of the small sample distributions of some of the esti-
mators will be made in Chapter VI. Also, the results of an extensive
empirical study of the distributions of the estimators for Case 1
will be presented there. Meanwhile, in this chapter the limiting
distributions of all the estimators derived with the new estimation
procedure will be determined. Furthermore, these distributions will
be derived as either m , the number of observations made at each
in each of the 2p

observation point t, , or n , the number of t

i i

partitions of the ti s approaches infinity.

We shall first present a theorem from which limiting distributions
of the estimators may be determined as m—> oo with n held fixed.
This theorem is applicable to either Case 3 or Case 6. In the derivation
for Case 3, 9q=1, 2, ..., p , while for Case 6, q =1, 2, .c., 2D+l .
Now in Section 3.7 it was mentioned that the estimators obtained by the
new procedure may be expressed alternatively as functions of group

means instead of the group sums Sq . Denote these means by Yq s Where

1
Y, = &5, (4.1.1)
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and define the expectation of any Yq to be ng - From (4.1.1) it

follows that
o= = £(s) . (k.1.2)
q mn q

Then equations (3.2.3) and (3.2.5) for the éﬁ(sq) lead to the relation-

ships
qn-1 D -\ Ki
=3 L L oq e & (4.1.3)
i=(q-1)n k=1
P (1 -AZ
1 )
S TN G S SN
k=1 1A

where ./\k = exp. (—lk K) . Yq may be evaluated in a similar way from

equations (3.2.1), (3.1.5) and (4.1.3) to give

1 qn-1 m
Y = = 7 L Y.,
¢ ™ e(ga)p g1 M
1 qn-1 P -lei 1 qn-1 m
= = Z L oa e + o= z z ey
i=(g-1)n k=1 i=(gq-1)n j=1 %Y
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In order to prove the theorem we wish to present, we would like
to represent the Yq as functions of means of identically distributed
variates except for canstant parameters. Let us define a new error

term

(4.1.5)

Under the assumptions of our model, the errors eqj are identically
distributed variates with zero means and common variance 02/n . Now

if we let

- 1 B
e = ﬁ Z e . ’ ()'I"l’6)
q 5=1 aJ
we may write Yq as
Y = + e . h.1.
q Ny q ( T)

The Ng » 8 can be seen from equation (4.1.4), are independent of m ,
and n 1is being held fixed in order to obtain limiting distributions
as m — oo,

Let us define the function ’8 to be any one of the estimators
A AN . . R
X s 6% s Or lk obtained by the new estimation procedure for either

Case 3 or Case 6. Since 6\ is a function of the means Yq which are
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in turn functions of the Eq and the Ny 2 A

may also be considered
as a function of the sample means Eq and the population means nq .
As indicated above, the E, are means of identically distributed wvariates
while the Yq are not, for each Yq is the mean of observations yij
which under our model do not all have the same mean. Now Hsu {;5}
proves a theorem which gives the limiting distributions of functiouns of
means such as the Eq s and his theorem is applicable here. Let us define
the point M to be a row vector with the nq as elements and the point
Y to be a row vector with the Yq as elements. Now in terms of the
estimation function % s Hsu's theorem becomes

Theorem 1. If the function 6(Y) of means Yq possesses
continuous second order derivatives of every kind in a neighborhood of

the point 7 , then Vmn [/O\(Y) -@(n)] is normally distributed in

the limit as m-—> o~ with mean zero and variance
T ac o (4.1.8)
q
as long as 8, £ 0 for some q , where

a = 5—?—-— /Q\(Y) . . (}4"1'9)

k.2, Limiting Distributions for Large m

Since we have explicit formulas for the estimators for Cases 1,
2, 4 and 5, we could show that the conditions of Theorem 1 are satisfied

for these estimators and then we could use Theorem 1 to obtain their
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limiting distributions as m—>co . However, in this section we shall
instead proceed directly to the limiting distributions as m—> = of
the estimators for the more general Cases 3 and 6 even though the esti-~
mators for these cases cannot always be represented explicitly by
algebraic equations. Although the detailed demonstration in this section
will be for Case 3, it will be indicated that the results also hold for
Case 6, After limiting distributions for the general Cases 3 and 6 are
considered, particular results will be displayed for Cases 1 and k.
Before considering the éék , the /}Ik , or the ék , it is first
necessary that we investigate the behavior of the @} for Y in a
neighborhood of 1 . From equation (3.3.23), it can be seen that each
ﬁ; may be represented as the ratio of two determinants in the §
If we substitute the terms man for the corresponding Sq in (3.3.23),

the mn factors cancel out. Thus we may write @; as

@; = -L—%%%iil s r=1,2, ..., p, (4.2.1)

where |P| and |p, | are the determinants |R| and |R, | of equation
(3.3.23) with the Yq replacing the Sq .

Both |P| and |P | are continuous everywhere since each

p-r+l
of them involves only sums of products of the Yq . Hence @; is
continuous in a neighborhood of 1  provided that IPI # 0 at n .
Furthermore, derivatives of all orders of 'ﬁ; with respect to the Yq
are all continuous in a neighborhood of 1 if |P| 40 at 1

for the kth order derivatives are ratios of continuous sums of products
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X .
of the Y = and |P° . And since |P| is a continuous function of
the Yq 5 |P| #£0 in some neighborhood of v if it is not zero at
N . Hence, to demonstrate the continuity of the @} and their
derivatives of all orders, or in other words, to demonstrate that the
ﬁ} are analytic, in a neighborhood of n , it is only necessary to

show that

|p(n)| = |P| 40
T=n

First observe that since X, = JALE , (4.1.4%) may be written as
-1 .

where

. _ _:_L_ (l - xk)
% T 71 % _ 1/n
"
Under the assumptions of our model, aﬁ # 0 . Now reference to the

definitions just given for IPI and |P(M)| and also to the definition

of |R| given in connection with (3.3.23) reveals that IP(n)l has

elements
§ ; x11{'+s-2
k=1 .
A
Thus ‘P(n)l = |B BTI ; Where B is a p by p matrix with elements

Vv aé xz-l . But |B| is in turn given by




N

25

Now, as was shown in Section 3.3,

[Li = ~T7‘ (x, - x,) ,
1>y -

and since all the X, are distinct under the assumptions of our model,

L] £ 0. So we conclude that

[P(n)| = o @) ... aI; |L|2 £ 0 . (k.2.2)
Therefore, both the ﬁ; and their derivatives of all orders with respect
to the Yq are continuous in a neighborhood of 1 .

As we stated earlier, the estimators 4% , Whose asymptotic
distributions we are seeking, are roots of a pth degree polynomial
equation with coefficients ét,. Since the roots of such an equation
are continuous functions of the coefficients 1:28, Pg. 69] , and since
it has been shown that the gi. are continuous functions of the Y in
a neighborhood of 1 , it follows that the Q% are continuous functions
of the Yq in such a neighborhood. However, Theorem 1 requires continuity
of the second order partial derivatives of the Qk in a neighborhood
of M , and to prove that these derivatives are continuous we shall

refer to an implicit function theorem from the theory of functions of

real variables.
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This implicit function theorem is given, for instance, by Graves
[li] . Applied to the polynomial (3.3.25), where the coefficients ﬁ}
are analytic functions of the Yq in a neighborhood of 7 , it implies
not only the existence and continuity of the second order derivatives of
the Q% » but of derivatives of all orders, in a neighborhood of 7

provided that two conditions are satisfied. If we let
-1 -2
glx, ¥) =& -8 £ 4 /E\E £+ (-1 %\p , (k.2.3)

g (5, 1) = = elx, 1) (4.2.4)

these conditions are

g(x,Y) =g(xk,'f])=0,k=l,2,9..,p,'
=2
Y=

gx(x: Y) = gx(xk’ T]);éO > k=1,2, ..., p
X'-:}Ck
Y=

Since, as will be indicated later, ﬁ} = Er y r=1,2, oo, p,at n ,
and since the Er are by definition the elementary symmetric functions
of the X the first condition always holds. However, the second
condition is satisfied if and only if no two of the positive constants

X, are equal. But our model precludes any two X, from being equal.
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Therefore, under the model specified earlier for Case 3, the second order
partial derivatives of the 'Qk with respect to the Yq are continuous
in some neighborhood of 17 .

Before applying Theorem 1 to the estimators for Case 3, we now
need only observe that by virtue of the equating of Sq to 5?(sq) in
the estimation procedure, when Yq = T]q for all q , the estimators
/:}k =%, k=1,2, ..., p. Thus, on the basis of Theorem 1, it follows
that v/551(§k - xk) is asymptotically normally distributed with mean
zero for large m , where k=1, 2, ..., p . Now let us quickly show
that both /GE?(Q% - lk) and JGE?(G% - ok) are also normally
distributed about a mean of zero in the limit as m—> oo

Q& are related to the @% by the equation

The estimators

A = .._K% jn/,}k s k=1,2, .oy p ,  (k.2.5)

which has second order partial derivatives

0 o A
PR ar; () ) R4
oY, oYy Kn éc\i Kn 2, 3y, 3, ’

(k.2.6)

k=l, 2, c.l’P *

Since % = x, atnand X >0 for all k , there exists a neighbor-
hood about 1% where the 'Qk > 0 and have continuous second order
partial derivatives. Therefore, from (4.2.5) and (4.2.6) it can be

seen that both the /Qk and their second order partial derivatives with



58

respect to the Yq must also be continuous in that neighborhood. Also,

upon substitution of x  for /%{ in (4.2.5), it follows that A = A

“k

at 1 . Hence, we may conclude that \/11?(/)\.1{ - )k) has a limiting
normal distribution as m —> oo with mean zero by virtue of Theorem 1.

Turning our attenticn now to the estimator Qk , we Tirst note
that by the same argument used to show that Qk = xk at n , it also
follows that QK = o at 1 . Thus, to demonstrate the asymptotic
normality of \/mT(Qk - %) for large m by Theorem 1, it is only
necessary to show that the second order partial derivatives of q&
with respect to the Yq are continuous in a neighborhood of 7 .

Substitution of mn Yq for Sq in equation (3.3.27) shows that the

ék may be found by solving the set of equations

VA
1 2 a1 (B-%)
n kélxg ——..—7)%73 &k = Yy a=1,2 ... p . (k.2.7)

Now éc\k is continuous in a neighborhood of n and at n , QK =X
wvhere 0 < X < 1 . Therefore, there exists a neighborhood of 1

for which (1 - QK)/(l - éélk/n) as well as /:}E-l and Yq are continuous.
It follows from (4.2.7) that in that neighborhood the ﬁ\k may be
represented as ratios of continuous determinants. As in the case of the
@r , the 6\1{ and their second order partial derivatives with respect

to the Yq will be continuous in a neighborhood of 17 if the determinant
in the denominator is not zero at 1 o

The denominator in the ratio which equals Qk may be shown to

equal (cl, Cps ey cp) ILI » where
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-x
“x T T/n. °

nfl - x'")

Since X, # 1 for Ak > 0 as specified in the model, each ) is
finite but not equal to zero., Also, we have already seen that under
the restrictions of our model, |Lt # 0 . Hence each G% has a non-
zero denominator at 7, and both the 6% and their second order
partial derivatives with respect to the Yq are continuous in some
neighborhood of 7n . Therefore, Theorem 1 yields the result that
/m' (6, - @) has a limiting normal distribution with mean zero as

m_'%o'o .

So far the evaluaticn of the asymptotic variances of the estimators

for Case 3 has not been mentioned. The estimators 'Qk and ‘ﬁk are
known functions of the exponential estimators @% . Therefore their
asymptotic variances, as well as those of the Q% , follow directly from
equations (4.1.8) and (4.1.9) once the first partial derivatives of the
Q% with respect to each of the Yq are known. The evaluation of these

partial derivatives is alsoc given by Graves [lil « Let us define column

vectors
T
0 ) 0
SY(X: Y) = B?I glx, Y), 3?5 g(x, Y), ..., EYEE a(x, Y?:) ;
(4.2.8)
= BQK o 4 2 A ka1, e
XKY = BY—]_ P) BY_exk, "')5?—2;}{&{ ) =1y, 25 cesy D

(+.2.9)
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where g(x, Y) 1is defined by (4.2.3). Also, let

gY(Qk, Y) gy(x, Y) Qk , k=1,2, v.., D, (4.2.10)

s, k=1,2, ..., p, (4.2.11)

g (% ¥)

8. (%, ¥) A
x=x

where the scalar gx(x, Y) 1is defined by (4.2.4). Now the vector Xy
of the first partial derivatives of any ‘Qk with respect to the Yq

satisfies the equation

gY(Qk’ Y)
Xy = " ——x——, k=1,2, ..., p . (k.2.12)
g, (%, 1)
With the help of (4.2.12), we may evaluate the 2 derivatives

of equation (4.1.9) in Theorem 1 for any 6% . For

d A
E/}}k T %
= - —% | g=1,2, ..., 2 , (4.2,13)
oY A
q Kn %

o . . -
and BT; 4% for any k and q is given by (4.2.12). Similarly,
equation (4.2.7) yields a solution for any Gi in terms of the Q% s
and the first partial derivatives of the 6& with respect to the Yq

may be written in terms of the QL and their first partial derivatives.

Hence, (L4.1.9) may also be evaluated for any 6% with the help of (k.2.12).
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Then once the aq derivatives are determined for either an 6& or a

Q% estimator, (4.1.8) may be employed to find the asymptotic variance
of that estimator for large m .

The limiting distributions Just derived for Case 3 may be shown
in the same manner to hold for Case 6. We have already seen that
Theorem 1 is applicable to Case 6 as well as to Case 3. Therefore,
in order to claim the results of this section for Case 6, we need only
show that the continuity conditions of Theorem 1 are satisfied for
Case 6. And to do this, we need to demonstrate that the determinant
IP(n)l , evaluated by (4.2.2) for Case 3, and the denominators of the
6% at Y =7n are not zero for Case 6. However, from (3.6.5), (3.6.10),

(4.1.2) and the discussion leading up to (4.2.2), it can be seen that

for Case 6,

P 2
[P = 77T o 2 - x) (L] .
=1
Since x # 1 under our model and since the right side of (L,2.2) is
not equal to zero under our model, |P(n)| #£ 0 for Case 6. Similarly,
the denominator of 6& s k=1,2, ..., p, evaluated at 7  for

P
Case 6 equals |/ (1 - xk) times the corresponding denominator for
k=1

Case 3, and is therefore not equal to zero at 1 . Finally, from

(3.6.11) it can also be seen that %

the limiting distributions as m—> =< already obtained for Case 3

is continuous at Y =1 . Thus,

also apply to Case 6.
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In summary of this section thus far, it has been proved that the
estimators /x\k B Qk and q{ obtained by the new estimation procedure
for parameters in the general Case 3 and Case 6 models are such that
if /Q\ denotes any one of the estimators and 6 the corresponding
parameter, ./mn (/9\ - ©) 1is asymptotically normally distributed with
mean zero for n fixed and m large. Also, a method has been given
for determining the asymptotic variance of \/;11?(/9\ - 8) by using
(k.2.12), (4.1.8) and (4.1.9) in conjunction with the equation which
specifies /Q\ in terms of the Qk - This method is also applicable to
Case 6 as well as Case 5. When using it for Case 6, the g)\\k/an are
still given by (4.2.13), but the BQO/BYq are obtained from (3.6.11)
and the aq(/ayq » k=1,2, ..., p, from (3.6.10), where Y = Sq/mn .
Also, the B;/(\k/BYq are still given by (4.2,12), but the vector Y now
has (2p + 1) elements instead of 2p elements as it had for Case 3.

