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INTRODUCTION

Many experimental problems in the natural sciences result in

data which can best be represented by linear combinations of exponen
tials of the form

p -X,t

k=l K

*

Among such problems are those dealing with growth, decay, ion concen

tration, and survival and mortality. Also, in general, the solution to

any problem which may be represented by linear differential equations

with constant coefficients is a linear combination of exponentials.

In most problems like those which have been mentioned, the parameters

O^ and Xk in equation (l.l.l) have biological or physical signifi

cance. Therefore, in fitting a, function of the form (l.l.l) to the

data it is not only necessary that the function approximate the data

closely, but it is also necessary that the parameters of (l.l.l) be

accurately estimated. Furthermore, a measure of the accuracy of the

estimation of the parameters is required.

The present methods of estimating the parameters of a linear

combination of exponentials are often inadequate. Some of these

methods will be discussed in Chapter II. However, the primary purpose

of this paper is to introduce a new estimation procedure which will

(a, b, c) denotes the c° equation in the bth section of the ath
chapter.
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overcome some of the present difficulties, at least for special cases.

This new estimation procedure will be developed in Chapter III.

Included will be a discussion of the basic model for which the method

is derived. Chapter IV will be concerned with the limiting distribution

of the estimators obtained from the new procedure. Then in Chapter V,

the statistical properties of the estimators will be considered.

The small sample distribution of the estimators from the new

procedure will be studied in Chapter VI. Results from some empirical

sampling work will be reported in that chapter. Then in Chapter VII

possible extensions of the method will be considered and ways will be

described in which the new procedure may be applied to a greater

number of experimental situations. Chapter VII will also contain

several illustrations of the application of the new method as well as

a limited empirical comparison of the new procedure with presently

existing methods. Finally, Chapter VIII will be devoted to a critical

evaluation of the new procedure relative to other estimation procedures

for linear combinations of exponentials.



II. REVIEW OF LITERATURE

2'1 Iterative Maximum Likelihood Methods

Before turning to the development of the new procedure, let us

look briefly at some of the estimation procedures now in existence.

The first method that we will consider is an iterative procedure for

calculating maximum likelihood estimates which has been presented by
r ~i * ,- -,

Fisher [_7j and illustrated by Koshal [20 ,21J . Adetailed

discussion of this method and a few examples of its use are given by

Garwood [9J . Although the presentation is applicable to fitting the
parameters of any distribution, the particular application of the

method to a linear combination of exponentials follows directly from

the general development.

In general, let y± , yQ , •-., yN be asample drawn at

random from a population of known form so that the sample has the

joint density function P(y, 9) , where 9 represents a row vector

of parameters (O^ ©2, ..., 9g) and y is arow vector of the

observations. For example, suppose the variates y. are independently

and normally distributed with means t(t±) ,where the function f is

given by (l.l.l), and with common variance a2 . That is, let

y.ii = f(t±) + e± , i= 1, 2, ..., N , (2.1.1)

Numbers in square brackets refer to the bibliography.
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where the errors e are independent, normally distributed variates.

In this instance,

N

2 " 5
P(y, 9) = (2jto ) exp.

1 • * -\\2
-Ay Z (y, - Z a. e )
2o2 i=l 1 k=l ^

ANow if we let L(y, 9) be the natural logarithm of P and 9 be the

row vector of maximum likelihood estimators ©^ of the parameters 9k

3T L(y< 8)
HI

> 0 , k=l, 2, ..., s .(2.1.2)

9=&

For our example,

N 6 2 1?, I "Vi,2L(y, 9) =-|in(2 *o<T --^ Z (y± - Z o^ e )
2a i=l k=l

So if we let 9. represent a^ ,condition (2.1.2) implies that in

this case

N -&.t.

i.V (yi
o 1=1

A

Z ^e
k=l

Vi ) = 0 , (2.1.3)

where the Ol and the fa are maximum likelihood estimators.

Now let us postulate, in the general development, that an

approximation

in denotes a natural logarithm.



ai - (air a2i' •••' %i^

to 9 is available. Then each partial derivative given by (2.1.2)

may be expanded in a Taylor series in terms of the elements of ^

about the corresponding elements of a^ . if terms which involve

partial derivatives of L of order greater than two are ignored, the

resulting linear equations may be solved for the vector

5X = (&1 - & ) .

Then a new vector of estimates

a2 = (a1 + 6]_)

may be formed and the process repeated. If after, say, h iterations,

&h is sufficiently close to a null vector, the resultant elements

°f %+l are taken to be the maximum likelihood estimates of the

elements of 9 .

The expansion of equation (2.1.2) in a truncated Taylor series

gives rise to coefficients

S2
"r^h ~ d 9 39 L(y' 9)

9 = %
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r®ie L-r. o.v. are functions of the observations in the vector y as

well as the approximations in the vector a, . Garwood observes that

the calculations are simplified if in the expression for the L
r,s;n

in each iteration the y observations are replaced by the values

which they would be expected to have if in fact 9 were equal to its

current approximation a^ . For instance, in the example introduced

earlier let us set or. = 9g. and X = Q . , j = 1, 2, ..., p .

An expansion of the partial derivative given by (2.1.3) in a truncated

Taylor series about some vector a. , say a. , would include a

coefficient of the form

a2

9=a1

t N -X.t. -X,t. p -X,t.
1 y + a 1 i /„ 1 i £ 1L

1 » , -"21*1 , -21*1 S -^J,!*!,
-* L t e (y - a e - L a. e °> )
o i=l 1 i JJ. ^=1 £ij-i,±

(2.1.4)

Now if 9 were in fact equal to a1 , then a, would equal a?.

and X. would equal a2- 1 , j = 1, 2, ..., p . Furthermore, in

each case y. would have as its expectation



£(y,)
9=a,

10

f(t.)
v i

9=a,

P •a_. .. t.
2j,l 1

Thus, if the observations y. are replaced by their expectations for

9 equal to a , equation (2.1.4) reduces to

Jl,2;l
11

+ rt

0 1=1

N

Z t.
-2a21t.

(2.1.5)

Two quite similar iterative methods have just been indicated

for calculating maximum likelihood estimates for the parameters in a

linear combination of exponentials. The first one involves carrying

out the iterations described, above without making any simplifying

substitutions for the y. and will be called Method 1. The second,

designated Method 2, is the modification introduced when the approxi

mations suggested for the y. , such as those which led to (2.1.5),

are utilized. In the non-linear estimation examples which he tried,

Garwood observed that Method 1 converged in fewer iterations than did

Method 2, but that Method 2 entailed less work per iteration.

A more detailed exposition of these iterative methods may be

found in Garwood's paper. However, a few more remarks are in order

here. Firstly, if the observations y. are postulated to have

independent, normally distributed errors as in our example, these

iterative procedures lead to the least squares estimates of the
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parameters as well as to the maximum likelihood estimates. In this instance,

Method 2 is the same as that developed for least squares estimation by

Deming \j,J ,even though the approach is different. Secondly,

experience here in the Oak Ridge National Laboratory indicates that

these methods, when applied to linear combinations of exponentials, are

not in general amenable to calculation on desk computers because the

convergence is too slow. This is especially true of Method 2. In fact,

because the methods presented by Garwood have not been tried very

extensively even though fast automatic computers are now available,

little is known about their convergence properties.

2.2 The Prony Method

Another method for estimating the parameters of a linear combi

nation of exponentials is presented by Prony [_23j as amethod of

interpolation. Whittaker and Robinson [30j describe a modification of

Prony*s method while Householder [13J discusses the Whittaker and

Robinson version of the method as an estimation procedure. Householder

also suggests an extension of this estimation procedure.

The model underlying Prony*s method is similar to that given by

equation (2.1.1) for the observations y. in our earlier example.

However, the method requires that the y be taken at equally spaced

intervals of time, so to the model given before we add the restriction

that ti = Ki for constant K . Also, the errors are now only

required to have zero means.

The first step in the Prony procedure is to set each y equal

to its expectation. That is, set
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y. = L a, e , i = 1, 2, ..., N . (2.2.1)
1 k=l *

Now, when (2.2.1) holds, it is shown by Prony on the basis of some

results from the calculus of finite differences that each y.

satisfies a p order difference equation of the form

yw+P -Vi Ei+ •" +("1)P_1 Vi EP-i+ (-1)P yw EP = ° >
w = 0, 1, 2, ..., N-p , (2.2.2)

where the E functions are the elementary symmetric functions of the

exponentials J\^ = exp. (-X^ K) . That is, E equals the sum of all

possible distinct products of the -A-, taken r at a time. The next

step in the Prony method is to solve the equations (2.2.2), which are

linear in the functions E , for estimates E of these functions.

It is at this point that Prony's original presentation differs from

the estimation version given by Whittaker and Robinson. However, once

estimates E are obtained, both versions proceed in the same manner.

Since the E are the elementary symmetric functions of the exponentials

exp-t-X^ K) , the estimates exp.t-'X, K) are determined by finding

the p roots of the polynomial equation,

x5 -^x*"1 +%^'2.... +(-1)*^ =0 .

Finally, after the X^ are estimated, estimates & of the coefficients

in (2.1.1) are determined by least squares.
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In his presentation of this method, Prony requires that as many

parameters be included in the model as there are observations available.

In this case (2.2.2) leads to as many linear equations in the function

E as there are such functions. Hence, the equations (2.2.2) can be

solved exactly for the estimates T? . From an interpolation point of

view Prony's approach does not impose a severe limitation on the method,

but it is not acceptable from a statistical viewpoint. Then it is

usually desirable to make many more observations than there are

parameters to be estimated. Also, for large numbers of observations

Prony's original method becomes too cumbersome computationally.

However, the adaptation of Prony *s method given in [13J and [30]

is suitable for statistical estimation purposes. In this version of

the method the number of observations is allowed to be larger than the

number of parameters to be estimated. Thus, equation (2.2.2) yields

more equations for the functions E than there are such functions.

But these equations are regarded as equations of condition, and from

them estimates of the E are obtained by least squares calculations.
r

The estimates of the E in the estimation version of Prony*s
r

method are not the same as the estimates which would result if the

least squares technique were applied directly to the model for a

linear combination of exponentials. As pointed out by Householder,

both the coefficients y. and the E of the set of equations (2.2.2)

are subject to error, while in the usual least squares situation only

the E would be subject to error. Therefore, we cannot attribute

any of the usual least squares properties to estimators obtained by
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the Prony method, and, in fact, little is known regarding the properties

of these estimators. In particular, we have no measure of the

variances of such estimators.

Householder modifies the estimation version of the Prony method

so that valid least squares estimates may be obtained. He essentially

applies the method as it is currently used to obtain initial estimates

of the exponents, and then he goes through an iterative procedure to

arrive at least squares estimates. The iterative method is that given

by Deming, which, as we have already observed, is the same as Method 2

in Garwood's paper if the observations are subject to normally distributed

errors. Householder also incorporates a test to determine how many

exponentials are needed to adequately represent the data in his modifi

cation. Unfortunately, Householder's adaption of Prony's method not

only fails to converge sometimes, but it also has been known to converge

to unreasonable estimates. Whether this difficulty is inherent in the

iterative least squares method or is due to a failure of the Prony

estimation procedure to produce satisfactory initial estimates is not

known.

2.3 A Graphical Procedure

Perhaps the most common way of fitting linear combinations of

exponentials is a graphical "peeling off" procedure applied to a plot

of the logarithms of the data against time. For the simplest case of

one exponential term, this procedure reduces to fitting a straight

line, usually by least squares, to such a semi-logarithmic plot of the

data. This method of fitting a single exponential with its coefficient
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requires the assumption that the errors in the logarithms of the data

are homogeneous. For more than one exponential term, the data must be

such that a plot of the logarithms of the last few observations is

essentially linear. This situation often obtains in a linear combination

of exponentials when one of the exponents X. in (l.l.l) is appreciably

smaller than any of the others, for beyond a certain point that

exponential would be expected to be the only one contributing markedly

to the total.

The first step in the graphical procedure is to determine the

linear relationship which exists on the tail of the semi-logarithmic

curve from any two points on the tail. From this linear relationship

one of the terms in the linear combination of exponentials is found by

taking into account the linearity of the data on a semi-logarithmic

plot. Next a semi-logarithmic plot is made of the difference between

the experimental points and the corresponding calculated points determined

from the term which has already been found. Then another linear fit is

made on the tail of this plot in order to obtain another term of the

linear combination of exponentials. The procedure is repeated until

all the experimental points are included in the partitioning process.

Feurzeig and Tyler [_4j note that although this method of fitting

linear combinations of exponentials is well known, it has received very

little attention in the literature. Therefore, they give a detailed

description of the method with several illustrations. Previous to

Feurzeig and Tyler's paper, Smith and Morales 26J presented an

application of the method. This graphical method is computationally
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easy and it frequently gives a good fit to the data. However, no indi

cation of the accuracy of the estimation of the parameters is available.

In fact, the number of exponential terms included and the values of the

estimates obtained depend greatly en the judgment of the statistician

in partitioning the data to obtain linear relationships on the semi-

logarithmic plots. Although the method may be carried out easily on

desk computers, it is not easily adaptable to calculation on automatic

computers because of the judgment decisions required.
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III. THE NEW ESTIMATION PROCEDURE

3.1 The Model

A new non-iterative method for fitting linear combinations of

exponentials will be developed in this chapter. The new method leads

to relatively simple estimators of the parameters of the model presented

in this section. Under this model observations y.. are specified

such that

-X_t, -X.t, -X t.
1 i 2 i pi /-*-,-,%yij =al e + °2 e + ... + ap e + eij » (3-1-1)

i = 0, 1, 2, ..., 2n p-1 ; j = 1, 2, ..., m

Also, we require that t. = Ki where K is a constant. Thus we have

a linear combination of p exponentials with observations taken at

2n p equal intervals of length K , and with m observations made at

each point Ki . The total number of parameters is 2p , while the

number of points at which observations are made in 2n p , an integral

multiple of the number of parameters.

It is required in the model that a. ^ 0 and X, > 0 ,

k = 1, 2, ..., p , and this is realistic in most practical situations.

However, a procedure like that presented in this paper could be

developed for negative X . The X are further restricted so that

X ^ X when r ^ s . Moreover, the errors e.. are assumed to be
J7 S X J

identically and independently distributed with mean zero and common

2
variance 0 . Actually, in order to carry out the estimation procedure
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developed in this chapter, it is only necessary to assume that the

errors e_ each have zero mean and a finite variance. However, the

additional conditions given here for the e.. make it possible to
lj

study the distributions and properties of the estimators of the new

procedure in later chapters.

The specification in the model that the number of observation

points t± be an integral, multiple of the number of parameters imposes

a severe practical limitation on the new method if it is to be applied

exactly. This specification essentially requires that the experimenter

decide how many exponential terms to fit before conducting his

experiment. Otherwise, the number of observation points might not be

an integral multiple of 2p . However, approximate methods of circum

venting this limitation will be introduced in Chapter VII. Two other

conditions of the model which are subject to criticism are the require

ments that the observation points be evenly spaced and that the same

number, m , of observations be made at each observation point. Experi

menters naturally tend to take more observations in intervals where the

data seem more variable than in intervals where the data appear to

level off near an asymptote. The model will be modified in Chapter VII

so that the value of m may vary to some extent during an experiment

and an approximate solution will be given for some situations in which

the t^ are not evenly spaced.

Note that since the errors e are only specified to be
X J

identically and independently distributed, negative observations are •

not precluded by our model. In most practical applications of
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exponential fitting, only positive observations are possible. However,

we may want to specify a distribution for the e.. admitting negative

observations, and that is not too unrealistic, for if the error

variance o is reasonably small, very few negative observations would

be expected. Observe that the model also requires that the y . have

homogeneous variances. This is in contrast to the assumption that the

logarithms of the y.. have homogeneous errors. As mentioned in

Chapter II , the latter assumption is made when a single exponential

is fitted by fitting a straight line to a semi-logarithmic plot of the

data. Furthermore, the assumption in the model presented in this

section that the e.. have zero means gives the expectation,

-X t -X t -X t

(^(yij) = CCle +Q2e +.--+«pe P • (3-1-2)

In order to simplify the exposition of the new estimation

procedure, three special cases of the basic model as well as three

slight modifications of these three cases are differentiated throughout

this paper. Case 1 refers to a single exponential with its coefficient

while Case 2 denotes a linear combination of two exponentials. The

general case, where p may be any positive integer, is referred to as

Case 3. Thus the models for y.. for these three cases are as follows:

-Xt.

Case 1; f^'Oe X+e.. ; i=0, 1, 2, ..., 2n-l; (3-1-3)

~W "ViCase 2:y..=aLe + a2 e + eij ;i=0, 1, 2, ..., 4n-l;
(3.1-M
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P -X^t
Case 3: y^ = Ea e +e ; i=0, 1, 2, ..., 2n p-1

k=l J

(3.1-5)

In addition to the cases already defined, the new estimation

procedure may be applied to what Keeping [17] calls amodified
exponential function. The model for this function is the same as that

for Case 1 except for the addition of a constant term. A modified linear

combination of exponentials may be defined similarly for p greater

than one. Thus, corresponding to Cases 1, 2 and 3, we have Cases 4,

5 and 6 respectively, where the models for y.. are as follows:
x J

Case 4: y±. =aQ +Q]_ e i+e±. ;i,0,1,2, ..., 3n-l ;

(3-1.6)

Case 5: y = <v + a, e•Vi -Vi
'ij = U0 + al e +Q2e ^..j

i = 0, 1, 2, ..., 5n-l ; (3-1.7)

P -It,

Case 6: y = a + Z a e K x + e. .;
10 ° k=l ^ ^

i = 0, 1, 2, ..., (2p+l)n-l . (3-1.8)

For each of the six cases defined above, the subscript j ranges from

one to m . The conditions presented in this section for the

coefficients q^ , the exponents X , the observation points t.
i

and the errors e.^ apply, of course, to each of the six special
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cases and are the same throughout this paper unless otherwise stated.

3-2 The Estimation Procedure for Case 3

The new estimation procedure associated with the model presented

in Section 3.1 is conceptually simple. First the domain of the obser

vation points t. is divided into as many intervals of equal length

T as there are parameters in the model. Thus, for Case 3 the t.

are separated into 2p groups. Since there are 2p n equally spaced

points t. , each such group will contain n points t. . Included

in the first group will be t- , t.., ..., t , , included in the

second will be t ,t ...... tn .,, and in general t, .... ,
n ' n+1' ' 2n-l ' ° (q-l)n'

t, n» -, ..., t , will be included in the q group. There are
(q-l)n+l' ' qn-1 ^ °

several other ways in which the t. could be grouped without

essentially changing the estimation procedure, but in Section 5-5 it

will be shown that the grouping given here is in certain respects

optimum.

The next step in the estimation procedure is to let S be

the sum of all the observations made at the points t. included in the

q group. That is, set

qn-1 m

Sn = Z Z y,, , q = 1, 2, ..., 2p , (3-2.1)
q i=(q-l)n j=l 1J

where according to the model for Case 3 given by (3.1.5),

I -v
y« =k=l^e ii +e^
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Since each e.. has mean zero in accordance with the assumptions listed

for our model in Section 3.1, the expectation of y.. is given by
X J

p -u.