Before going on to limiting distributions as n—> e s, let us
look at the limiting distributions as m—> =~ for Cases 1 and % in
Particular. Interpreted in terms of Case 1, the conclusions of the last
paragraph are that /mn (/}} -x), m (/)} -2 and Vm' (R - @) are
all asymptotically normally distributed with zero means for m large.
The asymptotic variances for \/ITn(/z> - x) and \/E—n_‘(/)} - A) may be
determined by differentiating both (3.5.3) and (3.5.4) with respect to
and Y

Y and then substituting in (4.1.9) and (4.1.8). In this way

1 2
we find that the asymptotic variances for / mn(éc\ - x) and \/mn(/)} - )

are

(k.2.14)
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2 2 2
(ny +n5) @

" (4.2.15)
By Mg

respectively. Similariy, (3.5.5) in conjunction with (4.1.8) and (4.1.9)
2 2
leads to (al + a2) 02 for the asymptotic variance of Vvmmn (6\ -a) ,

Where

1/n 1/n l/n

a =

1 2 1/n 5
(ny =m0 3
(4.2.16)
2 /1 1/n 1
o [n Ny kni/n - na/ ) - {1y - 1) “2/5
8 = 2 1/n

(ﬂl - ﬂa) ﬂl ﬂ2

For Case 4%, /m(® - x) , J/m (/}} - 1), /M (@O »Oto) and
vn (Q_L - a_L) all have limiting normal distributions as m —>°°

2 2 2
with zero means and variances given by (31 + a, + ag) 02 . Differen-

2 3
tiation of (3.6.12), (3.6.13) and (3.6.14) and substitution in (4.1.9)

shows that for / mn(/k> - X)

Ny = 1 ny =1
a, = = —-2————-3—-2 » 8y = L3 8 = - —= 5 (4.2.17)
(ny = my) (n-n,)
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for /mn (/>§ - ),

1 ﬂl -1

= = 3 == ‘l .
1 Kn(n,-ny) %2 Kn{ny-n5) (ng-n,)7 %3 Ka(ng-n,)’ (k.2.28)

and for mn' (QO - ao) s

(ny - n,)

2
(ny - 215 + n5)

2(ny = n5)(ny = 1)
a, =- - 3, (%.2.19)
(ny = 2ny + ny)

(ﬂl - n2)2

2
(ny - 2ny + n5)

Finelly, in terms of the comstant x = (n, - n3)/(nl - 1,) , the a

for \/E'(Q_L - ) are

q

1 L
a = ;(Il—_—)—f [(l -x) ¥+ n(l-3x) (1 - xn):l ’
-x
1 1
1 oy n i
a, = mx(l_x)3 l:nx (1+3x) (1-%7) - (L1-x) (1+x) x J ’ (h?2.20)
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4.3 Limiting Distributions for Large n

Up to this point limiting distributions have been derived with n
constent as m—> oo , where n is the number of points at which
observations are taken within each interval and m is the number of
observations per point. Now let us reverse the situation and hold m
constant, so that asymptotic distributions for large n may be found.

From Section 4.1 we have

L %7 "
Y = 7 .+ — e,. (4.3.1)
T ™ (gl gl Y
The error term
_ gn-1 m
e = %— I-]E- 2 ei. ()'"'3'2)
: i=(q-1)n g=1 M

may be thought of as the mean of the n identically distributed variates

m
=z ey -
J=1
Also, the term
n
a n k=1 k 1 -_/\.k

and is not independent of n . In fact, in Section 5.2 it will be

shown that for constent m and constant T (= Kn) ,
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1 = I,3,
n_1>moonq Py (k.3.3)

where the constant @q is defined by

, -1 % & hlat)T A DI (4.3.4)
T o

It is now apparent that unlike the situation when m was allowed to
grow large, when n increases, Yq may not be represented as in
(%.1.7) by a constant plus a mean of identically distributed variates.
So now Heu's theorem may not be applied directly, as it was in Section
4.1, to obtain the desired limiting distributions as n-—>oc . However,
a modification of Hsu's theorem, used in conjunction with a theorem
rresented by Craméi, is applicable to the preseant situation.

From equations (4.3.1) and (%.3.2), we have that

and therefore that
-) =\/n(nq-cpq)+\/H€q ) (k.3.5)

where Py is defined by (4.3.4). The Central Limit Theorem [2,
1
7P. 215-218] shows that the error term /n eq in equation (4.3.5)

is asymptotically normally distributed for large n about a mean of

zero with variance 02/m . Moreover, it may also be demonstrated that
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lim ,/n'(nq - @q) = 0 , (4.3.6)
n-—%w

for reference to (4.1.4) and (4.3.4) shows that

-lkT/n
S (ne) = T v | 7—) (4.3.7)
1im n n. -9 = Bk Ny s 3.
n—>= S e Va'my (l-e}‘k Y

where the constant

-0, T(g-1 AT
elk(q ) (1-ekk)

By = %
Then several applications of L'Hospital's rule yield the result that
-lkT/n
TX-n(l-e )
lk = lim 1

lim
-A T
RS VAR oWt e R

thus reducing (4.3.7) to (4.3.6). Now, applying a theorem given by
Cremér [?, PE. 25#] to the equation (4.3.5), we conclude that
vfﬁﬂ(Yq - @q) has the same limiting distribution as /n' Eé . That
is, for n large vfﬁj(Yq - @q) is asymptotically normally distributed
with mean zero and variance 02/m .

Now let us refer again to the theorem of Hsu's [15] used in
Section 4.1. In deriving the limiting distributions of functions of
sample means, Hsu utilizes only one property of normalized means such as

l—' .
the v n eq : namely, their limiting distributions. Therefore, since
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V/E_KYq - @q) has the same limiting distribution as Vfﬁ1€q , Hsu's
theorem may just as well be proved in terms of the (Yq - @q) instead
of the means E; « Such a proof in the context of this paper would
lead to

Theorem 2. If the function @XY) of means Yq possesses
continuous second order derivatives of every kind in a neighborhood of

the point ¢ , then /mn E@(Y) -’3(@)] is normally distributed in the

limit as n—> o< with mean zero and variance

T be o (4.3.8)
q a

as long as bq # 0 for some gq , where

b, = ESL-QYY) . (4.3.9)
q Y=p

In Theorem 2, ¢ is the point with the mq as coordinates, while Y
and ’8 are the same as defined in Section 4.l. Theorem 2, like
Theorem 1, holds for both Case 3 and Case 6. Moreover, the derivatives

EgL' QXY) » as stated in the last section, may be evaluated with the
q

help of (L4.2.12).

In Section 4.2 we expressed the estimators obtained by the new
procedure in terms of the sample means Yq , and then we went on to show
that the estimators themselves as well as their second order partial
derivatives with respect to the Yq are continuous in a neighborhood

of M . A study of Section 4.2 reveals that to demonstrate similar




. i e e v e e -

. e o

T e e e T e W v ya

At Tan e RN

Bt SRR

——r e

— T r—— .

69

continuity conditions for a neighborhood of ¢ for both Case 3 and
Case 6, we need only show that the following three properties hold for

Case 3 under the assumptions of our model:

(1) o fo, , T#s;

@ l2o)] = mL ey

=¢
(3) %,

= }ck -

Y=

Since our model specifies that a #0 and M > 0, k=1,
2, ¢ceey, P, and that AL # A, T # s , we deduce from equation (4.3.4)

that ¢_# ¢, for r #s . Furthermore, vhen Y =9,

where

" AT
'l]k = ‘_)]'F (l - e ) s k = l’ 2’ s ey P .
Note that W % 0 1in accordance with our model for every k . Now at

¢, |P|, defined in Section 4.2 in comnection with equation (4.2.1),

has elements

5 r+s5-2

Y ¥ ’

k=1

Hence, by comparing these elements with those given for |P(ﬂ)| in
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Section 4.2, we conclude by analogy with (4.2.2) that

|P(p)| = WUy e ing . (%.3,10)

Since it has been shown that IL) # 0 under the assumptions of cur model,
it follows that |P(cp)| £0.

We have shown that the first and second properties necessary to
prove continuity of the estimators and their second order derivatives in
& neighborhood of ¢ are satisfied. 1In order to show that the last one

holds, namely that at ¢ , &\k =X k=1,2, ..., p, we recall from

(4.3.3) that 1lim n.=¢_ . Consequently, since QK is continuous

n—>eo 4 0
in a neighborhood of 7 , lim ®(n) =%o) . But A(n) = x for all

— oo

n , and therefore /:}(q)) = xn. Hence, the estimators /}ék s /}‘\k and é\k
and their second order partial derivatives are continuous in a neighborhood
of o .

Now we wish to complete the demonstration that ./mm (& - 6) is
normally distributed in the limit as n—> oo with zero mean and
variance given by (4.3.8), where A may denote any of the estimators
/}\(k ) /)}k or ék and © denotes the corresponding population parsmeter.
To do this it is necessary to show that 1im % = a.k at ¢ ., Then

n—>co
Theorem 2 may be applied to give all the desired limiting distributions,

since it has already been shown that é(\k =X at ¢ , and consequently
that A = A, at that point.
Substituting the cpq for the corresponding Yq in (3.3.27), we

can see that the ék may be determined at ¢ by solving the following




e g o ———y

Tl

linear equations for the &K :

q-1

P
- 4 -1 kzl% A1), (k3a)

q=l, 2, oco,p .

But Qk = x &t ¢ , so substitution of x  for % in (4.3.11) and

multiplication of both sides of that equation by }‘kT ylelds

P ™ 6
> 21 a- - =0 , 4.3.12
= x  (1-x) L xi/n) o (k.3.12)

q=l, 2, .-o,p .

Keeping in mind that we are interested in limiting distributions for the

Qk as n—> eo , let us evaluate

TA A\ T/n " )
1i -————17—— = ————-7— «+3.13
n—-}moa n(l—xk Iy n—>oa M T/n

where }‘l;T is constant. This limit is equal to

1lim ———:E
t—>0 1 - e

which by L'Hospital's rule in turn equals 1lim et =1 . Thus, as

t—0
n—>coo , (4.3.12) becomes
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b

Lo (ewm) B -a) = 0,a=1,2, ., (h3.)
k=]

which has as its solution, 6% = ak « Henge, in the limit as n—>oc ,

ék = o at o .

Now, on the basis of the results obtained in this section and
the proofs given in Section 4.2, we conclude that as n—> o<, the
distributions of \/mi (& - x) , m (/>}k - %) snd Vo @, - o)
are asymptotically normal with zero means and variances calculated from
(4.3.8) in Theorem 2 with the help of (4.3.9) and (4.2.12). Explicit
formulas for the constants bq given by (4.3.9) may be determined for
Cases 1 and 4 by substituting @q for nq in the formulas for the

corresponding aq given in Section 4.2

4.4 An Additional Limiting Distribution for Large n

In this section we shall derive another limiting distribution as
n—>e< which will be utilized in Chapter VI and which will help summarize

the results of this chapter. ILet us consider the limiting distribution

. B
_ ) o ) - )] - am (Do) - 6n)
T s o0 b2 2

g ¢ g ¢

_ J

as n— o< of

N

. (h.h.1)
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As before, q=1, 2, ..., p for Case 3and gq =1, 2, +.., 2p+1 for

Case 6. From (4.1.9), (4.3.3) and (4.3.9) we deduce that

w2 ™
o
Q
no

lim [ = 1 . (4.k.2)
n—> oo

a ™
P
Q
o

Moreover, since it has been shown in Sections 4.2 and 4.3 that at either

m or o, '%S=xk a.nd&k=)k,k=l,2, eeey P,

lim / mm '[@(cp) -@(n)] = 0 (4.%.3)

n—> oo

for /9\ = /’EK or /*k .

In order to complete this proof, we need to demonstrate that
(k.%.3) also holds for © =@ , k=1, 2, ..., p . Now if the set of
equations (3.3.27) is solved for any given Q‘ at both 1 and ¢ , the
two solutions will be ratios of determinants with identical denominators.
In our consideration of the continuity of the Q‘ at n and ¢ we have
already seen that this denominator is not zero at either 1n or o .

By virtue of (4.3.13), it can also be seen that this denominator approaches
a constant as n—>oo . The determinants in the numerators of the two
solutions will also be the same except for the kth columns. In the
solution for Q{ at 17 , this kth column will be the column vector

T]T , while in the solution at ¢ it will be q)T . Now, like the
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denominators, the cofactor of the elements in the kth colums will be
identical for the two solutions and will approach constant limits as
L—>oo . Therefore, expanding the numerator detexminants about. their

kth columns, we find that

ak(q))'@-k('rl) = Z (CP n)u_, k=1,2, «oe, p ,

a=1 "o’ T

where lim U_ is a finite constant for every q . Now when m is
n—>ceo
held constant,

limoo/“[@k(cp &K(n)J Vel le/_(cp . ]L lim Uq} ,

n—> =] e —> e

kK=1,2, veo, P .

But from (4.3.6), lim /n (@ -n_) =0 for all q . Therefore,
n—>> oo q
(4.4.3) is also satisfied when 6& , k= 2, vee, D -

Now from (4.4.1), (4.4.2), (4.4.3) and a theorem given by Cramér

[2, L. 25&] » We deduce that the left side of (4.4.1) and

Vmn' EG(Y - ‘¢ cpﬂ (4. 1)

have the same limiting distribution as n—>eo . But from Theorem 2
it follows that (4.4.4) has an asymptotic standard normal distribution

from n large. Therefore, since ’a(n) = 6 , we have that
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(k.k.5)

has a limiting standard normel distribution as n—><< . But (4.4.5)
is also a standard normel variate in the limit as m—> =< , a result
that follows from Theorem 1. Thus, the results of this chapter may be
summarized by saying that the distribution of (4.4.5) approaches the

standard normal distribution as either m or n—>co and by noting

that ad——{>'bq as n—> o< , where 8, is defined by (4.1.9) and bq

by (4.3.9).
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V. THE PROPERTIES OF THE ESTIMATORS

5.1 gufficiency

This chapter will be concerned with the statistical properties
of the estimators derived with the new estimation pirrocedure. In this
section we shall consider whether or not the estimators 6% and g%
are sufficient. To do this it is necessary to examine the Jjoint density
function of the cbservations yij - However, our model does not specify
the distribution of the yij but only requires that the corresponding
errors, eij » be identically distributed with mean zero and commowu

variance 02 - Hence, in order to study the sufficiency of our estima-

tors, we shall first make the additional ssumption that the errors e. . »

1J
and consequently the observations yij » are normally distributed.
Now, for Case 3, each ygj has the density function
L
(v 55 oo A o%) = — exp 5y 3 ak'e“”\kti)2
s 2 b b = . = TTA\Y s 2T
1 2n’ g 26° 3 ko)
(5.1.1)
Thus the joint density function of the yij is
2pn-1 m 5 1 1 2pn-1 m
‘FT‘ —/}Tf(Y~~5 ’ ;6)=——————-—-—exp. - = 2 Z
=0 j=1 % % (256° ) PPR 26° 120 3ol
P -lkt.
i2
(le - X o e ) (5.1.2)
k=1
A

If the estimators ak and ’Qk obtained by the new procedure are
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T

sufficient, then the density function (5.1.2) must necessarily be
factorable into two functions, one of which involves only the estimators
6% and ai' and the parameters of (5.1.2) while the other is independent
of the parameters o and M see [2, PP. h88-h8é[> . Thus,

after expanding the exponent of (5.1.2), we can see that the estimators

GL and ,&k are sufficient only if the sum

2pn-1 m P ' -lkt1 2pn-1 m P -lkt{]
z r (y,; & ) = 2 Z ) L
i=0  J=l 15 e % ° =0 \i(3=l I

(5.1.3)

can be expressed without explicitly involving a product of the observa-
tions yij and the parameters a and kk . It can be shown that this

is possible only if n =1 . Then

JA
n A Kn(1-1) (1-e %(Kn)
L y;,=85;=m ¥ e , (5.1.4)
j:l J k=1 -'Qk K
l-e
m
and therefore in (5.1.3) the sum PR i3 may be replaced by a functionm
J=1

of the estimators G& and Qi . That is, when the errors e,. in our
J
model are normally distributed, the estimators QL and 'Qk are sufficient

only if the number of points ti at which observations are taken is
equal to the mumber of parameters in the model. This result may be

shown to hold for Case 6 as well as Case 3.
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The estimators é& and a& of the new estimation procedure have

been found to be sufficient in only one instance other than the one
already mentioned under the assumption of normality. This instance occurs
when both m and n =1, as in the method originally presented by

Prony. 1In this situation, as can be seen from equation (5.1.4), each

yij is itself a function of the estimators 6& and /%k ;» and therefore

A

the estimators Gk and Kk are sufficient regardless of the distribution

of the errors e..
1j

5.2 Consistency

In order to prove consistency for the estimators derived with
the new estimation procedure as m—> oo while n is held fixed, we
need only utilize results already obtained. Means Yq have been defined
as have their expectations nq » and these means converge in probability
as m—> =2 to the corresponding nq - Furthermore, continuity of each
of the estimators Q%, G% and @i in a neighborhood of 1 was
demonstrated in Section 4.2. It was also shown in that section that
at n , Qi =X 6% = and &% = lk . Hence, on the basis of
Slutsky's theorem [27} s> we conclude that the estimators Qi, 6%
and @% converge in probability to Xy Ok and lk respectively as

A

m—> o< ., But an estimator © is a consistent estimate of ¢ if it

converges to © in probability <}ee [}8, rg. 5:[) » Therefore, Q%,
6% and ’Qk are consistent estimators of X, Ok and lk respectively
for large m .

In order to use Slutsky's theorem to prove that the estimators

are consistent as n —>co with n fixed, we need to show that each
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Yq converges in probability to some constant as n——> o< . Such a
probability limit can be found even though, as shown in Section 4.3, the
Yq cannot be regarded as means of identically distributed variates.

From equations (3.2.1) and (3.1.5),

qn-1 P -lei qn-1 m
S =nm 2, Y o © + ) 2, e,
4 i=(q-1)n k=1 i=(q-1)n g=1 9

Although we are letting n grow large, we wish to keep the domain for
the ti constant in length, where ti = Ki . That is, when the number
of points at which observations are made is increased, the intervals
between points are shortened so that the length of the interval for
which the yij sum to Sq is constant. This constant, as defined
earlier, is T(=Kn) . Now we may rewrite Sq as a sequence in n

without involving the variable K as follows:

qn-1 P -kk %% gn-1 m
S =m . ¥ o e + z z LI
d i=(gq-1)n k=1 1=(q-1)n j=1 Y
Thus, we may express Y =8 /mn as
Ti
n-1 -\ — qn-1 m
p o2 B g TxmorL R
4 i=(q-1)n i=(q-1)n J=1
(5.2.1)

Now from the definition of a definite integral [81 , it can

be seen that
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Ti

-1 S —— T Y -\t
lim £ q§ iake}‘kn?—=£ fq Z‘.ake}‘kdt
n—>eo T i.(q-1)n k=1 BT T (ge1)T kel
1 B -1k(q_1)T -\ T
=z I = (1- ).
T o N ©

(5.2.2)

Also, since in the model the eij are independent, identically distri-

R . 2
buted variates with mean zero and variance o ; the mean

1 qn-~1 m
m—H Z Z eij

i=(gq-1l)n j=1

converges in probability to zero as n—> oo . Therefore » taking the
probability limit of both sides of equation (5.2.1) as n—> oo s We
can see that Yq converges in probability to the constant given in
equation (5.2.2). Thus, referring to the definition of cpq given by
formula (4.3.4), we have that Yq converges in probability to q)q as
n—> oo

In Section 4.3 it was proved that at the point P é\(k and Qk
are continuous and equal to X, and )‘k respectively. Thus Slutsky's
theorem [27] leads to the result that /}ék and /)}k are consistent
estimators of X, and )‘k respectively when m is held fixed as
n—> o< , Tt was also demonstrated in Section 4.3 that @k is continuous

at @ , but instead of showing that @k = o at ¢ , it was only shown

that at ¢ , 1lim Qk =q - In other words, the estimator 6\ is a
n—o oo

e i A A PO A AR R A W B 5 b o1 ST e e
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continuous function of n for this case, for the solution of equation

(4.3.11) involved a factor

TN

—T/o. (5.2.3)

n(l - X ™

It was shown in Section 4.3 that the expression in (5.2.3)——> 1 as

n—>co . Therefore, if we apply Slutsky's theorem to equation (4.3.11)

. apart from the factor (5.2.3), and then if we utilize the theorem that

the limit of a quotient is equal to the quotient of the corresponding

limits, where the limit in the denominator is not zero, we still obtain

the desired result. Namely, as n—> oo , 6& converges in probability

to o and hence 6& is a consistent estimator of Ok for large n .
It is interesting to note that ¢q is functionally independent

of m . However, as mentioned in Section 4.1, nq is a function of n .

In fact, since

T A

lim = 1
n—> o n(l - xi/n) ’
from (4.1.4) we deduce that
by
1 % q-1
1im 7. = & X2 =— (L -x)
n—> o 1 T k=l}‘k Xk Xk

Therefore, equation (4.3.4) reveals that

lim n_ = ¢
n—>eo 4 4
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Hence, as both m and n—>eo , the Y converge in probability to
q

the corresponding constants @q . It is immaterial whether the limiting .
Process is carried out with respect to m or with respect to n first.
The conclusion then is that the same consistency properties which hold
for m fixed when n—>eo still hold when both @ and n—> oo s

/\\ /\\ /\ 3 1 A
namely, that X Qk and lk are consistent estimators of X Qk

and lk respectively.

5.3 Bias
Although the estimators obtained with the new estimation procedure
are consistent, and therefore unbiased in the limit, they are not unbiased
for small samples. However, it does not seem feasible to determine
analytically the extent of the bias in general for small samples. Instead, -
in this section an approximation to the bias will be given only for the
estimator Q‘ for Cases 1 and 4. Later the extent of the bias will be
investigated empirically in Chapter VI, which gives the results of an
extensive sampling survey for Case 1.
Let us first consider the exponential estimator Q‘ for Case 1,

where §\= YE/Yl . If we expand Q\ in a Taylor series about the point

N = (nl, “2) » we find that

r r-1 r-1l |
X = — 4 Z P S — (Y -1 ) + Z . (5-3.1)
1 r+1 11 r
1 r=1 Uiy r=1 rn,

This series converges only when IY < nl since YE/Yl has

L - Ml
a singularity when Yl = 0 . Now, recalling from Chapter III that -
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nz/nl equals the constant x , we may approximate the differencel (éé - X)

by
-1 -1
N (-1)7 1, o F DT (- )T (x,-0,)
R-x ~ — (Y, - )+
r+l 1 1 T
r=1 ﬂl r=1 r ﬂl

(5.3.2)

vhere only a finite number N of the terms in (5.3.1) are used in the
approximation. Taking the expected values of both sides of (5.3.2), we
can approximate the bias, £ (4(\ - x) , of the estimator £ relative to

the constant exponential x as follows:

§(-1)7
Ed-x) = B — 2w (1), (53.3)
- 1

where “r(Yl) is the rth order central moment of Y, . Now if in (5.3.3)
we replace the expectations nl and ﬂz by the sample means Yl and

Y2 , we obtain the bias approximation

N (-1)F Y,
—=T M (Yl) . (5.3.4)
r=2 Yl

5(’:5- x) ==

Let us evaluate (5.3.4) under the assumption that the errors eij
in our Case 1 model are normally distributed with mean zero and common
variance 02 . Actually, since the expansion (5.3.1) converges only

when Yl lies in a circle in the positive quadrant, it appears as if

we should further restrict the errors in such a way that Yl will always
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be positive. But Fieller ir5i has shown that when ny > 0 and large

relative to the standard error of Yl ; such a curtailed normal distribu-
tion for the errors eij differs very little from the usual normal
distribution. Now for Case 1, U and N, are both positive provided
that the coefficient o > 0, and | ny| >| ngi even though the
corresponding means, Yl and Y2, have the same variance. Therefore,

uty would be expected to be large in absolute value relative to the
standard error of Yl - Hence, when the Case 1 model is fitted to
positive data, there is no need to further restrict the errors eij

once they are assumed to be normally distributed.

When the errors eij are assumed to be normally distributed,

My (Yl)

0 for r odd ,

r -

2 \2
(r-1) (r-3) ... (1) %E:> for r even.

Thus substitution for “r(Yl) in (5.3.4) gives

M0 2\V
S(Q*- x) = Z ﬁﬁ%IT— (2v - 1)(2v - 3)...(1) <:§E:>
v=1 1 n=Y

(5.3.5)

~ 4

2 NV
(2v - 1) (2v - 3)...(1) (—".g\ ,
1 \m Y] J/ .-

Mz

v

where M is the largest integer in g . But the right side of the "

approximation (5.3.5) is always positive. Therefore, when the errors
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e,. are not only identically distributed as specified by our model but

i
are also normally distributed, the expected bias of Q for Case 1,

which is approximated by (5.3.5), is always positive. This bias decreases

74\

as m, n or Yl becomes larger or as x decreases.

A development similar to that already presented for Case 1 may be
used to obtain an approximation to the bias of /}} for Case 4. Corresponding

to equation (5.3.1), for Case 4, when |Yl -y - Y, - T]2| ' I'ﬂl - T]2|

> 0, we have the expansion

r
Y - - for @) Y - -
Rax (142 R I ¥ (-1)F 1" N Y2+n2>.
Y =0 - Y% 0% /oo M - Mo

(5.3.6)
From this expansion we obtain an approximation, corresponding to that
given by (5.3.4) for Case 1, to the bias in £ for Case 4. This

approximation is

(-1)" k§0 E"TI.Y:TE)_' n(T) oy (Yp)

N
CR-xxE T

r=l (Y - Y )r
1”1 -
(-1)F 5 r (Y,) u (Y,)
.8 g oo ETTE) He W4 rr-k+l 2
r=1 (1{2 - Y5) (Yl - Y2) Y=

(5.3.7)
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If we set N = 6 and if we assume that the errors eij in our Case k4

model are normally distributed, (5.3.7) becomes -
N 2 2 6 2

£ - x)= E20 (1- 22 s

(Y, ~Y, ) L mn(Y2-Y5) (Y,-¥,) mn(Y, -¥,)
4 L
30 o 60 o

- LRS- v b (5.3.8)
mn(YE-YB)(Yl-YE mn 1 - 1o

As before for Case 1, the approximation (5.%.8) for Case 4 is valid

only if the expectation of the denominator of é} , in this case (nl - n2) R
is positive and large relative to the standard error of that denominator.
Thus (5.3.8) should be used as an approximation to the bias of & relative
to x for Case 4 only if (Yl - Y2) is positive and large relative to

its standard error even though the errors eij are assumed to be

normally distributed.

5.4 Efficiency

The estimators yielded by the new estimation procedure are not
in general efficient, and no measures of their small sample efficiencies
are avallable. However, since maximum likelihood estimators are
asymptotically efficient, the asymptotic efficiency of an estimator from

the new method can be determined by taking the ratio of the asymptotic

variance of the corresponding maximum likelihood estimator to that of .

the estimator in question.