£(y±1) = Z a e x . (3-2.2)
J k=l K

But t± = Ki in our model. Therefore substitution of (3.2.2) into

(3-2.1) yields

where

ro P qa-1 a
£(S )=m Z Z o^ TV , (3.2.3)

q k=l i=(q-l)n * k

-X.K

-^k = e • (3-2.4)

The right side of equation (3-2.3) is a geometric series which may be

summed to give

#V-- s W,-1,n ^£, ,.i,a,...>?p .
* k=l 1 -A,

k

(3-2.5)

The equation (3.2.5) is actually a set of 2p equations for

the 2p parameters of our model in terms of the expectations ^(s )

In order that estimators for the parameters may be obtained from these

equations, we set the observation sums S equal to their expected

values £{8 ) . The result is the set of equations,
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p a / -i v (1 --/S )S =m Z &A^n ±- , q=l, 2, ..., 2p , (3-2.6)
q k=i ^ k i -Ak

which define the estimators Q. and .A. = exp.(-X, K) , k = 1, 2, ..., p

It is interesting to note that our procedure of reducing the observations

to as many sums as there are parameters in the model, substituting

observations for their expectations, and then solving for estimates of

the parameters is similar to Wald's method [29Jfor fitting alinear

regression with error in both of the variates.

In order to complete the new estimation procedure we need only

solve the set of equations (3.2.6) for & and 'XX . In the next

section we shall represent (3.2.6) in matrix notation and proceed with

a direct solution for Case 3 which makes extensive use of properties

of certain symmetric functions. Then in Section 3.4 a much shorter

solution will be given which utilizes certain results from the calculus

of finite differences. Illustrations of the procedure for the special

Cases 1 and 2 will be presented in Section 3.5 before the development

of the procedure for Case 6 is given in Section 3.6. Section 3.7 will

be concerned with the relationship of the new estimation procedure

to the Prony method outlined in Chapter II.

3.3 A Solution for Case 5 Estimators

To facilitate the solution of the set of equations (3.2.6) for

estimators of X, and a , we shall represent the equations in matrix

notation. Also, in order to simplify the writing of this section, the

carets which designate the estimators in equation (3-2.6) will be dropped
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until the final steps in the solution of (3-2.6) for the estimators

\ and \ .

Let a be a coliimn vector of the coefficients a. , so that*

Ta = (a±s a2, ..., a )

Also, define column vectors s and s in such a way that

-Ts = (S^, Sg, ..., S ) ,

** " ^pn-i'Va' ••- S2P)

Let L be a p by p matrix with elements**

J =A_(r-l)n
•^-rs s

Then define two p by p diagonal matrices W and v with elements

m(l -An)
r'

w
rs

1 -TV
r

°rs

V
rs

= A.Pn6
r rs

A superscript T denotes the transpose of the matrix indicated.

Unless otherwise indicated, when an element of a matrix or a determinant
is defined in this paper, r refers to the row and s to the column in which
the element is located.
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where 6 = 1 , r = s , and B = 0 , r ^ s . Now we may represent

the equations (3.2.6) which involve S,, Sp, ..., S as

LWcr = s . (3-3-1)

Moreover, the equations involving S ,, S 2, ..., S„ maybe written

as

LWVot = s . (3-3-2)

Now the inverse of W is a diagonal matrix with diagonal elements

(1 -A )/m(l -A.) , k = 1, 2, ..., p , and hence the inverse of W

exists provided that A ^ 1 . This is also a necessary condition for

W itself to be defined. However, A, = exp.(-X, K) and cannot equal

one in accordance with our model since we have specified that the

exponent X K > 0 . Therefore, both W and W exist. Further

more, the matrix L is an alternant matrix. Its inverse also exists

under our model and is given below by (3.3.8). Since both W and

L exist, it is permissible to premultiply both sides of equation

(3.3.I) by W_1 L_1 to obtain

a - w l s

This result, substituted in (3.3.2), gives

LWVW^L"1 s = s . (3-3-3)
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But WVW 3 WW v = V because diagonal matrices are commutable in

multiplication. Hence equation (3.3.3) reduces to

LVL"1 s = s . (3.3-4)

Since the matrix W does not appear in (3.3.4), we no longer

have to deal with terms of the form (l -AJV(l -A ) in the

solution for the X^ , and each time a JK appears in (3.3-4) it has

a multiple of n as an exponent. Therefore, as a further simplification,

we let

-XKn

\ - ^k = e . (3.3-5)

Now the elements of the matrices L and V of (3.3.4) may be written

respectively as

7 = r-l
'rs s

Vrs - *? 5rs

To solve (3.3.4) for estimates of the X ,we need to know L_1 .

But since L is an alternant matrix, the form of its inverse is well

known and is indicated, for instance, by Aitken [l, pg. 118 . However,
in order to write L in a concise form, we must first define several

terms. Denote by C the set of elements x±, xg, ..., x and by C.
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the set C with the element x. deleted. Then let E (C) and

E (C.) be the sums of all possible distinct products of the elements

of the sets C and C. respectively taken r at a time. That is,

•f-V

define E (c) and E (C.) to be the r order elementary symmetric

functions of C and C. respectively. E was defined previously in

Section 2.2, but with respect to a different set of elements than those

considered here. An elementary symmetric function of order zero is

defined to be one. Now, if we let

and

D =TT (X x.) (3-3-6)
i <j J i

D, = I/ (x, - x.) , (3-3-7)
n i < j J X

i,^h

we can show as an extension of Aitken's discussion that L has

elements

JL™ - (-l>r+STVs(0r> • <5-'-8>

Continuing with our solution of (3-3.4), let us consider the

elements u of the p by p matrix U = LVL~ . Carrying out the
rs

matrix multiplication indicated by the definition of U , we find that

urs -5 Z("D1""3"2 Vi"""1 WCl}i r,s=l,2,..., P• (3-3-9)
i=l y
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We wish to simplify the expression (5.5.9) for these elements u
rs

To do this, we shall make extensive use of two mathematical properties.

The first property with which we are concerned is given by the

equation

Xi Er <Ci> " Er+1 (C) -Er+1 (C.) , (5-5-10)

and it follows directly from the definitions of C , C and E .
i r

The second property is concerned with the quotient

% - ^t— Z(-l} Xi Di ' (3.5.11)
i=l

where k is a non-negative integer. It is shown below that

given that

Qk = VpH ' k > P-l

= 0 , k < p-1 ,

(3-3-12)

£ P a.

Hr = p*~~^ TTx± , (3-5-13)
Z a.=r i=1
i-1

a± ^ 0

where the summation is over all possible permutations of the non-negative
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integers a. for which the sum of the a. is r . H is called the

complete homogeneous symmetric function of degree r , and H- is

defined to be one.

To prove the relationship given by (5.5.12) in conjunction with

(5.5.15), we first note that D , as defined by (5-3.6), equals the

alternant |L| . This result is given, for instance, in f1, pg. 112J

Also, each minor of |LI is an alternant determinant. In particular,

the cofactor of any element I in the last row of IL is an
ps '

alternant of order (p - 1) and equals D as defined by (5«3«7)

Now let us define another alternant IL. I which is like |L| except

1 1 th
that the elements in the last row of |L. | are raised to the k

power instead of the (p -1) power. If we expand IL^.1 in terms

of the elements of its last row, each element has the same cofactor as

the corresponding element of |L|, and therefore

IL, I = xkD -xk,D ,+ ... + (-if'1 xk D,1ns1 p p p-i p-i N ' 11

(3-3.14)

- (-if-1 Z (-D^xJd. -
i=i

Hence, since D = |l| , a glance at (5.5.11) reveals that

|l I

\ - TT • (3-5'15)

But when k < (p - l) , two rows of |l.| are the same, and therefore

IlJ = Qk »0, k < (p -1) . And when k ^ (p -1) ,
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|LjJ
"fL~r = ^-p+i * (3.3-16)

a result given in 28, pg. 150 Therefore, referring to (5.5.15), we

conclude that Qfc = \_v+1 ,k ^ p-1. Thus equation (5.5.12) is
correct.

Now that the properties given by equations (5.5.10) and (5.5.12)

have been established, let us proceed with our work on the elements

\B of the U matrix, as given by (5-5-9)- Applying (5.5.10) and

(5-5-12) to (5.5.9) repeatedly, we deduce that

»rs «(-1)P"S Vs+1(C) W +^^ Vs+2 (C) V-3 +'

... +(-1)P_1 Ep(C) ^.g^; r,s=l,2,..., p. (3.5.17)

Let us refer to Er(C) simply as Er . Now we may bring equation

(5-5.12) into play to evaluate the Qfc factors in (5.5.17) giving the
general result that

\s "("DP-S W Vl +(^)P_S+1 %.s+2 Hr_2 +.-

... +(-1)P" Ep Hr_g ;r,s =1, 2, ..., p• (5-5-18)

where a function Er with r > p or a function H with r < 0

is defined to be zero.
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Each term in the expression (5„5ol8) is the product of an E
r

function and an H function. Furthermore, for any element u in
r rs

th
the r row of U , the Hr function in the first term has subscript

(r - 1) , and this subscript decreases by one with each successive term

until for some term either H or E vanishes. Similarly, the

subscripts on the E functions increase by one with each successive

term. Hence, the matrix U , which has the u as elements, may be
rs r -v

represented as the product of two triangular matrices. For if we define

p by p triangular matrices E and H with elements (-l)r"s+1 e
v ' p+r-s

and H respectively, we can see that

HE = TJ . (5-5-19)

Since U = LVL , (5.5.4) now may be written as

H E s = s . (5.5.20)

But the matrix H has a simple inverse 11, pg. 115 , namely the

p by p triangular matrix E with elements (-l)r"s E . Thus,
— x r-s '

premultiplying both sides of (5.5.20) by E , we have

E s = E s . (5.5.21)

The matrix equation (5.5.21) when multiplied out yields a set

of p linear equations in the p elementary symmetric functions E .



52

These equations are

- E_ S ^P-1 r. o _ / ,nP-1!P Vl -EP-1 Sw+2 +Ep-2 Sw+3 — +^ El Sw+P -(-1)" Sw+P+1'

w = 0, 1, 2, ..., p-l . (5-5.22)

The sums S^ are known functions of the observations and therefore

the equations (5.5.22) may be solved by elementary means for an

estimator 1? of any E . This solution may be presented as

E

R
p-r+1

r R
, r = 0, 1, 2, ..., p ,

(3-3-23)

where |R| is a p by p persymmetric determinant with elements

sr+s-l and \\\ is a P by P determinant with elements S , ,
i+£> ± K r+s-1 '

r< k-1,and Sr+s ,r > k.

Since the functions Er are the elementary symmetric functions

of the Xjj. , each ^ is a root of the equation

xP -E^"1 +E^"2 -...+(-1)P_1 E xx +(-1)P E -0.(3-5-24)

Thus, after substitution of ^ for Er in this equation for
r=l, 2, ..., p,estimators Q^ of the x, may be obtained by
finding the p roots of the equation

^A**-1+%**-* -...^-l?-1^, (-!?%,<> . ,5.5.8,,
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Because of the symmetry of the coefficients in equation (5.5.25), the

subscripts of the estimators 'xV may be assigned in any order.

During the preceding exposition we have seen how the new

estimation procedure leads to estimators /x. of the exponentials x, .

In the remainder of this chapter we shall assume that these 'xl

solutions yielded by equation (5.5.25) are admissible estimators.

That is, we will assume that each root Q: is real with 0 < 'xi < 1 ,

the range dictated by the model for the parameters x. . Conditions

which are necessary for equation (3.3*25) to have such admissible roots

are discussed in Section 5-6.

Now we wish to make use of the Q to compute estimators of the

parameters in our model. Since by definition, x. = exp.(-X. Kn) ,

we take as our estimators of the X. ,

\ = 'Kn-^n^k> k=l, 2, ..., p . (3.5.26)

Then substitution of the Q. in (5.5.1) determines a set of linear

equations in a which may be solved easily for estimators €k of

the coefficients cl . In summation notation, these equations are

k=i - 1 -!gm Z ^k AE/i^k =Sq ' q=1' 2' '"' P' (3'5*27)

5.4 An Alternative Solution for Case 5 Estimators

In this section the equation (5.2.6) will be transformed into

the set of equations (5.5.22) by another method. Suppose we let
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A (1"^G = m^ . (5-4.1)
K 1 -A,

k

Now recalling the definition of x^ given by equation (3.3.5), we may

write equation (3.2.6) as

Sq = E Gk^k_1^ q=1, 2, ..., 2p . (5.4.2)
K—X

But functions, such as the S , of a discontinuous variable which,

like q , takes on only integral values are known to satisfy a

difference equation which is of the same order as the number of unknown

parameters in each function (see [l6J. Therefore, if we consider the
X^ as known, the S^ satisfy ap order difference equation which

may be used to find the estimators ^ . Moreover, for apolynomial
such as (5-4.2), Householder [l4j shows that this difference equation

is of the form (5-5-22) provided that the ^ are all distinct.
Now the parameters x^. are all distinct since our model specifies that

Xr ^Xs 'r^s• Therefore, if the -x^ are admissible estimators of
the x^ , they are also distinct, and equation (5-5.22) is correct.

Now that we have again arrived at the difference equation (5.5.22),

the estimators ^ ,̂ ,and ^ may be obtained in the same manner
as before. However, the calculus of finite differences

to the further results that the ^ are linearly independent and that

both the ^ and the ^ are unique provided that the & are all
distinct.

16 does lead



55

5-5 Estimation for Cases 1 and 2

We shall now illustrate the new estimation procedure for Cases 1

and 2. Additional examples axe given in Chapter VII. The models for

these two cases, as defined in Section 5.1, may be obtained from the

model for Case 5 by setting p eqtial to one and two respectively.

For Case 1 we have estimators "x ,'T and <£t to calculate for

the parameters given in equation (5.1.5). Note that the subscript k

is dropped for Case 1 because it always equals one in this instance.

Now there are two parameters in the model for Case 1, so we need to

calculate two sums S . These sums are
i

n-1 m

s, = Z Z y,. , (5.5-1)
i=o j=i 1J

2n-l m

S2 = Z Z y . . (5-5-2)
i=n j=l J

Also, for Case 1 there is only one elementary symmetric function,

namely E, , and therefore E, = 'x . So, substitution in equation

(5-3-25) with p s 1 yields

& = ~ . (3-5-5)
bl

Furthermore, from equations (5.3.26) and (3.3.27) we have that

*•-E*»(J.) • ^'k)
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2>/n

& = ~^(\ -SgT (3-5-5)

Let us apply these Case 1 estimation equations to the data in

Table 1. This data is not actual experimental data, but it is typical

of data, say, for successive determinations of the activity present in

a solution containing a pure radioactive substance. There are an even

number of points t± , so the number of observation points is an integral

multiple of the number of parameters as required by our model. This

integral multiple, n , is equal to four. K , the constant length of the

Table 1

ACTIVITY DETERMINATIONS VERSUS TIME

1
j Time t.
| l

0 1 2 5 4 5 6 7

1Dosage y

i

6.81 4.70 3-25 2.24 1-55 1.07 0.74 0.51

intervals between successive t. , is one. Also, m , the number of

observations for each t± , is one, so we drop the subscript j . Now

if we group the ti as suggested in Section 5.2, we shall put t ,

t± ,t2 and t? in the first group and t^ ,t_ ,tg and % in the

second. The corresponding observation sums, as given by (5-5.1) and

(5-5-2), are

= 6.81 + 4.70 + 5.25 + 2.24 = 16.98 ,
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s2 = 1.55 + 1.07 + .74 + .51 = 5.87

Then substituting S1 and S2 into equations (5.5.5), (5.5.4) and

(5«5-5)? we find that

& = .228 , % = .570 , 4 = 6.797 •

Thus we may represent the data in Table 1 by the function

A -370t
9± = 6.797 e

For Case 2, four sums S are required and are given by

qn-1 m

s_ = Z^ Z^ y±J , q-l, 2, 5, 4 .
q (q-l)n j=l

(5.5.6)

There are also two functions E to be estimated using equation

(5.5.25). With p =2 ,this expression for the & yields

4 -

51 s5

52 S4 sl s4 " s2 s5
hi Sl S2

s2 s5

2 's1 s5 - s2
(3.5.7)
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S2 S5

$ --S5 s4 S2 s4

Sl S5

-4
^2 Sl S2 2

"S2

S2 S5

(5.5.8)

Now the exponential estimates /x and 'xU for Case 2 are roots of the

equation

x - 'EN1 x + 'E2 = 0 ,

which corresponds to equation (5.5.25) for the general Case 5. There-

fore, we may take

4 - iXl 2

4 - ^X2 ~ 2

£i+(^_4£/

1-,
2 , a ,2\ - (^-4^)

Finally, from (5-5.26) and (5-5-27) we find that

A\ = -k £«\> k=1>2 >

% =
(1 -̂ n)(Sl%-s2)
m(l- %) (\ - \)

(3.5.9)

(5-5-10)

(3-5-11)
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(i -̂ /a) (s2 -Sl £,)
m(l -A2) (^ -^) (3-5-12)

The estimation for Case 2 may be illustrated using the fictional

data in Table 2. Suppose an experimental animal is injected with a test

material at time zero. This data purports to represent the concentration

of the injected material in the animal at time t measured through the

cumulative per cent of excretion of that material up to time t .
i

Table 2

CUMULATIVE PER CENT EXCRETION y. VERSUS TIME t

*i 0 1 2 3 4 5 6 7 8 9 10 11

yi 0.6o 1.82 2.84 3-72 4.4o 4.99 5-49 5.86 6.19 6.42 6.65 6.76

Since there are twelve observations and four parameters to be estimated,

n = 5 . As before, K and m are both one. Using equation (5.5.6),

we find that

S± = 0.60 + 1.82 + 2.84 = 5.26 ,

S2 = 5.72 + 4.40 + 4.99 = i5.ll ,

s5 = 5.49 +5.86 +6.19 = 17.54 ,

3^ = 6.42 + 6.65 + 6.76 = 19.85 .
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Then from equations (5.5«7) and (5-5.8) we obtain

^ = 1.5782 , ^2 = .5989

These estimates, substituted into equations (5.5.9), lead to the

exponential estimates

&L = .9455 , £2 = .6549 .

These estimates in turn substituted into equations (5.5.10), (5.5.11),

and (5.5.12) give

\ = .0195 , \ = .1514 ,

^ = 10.784 , &2 = -10.167 .