Y et om omox o



 AETEe g W W

87

The asymptotic veriances of the maximum likelihood estimators of
the parameters in our model can be found by inverting a matrix of products
of first partial derivatives of é?(yij) with respect to those parameters
(jsee [9]:) « If we let Ok s k=1,2, ..., 2p , represent our Case 3
rarameters when the errors e are assumed to be normally distributed,

iJ

then this matrix has elements

el w3y, 3y

c = .
rs 120 321 J Gr 2] 98
For example, for Case 1 with Gl =a and o, = A,
—35— = e y TSN = @ ti e ’

and the matrix with which we are concerned has elements

2pn-1 -2\t

i
c =m2 e )
11 120
2pn-1 -2\t
cpo=cy =ma X t, e 1 s
i=0
o 2pn-1 o -2lti
c22 = ma PN ti e .
i=0

If we denote the corresponding elements of the inverse of this matrix

by B s *r, 8=1, 2, then the asymptotic variances of the maximum

2 22 2
likelihood estimators of a and )\ are given by cll o and c o

respectively.
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Now when n = 1 and the errors eij in our model are normally
distributed, the estimators obtained by the new procedure, which have
already been shown to be sufficient in this instance, are also asymptotically
efficient. A glance at (4.2.15) and (4.2.16) and the definition of Mg
given by (4.1.4) shows that as m increases;, the asymptotic wvariances
of both é} and ’Q for Case 1 decrease proportionally. Also, it can

be seen that if everything but « is held fixed, the asymptotic variance

of ’Q is inversely proportional to Q? while the wvariance of é> is
not affected by changes in o . Moreover, if K , the distance between

the observation points ti > 1s allowed to wvary while the product AK
as well as m , n and @ remain constant, the asymptotic variance of
Q‘ varies inversely with K2 while the asymptotic variance of 6‘ is
again unaffected. But the asymptotic variances presented above for the
maximum likelihood estimators of «o and A for Case 1 can be shown
to be influenced in the same way by changes in m , in a, or in K
when AK 1is held constant. Therefore, in order to obtain an idea of
the asymptotic efficiency of the estimators yielded by the new method
for Case 1, we need only consider the relative effects on the asymptotic
variances of the maximum likelihood estimators and those from the new
procedure of allowing n to be greater than one and of varying A
without changing K or n. Such a comparison is made in Tables 3 and k.
The first rows of Tables 3 and 4 give the asymptotic variances
divided by 02 of the maximum likelihood estimators of ¢ and A while
the second rows contain the corresponding values for the estimators

from the new procedure computed through direct substitution in (4.2.15)
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Table 3

Case 1 Asymptotic Variances and Efficiencies for Different Values of n

@=m=1l, T=Kn=2, A=/n 2
n=1 n=2 =l n=
e | A 2 A 2} A e |
M.L. Variances/c2 1.000 |4.250 | .952 {1.974 | .771|1.149 | .519 | .650
N.P. Va.riances/02 1.000 {4.250 |1.605 |3.778 |1.69T7 |2.593 |1.251 |1.530
Efficiency 1.000 |1.000 | .593 | .522°| 455 | 443 | k15 | 425
Table 4

Case 1 Asymptotic Variances and Efficiences for Different Values of X

a=m=1l, T=Kn=2, n=2
A=g /n 2 A=g /n 2 A= /o 2 A=2 /o 2
Q A Q A 2 2 ) A
M.L. Variances/02 794 | 345 | .866 | 619 | .952 | 1.9Th | .996 | 13.229
N.P. Va.riances/02 .952 | .4hz {1.118 | .858 [1.605 | 3.778 |[L4.826 | 82.2k0
Efficiency B34 | 0780 | .T75 | .21 | .593 | .522 | .206 .161

and (4.2.16). The third rows list asymptotic efficiencies of estimators

yielded by the new method.

decrease as either n

Note that these asymptotic efficilencies

or X\ Dbecomes larger.
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Similar results to those already cited for Case 1 have been
Obtained for Case 4. Again the asymptotic variances of both the maximum
likelihood estimators and those from the new procedure are inversely
proportional to m while in both cases the asymptotic variances of the
estimators of A are also inversely proportional to ai and to K2
when AK 1is held fixed. Both sets of asymptotic variances for estimators
of %, and @, are unaffected by changes in @, and in no instance

1

does the value of ao or the sign of @, enter into the calculation of

1
asymptotic variances. Tables 5 and 6 for Case 4 correspond to Tables 3

and 4 for Case 1 and indicate the effect of changes in n and A on

the asymptotic efficienciesof the estimators derived with the new procedure.

The variances for the new procedure were calculated by substitution in

(4.2.18), (%.2.19), and (L.2.20).

Table 5

Case 4 Asymptotic Variances and Efficiencies for Different Values of n

+oy=m=l, T=Kn, A =/n 2
M.L. Variances/g~ g 1.109 |1.708 | 5.905 ol .952 | 3,194
' N.P. Variances/c> g 1.981 | 1.844 |16.59% 991 | 1.529 |11.387
| Efficiency ;* 560 | 927 | 3% 499 623 | 280

e
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Table 6

Case k4 Asymptotic Variances and Efficiencies for Different Values of A

tgi=m=l, T=Kn=2, n=2

A:% In 2 A=4n 2
A A
| 61 & [ 4 [ o | & |8
M.L. Variances/o- || 6.56% | 5.727 | 3.445 | 1.109 | 1.708 | 5.905
N.P. Varia.nces/02 16.500 (12.239 9.608 1.981 1.844 |16.593
Efficiency .398 L168 .359 .560 .927 .356

The results presented in this section are limited in scope and
apply only when the errors eij are normelly distributed. However,
Tables 3-6 do show that the estimators produced by the new procedure
are certainly not in general efficient and that asymptotically they are

quite inefficient under the conditions of this section.

5.5 Optimum Comstruction of the Sums. Sq

In Section 3.2 it was indicated that there are several ways of
forming the sums sq from the observations yij for which essentially
the same method for estimating the parameters of our model may be followed.
The procedure given there for calculating the Sq was said to be an
optimum procedure in some respects. In this section it will be shown
that it is indeed a better method than certain alternative methods.

As an alternative construction for the Sq , let us take

% m n-1

s = L L
T 4=l v=0

Yopveael,j F 9= Lr 2 2o (5.5.1)
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Note that the subscript i of the model presented in Section 3.1, which
is represented in equation (5.5.1) by the subscript (2pv + g-1) , still
ranges from zero to (2pn-l) . In order to form the sums S; , we divide
the domain of the ti into n equal intervals instead of 2p intervals
as before. Then we let SI be the sum of the observations made at the
first observation points in all of the intervals, sZ be the sum of the
observations from the second observation points of all the intervals,

and so on. In the remainder of this section we shall continue to denote
entities connected with the alternative construction of the sums Sq

with an asterisk as a superscript. So, corresponding to equation (3.2.3),

we have

* n-lop 2pv-1+
é?(s ) =m T z ak_/xk 9, g=1,2, ..., 20, (5.5.2)
q v=0 k=1
which sums to give
2pn
q-1 (1 —dﬁyk )

As before,/\.k = exp.(—lk K) . Following the same procedure used in
*
Section 3.3, we set (5.5.3) equal to Sq , and then we solve for estimators
* /\-)(-
G% and lk of the parameters o and Kk .
* *
In order to facilitate the solutions for o and lk , 1t is
k
again expedient to resort to matrix algebra. We shall once more make
use of the matrix o defined in Section 3.3, and we shall form column

—% * *
matrices s and s by substituting Sq for Sq in the matrices
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s and s previously defined. It is also necessary to modify the
definitions of the elements of the p by p matrices L , W and V wused

in Section 3.3 as follows:

* r-1
,er - AT ,
. m(1 - A2
W = o) ,
rs 1 -A°P T8
r
*
P
Yes = JALr 8rs '

Corresponding to equations (3.3.1) and (3.3.2) for the Sq , the equations

¥*
for the Sq may now be represented by the two matrix equations

L*W* a = E* , (5-5-’"‘)
* ¥ ¥ *
LWV a = s (5.5.5)

Solving (5.5.4) for o and substituting the result in (5.5.5), we arrive

at the equation

* ¥ -] % *

LVL 8 = (5.5.6)

IR

—
Because of the definitions given above, the vectors s and

* *
s 1in equation (5.5.6) are of the same form in terms of the Sq as are

the matrices s and s of Section 3.3 in terms of the sq .
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* *
Furthermore, V and L are of the same form in the JALk that the

matrices V and L of Section 3.3 are in terms of the X - Thus,
from the analogy between (5.5.6) and (3.3.4), we see that the solution
given in Section 3.3 for the X, is the correct solution for the J“_k
in terms of the newly defined S; . That is, the solution obtained for
J\_E in terms of the Sq defined in Section 3.3 is now the solution for

* X
J“Lk in terms of the Sq - Hence, it follows that solutions for 6%

*
and ’Qk may easily be obtained in much the same way that 6% and @%

were derived in Section 3.3.
*
Not only can the Sq be used to obtain estimators in a way
similar to that developed for the Sq , but some of the properties of

/\ and /\ b h 't . -t X and /\* )
o) lk can also be shown to hold for the estimators lk

In particular, the estimators Gi and /§; are consistent for large

m when n is held fixed. However, consistency for m fixed and n
large no longer obtains. To demonstrate this, let us attempt to parallel
the consistency proof given in Section 5.2 as n—> oo , but with the

*
variable Sq instead of S

From (5.5.1) it follows that

n-1 p -\, K(2pv+g-1) n-1 m
S =m ¥ 3 o e k + L L e, . - (5.5.7)
d v=0 k=1 v=0 §=1 Y

Carrying out the same sort of manipulations that were used in Section 5.2,
we find that (5.5.7) yields
T
n-1 -Ak E(Epv+q—l)

D
* 1

Y =-— 2 X o e op .
4 v=0 k=1 v=0 j=1 Y




—> oo if n—> oo and are then neither admissible nor consistent.
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The last term, which is the mean of the independent, identically

distributed errors e,

iJ
So, referring once more to the definition of a definite integral [8] s

, is again zero in the limit as n—> oo

we see that

1 P 2pT -lkt
lim Y = = & [ at
n— oo 2pT k=1 0] ak ©
P - _2pT
- kzl% (1o X (5.5.8)

But the right side of (5.5.8) is independent of q , and hence in the
limit as n—> o , all the Y; are equal. That is, the constant

limits @; corresponding to the @q defined by equation (4.3.4) are
all equal to the constant given by the right side of equation (5.5.8).

¥*
)| , corresponding to the determinant

Therefore, the determinant IP(@
lP(@)l evaluated by equation (4.3.10), is singular and equal to zero.
Since |P(@*)| = 0 when the new estimation procedure is developed
in terms of the S: , it follows from equation (3.3.23) that the estimators
’gi—f><90 if n—> =< . Hence the exponential estimators x; also
There-
fore, the estimators Gi and ’Q; , which are computed from the @i »
are not defined for large n either, and hence they are not consistent
estimators of the parameters ak and lk . So it is evident that

increasing the number of observation points ti would not be likely

to improve the accuracy of the estimators obtained with the alternative
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method presented in this section for forming the sums Sq . Therefore,
the construction presented for the sums Sq in Chapter III is better

*
than that given in this section for the S .

a

5o far we have considered only one alternative formation for the
sums Sq which leads to summable geometric series for the expectations
of the Sq , and which is therefore amenable to an estimation procedure
similaer to that developed in Chapter III. There are many other alternative
constructions which involve both the approach used to obtain the Sq
and that used to arrive at the S; . For instance, the domain of the
observation points ti might be divided in half, with the observations
from the first half being used to form Sl’ 82, cavy Sp by one of these

methods and with the remainder of the observations being used to form

5 esey S by the other method. All such constructions would

2p

make at least two of the constants ?. and Pg equal for r % s ,

p+l? Spe2’

and hence, like the alternative method already considered, they would
result in estimators which would not be consistent for large n . The
other likely alternative constructions are such that the sq would not
all be sums of the same number of yij . This would complicate the
solutions for the estimators considerably and would not be advantageous
except perhaps in special cases. Hence, we conclude that the construction
for the sums Sq presented in Chapter III is an optimum construction,

at least by comparison with the alternative constructions considered here.

5.6 Conditions for Obtaining Admissible Estimates

go far in this chapter it has been shown that the estimators

yielded by the new estimation procedure are consistent, but not in
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general sufficient, unbiased or asymptotically efficient. It has also
been demonstrated that the construction given in Chapter III for the
sums Sq is better than several alternative constructions which would
lead to the same sort of estimation procedure as that presented in this
paper. Now we shall study conditions for the existence of admissible
solutions for the estimators of the new estimation procedure.

In the model specified in Chapter III, lk >0,k=1,2, ..., P
and A # A, for r #s , making 0 < X < 1,k=1,2, vee, P »
In addition, the xk are real and distinct. So in order for the
estimators Qk to be admissible, we shall require that 0 < Qk < 1,
k=1, 2, ..., p , and that the Qk be distinct and real. Now the QL

are the p roots of the polynomial

B L -8 P T (-1)1"1’E\p_l x + (-1)P é\p -0 ,

(5.6.1)

where é& 1 . Since the @;, are the elementary symmetric functions

OE
of the &\k,inorderfor 0< % < 1,k=1,2, ..., p, itis

necessary that

and that
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where{}p-l)/2] denotes the largest integer in (p-1)/2. Also, it is

necessary that /%5 < éé

| - Furthermore, given T%_ > 0, it follows

from Newton's rule of signs that a necessary condition for all the 4%

to be real is that each of the quantities

JAY A AN JAY
1\\2 By B "Ee\\f @1 Es
-~ had o -~ b o - —~ - J
fl/ p’0  p’2 §2/ :flzfﬁ

e

Pa)
2
£ 8
- o ® - C
pcp-l D p-2

be positive, where

- P
pck T kT (p - k)T

Note that these conditions on the ﬁ} are only necessary conditions,
and that they are not sufficient to guarantee an admissible solution for
the ’Qk . Additional conditions which are both necessary and sufficient
for the roots of (5.6.1), whether they are real or complex, to be less
than one in absolute value are given by Samuelson E?%E

Instead of testing the ’ﬁ; against all of the conditions given
VAN

above, it is usually more expedient merely to compute the Er and note
whether or not they are all positive. Then if one or more of the ﬁ%

is negative, the set of estimators Qi is not admissible. But if the

@} are all positive, Sturm's theorem E28, p. 105-107] may be used
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to determine the number of real roots of the polynomial (5.6.1) which

lie between zero and one. Sturm's theorem states that

"there exists a set of real polynomials f(x) , £'(x) ,
fz(x) , f3(x), ceey fm(x) whose degrees are in descending

order, such that, if b > a , the number of distinct

real roots of f(x) =0 between x=a and x=Db is
equal to the excess of the number of changes of sign in
the sequence £, f°', f2, coey fm wvhen x = a over the

number of changes in sign when x = b".

f'(x) denotes the first derivative of f(x) . KNow let q; be the
quotient and (-f2) the remainder in the division of £ by f' . Then
fe(x) is given by
- 8
£, = q £' - f .

The other functions of Sturm's theorem may be similarly defined as follows:

H
L1}

3 Pp -,

B i3

}-b
=
[}

H
[

m - -1 f‘m-l - fm—2 )

The new estimation procedure'leads to an admissible set of estimators

Qk

if and only if the application of Sturm's theorem shows that there

L

are p real roots @i between zero and one, and provided the X, are

distinct. PFulfillment of this latter condition can usually be demonstrated
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only by solving for the roots ’Qi of the polynomial (5.6.1).
Sturm’'s theorem gives a satisfactory way of testing for an
admissible set of estimates Q% once the coefficients ﬁ; have been .
calculated. Also, the conditions given above for the @%_ which are
necessary for an admissible solution may be helpful in weeding out
inadmissible solutions, but again they cannot be applied unless the ﬁ;
have been calculated. Since the calculation of the @t_ is rather arduous
for p > 3, it would be desirable to obtain conditions for an admissible
solution for the Q% which could be imposed upon the sums Sq .  However,
no such conditions which can be readily applied have been found except
when p=1 or 2.
For Case 1, where p = 1 and where 'Q corresponds to the Q%
in the above discussion, Q?: SQ/Sl . It is immediately evident that .
% is admissible, that is, that % is resl and lies between zero and one, -
whenever Sl and 82 are not zero and are of the same sign with -

Is;] > |s,| . For the modified exponential function, Case L,

1l > s,

N Sz - 83
= 8. -8,
1”°2

Now Q‘ is an admissible estimator whenever the sequence Sl ) 82 ’ 83

is strictly monotone, either increasing or decreasing, with Sl - S2] >

5|

One of the conditions necessary for an admissible solution for
AN . JAN é} s .

the X, for Case 2 is that El and o be positive. From equations

(3.5.7) it can be seen that this condition requires that the expressions .
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2 2
3 - 82 and 82 Sh - S3

Factoring 82 Sh out of the first expression,

Sl Sh - 82 S3 s Sl S all be of the same sign.

82 S3 out of the second,
and S3 Sh out of the third, it follows that these expressions will be
of the same sign when all the Sq are positive if and only if the
sequence Sl/S2 s 82/83 s 85/84 is strictly monotone. Since the Sq
usually are all positive in practice, this is a convenient necessary
condition which often may be easily used to eliminate an inadmissible
solution. The other necessary conditions given previously for the ﬁ;
mey also be expressed in terms of the Sq for Case 2, but they are

. sufficiently complicated so that it is as easy to carry out the actual
solution as it is to make the tests.

The discussion given above concerning conditions which must be
satisfied if an admissible solution is to result does not give any clear
indication of whether or not the new estimation procedure will lead to
admissible estimates in most practical problems. In the sampling survey
which will be reported in Chapter VI, some idea of how often admissible
solutions may be expected to result will be gained. Also, situations
which lead to inadmissible estimates will be more clearly depicted and
in Chapter VII it will be shown that for some such situations the new
estimation procedure may be used to fit a different model than that
specified in this paper. One more point should be brought up here. So
VAN

far in this section we have only discussed admissible solutions for the X, -

But when % is admissible, Qi will be real and positive. Hence ’&k

k
will have the same range as that specified for Ak , and so when Qi is
admissible, Qi will be admissible too. The same is true of the 6&

except in rare instances when the @i are admissible but one of the G& is gero.
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VI. SMALL SAMPLE STUDIES

6.1 Distributions and Confidence Limits

In this chapter we shall obtain confidence limits for estimators
from the new procedure and then we shall present the data from an empirical

sampling study. However, it is first of interest to note that although

no work has been done on the exact distributions of the estimators 6&
and /ik for either Case 3 or Case 6, the small sample distributions of

the @i have been considered. TFor either Case 1 or Case 4, when the errors
eij are normally distributed, Q\ is the ratio of two normally distributed
variates, and its distribution has been studied by Fieller [5] and
Merrill [22] . For the general cases, Case 3 and Case 6, the @i are
roots of the polynomial (3.3.25) with the ,%r , which are real and
continuous, as coefficients. The distributions of such roots have been -
investigated by Hamblen [lEj and Girshick [lO] . Although these

papers are of mathematical interest, the distributions derived are too

complex to yield distributions or confidence limits for either the 6&
A

lk .

Exact confidence limits are available, however, for ’Q for Cases 1

or the

and 4, provided that the eij are normally distributed. Fieller [6i

shows that

"if y and 2z are estimates of E and n subject to
random errors normally distributed about zero mean, and

if vyy s vyz s vzz are joint estimates, based on f
degrees of freedom and independent of y and 2z , of the
variances and covariance of the error distribution, then .

-
the fiducial ‘confidence& range for B = T)/g consists
of those values for whic
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2 2 2 2 2 2
(z" -t v, ) -28(yz - ¢t vzy)+r:> (y -t vyy) £ o0

wvhere t 1is the appropriate level of the Student
distribution for f degrees of freedom."

An estimate 52 for 02 may be obtained as indicated in the next
paragraph. Then for Case 1, with y =S5, , z =5, , & = gf(sl) ’

2
n=(?(82) » Vg, = 0, Viy = Vgp = DS and B =é?(sl)/é?(s2) =x , it

follows from Fieller's theorem that a confidence interval for x consists

of those wvalues of x for which

2 2 .2 2,2 2 2
(82 - mn s ta) - 2x 8;8, + x (Sl - mn s ta)<§ 0, (6.1.1)
where ta is the g-level critical value of the Student t-statistic with
2
the same number of degrees of freedom as the estimate s . The inequality

(6.1.1) is equivalent to the confidence interval

1/2
2 2 2 .2
5,8, - s [@n (Sl + 8, -mns ta)] ty .
2 ~
o

X

2 2]
Sl -mns t

1/2
2 2 2 .2 ]
5.8, + 8 [pn (Sl + S, -mns ta t

2 (o
< s . s (6.1.2)
Sl -ms T
which is more convenient for calculation. Since A = - % /n x , where

T =XKn , and A is therefore a monotone function of x , for A,

o A AR MR A A e
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corresponding to (6.1.2), there exists the q-level confidence interval

1/2
1 [ [ 2 2 2 2 J
- In ls, s, +s |m (Sl + 8, - mn s ta) t

lw 172

1 2 2 2
- = - t
< A T In (Sl mn s a)

-

1/2
[ 2 2 2 .2
/n 181 S, - 8 [mn (Sl +8, -m s taﬂ ta} .

(6.1.3)

Hl~

< -

2
We mentioned above that an estimate 52 of ¢ is available.

If m , the number of observations made at each point ti , is greater

2 2
than one, an estimate 8; of o may be formed for each ti by

computing
2 1 n _
Si = E;I Z (le - yi) (6.1.)4-)
J=1
where
- 1 o
V. = = L ¥.. (6.1.5)
i m =1 ij

2
Since under our model the eij are assumed to be homogeneous, the Sy

may then be pooled to form

Z 54 (6.1.6)
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with 2pn(m-1) degrees of freedom for Case 3 or

(2p+1)n-1
§ = ‘Z 8 (6.1.7)

S
¥
ful
B
[ \V]

with (2p+l)n (m-1) degrees of freedom for Case 6. As in the case of a
linear regression, 02 may also be estimated using the mean square
deviation of the yij from regression. The usual practice for a non-
linear regression is to assign the same number of degrees of freedom to
this estimate as it would have in the linear case, namely, §2p(n-l) for
Case 3 and (2p+l)(n-1) for Case 6. If, when m > 1 , the expected
mean square deviation from regression is not greater thﬁn the expected
error mean square estimated by (6.1.6) or (6.1.7), the two mean squares
may be pooled in the calcﬁlation,of an estimate s2 for 02 . When
m =1 , the mean square deviation from regression is the only estimate
available for 02 .

Now that the estimation of 02 has been discussed, let us also
apply Fieller's theorem to Case 4 when the e, are assumed to be

id

normally distributed. 1In this case we let y = Sl - 82 y Z = 82 - S5 ’

£ =g(sl) 'g(se) > 0 =€(SE) '5(35) ) Vyz = -mn 52 ’ VY.Y = sz =

2mn s° y B = &?(32)' g133)] /Lf(sl) -é?(se)] = x . So a confidence

interval for x consists of those values of x for which
2 2 2 ] . 2 2_}
E(s2 - 53) -2ms t |- 2x [(sl - 32)(32 - 35) +mas b

+ x2 [(Sl - 82)2 - 2mn o° ti-] < 0. (6.1.8)
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Like (6.1.1) for Case 1, for Case 4 the inequality (6.1.8) leads to a

confidence interval for A . If we let

L= -% /n {[(sl - 8,)(85 - 8,) + mn 6”2 | + (-1)T & (an)™/?

rof -

2 2 2 2
[2(3JL - S2)(82 - 35) + e(sl - Sa) + 2(52-55) - 3mn ta s ] ta

2 2,2
+ % /n [(Sl - Se) - 2mn s ta:} , r=0,1, (6.1.9)

this @g-~level confidence interval is

L, < r L L, . (6.1.10)

In addition to the special cases already considered, approximate
confidence limits for any parameter o or kk estimated by the new
Procedure may be derived from the results of Chapter IV. In Section 4.4
we found that (4.4.5) has asymptotically a standard normal distribution.
Therefore, if we again let ’8 represent any estimator derived with the
new procedure and let © be the corresponding parameter, it can be

shown that the distribution of

Jm' (% - e)

(6.1.11)
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approximates the Student t-distribution with the number of degrees of
freedom assigned to 52 , Where now

a = A = ai@\ (6.1.12)

Y
1 0=y 4 q

Hence, for an approximate a-level confidence interval sbout 6 , we take

o =
v ey

A 1 2 A 1 2
e-(ﬁgAq) stag 06 £ 9+(ﬁ§Aq) st - (6.1.13)

The computation of confidence limits using (6.1.10) and (6.1.13) will

be illustrated in Chapter VII.

6.2 An Empirical Study for Case 1

In order to learn more about the small sample characteristics of
the estimators developed in this paper, we investigated the properties
of these estimators empirically for Case 1. The computations were done
on the Qak Ridge National Leboratory's automatic digital computer, the
Oracle. A more extensive study was originally planned, but it has been
possible to consider only this special case during the time this paper
has been in preparation. Nevertheless, the results reported here will
help in our evalustion of the new procedure.

For Case 1, observations yilj were generated in accordance with
the model presented in Section 3.1 with the additional specification
that the errors eij be normally distributed. Each eij was computed

by first generating sixteen random variates from a rectangular distribu-

tion with zero mean and then taking the mean of these variates. In the
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calculation of the errors, ¢ was taken to be forty per cent of the mean
expected value of yij . Then m was allowed to take on the values 1,
2, k4, 8, 16 and 32, since, for instance, doubling m may also be interpreted
as halving 02 .

The computations were carried out with A taking on four different
i,ﬁn 2, BAZn 2 and 4n 2 . Also, n was

2
set equal to 2, 4, 6, 8 and 16. Each of the samples was generated with

values, namely, %,Zn 2,

T =Kn =2 and with a=1 . So altogether, 120 sets of parameters were
used in the calculations. The choice of A values, as we shall see
later, makes it possible to investigate, for instance, the number of
half lives which should be observed in order to accurately estimate the
rate of decay of a radioactive substance. Also, this empirical study
may be extended to any non-zero value of o , for, under the conditions
of our study, changing o Dby a given factor would not affect '& or

its variance, but it would multiply 6‘ by that factor and the wvariance
of 6‘ by the square of that factor. TFor each set of parameters the
calculations were continued until 1024 samples were generated which led
to admissible estimates. Meanwhile, the number of inadmissible solutions
obtained was recorded. The proportions of inadmissible solutions, for
all sets of parameters for which such solutions occurred, are given

later in Table 18. The distributions of the estimates 6> and ’Q were
also recorded, as were the sample means and variances of the estimates.
The sample means and variances of ’Q computed for Case 1 are displayed

in Tables 7-10 while those for é> are given in Tables 11-1k.
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Table T

A

SAMPLE MEANS AND VARIANCES OF A

Case 1: A = %,Zn 2 = .17329

m n=2 n==, n==6 n=28 n =16

1 25 .26860 21347 18819 .18k402 .17993

v(&) .oko27 .01885 01208 .0101k .00565

2 25 .21418 .18453 17776 .17695 .17309

v(&) .01876 .00932 00691 .00528 .00272

L _; .18k1k L1719k 17534 .17460 17306

v(&) .00895 .00532 0033k .00280 .00153

8 ;§ L7771 .17h23 17481 1738k .17369

V() .00549 .00280 00176 .00139 | .00066

16 g JATH4S .17296 17269 17369 L7345
vR) .00287 .00135 0009k .0007L .00034

32 A L1731k .17h66 17298 .17222 .17312
V() .00128 .00063 00050 .0003% | .00017




110

Table 8

SAMPLE MEANS AND VARTANCES OF 2

Case 1: X\ = -]é'- [n2 = 34657

n-2 =k n=6  n=8 | n=-16
40387 | 36855 | 35017 36315 | .3ho25
(07633 | .03609 | .02026 | .0LT76 | .0OTAT

.38508 35407 .3511k .35237 34763
-0h206 | .0L569 | .009K5 00751 | -00366
. 35260 34791 . 34705 349015 .34697
.01563 .00681 .004Th .00360 .00187
.35180 L3817 NN 349018 34758
.00728 .00368 .00252 .00182 .00089
-34559 .34580 . 34556 34659 | 34751
00362 | .00177 |  .00117 - 00087 - 00046
m:3%§?9»w,“4'5”6”5 . 34806 34667 34605

.00168 .00090 .00057

.00045 .