Hence the data in Table 2 may be fitted by the equation

-.0195t. -.15l4t,
9< = 10.784 e - 10.167 e 1

5.6 Estimation for Cases 4, 5 and 6

Now that the estimation procedure has been developed for Cases

1 and 2 in particular as well as for Case 5, the results for Case 5

may be utilized to obtain estimators for Case 6. From equation (5.1.8)
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p -xk.ti
yij =a0 + ^°k e X+e^ ,i=0, 1, 2, ..., (2p+l)n-l ,

KL=X

(5-6.1)

under our Case 6 model. Sums S may be formed from the observations
q.

y. . in a manner similar to that in which they were constructed for

Case 5 to give

qn-1 m

S = Z Z y . , q = 1, 2, ..., 2p+l ,
q i-(q-l)n j=l 1J

(5-6.2)

the only difference being in the range of the subscript q . Taking

the expectations of the sums S , we have

P , ,v (1 -An)
£(S)=mna0 +mZ a. /Y^11 *- , (5.6.5)

q ° k=l K * 1 -A
k

q = 1, 2, ..., 2p+l ,

where A is still defined by equation (5.2.4). As before, we

equate the sums S to their expectations to arrive at the equations

p /\i i\ (1 -An)S =mn^ +m Z \^t~1)n ^ , (5-6-4)
q ° k=i ^ K 1 -A,

k

q = 1, 2, ..., 2p+l .
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At this point the solution for Case 6 diverges from the pattern

established for Case 3. We now perform a series of subtractions to

obtain the differences

Sq = Sq "Sq+1 'q= ±! 2> '••' 2P * (5'6*5)

In forming the S' we eliminate fa from our original set of (2p + 1)

equations, giving the 2p new equations

P A/ ,x (1 -A. )2
S' =m Z ^^"l)n * ,q=1, 2, ..., 2P . (5.6.6)
H k=l l -TV,

Next we define the matrices s and s of Section 2.5 in terms of the

Sq instead of tne S , and we call the resulting matrices s' and

s' respectively. Then we let W' be a diagonal matrix with elements

-(1 -^)2
w' = ±— S

1 -yv
r

Now the set of equations (3-6.6) can be represented by the two matrix

equations

L W' a = s' , (3-6.7)

L W' V a = s' , (3.6.8)

which correspond to equations (3.3-1) and (3-5-2) for Case 5.

i*KM'>&tt!H>HM&>l^^t«&!&i^^
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Proceeding as before, we may eliminate the vector a from the equations

(5-6-7) and (5-6.8) to obtain the equation

LVL_1 s« = s' . (5-6.9)

This equation is of the same form in terms of the S' as (5.5.4) is in
q

terms of the S , and like (5-5.4) it may be solved for estimators of

the exponents X. . Thus, the solution for estimators of the parameters

X^. is the same for Case 6 in terms of the S* as it is for Case 5 in

terms of the sums S
q

From the above discussion, it follows that to estimate the

parameters of a Case 6 model it is first necessary to compute the

statistics S' in accordance with equation (5.6.5). The next step is

to substitute the S' for the corresponding S in the solution already

derived for Case 5 to obtain estimators /x\. of the exponents X .

These estimators, when substituted for the X in equation (5.6.7),

lead to a set of linear equations in the coefficients a. , for k > 0 ,

which may be easily solved for estimators fa. of the a . If we again

let 9^ =exp-t-^ Kn) ,this set of linear equations which yields the
fa. may be written as

P (1 -4, )

k=l^_1 1-$n ^=V *-l>2>—*P- (5-6.10)

These equations correspond to the set (5.5.27) which were derived

earlier for Case 5. Finally, an estimator fa of a may be found
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for Case 6by substitution for the ^ and the rest of the 4 in the
equation

&
mn -U (1- '̂

k=l
rr^/H (5-6.11)

Now that the new estimation procedure has been presented for the

general Case 6 model, estimators for Cases 4 and 5 may be easily

determined by setting p equal to one and two respectively in the

Case 6 derivation. In this way it can be shown that for Case 4,

£

A - -A/nA . 1
Kn Kn

S2 -S5
Sl "%

•n
S2 "V

0 ./, £ n
Sl S3 " S2

mn(l -y\_ ) mn(si -2S2 +S )

(Sl -mn faQ) (1 -A) <S1 "S2^:

(5-6.12)

(5.6.15)

(5-6.14)

1-1

1 -

\ ^n>
m(l - A") m(S1 -2S2 +S?)'

(5-6.15)
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Also, for Case 5,

A sls4 "slS5 + S2S5 "S2S5 + S3 "S5S4
1 = ~ ~ ~ ~ 12 ~2~ >

S1S5 " SlS4 + S2S3 + S2S4 S2-S5

&
s^ + ^x(s3 -s2)

S2 - Sl

(5-6.16)

(5-6.17)

Estimators ^ ,Q ,̂ and § for Case 5are obtained from K, and
ArE2 in the same way as they were for Case 2 in Section 5.5. Subsequently,

estimators fa^ , fa and fa are given by

\

& =

& -

(S,

L(s2

l/nS1)(l +£,) - S5 +S1J (1 -^ )
m(l -£/ (^ -42)

(5-6.18)

S1)(l +xx1) - S5 +S1](l -^/n)
m(l -£,)2 (42 -&,_)

(5.6.19)

_1_
mn

S1 - mfa1 (1 %)
1 -'Xs:

Al/H »&
(1 -£,)

(5.6.20)
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As an illustration of a Case 6 type estimation, let us again fit

the data in Table 2, but this time to a Case 4 model. Since there are

now only three parameters to be estimated with the twelve observations,

n = 4 . As before, K - m = 1 . Now from (5-6.2) it follows that

Sx = 0.60 + 1.82 + 2.84 + 5.72 = 8.98 ,

s2 = 4.4o + 4.99 + 5.49 + 5.86 = 20.74 ,

S = 6.19 + 6.42 + 6.65 + 6.76 . 26.02

Thus (5.6.12) yields

^ - SM = 'kk898

and (3.6.I3) gives

£ = -J In (.44898) = .2002 .

Then, substituting into (3.6.14) and (3.6.15), we find that

faQ = 7.5806 , fa± = - 7.0272 .

Hence the data in Table 2 may also be fitted by the equation

A -.2002 t.
y\ = 7.5806 - 7.0272 e x
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5-7 A Comparison with the Prony Method

In the estimation procedure which has been presented in this

chapter, sums S of observations are substituted in the equation for

the expectations £(s ) of these sums. Then in the course of the solution

of the resulting equations, the symmetric functions E of the x. may

be presented as the ratio (5-5-25) of two determinants. The elements of

these determinants are the sums S - But if we divide each S by mn ,

we shall divide both the numerator and the denominator of the ratio

(5-5-25) by (mn) , which will leave the equations unchanged except for

a substitution of groups means for the corresponding sums S . Thus we

may obtain the same estimators by using arithmetic means instead of sums,

and the estimation procedure may alternatively be thought of as one in

which means of observed values are substituted for their expectations.

Another interesting characteristic of the new estimation procedure

is its similarity to the Prony method outlined in Chapter II. In fact,

a comparison of (5.5.22) and (2.2.2) shows that these two equations are

of the same form, but that (2.2.2) involves observations y. while

(3-3-22) can be expressed in terms of the sums S or the corresponding
Si

arithmetic means. So it might appear that the new method is comprised of

the application of the Prony method to group means instead of individual

observations. This is not the case however, for such an application of

the Prony procedure would consist of taking each group mean to represent

the mid-point expectation for that group and then fitting these means

by Prony's method. But the expected values of the group means are not

equal to the group mid-point expectations, and hence Prony's method
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applied in this way amounts to fitting an exponential model with parameters

which differ from those defined in the new procedure. Thus the new

procedure is essentially different from the Prony method. Moreover, the

new procedure does not require that the number of parameters in the model

be equal to the numbers of observations to be fitted as did Prony's

original interpolation method. Neither does it involve questionable

least squares calculations as does the estimation version of Prony's

method presented by Whittaker and Robinson [50J .
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IV. THE LIMITING DISTRIBUTIONS OF THE ESTIMATORS

4.1 A Theorem on Limiting Distributions for Large m

Although the estimators produced by the new estimation procedure

are comparatively easy to calculate, they are not simple enough to

yield easily derived small sample distributions. Reference to analytical

investigations of the small sample distributions of some of the esti

mators will be made in Chapter VI. Also, the results of an extensive

empirical study of the distributions of the estimators for Case 1

will be presented there. Meanwhile, in this chapter the limiting

distributions of all the estimators derived with the new estimation

procedure will be determined. Furthermore, these distributions will

be derived as either m , the number of observations made at each

observation point t± , or n ,the number of t± in each of the 2p

partitions of the t. , approaches infinity.

We shall first present a theorem from which limiting distributions

of the estimators may be determined as m—> ^o with n held fixed.

This theorem is applicable to either Case 5 or Case 6. In the derivation

for Case 5, q = 1, 2, ..., p , while for Case 6, q = 1, 2, ..., 2p+l .

Now in Section 5.7 it was mentioned that the estimators obtained by the

new procedure may be expressed alternatively as functions of group

means instead of the group sums S . Denote these means by Y , where
q. q.

Yq " i5Sq ' (^•1-1)
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and define the expectation of any Y to be n . From (4.1.1) it
q q.

follows that

\ ' e £<sq> • (*.i.a)

Then equations (5«2.5) and (3.2-5) for the P (S ) lead to the relation-
K— q

ships

, qn-1 p -X.K1

i=(q-l)n k=l

n,
i p f i\ (1 "A. )

' i E «k ^k" ^ > <^)n k=l K K 1 -A,
k

where Afc = exp. (-X^ K) . Y may be evaluated in a similar way from

equations (5.2.1), (5-1.5) and (4.1,5) to give

, qn-1 m

Y = — Z Z y. .
i=(q-l)n j=l

1 qn-1 P "\Ki x qn-1 m
;: ^ Z a,, e + — Z Ze..
n i=(q-l)n k=l^ mn i=(q-l)n j=l 1J

i S /i qn-1 ^= tj + — Z - Z e,.

«~WMaBSW«s^W*»?»f«aiB*
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In order to prove the theorem we wish to present, we would like

to represent the Y as functions of means of identically distributed

variates except for constant parameters. Let us define a new error

term

1 an-1

6qj = n E ^ eij > (^'5)
i=(q-l)n °

fj -= jl« c.% • • • 5 m

Under the assumptions of our model, the errors e . are identically

o

distributed variates with zero means and common variance o /n . Now

if we let

we may write Y as
q.

e
1 m

= ™ E e . , (4.1.6)1 * .=1 qj

Yq = \ + 6q • (*-l-7)

The Tj , as can be seen from equation (4.1.4), are independent of m ,

and n is being held fixed in order to obtain limiting distributions

as m —> <><=>

Let us define the function 'e1 to be any one of the estimators

x^. ,fa^ , or X^. obtained by the new estimation procedure for either

Case 5 or Case 6. Since F is a function of the means Y which are
q.
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in turn functions of the e and the i\ . Q may also be considered
q q

as a function of the sample means e and the population means tj .

As indicated above, the e are means of identically distributed variates
q.

while the Y are not, for each Y is the mean of observations y. .
q. q. ij

which under our model do not all have the same mean. Now Hsu >115

proves a theorem which gives the limiting distributions of functions of

means such as the e , and his theorem is applicable here. Let us define

the point tj to be a row vector with the n as elements and the point
'q.

Y to be a row vector with the Y as elements. Now in terms of the
q.

estimation function V , Hsu's theorem becomes

Theorem 1. If the function A(Y) of means Y possesses

continuous second order derivatives of every kind in a neighborhood of

the point tj ,then n/W[&(Y) -^(tj) is normally distributed in

the limit as m—> ^> with mean zero and variance

Z a2 2 (4.1.8)
q q

as long as a ^ 0 for some q , where

^S A,
q. "*"a~ = TT~ W (4.1.9)

y=ti

4.2. Limiting Distributions for Large m

Since we have explicit formulas for the estimators for Cases 1,

2, 4 and 5, we could show that the conditions of Theorem 1 are satisfied

for these estimators and then we could use Theorem 1 to obtain their

J -^ I m -Ktfr 4>-M*f«*i: is- 44*tti.a<M
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limiting distributions as m—> o=> . However, in this section we shall

instead proceed directly to the limiting distributions as m—> «> of

the estimators for the more general Cases 5 and 6 even though the esti

mators for these cases cannot always be represented explicitly by

algebraic equations. Although the detailed demonstration in this section

will be for Case 5, it will be indicated that the results also hold for

Case 6. After limiting distributions for the general Cases 5 and 6 are

considered, particular results will be displayed for Cases 1 and 4.

Before considering the & ,the /i\ , or the fa. , it is first

necessary that we investigate the behavior of the $ for Y in a
r

neighborhood of tj . From equation (5.5.25), it can be seen that each

E may be represented as the ratio of two determinants in the S -
r q

If we substitute the terms mnY for the corresponding S in (5.5.25),

the mn factors cancel out. Thus we may write it as
r

A
r

P
p-r+1

1, 2, ..., p , (4.2.1)

where |P| and |Pfc| are the determinants |R| and |R | of equation

(5.5.25) with the Y replacing the S .
q. q.

Both |p| and Î -.-il are continuous everywhere since each

of them involves only sums of products of the Y . Hence ^ is
q r

continuous in a neighborhood of tj provided that |p |^ 0 at tj .

Furthermore, derivatives of all orders of E with respect to the Y

are all continuous in a neighborhood of t] if |P| jL 0 at tj ,

for the k order derivatives are ratios of continuous sums of products
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And since is a continuous function of

tne Y , IPj^ 0 in some neighborhood of tj if it is not zero at

tj , Hence, to demonstrate the continuity of the $ and their
r

derivatives of all orders, or in other words, to demonstrate that the

Er are analytic, in a neighborhood of tj , it is only necessary to

show that

'pool - |p|
I=tj

^o

First observe that since x^ = .A.£ ,(4.1.4) may be written as

z rf
k=l

where

< • 5 °k
(l-V

1 -
175
*k

Under the assumptions of our model, o£ £ 0 . Now reference to the

definitions just given for |p| and |p(tj)| and also to the definition

of |r| given in connection with (5-5-25) reveals that |p(tj)| has
elements

Thus |P(tj )

<*s
r-1

v , r+s-2
L °k *kk=l * k

,T
= |B B I , where B is a p by p matrix with elements

But |b I is in turn given by
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|b| = (a{ a£ ... c^f |l| .

Now, as was shown in Section 5.5,

|l| = TT (x - x ) ,
i > j J

and since all the x, are distinct under the assumptions of our model,

Ir. I ?= 0 . So we conclude that

|P(TJ)| = O^-..^ |l|2 ji 0 . (4.2.2)

Therefore, both the it and their derivatives of all orders with respect

to the Y are continuous in a neighborhood of tj .

As we stated earlier, the estimators x, , whose asymptotic

distributions we are seeking, are roots of a p degree polynomial

equation with coefficients TT - Since the roots of such an equation
r

are continuous functions of the coefficients 28, pg. 69 , and since

it has been shown that the E„ are continuous functions of the Y in
r q

a neighborhood of tj , it follows that the /x\ are continuous functions

of the Y in such a neighborhood. However, Theorem 1 requires continuity

of the second order partial derivatives of the § in a neighborhood

of tj , and to prove that these derivatives are continuous we shall

refer to an implicit function theorem from the theory of functions of

real variables.
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This implicit function theorem is given, for instance, by Graves

11J . Applied to the polynomial (5.5.25), where the coefficients E

are analytic functions of the Y in a neighborhood of tj , it implies

not only the existence and continuity of the second order derivatives of

the x^ , but of derivatives of all orders, in a neighborhood of tj

provided that two conditions are satisfied. If we let

g(x, Y) =X5 -\ x5"1 + \ x5"2-... +(-1)P£ , (4.2.5)

«K <X> Y> = S g(X' Y)

these conditions are

g(x, Y)

gvU, Y)

X=Xk
Y=TJ

X=Xk
Y=TJ

= g(Xk , TJ )= 0 k — 1, 2, *.., p j

= sx(xk, n) ^ 0 , k = 1, 2, ..., p

(4.2.4)

Since, as will be indicated later, Y = E , r = 1, 2, ..., p , at tj ,

and since the E are by definition the elementary symmetric functions

of the x^. , the first condition always holds. However, the second

condition is satisfied if and only if no two of the positive constants

x^ are equal. But our model precludes any two x from being equal.
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Therefore, under the model specified earlier for Case 5, the second order

partial derivatives of the 4^ with respect to the Y are continuous

in some neighborhood of tj .

Before applying Theorem 1 to the estimators for Case 5, we now

need only observe that by virtue of the equating of S to <^(s ) in

the estimation procedure, when Y = n for all q , the estimators

Xj^. = x^ , k = 1, 2, ..., p . Thus, on the basis of Theorem 1, it follows

that /mn (^ -x^) is asymptotically normally distributed with mean

zero for large m , where k = 1, 2, ..., p . Now let us quickly show

that both /mn"1(^ -X^) and /m (^ -a) are also normally
distributed about a mean of zero in the limit as m—> <=*= .

The estimators %^ are related to the A. by the equation

\ = ~I5 ^n\ > k=l, 2, ..., p , (4.2.5)

which has second order partial derivatives

ay. ay. = v as "-~a r—r- > (4.2.6)J i Kn 'xj Kn 'x^ oY. oY.,

£ ss Xj G.} • •••^ P •

Since ^ =^ at tj and x^ >o for all k,there exists aneighbor

hood about tj where the A, > 0 and have continuous second order

partial derivatives. Therefore, from (4.2.5) and (4.2.6) it can be

seen that both the X^. and their second order partial derivatives with
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respect to the Y must also be continuous in that neighborhood. Also,

upon substitution of x^ for ^ in (4.2.5), it follows that \ =K
at tj . Hence, we may conclude that \/W(^ -X) has alimiting
normal distribution as m —> <=o with mean zero by virtue of Theorem 1.

Turning our attention now to the estimator 'fa , we first note

that by the same argument used to show that x\ = x, at tj , it also

follows that ^ =Q^. at tj „ Thus, to demonstrate the asymptotic
normality of v/mrP (fa^ -q^.) for large m by Theorem 1, it is only
necessary to show that the second order partial derivatives of fat

with respect to the Y are continuous in a neighborhood of tj .

Substitution of mn Y for S in equation (5.5.27) shows that the

may be found by solving the set of equations

A
-1 & -fy

Now x^. is continuous in a neighborhood of tj and at tj , '& = x. ,

where 0 < x^ < 1 . Therefore, there exists a neighborhood of tj

for which (1 -̂ )/(l -̂ /n) as well as ^"1 and Y are continuous.
It follows from (4.2.7) that in that neighborhood the fa. may be

represented as ratios of continuous determinants. As in the case of the

Er ' the °k aad their second order partial derivatives with respect

to the Y will be continuous in a neighborhood of tj if the determinant

in the denominator is not zero at tj

The denominator in the ratio which equals fa, may be shown to

equal (c1, c2, ..., c )|l| ,where

5 }_, ^_1 \ Al/n K " \> *«1» 2, ..., p . (4.2.7)

^:^iWitS^^M««**«S*!pi«l1I«rtt.-aiiWSM(«'-~i
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1 -\
C ss a-t- , k — 1, 2, ..., P
k n(l -x£/n)

Since x, ^ 1 for 1 > 0 as specified in the model, each c, is

finite but not equal to zero. Also, we have already seen that under

the restrictions of our model, |L|^ 0 . Hence each fa, has a non

zero denominator at tj , and both the <fa and their second order

partial derivatives with respect to the Y are continuous in some

neighborhood of tj . Therefore, Theorem 1 yields the result that

\/mn {fa. -ex.) has a limiting normal distribution with mean zero as

m—> ^^ .

So far the evaluation of the asymptotic variances of the estimators

for Case 5 has not been mentioned. The estimators X, and fa. are

known functions of the exponential estimators x. . Therefore their

asymptotic variances, as well as those of the x, , follow directly from

equations (4.1,8) and (4.1.9) once the first partial derivatives of the

x\ with respect to each of the Y are known. The evaluation of these

partial derivatives is also given by Graves 11 . Let us define column

vectors

T

gy(x, Y) =(3j- g(x, Y), 3^- g(x, Y), ..., 3^r— g(x, Y)

(4.2.8)

d A 5 A d A
T

*kY "(W[^k >"oT^ V •••* 3yZ \) 'k=1' 2' ""' P '
(4.2.9)
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where g(x, Y) is defined by (4.2-5). Also, let

SyC^; Y) = gyU, Y)
*A

, k = 1, 2, ..., p , (4.2.10)

«A' Y) = Sx(x' Y> x^
, k = 1, 2, ,.., p , (4.2.11)

where the scalar gjj(x, Y) is defined by (4.2.4). Now the vector X,

of the first partial derivatives of any x\ with respect to the Y

satisfies the equation

*W
gy^, Y)

*A>Y>
, k = 1, 2, ..., p „ (4.2.12)

With the help of (4.2.12), we may evaluate the a derivatives
q

of equation (4.1,9) in Theorem 1 for any 'X; . For

W
q

oY^ \

Kn ^
, q = 1, 2, ..., 2p , (4.2.15)

a311(1 W ^s: f°r any k and q is given by (4.2.12). Similarly,
q.

equation (4.2.7) yields a solution for any fa. in terms of the x\ ,

and the first partial derivatives of the fa. with respect to the Y

may be written in terms of the x^. and their first partial derivatives.

Hence, (4.1.,9) may also be evaluated for any fa. with the help of (4.2.12),
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Then once the a derivatives are determined for either an fa: or a

X^. estimator, (4.1.8) may be employed to find the asymptotic variance

of that estimator for large m .

The limiting distributions just derived for Case 5 may be shown

in the same manner to hold for Case 6. We have already seen that

Theorem 1 is applicable to Case 6 as well as to Case 5. Therefore,

in order to claim the results of this section for Case 6, we need only

show that the continuity conditions of Theorem 1 are satisfied for

Case 6. And to do this, we need to demonstrate that the determinant

|P(tj)| , evaluated by (4.2.2) for Case 5, and the denominators of the

fa^ at Y=tj are not zero for Case 6. However, from (3.6.5), (5.6.10),

(4.1.2) and the discussion leading up to (4.2.2), it can be seen that

for Case 6,

b(n)| - -77 o£ (1 -xj |l|2 . .
k=i ^ *

Since x^. ^1 under our model and since the right side of (4.2.2) is

not equal to zero under our model, |P(tj )| ^ 0 for Case 6. Similarly,

the denominator of fa: , k = 1, 2, ..., p , evaluated at tj for
P

Case 6 equals "Tf (1 - x. ) times the corresponding denominator for
k=l K

Case 5, and is therefore not equal to zero at tj . Finally, from

(5.6.11) it can also be seen that a is continuous at Y = tj . Thus,

the limiting distributions as m —> *>° already obtained for Case 5

also apply to Case 6.
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In summary of this section thus far, it has been proved that the

estimators \ , \ and fa^ obtained by the new estimation procedure
for parameters in the general Case 5 and Case 6 models are such that

if 9 denotes any one of the estimators and 9 the corresponding

parameter, /ran (& -9) is asymptotically normally distributed with

mean zero for n fixed and m large. Also, a method has been given

for determining the asymptotic variance of /nuT^ -e) by using

(4.2.12), (4.1,8) and (4.1,9) in conjunction with the equation which

specifies 9 in terms of the ^ . This method is also applicable to

Case 6 as well as Case 5. When using it for Case 6, the 3x!/oY" are

still given by (4.2,15), but the c& /oT are obtained from (5.6.11)

and the d^/dY , k=1, 2S ,.., p,from (5-6.10), where Y =S/mn

Also, the dx^/oY^ are still given by (4,2,12), but the vector Y now
has (2p + 1) elements instead of 2p elements as it had for Case 5.

Before going on to limiting distributions as n—S> &<=> , let us

look at the limiting distributions as m —> ~o for Cases 1 and 4 in

particular. Interpreted in terms of Case 1, the conclusions of the last

paragraph are that /^ (fa - x) , /mn $ -X) and /^? (fa - a) are

all asymptotically normally distributed with zero means for m large.

The asymptotic variances for /mii(4 -x) and /in"1 $ -X) may be

determined by differentiating both (5-5,5) and (5-5.4) with respect to

Yl and Y2 and then substituting in (4.1.9) and (4.1.8). In this way

we find that the asymptotic variances for s/ran(fa -x) and >/mn(/XN - X)

are

/ 2 2, 2(\ + tj2) a
5 (4.2.14)
^1

S'*««8!i->i'«*M£H*iw» **•"•'''•• '-' '•••- ••• .->. k>«••&<**.„„ ;;A«*Ssftvtii» ^>i'- Jhf^U^.^,n>^n^yi,i^^,„
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/ <- 2. 2
(\ + n2) °
„2 2 2 2
K n tj1 tj2

(4.2.15)

respectively. Similarly, (3.5-5) in conjunction with (4.1.8) and (4.1.9)

leads to (a + a2) a for the asymptotic variance of /inn1 (fa - a) ,
where

l/n l/n
nC^ -2tj2) (tj1 - tj2 )+ (Tj1 - tj2) tj2l/n

<*1 "̂ ^

/ l/n l/n,. , x l/n
n n2 lV " V >" ^1 " V n2

- 2 l/n
(nx - n2) tj1 tj

(4.2.16)

For Case 4, /mn(^ -x) , /mn1 (^ -X) , /mn1 (faQ -aQ) and
6nn'(&, - a,) all have limiting normal distributions as m —> °°

2 2 2 2with zero means and variances given by (a^ + ap + a,) cr Differen

tiation of (5.6.12), (5.6.15) and (5.6.14) and substitution in (4.1.9)

shows that for /mnCx - x) s

TJo - n,

K " \y
a2 = i

(\-\Y
a_ = -

Vfe
; (4.2.17)
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Afor /mn'fX - X) ,

"JL3.*i = Kn(ni-n2) > a2 " -iSTv^vCT' a3 - Kn(Vn.)' (4-2-18'

and for /mn (A„ - a ) ,
0 0

(qg - n3)'
(tj1 - 2tj2 + tj3)

2(\ - T)2)(TJ2 - TJ )
o

W " 2n2 +V
(\ ~ TJ2)'

(tj1 - 2rj2 + TJ )'

(4.2.19)

Finally, in terms of the constant x = (tj2 - tj,)/(tj, - tjp) , the a

for /mn1 (fa^ - o^) are

\

a« =
2

m(l - x)5

1 1"

(1 - x) xn + n(l - 5x) (1 - xn)

mx(l-x)'

1 l"

nx (l+5x) (1-x11) - (1-x) (1+x) x11

5 mx(l - x)5
(1 - x) xn - 2nx (1 - xn)

(4|2.20)
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4.5 Limiting Distributions for Large n

Up to this point limiting distributions have been derived with n

constant as m—^> <x> , where n is the number of points at which

observations are taken within each interval and m is the number of

observations per point. Now let us reverse the situation and hold m

constant, so that asymptotic distributions for large n may be found.

From Section 4.1 we have

The error term

n qn-1 m
Y = t| .+ i- Z Z e.. . (4.5-1)
q q m i=(q-l)n j=l 1J

(4.5-2)

may be thought of as the mean of the n identically distributed variates

Also, the term

1 m
- Z e.
m ij

n =i ZaA^)" U^nq n k=1°k k x_^

and is not independent of n . In fact, in Section 5-2 it will be

shown that for constant m and constant T (= Kn) ,
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lim tj
-s q.

where the constant cp is defined by

i S °k -V'»-1'T ,,
^^^i\e (1

(4-3-3)

- e
V) (4-3-4)

It is now apparent that unlike the situation when m was allowed to

grow large, when n increases, Y may not be represented as in
q

(4.1-7) by a constant plus a mean of identically distributed variates.

So now Hsu's theorem may not be applied directly, as it was in Section

4,1, to obtain the desired limiting distributions as n—> <?& . However,

a modification of Hsu's theorem, used in conjunction with a theorem

presented by Cramer, is applicable to the present situation.

From equations (4-3-1) and (4=5-2), we have that

q
+ e

and therefore that

^ (Yq "V =^(Tlq "<Pq) +/^eq , (4.5-5)

where <p is defined by (4.3.4). The Central Limit Theorem |_2,

pp. 215-218J shows that the error term /ne in equation (4-5-5)

is asymptotically normally distributed for large n about a mean of
p

zero with variance 0 /m . Moreover, it may also be demonstrated that
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lim s/rP(n - q>) = 0 ,
n—^ »^ q. q.

for reference to (4.1.4) and (4.5.4) shows that

lim s/n1 (n_-<p ) = Z B, lim
n-> «=« q q k=l n—> <=-*?

where the constant

-\T/n -,
T X^n (1 - e )
— =x7f75

_/n T^ (1 - e )

-X^q-1) -XT
Bk = °k 6 (1 "6 )

(4-5-6)

, (4.5-7)

Then several applications of L'Hospital's rule yield the result that

-X-r/n

lim

n—> °o

T Xj^-n (1 -e " )
^tt/h

/^ TX^l -e * )
lim

n_=>c^ / n
= 0 ,

thus reducing (4.5.7) to (4.5.6). Now, applying a theorem given by

Cramer |_2, pg. 254J to the equation (4.5.5), we conclude that

n/iTVy - (p ) has the same limiting distribution as /n"" e' . That
q ^q' D q

is, for n large /^(Y - q> ) is asymptotically normally distributed
O

with mean zero and variance a /m .

Now let us refer again to the theorem of Hsu's 115J used in

Section 4.1. In deriving the limiting distributions of functions of

sample means, Hsu utilizes only one property of normalized means such as

the v/n'e : namely, their limiting distributions. Therefore, since
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/iT^Y - cp ) has the same limiting distribution as ./n e , Hsu's
q q v q

theorem may just as well be proved in terms of the (Y - cp ) instead
q ^V

t

of the means e . Such a proof in the context of this paper would

lead to

Theorem 2. If the function ^Y) of means Y possesses
q

continuous second order derivatives of every kind in a neighborhood of

the point cp ,then /mn1 [^Y) -A(cp)J is normally distributed in the
limit as n—> <=*^ with mean zero and variance

Z b2 a2 (4.5.8)
q

as long as b £ 0 for some q , where

q. Y=q>
(4.5.9)

In Theorem 2, 9 is the point with the cp as coordinates, while Y
q

and 9 are the same as defined in Section 4.1, Theorem 2, like

Theorem 1, holds for both Case 5 and Case 6. Moreover, the derivatives

^Y- e(Y) > as stated in the last section, may be evaluated with the
q

help of (4.2.12).

In Section 4.2 we expressed the estimators obtained by the new

procedure in terms of the sample means Y , and then we went on to show
q.

that the estimators themselves as well as their second order partial

derivatives with respect to the Y are continuous in a neighborhood

of tj . A study of Section 4.2 reveals that to demonstrate similar
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continuity conditions for a neighborhood of cp for both Case 5 and

Case 6, we need only show that the following three properties hold for

Case 5 under the assumptions of our model:

(1) cpr { cpg ,r £ s -,

(2) IP(cp)

(3) \
Y=<p

Y=cp
/ Oi

*k

Since our model specifies that a f 0 and X, > 0 , k = 1,

2, ,.., p , and that X / X , r ^ s , we deduce from equation (4.5.4)
37 S

that 9 ^ cp for r ^ s . Furthermore, when Y = cp ,
37 s

where

v q-i
% = E *k *kq k=l ^ k

°k ,_ "V\
\ " X^T (1 "e > > & = 1, c, ..., p .

Note that u, ^ 0 in accordance with our model for every k . Now at

cp , |p| , defined in Section 4.2 in connection with equation (4.2.1),

has elements

f. r+s-2

k=l * *

Hence, by comparing these elements with those given for ^(T)! in
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Section 4.2, we conclude by analogy with (4.2.2) that

|P(cp)| = i^ Ug ... 1^ Il| . (4.3,10)

Since it has been shown that |L|±0 under the assumptions of our model,

it follows that |p(cp)| ^ 0 .

We have shown that the first and second properties necessary to

prove continuity of the estimators and their second order derivatives in

a neighborhood of cp are satisfied. In order to show that the last one

holds, namely that at cp , fa^ =x^ ,k=1, 2, ..., p,we recall from

(4-5.5) that lim tj = cp . Consequently, since x\ is continuous
j2 j> oo q q. ic

in a neighborhood of tj , lim ^(tj) =x(q>) . But £(tj) =x for all
n—^^

n,and therefore 'x(cp) =x. Hence, the estimators ^ ,̂ and {k
and their second order partial derivatives are continuous in a neighborhood

of cp .

Now we wish to complete the demonstration that /inn1 (&- 9) is

normally distributed in the limit as n—> <x? with zero mean and

variance given by (4.5.8), where $ may denote any of the estimators

^ ' \. or "is and e denotes the corresponding population parameter.

To do this it is necessary to show that lim fa. = a, at cp , Then

Theorem 2 may be applied to give all the desired limiting distributions,

since it has already been shown that x^ = x^ at cp , and consequently

that X^ = X at that point.

Substituting the cp for the corresponding Y in (5.5.27), we

can see that the fak may be determined at cp by solving the following
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linear equations for the fa. :

i I a*-i ^~V
n k=i

°k q-l

^
nK-k A 2 ^(^ >i*k

(4.5.11)

q = 1, 2, ..., p .

But fa. = x. at cp , so substitution of x. for fa. in (4.5.11) and

multiplication of both sides of that equation by X.T yields

Z 4"1 (1 - xj
k=l * K

T\K
n(l -*£'")l7nT" "°k = 0

q = 1, 2, ..., p

(4.5-12)

Keeping in mind that we are interested in limiting distributions for the

fa. as n—^ oo , let us evaluate

lim

n—> oo n(l-$n)
lim

n—~5>tx*

\T/n
-^t7H
1-e

where X. T is constant. This limit is equal to

lim r
t—>0 1 - e

(4.5.15)

which by L1Hospital's rule in turn equals lim e = 1 . Thus, as
t->0

n—^cso , (4.5.12) becomes
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,q-i^ \ (1 "Xk) (^ "°k) = 0,q=1, 2, ..., p, (4.3.14)

which has as its solution, fa^ =c^. , Hen<je, in the limit as n-^oc ,
fa^, =o^ at cp a

Now, on the basis of the results obtained in this section and

the proofs given in Section 4.2, we conclude that as n—^, oo , the

distributions of /^?(^ -^) , /^(\ -X^ and ./S(^ -o^)
are asymptotically normal with zero means and variances calculated from

(4.5,8) in Theorem 2with the help of (4.5.9) and (4.2.12). Explicit

formulas for the constants b given by (4.5.9) may be determined for

Cases 1 and 4 by substituting cp for tj in the formulas for the

corresponding a given in Section 4,2

^ An Additional Limiting Distribution for Large n

In this section we shall derive another limiting distribution as

n->o^ Which will be utilized in Chapter VI and which will help summarize

the results of this chapter. Let us consider the limiting distribution

as n—> <=*=> of

_^Y) -£(rj)

Z a a
q *

= <
•^(Y) -fy<p)J -/m^L^cp) -^rj)1

y? 2b a
q

y 2 2

y,2 2b a
q

J

(4,4.1)
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As before, q = 1, 2, ..., p for Case 5 and q = 1, 2, ..., 2p+l for

Case 6. From (4.1.9), (4.3.3) and (4.3.9) we deduce that

= 1 . (4.4.2)

Moreover, since it has been shown in Sections 4.2 and 4.3 that at either

tj or cp, ^ =x^ and ^ -^ ,k»1, 2, ..., p,

lim /^S[^(cp) -^tj)] = o (4.4.5)
n—5>c*=

for ^ =fak or ^ .
In order to complete this proof, we need to demonstrate that

(4.4.5) also holds for & = fa. ,k = 1, 2, ..., p . Now if the set of

equations (5.5.27) is solved for any given fa at both tj and cp , the

two solutions will be ratios of determinants with identical denominators.

In our consideration of the continuity of the fa; at tj and cp we have

already seen that this denominator is not zero at either tj or cp .

By virtue of (4.5.15), it can also be seen that this denominator approaches

a constant as n—>«=o , The determinants in the numerators of the two

solutions will also be the same except for the k columns. In the

solution for fa. at tj , this k column will be the column vector

T T
tj , while in the solution at cp it will be cp . Now, like the



74

denominators, the cofactor of the elements in the kth columns will be

identical for the two solutions and will approach constant limits as

n—^.00

th

Therefore, expanding the numerator determinants about "|heir

k columns, we find that

\(cp) -^Oi) = Z (<Pa-Ou . k-l, 2, ..., p ,
q=l q q q

where lim U is a finite constant for every q . Now when m is
n—><=<=> q-

held constant,

lim

n—>=»<?
mn \W -fay.h)

P

m Z
q=l

lim/n (cp -tj )
x, q. qn

lim U

n

k = 1, 2, ..., p

But from (4.5.6), lim /^(cp -tj ) = 0 for all q . Therefore,
n—^c-o q q

(4.4.3) is also satisfied when fa =*fa ,k=1, 2, ..., p .