00023
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Table 9

SAMPLE MEANS AND VARIANCES OFQ

Case 1: \ = %,Zn 2 = .51986

m n=2 n=A4 n=2=6 n=28 n =16

1 ;§ .56358 .56597 53871 54126 53195

VCQ) .10925 .06588 -03537 02661 .01138

2 %5 .56561 .54429 .Sih61 52758 .52270

v(R) .07119 .02363 .01646 01165 | .00549

L ;§ .53827 .52756 . 52690 5237k 52199

v) ,02642 .01182 .00689 00546 | .00249

8 A 53017 .52346 .52332 52205 .52037

v(%) .01122 .00509 .00370 00262 .00136

16 '§ .52119 .52121 .52000 52016 .5217h
vR) .00505 .00271 .00172 00128 | .00068

32 ;§ .52188 52004 .52049 52039 52077
v(&) . 00274 .00129 .00082 00062 .00033
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Table 10

SAMPLE MEANS AND VARIANCES OF'&

Case 1: A =/Jn 2 = .69315

P

5>

=
>

5|

D

<
P

2>

<3
52>

2|

>

<}
P

>>|

=
=2

n=2 n=h n=6
. 74090 .T5Th2 5 .TH609 |
.17459 .12672 .074o1

. 75802 .72593 ¢ .71080
11015 | .0k908 .0313k4

. 73395 70627 | .69991

. 05105 .01929 | .01311
.T1267 69422 | .69904
.01945 .00856 00620 |
.69912 .69628 .69559
.00878 00431 .00280
699kl .69782 .69502
.00kk9 .00219 .001k45
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Table 11

SAMPLE MEANS AND VARIANCES OF &

Case 1: A = ,]_-;-Zn 2 = .17329
m =2 n=2=4 n==6 n=28 = 16
1 é_} .10565 1.06526 1.02912 1.01586 .01211
V(@) .07h12 .05069 .03722 .03112 | .01830
2 é—} .0k753 1.02247 1.00948 1.0076k4 .0010k
V() .03606 .02610 .02124 01606 .00867
L é_} .01895 1.00219 1.00553 1.00660 .00229
V(R) .02146 .01h4kk .00955 .00871 | .00499
8 5 .00557 1.00072 1.00300 99913 .0021k
V(@) .o112k .00789 .00516 00413 | .00215
16 6 .00021 | 1.00151 .99986 | 1.00060 | 1.00039
V() .00610 .00368 .00269 00211 | .00112
32 B .99984 | 1.00100 | 1.00039 99907 | .99947
v(Q) 00277 .0017h4 .00143 00103 .00057




SAMPLE MEANS AND VARTANCES OF

11k

Table 12

@

Case 1: A = %/jn 2 = 34657

u";w;Wéh‘w

li6

5
T

m n=2 |, n=4 n=6
1 Z.\ 1.04065 1.02595 1.01566 1.02488 | 1.00466
vl@) | 06302 | .05296 | .03621 | .0343L | .01486
2 5 1.0167h 1.00838 1.00822 1.00969 | 1.00233
v(Q) .03876 .02585 .01778 .01k59 | 00791
L é 1.00062 1.00137 1.00026 1.00210 | 1.00029
v(Q) .01959 .01172 .0083k4 .00730 | .00378
8 é—é 1.00285 1.00016 1.00064 1.00264 | 1.00217
V(@) .00949 .00629 . 00458 .00%67 | .00183
16 ) 99806 .99846 .99873 1.00115 | 1.00163
V(@) .00kk1 .0029k .00223 .00176 | .00100 |
32 /é 99755 1.00101 1.00155 1.00086 99879
v(Q) .00231 .00157 .00113 .00089 | .00050

e e SR

A A B 4, ot

-
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Table 13
SAMPLE MEANS AND VARIANCES Oﬁ'é>

Case 1: A = %,/n 2 = .51986

m n=2 n=1. n=6 n=28 n=16
1 5 1.02012 1.03710 | 1.01548 1.01806 | 1.01606
V(@) .05896 .05486 03745 03047 | .01469
2 N 1.01639 | 1.01927 | 1.0238: | 1.00997 | 1.00620
v(Q) .03207 .02k08 |  .01885 01394 | .00698
4 & 1.00481 | 1.003L4k4 1.003k4 1.00396 | 1.00247
v(Q) .01562 .01162 .00811 .00655 | .00351
8 & 1.00647 1.00179 1.0042k 1.00223 | 1.00108
V() .0080L .00525 .00402 .00319 | .00180
16 4_} 1.00029 1.00107 .99995 1.00049 | 1.00231
V(@) .00368 .00277 .00209 .00156 | .00097
32 6 1.00202 .99972 | 1.00021 | 1.00234 | 1.00063
V(@) .00193 .00151 .00093 .0008k .00045
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Table 1k

@

case 1: X =/n 2 = .69315

m  n-o2 n= b n=6 n-=8 | n-=16

1 é 1.00805 1.03636 1.04081 1.02354 | 1.01021

V() | .05597 .06306 .04506 03784 | .018lk

2 a 1.01943 | 1.02348 | 1.01741 | 1.01605 | 1.01020
V(@) | 02987 | .02l | .021k7 | .01619 | .00839

L {_i 1.012k9 1.00832 1.00566 1.00610 | 1.00461
| V@ | .om8> | .omgs | oo | 00757 | .0038h

8 7 1.00%397 | 1.00100 | 1.00256 | 1.00666 | 1.00099
V(@) | 00739 | .00552 | .00k5k | .00358 | .00198

16 A 1.00105 | 1.00334 | 1.00129 | 1.00198 | 1.00228

v(Q) .00370 .00272 .00212 .00168 | .00091

32 A 1.00263 1.00184 1.00215 1.00146 | 1.00083

V() .00181 .00148 .00108 .00085 | .00049
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Let us examine the variances in Tables 7-14 to determine the
accuracy of the estimation relative to changes in m and n for
constant A , a and T = Kn . It is important in this analysis that
we keep in mind the dual role of m of either determining the magnitude
of o or of specifying the number of observations taken for each t i "

For example, data recorded for m = 4 , instead of being interpreted as

2pn-1
having occurred with o = .%/2pn X g(y .) and m =4 , could be
1=0 1]
2pn-1
thought of as having arisen with ¢ = .2/2pn L g(yi,j) and m=1.
i=0

Thus the variances given for m = 1 , though quite large, are not alarming

since in this instance o 1is also large. Note that the sample variances

/}} and @ are approximately halved each time m 1is doubled.

That is, the sample variances of both Q end @ are inversely proportional

of both

to m . The same appears to be true with respect to n in Tables T-10
for all the variances given for /}§ and in Tables 11-14 for the variances
of @ as n progresses from 8 to 16. Moreover, increases in n wup to
n = 8 also decrease the sample variances of Q somewhat, but not

proportionally.

Tables T-14 also indicate the effect of changes in m and n on

the bias of the estimates. The averages /}} given in Tebles T-10 are
predominantly positively biased, as would be expected on the basis of
Section 4.3. 1In fact, only fifteen of the 120 averages reported in

Tables T7-10 are negatively biased. Furthermore, in each table the bias

is greatest for small m and n and it tends to decrease with increasing

m and n . The same trend is noticeable in the averages Q recorded

in Tables 11-1%, where only twelve of the 120 averages are negatively
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biased. This is not surprising, for a positive bias in '& makes
exp.(1§ ti) negatively biased and can be compensated for by a positive
bias in the corresponding {x\ .

Now that we have investigated the effects of changes in m and n
on the estimates for Case 1, let us analyze Tables 7-14 with respect to
changes in A . Comparisons among these tables show that the positive
bias of ’% becomes more pronounced as A increases. The same is true
to a lesser extent for 6\ , even though the sample variances for @ tend
to decrease as A increases, at least until A = 2 ,Zn 2 , where in some
instances the downward trend is reversed. On the other hand, increasing
A under the conditions of our study increases the sample variance of 'Q
in every instance. However, of more interest than changes in the actual
bias and sample variance of ’Q‘ with increasing A are the effects on

Q\ relative to A . Table 15,

both the bias and the standard deviation of
which has been computed from Table 8, indicates the magnitude of these
statistics for our study. By constructing similar tables from Tables T
9 and 10 it can be shown that relative bias of 'Q‘ is reduced for small
m and n as M increases. But as m and n become large, the relative
bias of ’Q‘ decreases more rapidly for small A than for large X .
Furthermore, the standard deviation of éb relative to A decreases as
A becomes larger.

If A 1is increased, é?(yij) = o exp.(-2 ti) becomes smaller,
and the eij as computed in our sampling study also become smaller.

Thus, we might expect the variation in ’% not only to be less relative

to A for large ) than for small A , but to also be less in absolute
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Table 15

STANDARD DEVIATION AND BIAS OF /)> RELATIVE TO A

Case 1: A = -;—ﬂn 2 = 34657

n=2 n= n=56 n=28 n=16
bias/A .165 .063 .036 .048 .008
s.d./A .636 .300 .169 .148 .062
bias/A J111 .023 .013 .017 .003
s.d./A <350 131 .079 .06% .030
bias/A Nk .00k .001 .007 .001
s.d./\ .130 .057 .039 .030 | .016
bias/A .015 .005 .002 .008 .003
s.d./A .061 .031 .021 .015 .007
bias/: -.003 -.002 -.003 .000 .003
s.d./\ .03%0 .015 .010 .007 .00k
bias/A -.001 -.000 .00k .000 -.002
s.d./A .01k .007 .00k .00k .002
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value. However, an explanation of the actual behavior of 'Q as X
increases may be found by considering the relationship of A and T = Kn .
The calculations summarized in Tables T-14 were all done with ti ranging
from 0 to 4 , that is, with T = 2 . Since é?(yij) —> 0 more
rapidly with increasing i for a large A than for a smaller A, an
increase in A when T is kept constant tends to make more observations
nearly zero and of little use in the estimation of A , Which is essentially
a rate of decline. Hence, the poorer estimation observed for the larger
values of A in Tables 7-10 may be caused by a failure to reduce T as
A 1is increased. To investigate this possibility further, let us study
the effect of changes in T on Q and @ when both A and n are
held fixed.

Suppose in progressing from Table 11 to Table 14 we regard the
increase in A instead as an increase in T = Kn without changing
either the product AK or (?(yij) . The yij will not be changed by

this interpretation because of the way in which the eii are generated

[

in our empirical study. Therefore, neither will @ nor the variance of

é§ be changed for any given pair of m and n values, for the calculation
of é> from the yij involves neither XA , K nor T . Thus Tables
11-14% are not changed by the new interpretation. The same is not true
of Tables 7-10, however, for 'Q is inversely proportional to K ,
making the variance of ’Q .inversely proportional to K2 « Thus, from
Tables T-10 we could construct new tables for different values of

either K or T with A and n held constant. A few entries which

would appear in such tables are given in Table 16.
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Table 16

A

X FOR VARYING T

m n T =2 T =4 T=6 T=28
2 8 ; 17695 17619 .17586 17826

V(Q) 00528 00188 .00129 00137

L 16 7)5 17306 17349 .17400 17420

v(R) 00153 0007 .00028 00026

8 y A 17423 17ho9 | .17hk9 17356

V(Q) 00280 00092 .00057 0005k

16 2 /_}5 17445 17280 17373 17478
v(/i) 00287 00091 .00056 00055

32 6 ;5 17298 17403 .17350 17376
v(A) 00050 00014 .00009 00009
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2|

’%) in Table 16 as T increases is

The behavior of ‘A and V(

similar to that of & and V(Q) in Tables 11-14 as either T or A
increases. From these tables we conclude that if m and n are held
constant, an increase in T tends to reduce the sample variance of both
Q\ and é} up to a certain point, after which it appears that at least

’Q‘ and é>

the variance of é} increases and that the bias of both
increases. But in actual experimentation, an increase in the range of
the ti is usually accomplished by increasing n without keeping T
constant. As we have seen, increasing n with T constant tends to
decrease the sampling variances, but it is subject to diminishing
returns as n becomes larger. And when making T larger is accompanied
by increasing n , we would still eventually expect poorer estimation
with the new procedure. Hence the results in Table 7-16 indicate that,
for instance, continuing to observe half lives of a decaying radioactive
substance will yield better estimates for a Case 1 model at first, but
only until the observations level off near zero.

In addition to studying the effects of changes in m , n)l and
T on /)} s £ and their variances, let us compare some of the small
sample variances reported in this section with the corresponding asymptotic
variances given in Section 5.4. Table 17 presents several pairs of
variances, and in the calculation of the asymptotic variance in each pair
02 was computed in the manner prescribed for our empirical study.

Note the close agreement of the small sample variances with the respective

asymptotic variances.
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Table 17
A COMPARISON OF ASYMPTOTIC AND SMALL SAMPLE VARIANCES

m=1,T=2,A=/n2

n=2 n =4 n=28

ve) v | v v | v v

0=.2 mean g(yij) Asymptotic .01411 | .03320 | .01087 |.0L660 |.006T79 |.00830
Small Semple |.01485 {.05105 | .01193 |.01929 |.00T5T ;00921

o=.14142 mean £(y, J) Asymptotic .00706 | .01660 | .0054k |.00830 |.00340 |.00415
Small Sample |.00739 |.01945 | .00552 |.00856 |.00358 .00433

o=.1 meané?(yij) Asymptotic .00353 | .008%0 | .00272 |.00415 |.00170 | .00208
Smell Sample |.00370 |.00878 | .00272 |.00431 |.00168 | .00203

—

The sample means and variances of Tables T-17 have helped describe

the small sample distributions of /}} and @ for Case 1. To further depict

/)} about A and of

these distributions, the sampling distributions of
Q about a = 1 were recorded for each set of parameters. For both
estimates intervals of 1/64 were used with sixteen intervals on each
side of the parameter in question. It would not be feasible to present
each of these distributions here, but some of them are given in Figures

1 and 2 to illustrate the effect of increasing m and n on these
distributions. These figures indicate the approach of these distributions

to normality as either m or n grows large, a result demonstrated

analytically in Chapter IV.
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To complete our discussion of the empirical sampling study for
Case 1, we need only look at the proportions of inadmissible solutions
obtained during the calculations. For Case 1, an inadmissible solution

occurs when Y, > Y. , as indicated in Section 5.6. Also, as stated

1
before, the inadmissible solutions reported here occurred while 1024
admissible solutions wers being computed for each set of parameters.
Table 18 includes all the inadmissible solutions yielded by the empirical
work for Case 1. The results given there are encouraging because in
only one instance is there an entry for ¢ < 0.14142 times the mean
expectation of yij . However, the table indicates that under our Case 1
model when the eij are normally distributed, the new estimation
procedure will produce inadmissible solutions with a fairly high
frequency when A 1is small relative to T .