Now from (4.4.1), (4.4.2), (4.4.3) and a theorem given by Cramer

|_2, pg. 254J ,we deduce that the left side of (4.4.1) and

'mn \3(Y) -^(cp)

Z b ac
q ^

(4.4.4)

have the same limiting distribution as n—> c*^ . But from Theorem 2

it follows that (4.4.4) has an asymptotic standard normal distribution

from n large. Therefore, since ^(tj) =9 ,we have that
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x/rnn1 [& - •]
J? 2/Lao

i

(4.4.5)

has a limiting standard normal distribution as n—><=*° . But (4.4.5)

is also a standard normal variate in the limit as m—> <=x> , a result

that follows from Theorem 1. Thus, the results of this chapter may be

summarized by saying that the distribution of (4.4.5) approaches the

standard normal distribution as either m or n—> oo and by noting

that a ^b as n—-> <=•=> , where a is defined by (4.1.9) and b
q. 7 q. q. c

hy (4.5.9).
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V. THE PROPERTIES OF THE ESTIMATORS

5-1 Sufficiency

This chapter will be concerned with the statistical properties

of the estimators derived with the new estimation procedure. In this

section we shall consider whether or not the estimators fa. and §

are sufficient. To do this it is necessary to examine the joint density

function of the observations y . However, our model does not specify

the distribution of the y but only requires that the cox-responding

errors, e , be identically distributed with mean zero and commoa

2
variance a . Hence, in order to study the sufficiency of our estima

tors, we shall first make the additional ssumption that the errors e
ij

and consequently the observations y.. , are normally distributed.
XJ

Now, for Case 5, each y.. has the density function
ij

f(yu; V V ° ) -
J 2«'a

exp.
1, I "\\2

-r2(yij- z Qke >
k=l

(5-1-1)

Thus the joint density function of the y . is

2pn-l

TT
i=0

m

7Tf(yij;vv *>-
j=i

(y
u

pmn(2*<X_)
p -It. -
v *• i\2L a. e )

k=l ns-

exp.

-, 2pn-l m
~ z z
2o i=0 j=l

(5-1.2)

A AIf the estimators t^. and 'X^ obtained by the new procedure are
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sufficient, then the density function (5-1-2) must necessarily be

factorable into two functions, one of which involves only the estimators

A and \ and the parameters of (5-1-2) while the other is independent

of the parameters a^ and X^ (see [2, pp. 488-489JJ . Thus,
after expanding the exponent of (5.1.2), we can see that the estimators

fa: and §. are sufficient only if the sum

2pn-l m p -XktjL 2pn-l
Z Z (y,, Z a e ) = Z
i-0 J-l J k=l K i-0

m p

(S yii) Z °kL j=l iJ k=l ^
Vi

(5-1-3)

can be expressed without explicitly involving a product of the observa

tions y and the parameters o^. and X^ . It can be shown that this

is possible only if n • 1 . Then

m

z, yij =si= mA °t
Pa -Vn(i-l) (1 .e^)

j=l k=l

1 - e
V '

(5-1-4)

m

and therefore in (5-1-3) the sum Z y., may be replaced by a function
j=l

of the estimators ^. and ^ . That is, when the errors e±J in our
model are normally distributed, the estimators fa^ and X^ are sufficient

only if the number of points t at which observations are taken is

equal to the number of parameters in the model. This result may be

shown to hold for Case 6 as well as Case 5.
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The estimators o^. and ^ of the new estimation procedure have
been found to be sufficient in only one instance other than the one

already mentioned under the assumption of normality. This instance occurs

when both m and n = 1 , as in the method originally presented by

Prony. In this situation, as can be seen from equation (5.1.4), each

yiJ is itself afunction of the estimators fa^ and ^ ,and therefore
the estimators fa^ and ^ are sufficient regardless of the distribution
of the errors e. . .

ij

5-2 Consistency

In order to prove consistency for the estimators derived with

the new estimation procedure as m—> <=^ while n is held fixed, we

need only utilize results already obtained. Means Y have been defined
q

as have their expectations r\ ,and these means converge in probability

as m^ °o to the corresponding ij . Furthermore, continuity of each

of the estimators -x^, fa^ and ^ in aneighborhood of tj was
demonstrated in Section 4.2. It was also shown in that section that

at n ,Xk=xk,^c=Qk and^k=\' Hence> °& the basis of
Slutsky's theorem |_27J ,we conclude that the estimators A ,fa

A

and X^ converge in probability to \, c^ and X^ respectively as

m *^ • But an estimator ^ is a consistent estimate of 9 if it

converges to 9 in probability (see [l8,pg. 3]J. Therefore, \}
0^ and Xj^ are consistent estimators of x^., c^ and X^ respectively
for large m .

In order to use Slutsky's theorem to prove that the estimators

are consistent as n —-»<~ with m fixed, we need to show that each
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Y converges in probability to some constant as n 5> <=x=> . Such a

probability limit can be found even though, as shown in Section 4-5, the

Y cannot be regarded as means of identically distributed variates.

From equations (5.2.1) and (5.1.5),

qn-1 p "-VKi 1n-1 m
= mZ Zae +Z ^ e4 •*

q i=(q-l)n k=l K i=(q-l)n j=l 1J

Although we are letting n grow large, we wish to keep the domain for

the t. constant in length, where t = Ki • That is, when the number

of points at which observations are made is increased, the intervals

between points are shortened so that the length of the interval for

which the y. sum to S is constant. This constant, as defined

earlier, is T(=Kn) . Now we may rewrite S as a sequence in n

without involving the variable K as follows:

Ti

qn-1 p -Xk "n" qn"1 m
S=m Z Zae + Z Z e -
q i=(q-l)n k=l K i=(q-l)n j=l 1J

Thus, we may express Y = S /mn as

Ti

, 1 qa-1 -\s: t 1 ^a-1 5
1=7= L ae - + — L L
q T ^ / -, \ s. n mn . / , x„ . ,H i=(q-l)n i=(q-l)n j=l

Now from the definition of a definite integral

be seen that

8

(5-2-1)

, it can
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Ti

i T1 v Si t i ^ I -V1:ua t E EQkerT =i/ Z oe * dtn_^oo i=(q-i)nk=l K n T (q_i)T k=i ^

k?l\e (1~e ]
(5.2.2)

Also, since in the model the e are independent, identically distri-
1 o

p

buted variates with mean zero and variance 0 , the mean

T

, qn-1 m

11111 i=(q-l)n j=l ^

converges in probability to zero as n-^ 00 „ Therefore, taking the

probability limit of both sides of equation (5.2.1) as n—> <=>o , we

can see that Y converges in probability to the constant given in

equation (5-2.2). Thus, referring to the definition of cp given by
HI

formula (4-3.4), we have that Y converges in probability to cp as
q q

In Section 4.3 it was proved that at the point cp , fa and fa

are continuous and equal to x^ and X^ respectively. Thus Slutsky's

theorem j_27J leads to the result that ^ and ^ are consistent
estimators of x^. and Xj^. respectively when m is held fixed as

n > o<=> . it was also demonstrated in Section 4.3 that fa. is continuous

at cp ,but instead of showing that fa^ <• a, at cp ,it was only shown
that at qp , lim a = a - In other words, the estimator fa is a

n ^ <=x? °" *•
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continuous function of n for this case, for the solution of equation

(4.3.11) involved a factor

n(l -x^ )

It was shown in Section 4.3 that the expression in (5-2.3) ^ 1 as

n ^oo . Therefore, if we apply Slutsky's theorem to equation (4.3.11)

apart from the factor (5-2.3), and then if we utilize the theorem that

the limit of a quotient is equal to the quotient of the corresponding

limits, where the limit in the denominator is not zero, we still obtain

the desired result. Namely, as n > **=> , A converges in probability

to a , and hence /a. is a consistent estimator of a for large n .

It is interesting to note that <p is functionally independent

of m . However, as mentioned in Section 4.1, -n is a function of n .
q

In fact, since

TXk
^^ t;—v*r = x 'n—> &*> n(l - x,' )

from (4.1.4) we deduce that

n—> oo ^ k=l Tc

Therefore, equation (4.3.4) reveals that

lim n = qp
Q Tq

n—> co H H
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Hence, as both m and n—> o-o the Y converge in probability to

the corresponding constants cp . It is immaterial whether the limiting

process is carried out with respect to m or with respect to n first.

The conclusion then is that the same consistency properties which hold

for m fixed when n—> ex> still hold when both m and n—> <=*=> ,

namely, that x^. ,t^ and ^ are consistent estimators of x, ,a
and X, respectively.

5-3 Bias

Although the estimators obtained with the new estimation procedure

are consistent, and therefore unbiased in the limit, they are not unbiased

for small samples. However, it does not seem feasible to determine

analytically the extent of the bias in general for small samples. Instead,

in this section an approximation to the bias will be given only for the

estimator £ for Cases 1 and 4. Later the extent of the bias will be

investigated empirically in Chapter VI, which gives the results of an

extensive sampling survey for Case 1.

Let us first consider the exponential estimator & for Case 1,

where 6c =Y^/y^ . If we expand Q in aTaylor series about the point

T = (Tl1> T] ), we find that

A ^2 {~1]\ ,v „,r S> C-D'-1*VV^CVfe>
1 r=l \ r=l rt£

This series converges only when |Y1 -tjJ < tj since yJy has

a singularity when Y± = 0 . Now, recalling from Chapter III that

^;MKwm<mmmmi!m*m
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r\ /n equals the constant x , we may approximate the difference (x - x)

by

£-x
n (-Dr ^2 n (-if-1 (y -n,)1-1 (i -n2)

~ Z ""rSI (Y1 "V + Zr=l ti*tj- r=l r^

(5-3-2)

where only a finite number N of the terms in (5-3-1) are used in the

approximation. Taking the expected values of both sides of (5-3-2), we

can approximate the bias, £ (x - x) , of the estimator 6c relative to

the constant exponential x as follows:

£(£ -x) ^ Z r+12 n_ (Y,) , (5-3-3)
r=2 T *+ r

where ji (Y,) is the r order central moment of Y1 • Now if in (5-3-3)

we replace the expectations tk and ti by the sample means Y. and

Yp , we obtain the bias approximation

N (-1'ri2£(x -x) ~ E -^ Ur (Y,)
r=2 Y-,

fcl

(5-3-4)

T)= y

Let us evaluate (5-3-4) under the assumption that the errors e„.

in our Case 1 model are normally distributed with mean zero and common

variance a - Actually, since the expansion (5.3.I) converges only

when Y1 lies in a circle in the positive quadrant, it appears as if

we should further restrict the errors in such a way that Y, will always
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be positive. But Fieller [5j has shown that when tj > 0 and large

relative to the standard error of Y± , such a curtailed normal distribu

tion for the errors e differs very little from the usual normal
J. J

distribution. Now for Case 1, t\ and r\ are both positive provided

that the coefficient a > 0 ,and |ti | > |tj2| even though the

corresponding means, Y-j^ and Yg , have the same variance. Therefore,

T)1 would be expected to be large in absolute value relative to the

standard error of Y1 . Hence, when the Case 1 model is fitted to

positive data, there is no need to further restrict the errors e .

once they are assumed to be normally distributed.

When the errors e.. are assumed to be normally distributed,
J. J

Hr (Yx) =0 for r odd ,
r

=(r-1) (r-3) ... (1) (— ) for r even.
\mn y

Thus substitution for u (Y^ in (5-3.4) gives

M ^ x 2\v

1 Tl=Y

(5-3-5)

A M S 2 \V^ ^ Z (2v -1) (2v -3)..-(l) f—2-2 1 ,
v=l ^mn Y± J

where M is the largest integer in | . But the right side of the
approximation (5-3-5) is always positive. Therefore, when the errors
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e,. are not only identically distributed as specified by our model but
ij

are also normally distributed, the expected bias of x for Case 1,

which is approximated by (5.3-5), is always positive. This bias decreases

as m , n or Y, becomes larger or as x decreases.

A development similar to that already presented for Case 1 may be

used to obtain an approximation to the bias of 'x for Case 4. corresponding

to equation (5.3.1), for Case 4, when |Y± - t^ -Yg -n2 I < Î i "^ I

> 0 , we have the expansion

2 2 3 _3 \ £ (_1}r nl " Y2 + ^2
£-

T1l-Y2+T12/r=0

(5-3.6)

From this expansion we obtain an approximation, corresponding to that

given by (5.3-4) for Case 1, to the bias in 6c* for Case 4. This

approximation is

A* {'Xf K^W ^(Yl^r-k(V
f(^-x)^^ Z ^

r=l (Y, - Y2)
x Y=T

r=l

vl

N (-1)' * efr^TI \ (Y1> "r-k+1 (Y2>
+ £ z k=0 —

(Y0 - Y,) (Y, - Yp) Y»tj

(5.3-7)
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If we set N = 6 and if we assume that the errors e.. in our Case 4

model are normally distributed, (5.3.7) becomes

£<£-x)- 2^°2 1 -
3o

mn(YrY2r mn(Y2-Y3) (Y-^Yg) mn^-Yg)'

"2~2~
30 a 60 a

7TTmn(Y2 -Y3)(Y1 -YgK mn (Y± - Yg)
(5-3-8)

As before for Case 1, the approximation (5.3.8) for Case 4 is valid

only if the expectation of the denominator of & ,in this case (tj - r\ ) ,

is positive and large relative to the standard error of that denominator.

Thus (5-3-8) should be used as an approximation to the bias of Q relative

to x for Case 4 only if (Y± -Yg) is positive a.nd large relative to

its standard error ei

normally distributed.

its standard error even though the errors e.. are assumed to be
XJ

5-4 Efficiency

The estimators yielded by the new estimation procedure are not

in general efficient, and no measures of their small sample efficiencies

are available. However, since maximum likelihood estimators are

asymptotically efficient, the asymptotic efficiency of an estimator from

the new method can be determined by taking the ratio of the asymptotic

variance of the corresponding maximum likelihood estimator to that of

the estimator in question.
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The asymptotic variances of the maximum likelihood estimators of

the parameters in our model can be found by inverting a matrix of products

of first partial derivatives of £(y±a) with respect to those parameters

see 9jy . If we let 9^ ,k = 1, 2, ..., 2p ,represent our Case 3

parameters when the errors e.. are assumed to be normally distributed,

then this matrix has elements

2pn-l m d£(y ) dl(y )
c _ f y £d_ ±sL

i=0 j=l r s

For example, for Case 1 with 9, = a and 9p - X ,

i*v . e-xti ^v . ^ e-xtij—— _ e , g^- = -a t± e

and the matrix with which we are concerned has elements

2pn-l -2XtjL
c, = m Z e ,

i-0

2pn-l -2Xt±
cip = co-\ ~ ~m a Z t e ,

cx i=0

22pn-l -2Xt
cg2 = m a L t e

i=0

If we denote the corresponding elements of the inverse of this matrix

rs

by c , r , s «= 1, 2 , then the asymptotic variances of the maximum

11 2 22 2
likelihood estimators of a and X are given by c o and c a

respectively.
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Now when n = 1 and the errors e.. in our model are normally

distributed, the estimators obtained by the new procedure, which have

already been shown to be sufficient in this instance, are also asymptotically

efficient. A glance at (4.2.15) and (4.2.l6) and the definition of r\

given by (4.1.4) shows that as m increases, the asymptotic variances

of both tt and 4. for Case 1 decrease proportionally. Also, it can

be seen that if everything but a is held fixed, the asymptotic variance

of X is inversely proportional to a while the variance of Q is

not affected by changes in a . Moreover, if K , the distance between

the observation points t. , is allowed to vary while the product XK

as well as m , n and a remain constant, the asymptotic variance of

Tt varies inversely with K while the asymptotic variance of £t is

again unaffected. But the asymptotic variances presented above for the

maximum likelihood estimators of a and X for Case 1 can be shown

to be influenced in the same way by changes in m , in a , or in K

when XK is held constant. Therefore, in order to obtain an idea of

the asymptotic efficiency of the estimators yielded by the new method

for Case 1, we need only consider the relative effects on the asymptotic

variances of the maximum likelihood estimators and those from the new

procedure of allowing n to be greater than one and of varying X

without changing K or n. Such a comparison is made in Tables 3 and 4.

The first rows of Tables 3 and 4 give the asymptotic variances

2
divided by a of the maximum likelihood estimators of a and X while

the second rows contain the corresponding values for the estimators

from the new procedure computed through direct substitution in (4.2.15)
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Table 3

Case 1 Asymptotic Variances and Efficiencies for Different Values of n

CP=m=l, T=Kn=2, X= in 2

n=l n=2 n=4 n=8

ft $ ft $ ft % ft §
2

M.L- Variances/a
2

N.P. Variances/a

Efficiency

1.000

1.000

1.000

4.250

4.250

1.000

.952

1.6o5

• 593

1.974

3.778

.522*

.771

1-697

•455

1.149

2.593

.443

.519

1.251

.415

.650

1-530

.425

Table 4

Case 1 Asymptotic Variances and Efficiences for Different Values of X

03=m=l, T=Kn=2, n=2

x4/n 2 X=|in2 X=in 2 X=2 A 2

ft £ ft * ft '* ft '*

M.L. Variances/a
2

N.P. Variances/a

Efficiency

.794

.952

.834

.345

.443

.780

.866

1.118

•775

.619

.858

.721

.952

I.605

•593

1.974

3-778

.522

.996

4.826

.206

13.229

82.240

.161

and (4.2.16). The third rows list asymptotic efficiencies of estimators

yielded by the new method. Note that these asymptotic efficiencies

decrease as either n or X becomes larger.
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Similar results to those already cited for Case 1 have been

obtained for Case 4. Again the asymptotic variances of both the maximum

likelihood estimators and those from the new procedure are inversely

proportional to m while in both cases the asymptotic variances of the

estimators of X are also inversely proportional to aT and to K2

when XK is held fixed. Both sets of asymptotic variances for estimators

of aQ and q^ are unaffected by changes in c^ and in no instance

does the value of aQ or the sign of a± enter into the calculation of

asymptotic variances. Tables 5 and 6 for Case 4 correspond to Tables 3

and 4 for Case 1 and indicate the effect of changes in n a,nd X on

the asymptotic efficiencies of the estimators derived with the new procedure,

The variances for the new procedure were calculated by substitution in

(4.2.18), (4.2.19), and (4.2.20).

Table 5

Case 4 Asymptotic Variances and Efficiencies for Different Values of n

+0^=111=1, T=Kn, X =in 2
j

n = 2

"
—

n - 4

1 A_ ft
-.- 1

$ ft
uo ft

"l
i

, M.L. Variances/a i
' 1 1.109 1.708 5.905 .494 •952 3.194

N.P. Variances/a 1.981 1.844 16.593 •991 1.529 u.387

Efficiency .560 .927 •356 .499 .623 .280



91

Table 6

Case 4 Asymptotic Variances and Efficiencies for Different Values of X

+OL=m=l, T=Kn=2, n=2

X=iA 2 X=in 2

% \ $ a0 % $
2

M.L. Variances/a 6.564 5.727 3.445 1.109 1.708 5.905

/ 2
N.P. Variances/o 16.500 12.239 9.608 1.981 1.844 16.593

Efficiency .398 .468 •359 .560 .927 .356

The results presented in this section are limited in scope and

apply only when the errors e. . are normally distributed. However,

Tables 3-6 do show that the estimators produced by the new procedure

are certainly not in general efficient and that asymptotically they are

quite inefficient under the conditions of this section.

5.5 Optimum Construction of the Sums S

In Section 3.2 it was indicated that there are several ways of

forming the sums S from the observations y„. for which essentially

the same method for estimating the parameters of our model may be followed.

The procedure given there for calculating the S was said to be an

optimum procedure in some respects. In this section it will be shown

that it is indeed a better method than certain alternative methods.

As an alternative construction for the S , let us take
M.

* m n_1

S4 =>iv!o 7*»*a.j ; q = 1, 2, ..., 2p . (5.5.1)
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Note that the subscript i of the model presented in Section 3.1, which

is represented in equation (5-5-1) by the subscript (2pv + q-l) , still

ranges from zero to (2pn-l) . In order to form the sums S , we divide
Si

the domain of the t. into n equal intervals instead of 2p intervals

as before. Then we let S, be the sum of the observations made at the

first observation points in all of the intervals, Sg be the sum of the

observations from the second observation points of all the intervals,

and so on. In the remainder of this section we shall continue to denote

entities connected with the alternative construction of the sums S

with an asterisk as a superscript. So, corresponding to equation (3.2.3),

we have

£(S*) -m̂ Z C^SJ**-1** , q=1, 2, ..., 2p , (5-5-2)
q v=0 k=l k k

which sums to give

R .„_•• d-^pn)£(S*) =m Z o/V^-1 |__ ,q=1, 2, ..., 2p . (5-5-3)
q k=i ^ K 1 -j\if9-^

As before, TV^ = exp^-Xj^ K) . Following the same procedure used in

Section 3.3, we set (5-5-3) equal to S , and then we solve for estimators

A* A*'0^ and X^. of the parameters a and \ .

In order to facilitate the solutions for a and X, , it is
k *

again expedient to resort to matrix algebra. We shall once more make

use of the matrix a defined in Section 3.3, and we shall form column

matrices s and s by substituting S for S in the matrices
q q
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s and £ previously defined. It is also necessary to modify the

definitions of the elements of the p by p matrices L , W and V used

in Section 3.3 as follows:

i* =yvr-1
rs s

2pn,

Wrs = _.2p 5rs '
r

v = A/ 5
rs r rs

Corresponding to equations (3.3.I) and (3.3.2) for the S , the equations

*

for the S may now be represented by the two matrix equations

L*w* a = s* , (5-5-4)

LW V a = s* . (5.5.5)

Solving (5-5-4) for a and substituting the result in (5-5.5), we arrive

at the equation

* * #_1 _# *
L V L s = s . (5.5.6)

_*

Because of the definitions given above, the vectors s and

* *

s in equation (5.5-6) are of the same form in terms of the S as are

the matrices s and s of Section 3.3 in terms of the S .
- <1
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Furthermore, V and L are of the same form in the _A_ that the
k

matrices V and L of Section 3.3 are in terms of the x, . Thus,

from the analogy between (5-5-6) and (3-3-4), we see that the solution

given in Section 3.3 for the x^. is the correct solution for the _/Y

in terms of the newly defined S . That is, the solution obtained for
q.

A n•/\-k m terms of the S defined in Section 3-3 is now the solution for

/Vfc in terms of the S . Hence, it follows that solutions for ft£
and X, may easily be obtained in much the same way that ft and ^

*• k k

were derived in Section 3.3.

Not only can the S be used to obtain estimators in a way

similar to that developed for the S , but some of the properties of

Q^ and X^ can also be shown to hold for the estimators ft* and /xf .

In particular, the estimators ft and ^L are consistent for large

m when n is held fixed. However, consistency for m fixed and n

large no longer obtains. To demonstrate this, let us attempt to parallel

the consistency proof given in Section 5-2 as n—> ^o , but with the

variable S instead of S .
q q

From (5-5-1) it follows that

# n-1 p -X K(2pv+q-l) n-1 m
S -m Z Z o^e + Z Z e.. . (5-5-7)

v=0 k=l K v=0 j=l 1J

Carrying out the same sort of manipulations that were used in Section 5.2,

we find that (5-5-7) yields

♦ 1 n-1 p "\ i(2pv+q-l) Q_± m
Y=p^mZ Zae 2pi + — ZZe...
q 2PT v=0 k=l ^ n mn v=0 jtl 1J
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The last term, which is the mean of the independent, identically

distributed errors e. . , is again zero in the limit as n—> ^

So, referring once more to the definition of a definite integral

we see that

* x P 2pT -X^t
lim Y„ = own £ / a e dt

q.n_^ M i *~ k=1 om ^ L ^

1 £ \ _Xk2pT
" 2W E XT (1 "e > • (5'5-8)2PT k=l \

But the right side of (5.5*8) is independent of q , and hence in the

*

limit as n—> ex? , all the Y are equal. That is, the constant

limits qp corresponding to the cp defined by equation (4.3.4) are

all equal to the constant given by the right side of equation (5*5*8) •

Therefore, the determinant [P(cp )| , corresponding to the determinant

|p(cp)| evaluated by equation (4.3.10), is singular and equal to zero.
i * iSince |P(cp )| =0 when the new estimation procedure is developed

-ft

in terms of the S , it follows from equation (3.3.23) that the estimators

A* A*E —^> <3<> if n—> ^^ . Hence the exponential estimators x. also

—5. 00 if n—> 00 and are then neither admissible nor consistent. There-

A* A* A*fore, the estimators d. and X\. , which are computed from the x, ,

are not defined for large n either, and hence they are not consistent

estimators of the parameters a and X . So it is evident that

increasing the number of observation points t. would not be likely

to improve the accuracy of the estimators obtained with the alternative
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method presented in this section for forming the sums Sq - Therefore,

the construction presented for the sums Sq in Chapter III is better
than that given in this section for the S^ .

So far we have considered only one alternative formation for the

sums S which leads to summable geometric series for the expectations
q.

of the S ,and which is therefore amenable to an estimation procedure

similar to that developed in Chapter III. There are many other alternative

constructions which involve both the approach used to obtain the Sq

and that used to arrive at the S* . For instance, the domain of the

observation points t. might be divided in half, with the observations

from the first half being used to form S]_, S£, .--, Sp by one of

methods and with the remainder of the observations being used to form

S ,S ,..., S by the other method. All such constructions would

make at least two of the constants cpr and cps equal for r±s,
and hence, like the alternative method already considered, they would

result in estimators which would not be consistent for large n . The

other likely alternative constructions are such that the S^ would not

all be sums of the same number of y.. . This would complicate the

solutions for the estimators considerably and would not be advantageous

except perhaps in special cases. Hence, we conclude that the construction

for the sums S presented in Chapter III is an optimum construction,
q.

at least by comparison with the alternative constructions considered here.

5.6 Conditions for Obtaining Admissible Estimates

So far in this chapter it has been shown that the estimators

yielded by the new estimation procedure are consistent, but not in
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general sufficient, unbiased or asymptotically efficient. It has also

been demonstrated that the construction given in Chapter III for the

sums S is better than several alternative constructions which would
q.

lead to the same sort of estimation procedure as that presented in this

paper. Now we shall study conditions for the existence of admissible

solutions for the estimators of the new estimation procedure.

In the model specified in Chapter III, X, > 0 , k = 1, 2, ...,p

and X £ X for r ^ s , making 0 < x. < 1 , k = 1, 2, ..., p .

In addition, the x, are real and distinct. So in order for the

estimators x. to be admissible, we shall require that 0 < 'x, < 1 ,

Ak = 1, 2, ...,p, and that the 'x, be distinct and real. Now the 'x.

are the p roots of the polynomial

A

£0 x* -£x x*"1 +£0 x*-2

where E^ = 1 . Since the E
0 r

of the Ql , in order for 0 < /x. < 1 , k = 1, 2, ..., p , it is

necessary that

... +(-l)p-1^.1x+(-l)P^p =0 ,

(5.6.1)

are the elementary symmetric functions

0C%< ri (p-r); > r=1, 2, ..., p ,

and that

* < 4
p-r r

J? " \) j X} £~ f • • • j Cp-i>
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where (p-1)/2 denotes the largest integer in (p-l)/2 . Also, it is

necessary that E < ^ . Furthermore, given EN > 0,it follows
from Newton's rule of signs that a necessary condition for all the *x\

to be real is that each of the quantities

_2 _Z . /J!£\ Ei E5
pC0 pC2 ' pC2i " pCl pC3

be positive, where

P°k = k.' (p -k)'

Note that these conditions on the E are only necessary conditions,

and that they are not sufficient to guarantee an admissible solution for

the x^ . Additional conditions which are both necessary and sufficient

for the roots of (5.6.1), whether they are real or complex, to be less

than one in absolute value are given by Samuelson J25! .

Instead of testing the E against all of the conditions given

above, it is usually more expedient merely to compute the 1? and note

whether or not they are all positive. Then if one or more of the 'EN
r

is negative, the set of estimators 'x, is not admissible. But if the

Er are all positive, Sturm's theorem 28, pp. 103-107 may be used

P.'

P-2 P

P°p-2 PCP
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to determine the number of real roots of the polynomial (5.6.1) which

lie between zero and one. Sturm's theorem states that

"there exists a set of real polynomials f(x) , f'(x) ,
f2(x) , f,(x), ..., f (x) whose degrees are in descending
order, such that, if b > a , the number of distinct
real roots of f(x) =0 between x = a and x = b is
equal to the excess of the number of changes of sign in
the sequence f, f, fg, ..., f when x = a over the

number of changes in sign when x = b".

f'(x) denotes the first derivative of f(x) . Now let q, be the

quotient and (-fp) the remainder in the division of f by f' . Then

f2(x) is given by

f2 = qx f• - f

The other functions of Sturm's theorem may be similarly defined as follows:

f5 . qg f2 -f• ,

14 " q3 f5 "f2 i

m ~ Tn-1 m-1 m-£

The new estimation procedure leads to an admissible set of estimators

x. if and only if the application of Sturm's theorem shows that there

are p real roots 'x, between zero and one, and provided the x, are

distinct. Fulfillment of this latter condition can usually be demonstrated
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Aonly by solving for the roots 'x; of the polynomial (5-6.1).

Sturm's theorem gives a satisfactory way of testing for an

admissible set of estimates x, once the coefficients E have been

calculated. Also, the conditions given above for the E which are

necessary for an admissible solution may be helpful in weeding out

inadmissible solutions, but again they cannot be applied unless the E

have been calculated. Since the calculation of the E is rather arduous
r

for p > 3 , it would be desirable to obtain conditions for an admissible

solution for the x, which could be imposed upon the sums S . However,

no such conditions which can be readily applied have been found except

when p = 1 or 2 .

For Case 1, where p = 1 and where x1 corresponds to the x,

in the above discussion, 'x1 = Sp/s^^ ' It is immediately evident that

x is admissible, that is, that x is real and lies between zero and one,

whenever S1 and S2 are not zero and are of the same sign with

P-J > jSg ! . For the modified exponential function, Case 4,

A S2 "S5
x = c - q

bl S2

Now x is an admissible estimator whenever the sequence S, , S? , S,

is strictly monotone, either increasing or decreasing, with |S, - Sp |>

|s2-s3| -

One of the conditions necessary for an admissible solution for

the Xj^ for Case 2 is that $> and Eg be positive. From equations

(3-5-7) it can be seen that this condition requires that the expressions
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2 2S, S^ - S„ S, , S S, - S2 and S2 S^ - S, all be of the same sign.

Factoring Sp S^ out of the first expression, S2 S, out of the second,

and S, S^ out of the third, it follows that these expressions will be

of the same sign when all the S are positive if and only if the

sequence S,/Sg ,Sg/s, ,S,/Sl is strictly monotone. Since the S

usually are all positive in practice, this is a convenient necessary

condition which often may be easily used to eliminate an inadmissible

solution. The other necessary conditions given previously for the

may also be expressed in terms of the S for Case 2, but they are

sufficiently complicated so that it is as easy to carry out the actual

solution as it is to make the tests.

The discussion given above concerning conditions which must be

satisfied if an admissible solution is to result does not give any clear

indication of whether or not the new estimation procedure will lead to

admissible estimates in most practical problems., In the sampling survey

which will be reported in Chapter VI, some idea of how often admissible

solutions may be expected to result will be gained„ Also, situations

which lead to inadmissible estimates will be more clearly depicted and

in Chapter VII it will be shown that for some such situations the new

estimation procedure may be used to fit a different model than that

specified in this paper. One more point should be brought up here. So

far in this section we have only discussed admissible solutions for the x, .

But when x\ is admissible, X. will be real and positive. Hence X^

will have the same range as that specified for X, , and so when x, is

admissible, /x\ will be admissible too. The same is true of the £t^
except in rare instances when the xL are admissible but one of the a^ is zero.

ft.
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VI. SMALL SAMPLE STUDIES

6.1 Distributions and Confidence Limits

In this chapter we shall obtain confidence limits for estimators

from the new procedure and then we shall present the data from an empirical

sampling study. However, it is first of interest to note that although

no work has been done on the exact distributions of the estimators 'ct

and Xk for either Case 3 or Case 6, the small sample distributions of

the x^. have been considered. For either Case 1 or Case 4, when the errors

e are normally distributed, X1 is the ratio of two normally distributed

variates, and its distribution has been studied by Fieller and

AMerrill 22 . For the general cases, Case 3 and Case 6, the x! are

roots of the polynomial (3-3-25) with the E , which are real and

continuous, as coefficients. The distributions of such roots have been

investigated by Hamblen 12j and Girshick [10 Although these

papers are of mathematical interest, the distributions derived are too

complex to yield distributions or confidence limits for either the /ot

or the ^ .

Exact confidence limits are available, however, for X for Cases 1

and 4, provided that the e are normally distributed. Fieller

shows that

"if y and z are estimates of | and r\ subject to
random errors normally distributed about zero mean, and
if v , v , v are joint estimates, based on f

«y j j & zz

degrees of freedom and independent of y and z , of the
variances and covariance of the error distribution, then

the fiducial confidence

of those values for which
range for p = t\ /| consists
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(z2 -t2 vzz) -2p(yz -t2 vzy) +p2 (y2 -t2 Vyy) < 0

where t is the appropriate level of the Student
distribution for f degrees of freedom."

2 2
An estimate s for a may be obtained as indicated in the next

paragraph. Then for Case 1, with y =S, ,z=Sg ,| = (£(S,) ,
2

yz ' yy

follows from Fieller*s theorem that a confidence interval for x consists

T)=£(S2) ,v -0,v -vzz =mns2 and p=^(S1)/f(S2) =x,it

of those values of x for which

2 2 2 2 2 2 2(S2 -mn s t )-2x S^ +x (S-j^ - mn s t )< 0 , (6.1.1)

where t is the a-level critical value of the Student t-statistic with
or

2
the same number of degrees of freedom as the estimate s . The inequality

(6.1.1) is equivalent to the confidence interval

1/2S]S2 -s[mn (S2 +S2 -mn s2 t2)] t^
g g—^ ^ x

S., - mn s t
1 a

< S1S2 +S
1/2.2 2 2 .2 XleL

mn (S, + Sp - mn s t t
_ „ n , \O.A-.d.)

S, - mn s t

which is more convenient for calculation. Since X = - - Jtb x , where

T = Kn , and X is therefore a monotone function of x , for X ,
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corresponding to (6.1.2), there exists the a-level confidence interval

-^in Jsi S2 + 2 2 2 2
mn (S, + S0 - mn s t )
12 a

< X-i in (S2 -mn S2 t2)

< -^in jS1 S2 -s 2 2mn (S, + Sg

1/2

a

2t2
nl/2

mn s t j\ t
a

(6.1.3)

2 2
We mentioned above that an estimate s of a is available.

If m , the number of observations made at each point t. , is greater

2 2
than one, an estimate s of a may be formed for each t. by

computing

where

m

5• = —t 2.. (y. . - y.)i m-1 . - VJij Ji/
J=l

1 m
r. = - Z y. .
i m . -, 10

j=l

(6.1.4)

(6.1.5)

Since under our model the e.. are assumed to be homogeneous, the s2

may then be pooled to form

2 1 ^S.-1 2
8 =^ £ -i (6.1.6)
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with 2pn(m-l) degrees of freedom for Case 3 or

1 (2p+l)n-l
(6.1.7)

with (2p+l)n (m-1) degrees of freedom for Case 6. As in the case of a

2
linear regression, a may also be estimated using the mean square

deviation of the y.. from regression. The usual practice for a non

linear regression is to assign the same number of degrees of freedom to

this estimate as it would have in the linear case, namely, §2p(n-l) for

Case 3 and (2p+l)(n-l) for Case 6. If, when m > 1 , the expected

mean square deviation from regression is not greater than the expected

error mean square estimated by (6.1.6) or (6.1.7), the two mean squares

2 2
may be pooled in the calculation of an estimate s for a . When

m = 1 , the mean square deviation from regression is the only estimate

available for a

2
Now that the estimation of a has been discussed, let us also

apply Fieller's theorem to Case 4 when the e.. are assumed to be

normally distributed. In this case we let y = S, - Sg , z = Sp- S, ,

I-^V "£(S2) , tj »<?(S2) -£(Sj ,v =-mn s ,v =vg
zz

2mn s , p = £(S2)- ^(S )] /[^(S1) -£{SQ)] =x. So aconfidence
interval for x consists of those values of x for which

_(s2 - s3r 2 2
2 mn s t

a J
- 2x

2 2(S]_ -S2)(S2 -S5) +mn s tQ

+ x

2 ,2(S± -S2) -2 mn s t < 0 (6.1.8)
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Like (6.1.1) for Case 1, for Case 4 the inequality (6.1.8) leads to a

confidence interval for X . If we let

L =
r

I in (S-l -S2)(S2 -S)+mn s2 tQ , .,r , .1/2
+ (-1) s (mn)

2(S]_ -S2)(S2 -S?) +2(SX -S2)2 +2(S2-S )2 -3mn t2 s2

+j in (St -S„)2 -2mn s2 t2
.12' a J

r = 0, 1 , (6.I.9)

this a-level confidence interval is

LQ < X < Lx (6.1.10)

In addition to the special cases already considered, approximate

confidence limits for any parameter <x or \ estimated by the new

procedure may be derived from the results of Chapter IV. In Section 4.4

we found that (4.4.5) has asymptotically a standard normal distribution.

Therefore, if we again let 'ff represent any estimator derived with the

new procedure and let 9 be the corresponding parameter, it can be

shown that the distribution of

A? (Q - 6)A

(6.1.11)

A

a
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approximates the Student t-distribution with the number of degrees of

2
freedom assigned to s , where now

a

q.
= An = ^ . (6.1.12)

T) =Y q Xq

Hence, for an approximate a-level confidence interval about Q , we take

1 1

£. (1. Z A2)2 st < G'<&+(—£ A2)2 st . (6.1.13)
vmn q' a mn q' aq * q

The computation of confidence limits using (6.1.10) and (6.1.13) will

be illustrated in Chapter VII.

6.2 An Empirical Study for Case 1

In order to learn more about the small sample characteristics of

the estimators developed in this paper, we investigated the properties

of these estimators empirically for Case 1. The computations were done

on the Oak Ridge National Laboratory's automatic digital computer, the

Oracle. A more extensive study was originally planned, but it has been

possible to consider only this special case during the time this paper

has been in preparation. Nevertheless, the results reported here will

help in our evaluation of the new procedure.