The empirical sampling study for Case 1 discussed in this section
has reflected favorably upon the new estimation procedure. Yet from
this study we cannot infer that the new method behaves as well for more
general cases of our model. For instance, as the number of terms in the
model increases more necessary conditions must be satisfied in order for
a solution to be admissible, so we would expect a higher frequency of

inadmissible solutions. However, this sampling study does indicate

that the new procedure is adequate when its model is applicable.
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Table 18

PROPORTIONS OF INADMISSIBLE SOLUTIONS FOR CASE 1

m n l:%ﬁn2 =%[n2 1:%[:12 A=tn2
1 2 192 .038 .011 .002
L .116 .015 0 0
6 064 .002 0 0
8 .057 .001 0 0
16 .003 0 0 0
2 2 .110 .015 0 0
4 .038 0 0 0
6 .019 0 0 0
8 .008 0 0 0
L 2 .051 0 0 0
4 .007 0 0 0
6 .003 0 0 0
8 2 .006 0 0 0
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VII. EXTENSIONS AND ILLUSTRATIONS -

7.1 Extensions of the Model

The model in Section 3.1 was formulated so that it could be
realistically applied to many problems involving exponential fitting,
and yet it was restricted sufficiently to make the development of the new
estimation procedure relatively simple. However, there are several useful
extensions of the model which require only minor alterations of the
estimation procedure. Some of these are indicated in Section 3.1, where
several assumptions of the model are declared unnecessary as far as the
estimation itself is concerned, but either are necessary in order for
certain properties of the estimators to hold or else are necessary to
make the model conform to the experimental situations to which it is most
often applied. In this section some additional extensions of the model .
will be proposed.

The first extension results from removing the requirement that
all the kk be real. As pointed out by Willers [31] , there are some
situations in which complex exponents are meaningful. Then the model
fitted can conveniently be represented in terms of sine and cosine terms
as well as exponentials, thus giving a new model to which the new esti-
mation procedure applies. Another trivial modification of the model
consists of using a positive number other than e as the base of all
the exponentials and logarithms in this paper.

As stated in the introduction, the estimation can also be carried

2
out when the eij are not homogeneous. And when o varies only from -
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group to group, the limiting distributions of Chapter IV are still valid
if a slight change is made. In this instance, the expression (4.1.8) for
the asymptotic variance of an estimator for n large becomes
V@) = I ai oi ) (7.1.1)
q

where oi is the variance of the observations in the qth group, end
(4.3.8) is similarly affected. When estimates si are substituted for
the oi in (7.1.1) and when all of the si have the same number of
degrees of freedom, we may assign that number of degrees of freedom to
VCS) . But the developments of the next paragraph will make it possible
for the si to have different numbers of degrees of freedom in accordance
with an extension of our model. In this case, we shall be conservative
and assign to V(éﬁ the smallest of these degrees of freedom.

The new procedure can be further extended to a model in which an
unequal number of observations are made at some of the points tf .
In fact, it is only necessary that the number of observations be the same
for all of the ti within any given group. Suppose in the procedure as
developed in Chapter III we let J range from 1 to mq , where the
subscript q denotes one of the 2p groups as before. Then, if we
replace each Sq' by Sq/mq and let m = 1 , the development in

Chapter III applies to this formulation. Although this extension

increases the applicability of the new method, its use also requires

more care in the planning of an experiment. Previously, if an experimenter

wanted to use the new procedure without introducing any approximations,
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he had to take observations at a prescribed number of points. Yet, for
instance, if he took observations at twelve points, he could attempt to
fit either 2 , 3 , 4 , 6 or 12 exponential terms with these observa-
tions. But if he utilized the extension of the model presented in this
paragraph, he would be restricted further in choosing the number of
terms to be fitted.

The final modifications which we will suggest here concern the

constant Qb in the Case 6 model. Instead of remaining constant throughout

an experiment, ob could for instance be a function of ti . In most

experimental situations this would mean that ao varies with time and

would lead to the model

Unless « were a periodic function with period n , this model would

01

complicate the new procedure considerably. Yet a solution appears to be
feasible in some instances.

Instead of varying with 1 , ao could reflect, say, block

effects when an experiment is carried out with several animals. That is,

a, could be a function of j , making

0

This formulation would not change the estimation appreciably since the
m

constant term 2 an would be included in every sum Sq . Another
J=1
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possible extension along this line would be the inclusion of block, time
and interaction effects in the model. This would of course unduly
complicate the estimation with the new procedure except perhaps in special

cases.

7.2 Approximations to the Model

In order to utilize the new procedure it is often necessary to
méke approximations. Sometimes the ti are not spaced in accordance
with the model or else they cannot be divided evenly into 2p groups.

In some such situations a few interpolations or‘eitrapolations will
supply the missing data and make it possible to apply the new method.
This is done in the examples in Sections 7.4 and 7.5. Also, an experimenter
sometimes takes his data at unequal intervals in such a way that when
the ti are divided into 2p groups of length T , n varies from
group to group. In this instance a sum Sq may be formed as usual

for each group. Then a solution may be carried out as if mq instead
of n changgd between groups without altering the product mq n for
any group. This latter approximation is rather crude, but interpolations
and extrapolations such as those suggested at first often do not weaken
the estimation if they are few in number relestive to the number of
observations.

A useful approximation is also available when m varies not only

from group to group, but for t, within the same group. In Section T-1

i
we saw that, when m changes only from group to group, Sq/mq may be
substituted for Sq in the solution in Chapter III with m =1 .

Similarly, as an approximation we may average the observations yij for
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each point ﬁ{ when m varies within a group. Then these averages may

e

be substituted for the y,. in the new procedure with m =1 . 1In this
L

i

N

-

instance, the variance ¢ in the basic model is a variance of means and

varies from one obssrvation point to another, and this should be taken

2

intc account in the computation of s .

T-3 An Illustration for (fase 1

In this section the new estimation procedurs will be used to fit
a Case 1 model to the data from an expsrimert conducted by Paul Urso in
the Biclogy Division of the Oak Ridge National Laboratory. Mr. Urso made
nucleated bone marrow cell counts on mice both before and after X-irradiation
of 900 roentgens. These counts are reported in Table 19, with those
made before irradiation recorded for zero days after irradiation.

After plotting the averagss given in the last row of Table 19, the
experimenter suggested that the data be fitted to a single exponential,
that is, to a Case 1 model. Since this entails the estimation of only
two parameters by the new procedure, we shall partition the data of
Table 19 into two groups, with the counts for days 0 and 1 in the first
group and those for days 2 and 3 in the second, and hence n = 2 .

Also, since the interval between successive series of counts is one day
in each instance, K = 1 . The number of mice for which counts were
made varies within each of the groups, so we shall follow the recommenda-

tion made in Section 7.2 of replacing the observed counts for any

i , that is, for any day, by the average yij for that day and by
letting m =1 in the estimation equations. The average daily counts

are given in the last row of Table 19. From these averages, using -
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Table 19

BONE MARROW CELL COUNTS OF X-IRRADIATED MICE

Days after X-Irradiation

0 1 2 3
11,137,500 3,062,000 437,500 96,250
9,418,750 3,075,000 766,666 112,500
10,287,500 5,050,000 1,087,500 237,500
12,487,500 3,312,500 368,750 75,000
Bone 11,700,000 2,775,000 1,206,250 150,000
Marrow 10,023,750 1,058,750 500,000 90,000
Counts 12,062,500 2,500,000 85,000 100,000
10,437,500 3,475,000 416,666 118,750
2,675,000 450,000 162,500
137,500
281,250
756,250
10,944,375.0 2,942,583.3 591,111.0 126,944 .0

Averages
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(3.5.1) and (3.5.2), we compute

S. = 10,944,375.0 + 2,942,583.% = 13.8870 x 1o6 s

1

6
S, = 591,111.0 + 126,944.0 = 0.7181 x 10

Then (3.5.3), (3.5.4) and (3.5.5) yield

A 0.7181 _
X m = 0. 05171 y

>

- 2[no0.05171 = 14811

2 12
_ (1 -0.22759) (13.8870) =x 107 _ 13 3143 x 10°

13.1689 x 10°

&

Note that in the calculation of @ for this example
1
Qn = a@.[f(—%ﬁngd = a@.(ﬂ)

and can be found merely by looking up /Q in tables of the negative
exponential function.

Now we may represent the data from Mr. Urso's experiment by the
estimation equation

-1.4811 ty
9}5 = (11.3143 x 10°) e
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From this equation the following predicted velues may be computed:

95 = 11.3143 x 100 ,
§ = est8xad

0.5850 x 106 s

>
0

6
0.1330 x 10 .

I3

It is & general feature of the new procedure that sums é; calculated
from the yiJ equal the Sq computed earlier from the experimental

data. 8o, &s a check on our computations, we compute

@1 = (11.3143 + 2.5728) x 1 = 13.8871 x 10°
@é = (0.5850 + 0.1330) x 1o6 = 0.7180 x 106 ,

and note that @g_: Sq , =1, 2, within the 1limits of rounding errors.

Then, as a measure of goodness of fit, we calculate

™
>
L}
|
Hv
]

[(.5699)2 + (.5698)2 + (.0061)2 + (.0061)2] x 1o12

0.2737 x 102 . (7.3.1)
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This sum of squared deviations of the means from the regression will be
compared later with similar sums computed for other methods of estimation.
Next we should like to estimate the variances of /% and é> s but
in order to do this we must first compute an estimate 52 of the varilance
of the average count per day. Using (6.1.4), we compute sample variances

of counts within each day to obtain

9 9 9

1157.599 x lO9 , 1178.785 x 10

, 108.0151 x 107 , 2.5032 x 10
for days 0 , 1 , 2 and 3 respectively. The corresponding sample

variances for the averages are

sg = 144,700 x lO9 s
si - 130.976 x 10° ,
sg - 9.00l x 10° ,
s§ - 0.218 x 107 ,

with 7, 8, 11 and 8 degrees of freedom respectively. All of the

latter sample variances may be pooled to form

9

2
s = 63.587 x 10 (7.3.2)
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2 2
with 34 degrees of freedom. However, S, and especially 55 are quite

2 2
a bit smaller than s, and s Therefore, it would seem reasonable

0] 1°
to assume that 02 is homogeneous only for yij in the same group and |
to compute asymptotic variances for @ end A as indicated by (7.1.1).
Further support for this approach is furnished by the deviations from
regression used in the calculation of (7.3.1). For an estimate of 02
from the first group we pool s?) and si to obtain

s (1) = 137.381 x 107 (7.3.3)

2
with fifteen degrees of freedom while for the second group from 55 and

2
s we calculate

3

s2 (2) = 5.328 x 109 (7.3.4)

with nineteen degrees of freedom. Variance estimates for /}} and Q
will be computed using both the ‘estimate (7.3.2) and the estimates
(7.3.3) and (7.3.4).

Now let us estimate the asymptotic variance of /}} by equation
(4.2.15). For Ng » = 1, 2 , we take the mean Yq = Sq/mn . Hence

in this example we let

4}1 = % (13.8870 x 10%) = 6.94%5 x 1%
Qé = % (0.7180 x 10%) = 0.35%0 x 10°
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Substituting these estimates of the nq along with the estimate {7.3.2)
of 02 in (4.2.15) and dividing by mn , since we want the variance of
Q instead of mn/)} , we obtain

v

= 0.06183
Similarly, if we use (7.3.3) and (7.3.4) to estimate ci s, qa=1, 2,

substitution in (7.1.1) yields

)

v( = 0.00552

Taking the square roots of these variances, we compute the standard

deviations
s.d. () = 0.2487
when s2 is calculated from all the observations and
s.d. B = 0.074%

when 02 is estimated separately for each group.
To compute asymptotic variances for 6‘ we first evaluate the
corresponding a, defined by (4.1.9), by substitution in (4.2.16).

For this example,
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"

a,. = 1.780% , a

1 2.9192

Then, using the overall estimate (7.3.2) of 02 , we have

V(G» = -i-(ai + ag) 52 = 371.717 x 109 ‘o

On the other hend, the estimates (7.3.3) and (7.3.4) lead to

v®) = = [a.?_ s2(1) + ag 52(2)] - 240437 x 100

The corresponding estimates of the standard deviation of é} are
0.6097 x lO6 and 0.4903 x lO6 respectively.

The standard deviations we have just computed are those that
2,1/2
"
Hence we may quickly apply (6.1.12) to obtain approximate confidence

would be calculated by substitution for s(é% LA in (6.1.12).
q

intervals for A and a . Using the five per cent level of Student's
t-statistic, which for 34 degrees of freedom is 2.032, and using stendard
deviations calculated with 52 computed from all the data, we compute
the 95 per cent confidence intervals

0.9757 < » £ 1.9865 ,

10.0754 x 1o6 L a L 12,5532 x 1o6

The corresponding confidence intervals computed using group estimates
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2
of o and the five per cent level of Student's t-statistic with 15

degrees of freedom, as recommended in Section 7.1, are
1.3228 < A L 1.639%

6 6

10.2695 x 100 L a < 12.3591 x 10

These sets of confidence intervals illustrate the need for making realistic
assumptions about 02 » that is, for not assuming that 02 is homogeneous
throughout an experiment when in fact it varies from group to group.
The data in Table 19 afford us an opportunity to compare the new
procedure with the other methods of fitting mentioned in chapter II.
An application of Prony's method, as given in [50] , to the averages
displayed in Table 19 leads to the estimates 1.3314 and 9.3622 x 106
for A and a respectively. These estimates in turn yield -

- 2
(%, - 77 = 2.7299 x 10"

™M

i=0

The "peeling off" procedure, which for Case 1 reduces to fitting the
logarithms of the observations to a straight line by least squares,
gives

- 15291 , A = 11.3500 x 10 ,

0.4009 x 1012

™M
s
]
i
)
]
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Finally, the iterative Deming procedure leads to least squares estimates

>

)\ 1.3530 , @ = 10.9609 x 102 ,

with

0.0361 x 1012 .

5 @, -5)°
i=0

These would also be the maximum likelihood estimates under assumptions
of normality. Note that the sum of squared deviations of the means from
the regression given earlier by (7.3.1) for the new procedure is, next
to that for the Deming least squares method, the smallest of those

computed in this section.

7.4 An Tllustration for Case 4

The new estimation procedure has also been used to analyze the
data from some physics experiments at the Osk Ridge National Laboratory.

In one of these experiments Dr. Marvin Slater pleced cylinders of

paraffin between a neutron source and a polyethylene-ethylene proportional

counter and then he recorded the amount of radiation transmitted to the
counter through paraffin cylinders of different lengths. The counts he

made are reported in Table 20.

Table 20

NEUTRON COUNTS FOR DIFFERENT LENGTHS ti OF A
PARAFFIN CYLINDER

Counts 67.9 36.3 17.2 8.2 3.5 2.8
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In this experiment there are two ways in which radiation can be
transmitted to the counter. One is directly through the paraffin and
would be expected to be exponentially related to the length of the
baraffin cylinder. Scattered radiation reflected from the walls and
other surroundings would also reach the counter and would be expected
to be constant. Therefore, a Case 4 regression was suggested for the
data in Table 20. But this data does not satisfy all the requirements
of our Case 4 model, for all the increments in the lengths of the paraffin
cylinder are not equal. Two approximate solutions were tried however.