For Case 1, observations y.. were generated in accordance with

the model presented in Section 3.1 with the additional specification

that the errors e. be normally distributed. Each e.. was computed
i J •*• J

by first generating sixteen random variates from a rectangular distribu

tion with zero mean and then taking the mean of these variates. In the
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calculation of the errors, a was taken to be forty per cent of the mean

expected value of y. . . Then m wa,s allowed to take on the values 1,

2, 4, 8, 16 and 32, since, for instance, doubling m may also be interpreted

as halving a

The computations were carried out with X taking on four different

values, namely, j-in 2 , -in 2 , j- in 2 and in 2 . Also, n was

set equal to 2, 4, 6, 8 and l6. Each of the samples was generated with

T = Kn = 2 and with a = 1 . So altogether, 120 sets of parameters were

used in the calculations. The choice of X values, as we shall see

later, makes it possible to investigate, for instance, the number of

half lives which should be observed in order to accurately estimate the

rate of decay of a radioactive substance. Also, this empirical study

may be extended to any non-zero value of a , for, under the conditions

of our study, changing o: by a given factor would not affect X or

its variance, but it would multiply kt by that factor and the variance

of a by the square of that factor. For each set of parameters the

calculations were continued until 1024 samples were generated which led

to admissible estimates. Meanwhile, the number of inadmissible solutions

obtained was recorded. The proportions of inadmissible solutions, for

all sets of parameters for which such solutions occurred, are given

later in Table 18. The distributions of the estimates 'ct and T were

also recorded, as were the sample means and variances of the estimates.

The sample means and variances of X computed for Case 1 are displayed

in Tables 7-10 while those for Q are given in Tables 11-14.
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Table 7

SAMPLE MEANS AND VARIANCES OF ^

Case 1: X =i Jba. 2 = .17329

m n = 2 n = 4 n = 6 n = 8 n = 16

1 £ .26860 .21347 .18819 .18402 -17993

v#) .04027 .01885 .01208 .01014 .00565

2 $ .21418 .18453 .17776 .17695 •17309

v$) .OI876 .00932 .00691 .00528 .00272

4 $ .18414 .17194 •17534 .17460 .17306

i

i v$) .00895 .00532 .00334 .00280 .00153 j

8 5 .17771 .17423 .17481 .17384 .17369

v$) .00549 .00280 .00176 .00139 .00066

16 ¥ .17445 .17296 .17269 .17369 .17345

v$) .00287 .00135 .00094 .00071 .00034

32 ¥ .17314 .17466 .17298 .17222 .17312

i

I v$) .00128 .00063 .00050 .00034 .00017
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Table 8

SAMPLE MEANS AND VARIANCES OF ^

Case 1: X =i /n 2 = .34657

m n = 2 n = 4

.36855

.03609

.35447

n = 6

L -35917 .36313

n = 16

.34925

.00747

I

1 j
i

v$)

.40387

.07633 .02026

.35114

.01776

2! .1..
v$)

.38508 .35237 .34763
1
I

.04206 .01569

•34791

.00945 .00751 .00366

.34697

.00187

i

^ i ¥ .35260 .34705 .34915

v$) .OI563 .00681 .00474 .00360

8 ¥ .35180 •34817 •34717 .34918 .34758

v$) .00728 .00368 .00252 .00182 .00089

16 5" .34559 .34580 .34556 .34659 .34751

v$) .00362 .00177

•34645

.00117

•34806

.00087 .00046

32 5

v$)

•34610

.00168

.34667 .34605

.00090 .00057 .00045 .00023
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Table 9

SAMPLE MEANS AND VARIANCES OF T

Case 1: X=|in 2=.51986

m n = 2 n = 4 n=6 | n=8 n = 16

1 $ .56358 .56597 .53871 .54126 .53195

V$) .10925 .06588 •03537 .02661 .01138

2 $ .56561 .54429 .54461 .52758 .52270

v$) .07119 .02363 .01646 .01165 .00549

4 4 .53827 .52756 .52690 .52374 .52199

v$) .02642 .01182 .00689 .00546 .00249

8 ¥ .53017 .52346 .52332 .52205 .52037

v$) .01122 .00509 .00370 .00262 .00136

16 £ .52119 .52121 .52000 .52016 .52174

v#) .00505 .00271 .00172 .00128 .00068

32 5 .52188 .52004 .52049 •52039 .52077

vA 000274 .00129 .00082 .00062 .00033
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Table 10

SAMPLE MEANS AND VARIANCES OF'X

Case 1: X =in 2 = .69315

A

m n = 2 n = 4 j n = 6 : n = 8 n = 16

1

1

$ .74090
•

•75742 .74609 .72464 -70333

v$) .17459 .12672 .07491 .05131 .02077

2 !
|

1

5 .75802 .72593 | .71080 .71305 .70481

v$) .11015 .04908

.70627

.03134 .02196 .00911

4 5 •73395 .69991 .69999 .69679

v$) .05105 .01929 •01311 .00921 .00410

8 5 .71267
1

.69422 .69904 .70162 .69429

v$) .01945 .OO856 .00620 .00433 .00209

•6955316 5 .69912 .69628 .69559 .69602

v$) .00878 .00431 .00280 .00203 .00097

32 5 .69944 .69782 .69502 .69372 .69394

v$) .00449 .00219 .00145 .00101 .00054
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Table 11

SAMPLE MEANS AND VARIANCES OF &

Case 1: X- J/n 2 = .17329

m n = 2 n = 4 n = 6 n = 8 n = 16

1 6 1.10565 I.06526 1.02912 1.01586 1.01211

V(&) .07412 .05069 .03722 .03112 .01830

2 6 1-04753 1.02247 1.00948 1.00764 1.00104

v(&) .03606 .02610 .02124 .01606 .OO867

4 § 1.01895 1.00219 1.00553 I.OO660 1.00229

v(&) .02146 .01444 .00955 .00871 .00499

8 § 1.00557 1.00072 1.00300 .99913 1.00214

v(&) .01124 .00789 .00516 .00413 .00215

16 £ 1.00021 1.00151 .99986 1.00060 1.00039

v(&) .00610 .00368 .00269 .00211 .00112

32 § .99984 1.00100 1.00039 •99907 .99947

v(&) .00277 .00174 .00143 .00103 .00057
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Table 12

SAMPLE MEANS AND VARIANCES OF &

Case 1: X = ±i'n 2 = .34657

m n = 2 n = 4 •-'« ! n = 8 n = 16

1.004661

2

& l.o4o65 1.02595 1.01566 1.02488

y(^)

6

.06302

I.OI674

.05296 .03621 .03431 .01486

I.OO838 1.00822 1.00969 1.00233
i

v(&) .03876 .02585 .01778 .01459

1.00210

.00791

1.00029
! 2, & 1.00062 1.00137 1.00026

V(&) -01959 .01172 .00834

1.00064

.00730

1.00264

.00378

1.00217

i

! s & 1.00285 1.00016

1 v(&) .00949 .00629 .00458 .00367 .00183
i
1 16 & .99806 .99846 .99873 1.00115 I.OOI63

.

v(&) .00441 .00294 .00223 .00176 .00100

32 6 -99755 1.00101 1.00155 1.00086 .99879

v(&) .00231 .00157 .00113 .OOO89 .00050 1
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Table 13

SAMPLE MEANS AND VARIANCES OF &

Case 1: X=|/n 2=.51986

m n = 2 n = 4 n . 6 n = 8 n = 16

1 £ 1.02012 1.03710 1.01548 1.01806 I.OI606

v(6) .05896 .05486 .03745 .03047 .01469

2 £ I.OI639 1.01927 1.02384 1.00997 1.00620

v(G) .03207 .02408 .01885 .0139^ .00698

4 a 1.00481 1.00344 1.00344 1.00396 1.00247

v(&) .01562 .01162 .00811 .00655 .00351

8 § 1.00647 1.00179 1.00424 1.00223 1.00108

v(6) .008o4 .00525 .00402 .00319 .00180

16 £ 1.00029 1.00107 .99995 1.00049 1.00231

v(6) .00368 .00277 .00209 .00156 .00097

32 A 1.00202 •99972 1.00021 1.00234 I.OOO63

v(&) .00193 .00151 .00093 .00084 .00045
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Table l4

SAMPLE MEANS AND VARIANCES OF &

Case 1: X =Jn 2 = .69315

m n = 2 \ n = 4 n = 6 n = 8 n = 16

1 & 1.00805

!

I.03636 l.o4o8l 1.02354 1.01021

v(&) •05597 .06306 .04506 .03784 .01844

2 § 1.01943 1.02348 1.01741 1.01605 1.01020

V(&) .02987 .02721 .02147

1.00566

.01619

1.00610

.00839 |

4 £ 1.01249 1.OO832 i.oo46i

_v(d) .01485 .01193 .00911 ^00757_ .00384

8 a 1.00397 1.00100 1.00256 1.00666 1.00099

V(&) j •00739

1.00105

.00552

1.00334

.00454

1.00129

.00358

1.00198

.00198

1.0022816 G

vCa) .00370 .00272 .00212 .00168 .00091

32 § 1.00263 1.00184 1.00215 1.00146 1.O0083

v(&) .00181 .00148 .00108 .00083 .00049
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Let us examine the variances in Tables 7-l4 to determine the

accuracy of the estimation relative to changes in m and n for

constant X , a and T = Kn . It is important in this analysis that

we keep in mind the dual role of m of either determining the magnitude

of a or of specifying the number of observations taken for each t .

For example, data recorded for m = 4 , instead of being interpreted as
2pn-l

having occurred with a = .4/2pn Z Q (y..) and m » 4 , could be
1=0 J2pn-1

thought of as having arisen with a = .2/2pn Z c(y- J and m = 1 .
i=0 1J

Thus the variances given for m = 1 , though quite large, are not alarming

since in this instance o is also large. Note that the sample variances

of both X and & are approximately halved each time m is doubled.

That is, the sample variances of both X and & are inversely proportional

to m . The same appears to be true with respect to n in Tables 7-10

for all the variances given for /X and in Tables 11-14 for the variances

of xx as n progresses from 8 to l6. Moreover, increases in n up to

n = 8 also decrease the sample variances of & somewhat, but not

proportionally.

Tables 7-l4 also indicate the effect of changes in m and n on

the bias of the estimates. The averages T. given in Tables 7-10 are

predominantly positively biased, as would be expected on the basis of

Section 4.3. In fact, only fifteen of the 120 averages reported in

Tables 7-10 are negatively biased. Furthermore, in each table the bias

is greatest for small m and n and it tends to decrease with increasing

m and n . The same trend is noticeable in the averages fa recorded

in Tables 11-l4, where only twelve of the 120 averages are negatively
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Abiased. This is not surprising, for a positive bias in X makes

exp.(-X ti) negatively biased and can be compensated for by a positive

bias in the corresponding {•£ .

Now that we have investigated the effects of changes in m and n

on the estimates for Case 1, let us analyze Tables 7-l4 with respect to

changes in X . Comparisons among these tables show that the positive

bias of X becomes more pronounced as X increases. The same is true

to a lesser extent for tr , even though the sample variances for & tend

to decrease as X increases, at least until X= \ £n 2,where in some

instances the downward trend is reversed. On the other hand, increasing

X under the conditions of our study increases the sample variance of T

in every instance. However, of more interest than changes in the actual

bias and sample variance of X with increasing X are the effects on

both the bias and the standard deviation of ^ relative to X . Table 15,

which has been computed from Table 8, indicates the magnitude of these

statistics for our study. By constructing similar tables from Tables 7,

9 and 10 it can be shown that relative bias of T is reduced for small

m and n as X increases. But as m and n become large, the relative

bias of X decreases more rapidly for small X than for large X .

Furthermore, the standard deviation of T relative to X decreases as

X becomes larger.

If X is increased, £{j )=aexp.(-Xt.) becomes smaller,

and the e as computed in our sampling study also become smaller.

Thus, we might expect the variation in ^ not only to be less relative

to X for large X than for small X , but to also be less in absolute
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Table 15

A
STANDARD DEVIATION AND BIAS OF X RELATIVE TO X

Case 1: X=|in 2=.34657

m n = 2 n = 4 n = 6 n = 8 n=l6

1 bias/X .165 .063 .036 .048 .008

s.d./X .636 .300 .169 .148 .062

2 bias/X .111 .023 .013 .017 .003

s.d./X •350 .131 .079 .063 .030

4 bias/X .017 .004 .001 .007 .001

s.d./X .130 .057 .039 .030 .016

8 bias/X .015 .005 .002 .008 .003

s.d./X .061 .031 .021 .015 .007

16 bias/X -.003 -.002 -.003 .000 .003

s.d./X .030 .015 .010 .007 .004

32 bias/X -.001 -.000 .004 .000 -.002

s.d./X .014 .007 .004 .004 .002
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value. However, an explanation of the actual behavior of ^ as X

increases may be found by considering the relationship of X and T = Kn .

The calculations summarized in Tables 7-l4 were all done with t. ranging

from 0 to 4 , that is, with T = 2 . Since ^(y. .) —> 0 more

rapidly with increasing i for a large X than for a smaller X , an

increase in X when T is kept constant tends to make more observations

nearly zero and of little use in the estimation of X , which is essentially

a rate of decline. Hence, the poorer estimation observed for the larger

values of X in Tables 7-10 may be caused by a failure to reduce T as

X is increased. To investigate this possibility further, let us study

the effect of changes in T on ^ and & when both X and n are

held fixed.

Suppose in progressing from Table 11 to Table l4 we regard the

increase in X instead as an increase in T = Kn without changing

either the product XK or <£(y ) . The y.. will not be changed by

this interpretation because of the way in which the e.. are generated

in our empirical study. Therefore, neither will A. nor the variance of

a be changed for any given pair of m and n values, for the calculation

of a from the y involves neither X , K nor T . Thus Tables

11-14 are not changed by the new interpretation,, The same is not true

of Tables 7-10, however, for X is inversely proportional to K ,

A 2making the variance of 'X inversely proportional to K . Thus, from

Tables 7-10 we could construct new tables for different values of

either K or T with X and n held constant. A few entries which

would appear in such tables are given in Table 16.

»•W&iMySWlM^i^^WW*^a,p^£fcl>%*iR« !«„,'..
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Table l6

ASAMPLE MEANS AND VARIANCES OF X FOR VARYING T

Case 1: X=\ln 2=.17329

m n T = 2 T = 4 T = 6 T = 8

2 8 $ .17695 .17619 .17586 .17826

v$) .00528 .00188 .00129 .00137

4 16 \ .17306 .17349 .17400 .17420

v$) .00153 .00047 .00028 .00026

8 4 $ .17423 .17409 .17449 .17356

vA .00280 .00092 .00057 .00054

16 2 $ .17445 .17280 .17373 .17478

v#) .00287 .00091 .00056 .00055

32 6 5 .17298 .17403 .17350 .17376

v($) .00050 .00014 .00009 .00009
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The behavior of 'X and V(X) in Table l6 as T increases is

similar to that of & and V(^) in Tables 11-l4 as either T or X

increases. From these tables we conclude that if m and n are held

constant, an increase in T tends to reduce the sample variance of both

'a and u up to a certain point, after which it appears that at least

the variance of fat increases and that the bias of both X* and u

increases. But in actual experimentation, an increase in the range of

the t. is usually accomplished by increasing n without keeping T

constant. As we have seen, increasing n with T constant tends to

decrease the sampling variances, but it is subject to diminishing

returns as n becomes larger. And when making T larger is accompanied

by increasing n , we would still eventually expect poorer estimation

with the new procedure. Hence the results in Table 7-l6 indicate that,

for instance, continuing to observe half lives of a decaying radioactive

substance will yield better estimates for a Case 1 model at first, but

only until the observations level off near zero.

In addition to studying the effects of changes in m , n X and

T on X , u and their variances, let us compare some of the small

sample variances reported in this section with the corresponding asymptotic

variances given in Section 5.4. Table 17 presents several pairs of

variances, and in the calculation of the asymptotic variance in each pair

2
o was computed in the manner prescribed for our empirical study.

Note the close agreement of the small sample variances with the respective

asymptotic variances.



123

Table 17

A COMPARISON OF ASYMPTOTIC AND SMALL SAMPLE VARIANCES

m = 1, T = 2, X = in 2

n = 2 n = 4 n = 8

v(&) v$) v(&) v$) v(G) v#)

o=.2 mean E(Yaa) Asymptotic .01411 .03320 .01087 .01660 .00679 .00830

Small Sample .01485 .05105 .01193 .01929 .00757 .00921

o=.l4l42 meanly. .) Asymptotic .00706 .01660 .00544 .00830 .00340 .00415

Small Sample .00739 .01945 .00552 .00856 .00358 .00433

o=.l mean(^(yjLj) Asymptotic .00353 .00830 .00272 .00415 .00170 .00208

Small Sample .00370 .00878 .00272 .00431 .00168 .00203

The sample means and variances of Tables 7-17 have helped describe

the small sample distributions of ^ and & for Case 1. To further depict

these distributions, the sampling distributions of X about X and of

fo about a = 1 were recorded for each set of parameters. For both

estimates intervals of l/64 were used with sixteen intervals on each

side of the parameter in question. It would not be feasible to present

each of these distributions here, but some of them are given in Figures

1 and 2 to illustrate the effect of increasing m and n on these

distributions <, These figures indicate the approach of these distributions

to normality as either m or n grows large, a result demonstrated

analytically in Chapter IV.
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To complete our discussion of the empirical sampling study for

Case 1, we need only look at the proportions of inadmissible solutions

obtained during the calculations. For Case 1, an inadmissible solution

occurs when Yg ^ Y1 ,as .indicated in Section 5.6. Also, as stated

before, the inadmissible solutions reported here occurred while 1024

admissible solutions were being computed for each set of parameters.

Table 18 includes all the inadmissible solutions yielded by the empirical

work for Case 1. The results given there are encouraging because in

only one instance is there an entry for o < 0ol4l42 times the mean

expectation of y. . . However, the table indicates that under our Case 1
i J

model when the e . are normally distributed, the new estimation

procedure will produce inadmissible solutions with a fairly high

frequency when X is small relative to T .

The empirical sampling study for Case 1 discussed in this section

has reflected favorably upon the new estimation procedure. Yet from

this study we cannot infer that the new method behaves as well for more

general cases of our model. For instance, as the number of terms in the

model increases more necessary conditions must be satisfied in order for

a solution to be admissible, so we would expect a higher frequency of

inadmissible solutions. However, this sampling study does Indicate

that the new procedure is adequate when its model is applicable.
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Table 18

PROPORTIONS OF INADMISSIBLE SOLUTIONS FOR CASE 1

m n
1 nX=£in 2 X=| in 2 X = j-in 2 X =in 2

1 2 .192 .038 .011 .002

4 .116 .015 0 0

6 .064 .002 0 0

8 • 057 .001 0 0

16 .003 0 0 0

2 2 .110 .015 0 0

4 .038 0 0 0

6 .019 0 0 0

8 .008 0 0 0

4 2 .051 0 0 0

4 .007 0 0 0

6 .003 0 0 0

8 2 .006 0 0 0
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VII. EXTENSIONS AND IL7JJSTRATI0NS

7.1 Extensions of the Model

The model in Section 3.1 was formulated so that it could be

realistically applied to many problems involving exponential fitting,

and yet it was restricted sufficiently to make the development of the new

estimation procedure relatively simple. However, there are several useful

extensions of the model which require only minor alterations of the

estimation procedure. Some of these are indicated in Section 3-l> where

several assumptions of the model are declared unnecessary as far as the

estimation itself is concerned, but either are necessary in order for

certain properties of the estimators to hold or else are necessary to

make the model conform to the experimental situations to which it is most

often applied. In this section some additional extensions of the model

will be proposed.