In one the count for ti = 2 was discarded and a value for ti = 20

of 2.6 was extrapolated from a plot of the logarithms of the data so
that the number of ti would be an integral multiple of three, the
number of parameters. Thus, in this solution, K = 4% and n=2.

Since interpolation is more apt to be accurate than is extrapolation,
interpolated counts for ti =6 , 10 and 14 were used in another solution
with K =2 and n=3 . The first of these alternative estimations
resulted in the smaller sum of squares of deviations from regression of
the six original observations, and therefore we shall present that
estimation here.

The first step in the estimation, with m=p =1, n=2 and

K =24, is to compute

S, = 67.9 + 17.2 = 85.1 ,
8, = 8.2 + 3.5 = 11.7 ,
S, = 2.8 + 2.6 = 5.k
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from (3.6.2). Then (3.6.12), (3.6.13), (3.6.14) and (3.6.15) yield

A (1.7 -5.4)

X = T ITT = 0.085831 ,

A - -% fno0.085831 = 0.30692 ,
8, - B0 - 1% | sa

2 [85.1 - 2(11.7) + 5.4]

(85,1 - 11.7)° [1 - (0.085851)1/2}

61 = = = 62.099
[85.1 - 2(11.7) + 5.4 |
Hence the regression equation is
A -0.30692 t,
Yy = 2.4%04 + 62.099 e
and
AN
¥, = 6450 , Sr\a = 36.02 , %), =20.60,

=113, Byp = 39T, Bg = 2.86 , Ty = 25

)
@
I

In order to check our calculations, we use the 93 to compute

AN A IAN

5, = 85.10 , S, = 11.70 and S5 = 5.40 which agree exactly with the

2

Sq computed earlier. Also, we find that the sum of squares of deviations

from the regression of the observed ¥y oo including Yo s is 23.6438 .



14y

Next let us estimate 02 » the variance of the counts in Table 20
under our Case 4 model. Since only one observation was taken for each
ti » We must use the mean square deviation of the observations Yy from
the corresponding regression values, ¥y oo to estimate 02 . This mean
square, calculated using both Yo and Yo equals 7.8825 and has
three degrees of freedom since there are three parameters to be estimated
with six original observations.

’Q B @B and Gﬁ » may now be computed

from the asymptotic varience formulas given in Section 4.2. For 'Q s

Variance estimates for
substitution of Sq/mn = Sq/2 for 1 q’ 3=1,2,3, gives

= 0.00341 , = =0.04309 , = 0.03968

a.l 8.2 8.5

Then substituting these values and 52 = 7.8825 1in equation (4.1.8),

which gives the asymptotic variance of /mn (& - A) , and dividing

by mn = 2 , we compute
V(Q) = 0.013566
Similarly, (4.2.19) and (4.2.20) in conjunction with (4.1.8) yield

V(e

- VAN -
5) = 5.80988 v(e) = 29.80689

From these variances we calculated the standard deviations

sodo(§) = 0,11647 , sodo(é%) = 2.41037 , s.do(aﬁ) = 5.45957
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As in the example in Section 7.3, these standard deviations may
be substituted in (6.1.13) to obtain approximete confidence limits. The

95 per cent confidence limits computed in this way are

-0.06369 £ r» < 0.67753 ,

-5.266 <K Qa

, < 10.074 ,

W27 o 79.471

These limits are too wide to be of any use whatsoever. Moreover,
computation of 95 per cent confidence limits for A wusing (6.1.9) and

(6.1.10) gives

Inspection of equation (6.1.9) shows that the upper confidence limit
for A computed from that equation will usually be =© when 52 is
large. In fact, all the extremely wide confidence limits calculated in
this section result from an inordinately large estimate of 02 .

To complete this illustration, let us again present estimates
calculated by some other estimation methods. To epply Prony's method
to a Case U4 model we first form yi E¥y =¥y, 1=0, 1, 2, +e.y 30-2 .
The yi would be expected to follow a Case 1 model and may be fitted by

the Prony method as outlined in Chapter II. Then the Case 4 estimates
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for the y; mway be computed from the Case 1 results obtained for the
yi . This extension of the Prony method to Case 4 is similar to that
given for the new procedure in Section 3.6. The estimates yielded by

the Prony method for this example are
A = o.41824 @ = -5.682 , 6 = 10k.006

> 0 , and therefore we shall take 6% = 0 as the

To apply the "peeling off" procedure to this

In this example ao

Prony estimate of ao .
illustration we must first assign a value to G% . If we let

6% = 2,404 , the estimate calculated by the new procedure, the estimates

of A and o yielded by the "peeling off" method are

N - o9, B = 62519

Finally, the third iteration with the Deming method after inserting the

new procedure estimates as initial estimates gives corrections -0.00021 ,

-0.076 , and 0.01135 which, when added to the products of the second

iteration, yield estimates 0.3%5258 , 2.836 and 65.261 respectively

for A, a, and o - In both this example and in the one presented in

Section 7.3 the Prony method apparently gives as good an estimate of A

as the new procedure does, but the new procedure results in more

reasonable estimates of the o - The sums of squares of the deviations

of the Yy from the §E are 16.9220 and 7.7837 for the "peeling off" .-

and Deming procedures respectively. Such a sum of squares was not
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computed for the Prony method because of its negative estimate of ao .

7.5 An Illustration for Case 2

As a final illustration of the new estimation procedure we shall
apply it to the data in Table 21. The logarithms of frequencies given
there describe the distribution of background pulses generated in a
proportional counter by neutron interaction with walls and gas plus
pulses due to circuit noise. The experiment was conducted by Dr. M. L.
Randolph at the Oak Ridge National Laboratory. No counts were made for
pulse heights of 14, 26, and 28 and those displayed in Table 21 for
these pulse heights were obtained by interpolation. A plot of the data
suggests a Case 2 model and therefore that is the model we shall attempt
to fit. This exeample will not be studied as completely as were those
in Sections 7.3 aﬁd 7.4, but only enough calculations will be carried
out to illustrate the general approach given in Chapter IV for the
computation of asymptotic variances.

There are sixteen evenly spaced ti in Table 21 with an interval
of two between successive ti and there are four parameters to be
estimated, so K =2 and n =4 . Also, only one logarithm is recorded
for each ti , 50 m=1 . It can be shown that substitution of these
values along with the data in Teble 21 in the estimation equations

derived for Case 2 in Section 3.5 yields

i

18.600 S

42}
]

1.227 , S, =0.158 , S, = 0.091 ;

1 > P2 3
N
E, = 1.0457 , @E = 0.0607 ; Q& = 0.9840 , QE = 0.0617 ;
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A
X =0.00202 , A, =o0.382 ; 6 = o.0217 &), = 9.8977
Table 21

LOGARITHMS ¥y OF FREQUENCIES OF PULSE HEIGHTS ti

GENERATED IN A PROPORTIONAL COUNTER

Y Yy

0 10.430
2 k. 703
4 2.327
6 1.1ko
8 0.615
10 0.325
12 0.170
14 0.117
16 0.050
18 0.040
20 0.046
22 0.022
24 0.036
26 0.021
28 0.018
30 0.016

Let us use these results to estimate the asymptotic variances of 6%-,

2
6% ’ 63 and 6% gpart from the estimation of ¢
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In the general procedure for computing asymptotic variances it
is first necessary to evaluate the BQL/BYq given by (4.2.12) in
conjunction with (%.2.3), (4.2.4) and (4.2.8) through (%.2.11). From

these equations it follows that

o
, Y)
- 3G , (7.5.1)
q gx(QL , Y)

where for Case 2

S(A:Y)=/%2{-/ﬁl%+é\2 ,

£,
s Bt - B o5 o (7.5.2)
q q q
g B 1) = A - B . (7.53)

In all of these equations and in the rest of this section, k =1, 2
and q =1, 2, 3, 4 for Case 2. Using (7.5.3) and the estimates already

computed for this example, we find that
g (B, 1) = 09223 , g (R, V) = -0.9223

But to calculate the ag— g(N , Y) , which are necessary for the
q

evaluation of (7.5.1), we must first compute the 3§;/5Yq .
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From (3.5.7) and (3.5.8) with Sq = mn Yq ,

ﬁ‘ _ Yy, -Y, Y5 ) Iy
1 2 g,
Y, Y5 - ¥, 1
Y. Y Y2 J
AN 2 74 T '3 3
By = =T
Y Y5 - ¥, 1

where we define

Jy =Y, Y, - ¥, Y5“ » Iz

Then differentiation of /F} and /F} yields

2
J=Y2Yu-Y5 .

1 2
aﬁl ) J; Yh - J5 Y3 Bﬁé . -J5 Y3
= s = 22
B?I J2 B?I J
1 1
Bﬁ\l_-JlY5+2J2Y2 Bﬁ\e Jth"EJ
= s =
6?; J2 SY,
1
-J Y, - J, Yy Bﬁé -2J, Y
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£ v £,
= 7 4
aYh Jq aYh

For our example Yq = Sq/h . Therefore,
Y, = L.6500 |, Y, = 0.3068 , Y

and

J, = 0.08955 , J2 = 0.09390 , J

From these Yq and Jr values we compute

¥, £,
E?I = -0.2079 , E?I
) £,
& - ST, 5
%, 'y
=, = -3.9701L , 3T,

3

= 0.0395 , Y, =0.0228 ,

= 0.0054
3 0.005435
= -0.02677 ,
0.6705 ’
-4.0334 ,
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é%i 2 6
= 51.926% = 3.4260
oY, oY,

Now we have everything at hand to compute the Bg(zx\.k, Y)/ BYq as
given by (7.5.2). Then substitution of these quantities and the gx(/iék, Y)

previously computed into (7.5.1) for our example enables us to compute

2 2
T - -0.1928 % - -0.01513
2 2
Wa = 6.)4-686 ’ Wa = 0-2759 J
2 £,
¥ - oL, 5 - -k.1077 ’
3 3
A A
F}' = 51.6855 , F?' = 0.2420
Yll- Yh.
For the /)'\k , the a.q of Theorem 1 as defined by (4.1.9) may now

be calculated by substitution in equation (4.2.13). In this way for /}}l

we compute

= 0.024k9 |, &, = -0.8217 , a, = 0.0L74T , 8 = -6.5657 ,

il 2 3
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and for /)§2 we calculate

a, = 0.03066 a, = -0.5591 , 8y = 8.3246 , 8y, = -0.490k

Then substituting in (4.1.8) and dividing by mn = 4 since we want the

variance of the QK instead of the / mn (6%( - )‘k) , we compute
v(A)) = 10.9461 &, v(A,) = 17.4633 6°

Now let us replace each Sq in (3.5.11) and (3.5.12) by the

corresponding mn Yq , thus representing the q( as

1

8 (1 - é?f) (1, &, - 1)

(1-%) & -%)

1
5 - n(l -49) (¥, - ¥, &)
‘ (1-4) & -2)

Then by differentiating the expression for @

1 -.and by referring to

(4.1.9), we find that for A ’

1
oA : %
%=&imu-%ﬁW%~%ﬁ uaﬁm%-%)u-%ugﬁﬁ
1
oY, oY =-1
5w - (R - ) GAY a-yi)}
q
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Similarly, for GE B

*, I ox A
8, = ?’Y—z -0l -8 & - -RE - (- (&i -y, &i
Y 1. %
R - (LT R GR BY—E)J
q q

: A %)
-(14) (1,1, &) [(1-&\2)<5Y—2 - Yi) - &y - R) ax—ﬂ

All of the quantities needed to evaluate these derivatives have already

been calculated, so from (7.5.4) and (7.5.5) we compute

a, = 0.0168 , a, = -0.5576 , ag = 20.6095 , &) = -3.2847
for 6& and
a, = 2.5540 , a, = -7.1179 , a; = T6.2966 , &), = -1.9009

for Gé . Then substitution in (4.1.8) and division by mn = 4 as before

for the ’Qk yields

V() = 108.9630 s° , V(&) = 1470.4930 s°

2 2
An estimate s of ¢ may be found in the same manner as it

was in Section 7.4, and it can be shown to equal 0.0%3997. Then the
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following standard deviations may be calculated:

s.d.(/}}l) - 0.661h , s.a.(By) = 0.835
s.d.(é}l) = 2.0869 , s.d.(&z) = T.6665
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VIII. SUMMARY AND CONCLUSIONS

A pew estimation procedure has been developed in this paper for
a model specifying a linear combination of exponentials with data teken
at evenly spaced points, and for that model with a constant term added.
Besides the derivation of the estimation equations for the new procedure,
the distributions and statistical properties of the resultant estimators
were studied. It was found that as the number of observation points or
as the number of observations taken at each such roint becomes large,
the estimators are consistent and that their distributions approach
normal distributions. It was also found that the estimators are biased
and generally inefficient. Then the new procedure was shown to be optimum
relative to certain similar procedures and conditions necessary for
admissible solutions were investigated. Confidence intervals were
developed and several examples plus a sampling survey were presented.
Extensions of the model for the new procedure as well as some approximations
to be used in the application of the procedure were also suggested.

In the efficiency study it was shown that the estimators yielded
by the new procedure are inefficient relative to the corresponding maximum
likelihood estimators, which may be obtained by iterative methods. The
convergence of these iterative methods is often slow. But the new
pProcedure is not an iterative procedure, and its estimates are much
easier to compute than are the meximum likelihood estimates. So we
conclude that the new method, when its model is realistic, is advantageous

relative toc the method of maximum likelihood if adequate computing
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facilities are not available to calculate maximum likelihood estimates.
Also, if it is more practical to take a large number of observations,
and thus obtain small error estimates with the new method even though
it is inefficient, than it is to take fewer observations and compute
maximum likelihood estimates, the new procedure is again recommended.
In any case, the new procedure provides a quick and easy way of computing
initial estimates for iterative maximum likelihood calculations.

The limited empirical comparisons which have been made between
the new procedure and other non-iterative, easily applied procedures
do not provide an adequate basis for judging these methods relative to
each other. However, the new procedure appears to be as simple
computationally as the Prony and "peeling off" methods. Also, if the
variance of the observations can be accurately estimated, variance
estimates for the estimates from the new procedure can be calculated
and useful confidence limits for the corresponding parsmeters can be
constructed. No such measures of error are in general available for
estimates from the Prony and "peeling off" procedures. Furthermore,
unlike those for the “"peeling off" method, the new procedure calculations
do not require any judgment decisions. So if the model for the new
procedure is appropriate, this procedure is in several respects better

than the other non-iterative methods discussed in this paper.
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