The first extension results from removing the requirement that

all the X, be real. As pointed out by Willers 31 > there are some

situations in which complex exponents are meaningful.. Then the model

fitted can conveniently be represented in terms of sine and cosine terms

as well as exponentials, thus giving a. new model, to which the new esti

mation procedure applies. Another trivial modification of the model

consists of using a positive number other than e as the ba,se of all

the exponentials and logarithms in this paper.

As stated in the introduction, the estimation can also be carried

2
out when the e.. are not homogeneous, And when a varies only from

J-J



129

group to group, the limiting distributions of Chapter IV are still valid

if a slight change is made. In this instance, the expression (4.1.8) for

the asymptotic variance of an estimator for n large becomes

V(&) = Z a2 o2 , (7-1.1)
q q

q H

2 th
where a is the variance of the observations in the q group, and

q
2

(4.3.8) is similarly affected. When estimates s are substituted for

2 2
the a in (7.1.1) and when all of the s have the same number of

q q

degrees of freedom, we may assign that number of degrees of freedom to

vCe1) . But the developments of the next paragraph will make it possible

2
for the s to have different numbers of degrees of freedom in accordance

q

with an extension of our model. In this case, we shall be conservative

and assign to VC&) the smallest of these degrees of freedom.

The new procedure can be further extended to a model in which an

unequal number of observations are made at some of the points t^ .

In fact, it is only necessary that the number of observations be the same

for all of the t. within any given group. Suppose in the procedure as

developed in Chapter III we let j range from 1 to m , where the

subscript q denotes one of the 2p groups as before. Then, if we

replace each S by S /m and let m = 1 , the development in

Chapter III applies to this formulation. Although this extension

increases the applicability of the new method, its use also requires

more care in the planning of an experiment. Previously, if an experimenter

wanted to use the new procedure without introducing any approximations,
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he had to take observations at a prescribed number of points. Yet, for

instance, if he took observations at twelve points, he could attempt to

fit either 2,3,4,6 or 12 exponential terms with these observa

tions. But if he utilized the extension of the model presented in this

paragraph, he would be restricted further in choosing the number of

terms to be fitted.

The final modifications which we will suggest here concern the

constant a in the Case 6 model. Instead of remaining constant throughout

an experiment, a could for instance be a function of t. . In most

experimental situations this would mean that a varies with time and

would lead to the model

yij - aoi + k^°k e + eij

Unless a„. were a periodic function with period n , this model would

complicate the new procedure considerably. Yet a solution appears to be

feasible in some instances.

Instead of varying with i , a could reflect, say, block

effects when an experiment is carried out with several animals. That is,

a„ could be a, function of j , making

yij = %j + z <\e -" + eij
k=l

This formulation would not change the estimation appreciably since the
m

constant term Z an. would be included in every sum Sn . Another
1=1 °J 1
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possible extension along this line would be the inclusion of block, time

and interaction effects in the model. This would of course unduly

complicate the estimation with the new procedure except perhaps in special

cases.

7*2 Approximations to the Model

In order to utilize the new procedure it is often necessary to

make approximations. Sometimes the t. are not spaced in accordance

with the model or else they cannot be divided evenly into 2p groups.

In some such situations a few interpolations or extrapolations will

supply the missing data and make it possible to apply the new method.

This is done in the examples in Sections 7-4 and 7-5« Also, an experimenter

sometimes takes his data at unequal intervals in such a way that when

the t are divided into 2p groups of length T , n varies from

group to group. In this instance a sum S may be formed as usual

for each group. Then a solution may be carried out as if m instead

of n changed between groups without altering the product m n for

any group. This latter approximation is rather crude, but interpolations

and extrapolations such as those suggested at first often do not weaken

the estimation if they are few in number relative to the number of

observations.

A useful approximation is also available when m varies not only

from group to group, but for t within the same group. In Section 7-1

we saw that, when m changes only from group to group, S /m may be

substituted for S in the solution in Chapter III with m = 1 .
q

Similarly, as an approximation we may average the observations yi. for
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each point t^ when m varies within a group. Then these averages may

be substituted for the y in the new procedure with m = 1 . In this
•>. 3

instance, the variance o^ is. the basic model is a variance of means and

varies from one observation point to another, and this should be taken

?
into account in the computation of s~ „

7»3 An Illustration for Case 1

In this section the new estimation procedure will be used to fit

a Case 1 model to the data from an experiment conducted by Paul Urso in

the Biology Division of the Oak Ridge National Laboratory. Mr. Urso made

nucleated bone marrow cell counts on mice both before and after X-irradiation

of 900 roentgens. These counts are reported in Table 19, with those

made before irradiation recorded for zero days after irradiation<,

After plotting the averages given in the last row of Table 19, the

experimenter suggested that the data be fitted to a single exponential,

that is, to a Case 1 model. Since this entails the estimation of only

two parameters by the new procedure, we shall partition the data of

Table 19 into two groups, with the counts for days 0 and 1 in the first

group and those for days 2 and 3 in the second, and hence n = 2 .

Also, since the interval between successive series of counts is one day

in each instance, K = 1 . The nmber of mice for which counts were

made varies within each of the groups, so we shall follow the recommenda

tion made in Section 7„2 of replacing the observed counts y . for any

i , that is, for any day, by the average y„. for that day and by

letting m = 1 in the estimation equations. The average daily counts

are given in the last row of Table 19. From these averages, using

-*^!i~WH«<#Sft(W*ifcH*<£,fc,
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Table 19

BONE MARROW CELL COUNTS OF X-IRRADIATED MICE

Days after X-Irradiation

0 1 2 3

11,137,500 3,062,000 437,500 96,250

9,418,750 3,075,000 766,666 112,500

10,287,500 5,050,000 1,087,500 237,500

12,487,500 3,312,500 368,750 75,000

Bone 11,700,000 2,775,000 1,206,250 150,000

Marrow 10,023,750 1,058,750
*

500,000 90,000

Counts 12,062,500 2,000,000 85,000 100,000

10,437,500 3,475,000 416,666 118,750

2,675,000 450,000

737,500

281,250

756,250

162,500

! Averages 10,944,375.0 2,942,583-3 591,111.0 126,944.0
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(3.5.I) and (3.5.2), we compute

S1 = 10,944,375.0 + 2,942,583.3 = 13.8870 x 10 ,

S2 = 591,111.0 + 126,944.0 = 0.7181 x 10

Then (3-5-3), (3-5-4) and (3-5-5) yield

A 0.7181 n .,171
X = 13THB70 = °-°5171 '

mmmmmmmmm

$ = - |£n 0.05171 = 1.4811 ,

A; = (1 - 0-22759) (13-8870)2 xIO12 = 1±^lk3 x10'
13.1689 x 10

6

Note that in the calculation of tr for this example

An
x = exp.

/ 1 f AN- (- 2in x) = exp. (-X)

and can be found merely by looking up X in tables of the negative

exponential function.

Now we may represent the data from Mr. Urso's experiment by the

estimation equation

6 -1.4811 t.
y\ . = (11.3143 x 10 )e X .
1J

«f:W»1)WWV«l
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From this equation the following predicted values may be computed:

yQ = 11.3143 x 10

y^ = 2.5728 x 10 ,

y^ = 0.5850 x106 ,

A 6
Y = 0.1330 x 10

It is a general feature of the new procedure that sums S calculated

from the y. equal the S computed earlier from the experimental

data. So, as a check on our computations, we compute

^ = (11.3143 +2.5728) x10 = 13.8871 x10 ,

Q2 = (0.5850 +0.1330) x10 = 0.7180 x10 ,

and note that 'S = S , q = 1, 2, within the limits of rounding errors,
q q

Then, as a measure of goodness of fit, we calculate

Z (y. - yJ2 =
i=0

(•3699)2 + (-3698)2 + (.006l)2 + (.0061)2 12
x 10

12
0.2737 x 10 (7-3.1)
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This sum of squared deviations of the means from the regression will be

compared later with similar sums computed for other methods of estimation.

Next we should like to estimate the variances of X and W , but

2
in order to do this we must first compute an estimate s of the variance

of the average count per day. Using (6.1.4), we compute sample variances

of counts within each day to obtain

1157-599 xIO9 , 1178.785 xIO9 ,108.0151 xIO9 ,2.5032 xIO9

for days 0,1,2 and 3 respectively. The corresponding sample

variances for the averages are

2 ,. 9s0 = 144.700 x 10 ,

s1 = 130.976 x109 ,

2 9
sg = 9.001 x 107 ,

2 Q
s = O.278 x 10? ,

with 7 , 8 , 11 and 8 degrees of freedom respectively. All of the

latter sample variances may be pooled to form

s2 = 63.587 x109 (7.3.2)
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2 2with 34 degrees of freedom. However, s2 and especially s are quite
2 2

a bit smaller than s and s, . Therefore, it would seem reasonable

to assume that a is homogeneous only for y . in the same group and
X J

to compute asymptotic variances for 'a and X as indicated by (7.1.1).

Further support for this approach is furnished by the deviations from
2

regression used in the calculation of (7.3.I). For an estimate of 0

2 2from the first group we pool s and s1 to obtain

s2 (1) = 137.381 xIO9 (7.3-3)

2
with fifteen degrees of freedom while for the second group from s2 and

s, we calculate
3

s2 (2) = 5.328 xIO9 (7.3-1*-)

with nineteen degrees of freedom. Variance estimates for X and be

will be computed using both the'estimate (7-3-2) and the estimates

(7-3-3) and (7-3.4).

Now let us estimate the asymptotic variance of X by equation

(4.2.15). For n ,q=1, 2 ,we take the mean Y =S /mn . Hence

in this example we let

%' = I(13.8870 x10 ) = 6.9435 x10

^. = i(0.7180 x106) = 0.3590 x106
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Substituting these estimates of the tj along with the estimate (7.3.2)

2
of 0 in (4.2.15) and dividing by mn , since we want the variance of

X instead of /mn X , we obtain

v$) = 0.06183

2
Similarly, if we use (7-3-3) and (7.3.4) to estimate 0 , q = 1, 2,

substitution in (7.1.1) yields

V$) = 0.00552

Taking the square roots of these variances, we compute the standard

deviations

s.d. $) = 0.2487

2
when s is calculated from all the observations and

s.d. C&) = 0.0743

2
when 0 is estimated separately for each group.

To compute asymptotic variances for vt we first evaluate the

corresponding a , defined by (4.1.9), by substitution in (4.2.16).

For this example,
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i± = 1.7804 , a2 » 2.9192

2
Then, using the overall estimate (7.3.2) of a , we have

V(&) = ^ (a2 +a2) s2 = 371.717 x IO9

On the other hand, the estimates (7.3-3) and (7°3*4) lead to

V(&) =±
mn

a2 s2(l) + a2 s2(2) = 240.437 x IO9

The corresponding estimates of the standard deviation of 'at are

O06097 x 10 and 0.4903 x 10 respectively.

The standard deviations we have just computed are those that

1 2 l/2
would be calculated by substitution for s(— Z A ) in (6.1.12).

q

Hence we may quickly apply (6.1.12) to obtain approximate confidence

intervals for X and a . Using the five per cent level of Student's

t~statistic, which for 34 degrees of freedom is 2.032, and using standard

2
deviations calculated with s computed from all the data, we compute

the 95 per cent confidence intervals

0.9757 < x < 1.9865 ,

6 6
10.0754 x 10 < a 4 12.5532 x 10

The corresponding confidence intervals computed using group estimates



**rt3^i»*9*feai9aiit^w!5-,^iv9

l4o

2
of 0 and the five per cent level of Student's t-statistic with 15

degrees of freedom, as recommended in Section 7-1, are

1.3228 < x <. 1.6394 ,

6 6
10.2695 x 10 < a < 12.3591 x 10

These sets of confidence intervals illustrate the need for making realistic

2 2
assumptions about 0 , that is, for not assuming that 0 is homogeneous

throughout an experiment when in fact it varies from group to group.

The data in Table 19 afford us an opportunity to compare the new

procedure with the other methods of fitting mentioned in Chapter II.

An application of Prony's method, as given in |30 |, to the averages

displayed in Table 19 leads to the estimates 1.3314 and 9.3622 x 10

for X and a respectively. These estimates in turn yield

Z (y\ -y.)2 » 2.7299 x IO12 .
i=0

The "peeling off" procedure, which for Case 1 reduces to fitting the

logarithms of the observations to a straight line by least squares,

gives

^ = 1.5291 , & = 11.3500 x106 ,

3

Z (y\ -y.)2 = 0.4009 x io12
i=0
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Finally, the iterative Deming procedure leads to least squares estimates

with

AX = 1.3530 , & - 10.9609 x 10 ,

12
Z (y\ - y,) = 0,0361 x 10
i=0

These would also be the maximum likelihood estimates under assumptions

of normality. Note that the sum of squared deviations of the means from

the regression given earlier by (7.3.I) for the new procedure is, next

to that for the Deming least squares method, the smallest of those

computed in this section.

7.4 An Illustration for Case 4

The new estimation procedure has also been used to analyze the

data from some physics experiments at the Oak Ridge National Laboratory.

In one of these experiments Dr. Marvin Slater placed cylinders of

paraffin between a neutron source and a polyethylene-ethylene proportional

counter and then he recorded the amount of radiation transmitted to the

counter through paraffin cylinders of different lengths. The counts he

made are reported in Table 20.

Table 20

NEUTRON COUNTS FOR DIFFERENT LENGTHS t± OF A
PARAFFIN CYLINDER

*i 0 2 4 8 12 16

Counts 67.9 36.3 17.2 8.2 5-5 2.8
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In this experiment there are two ways in which radiation can be

transmitted to the counter. One is directly through the paraffin and

would be expected to be exponentially related to the length of the

paraffin cylinder. Scattered radiation reflected from the walls and

other surroundings would also reach the counter and would be expected

to be constant. Therefore, a Case 4 regression was suggested for the

data in Table 20. But this data does not satisfy all the requirements

of our Case 4 model, for all the increments in the lengths of the paraffin

cylinder are not equal. Two approximate solutions were tried however.

In one the count for t. = 2 was discarded and a value for t. = 20
l l

of 2.6 was extrapolated from a plot of the logarithms of the data so

that the number of t. would be an integral multiple of three, the

number of parameters. Thus, in this solution, K = 4 and n = 2 .

Since interpolation is more apt to be accurate than is extrapolation,

interpolated counts for t. = 6 , 10 and 14 were used in another solution

with K = 2 and n = 3 . The first of these alternative estimations

resulted in the smaller sum of squares of deviations from regression of

the six original observations, and therefore we shall present that

estimation here.

The first step in the estimation, with m=p=l, n=2 and

K = 4 , is to compute

s1 = 67.9 + 17.2 = 85.1 ,

S0 = 8.2 + 3.5 = 11.7 ,

S = 2.8 + 2.6 = 5.4
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from (3.6.2). Then (3-6.12), (3-6.13), (5-6.14) and (3-6.15) yield

£ - jg:I: ffi) - °-085851 >

$ = g £n 0.085831 » O.30692 ,

&
(85.D(5-4) - (11.7)'

2 [_85.1 - 2(11.7) +5-4
= 2.4o4

1/2

*L -
(85.I - 11.7)" 1 - (0.085831)

85.1 - 2(11.7) +5.4] d
= 62.099

Hence the regression equation is

Ay = 2.4o4 + 62.099 e
-O.30692 t±

and

y\ = 64.50 , y\ = 36.02 , yV - 20.60 ,

A
y8

= 7.73 , y\p - 5.97 , fc6 =2.86 , $20 - 2.54
'12 '20

In order to check our calculations, we use the y± to compute

& =85.10 , & =11.70 and $ «5-40 which agree exactly with the

S computed earlier. Also, we find that the sum of squares of deviations
q

from the regression of the observed y± ,including y2 ,is 23-6438 .
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2
Next let us estimate a , the variance of the counts in Table 20

under our Case 4 model. Since only one observation was taken for each

ti , we must use the mean square deviation of the observations y from

the corresponding regression values, y ,to estimate o2 . This mean

square, calculated using both yg and y2Q ,equals 7.8825 and has

three degrees of freedom since there are three parameters to be estimated

with six original observations.

Variance estimates for ^, £Q and ^ ,may now be computed
from the asymptotic variance formulas given in Section 4.2. For ^ ,

substitution of S /mn =S /2 for i] , q = 1, 2, 3, gives

ax = 0.00341 , a2 = -0.04309 , a = 0.03968 .

Then substituting these values and s2 =7.8825 in equation (4.1.8),
which gives the asymptotic variance of s/nn1 $ - X) ,and dividing

by mn = 2 , we compute

vf£) = 0.013566 .

Similarly, (4.2.19) and (4.2.20) in conjunction with (4.1.8) yield

v(&0) - 5.80988 , v(^) = 29.80689 .

From these variances we calculated the standard deviations

s.d.$) =0.11647 , s.d. (&0) =2.41037 , s.d.tf^) =5.45957 .
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As in the example in Section 7.3, these standard deviations may

be substituted in (6.I.13) to obtain approximate confidence limits. The

95 per cent confidence limits computed in this way are

-0.06369 < X < 0.67753 ,

-5.266 4 aQ < 10.074

44.727 4 (^4 79.471

These limits are too wide to be of any use whatsoever. Moreover,

computation of 95 per cent confidence limits for X using (6.1.9) and

(6.1.10) gives

0.01622 < X 4 00

Inspection of equation (6.1.9) shows that the upper confidence limit

2
for X computed from that equation will usually be <=o when s is

large. In fact, all the extremely wide confidence limits calculated in

2
this section result from an inordinately large estimate of 0 .

To complete this illustration, let us again present estimates

calculated by some other estimation methods. To apply Prony's method

to a Case 4 model we first form y' *= y. - y , i = 0, 1, 2, ..., 3n-2

The y* would be expected to follow a Case 1 model and may be fitted by

the Prony method as outlined in Chapter II. Then the Case 4 estimates
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for the y. may be computed from the Case 1 results obtained for the

y! . This extension of the Prony method to Case 4 is similar to that

given for the new procedure in Section 3.6. The estimates yielded by

the Prony method for this example are

%=0.41824 , &Q =-5.682 , ^ =104.006 .

In this example a0 ^, 0 , and therefore we shall take vt = 0 as the

Prony estimate of a . To apply the "peeling off" procedure to this

illustration we must first assign a value to Q . If we let

tr_ = 2.4o4 , the estimate calculated by the new procedure, the estimates

of X and a, yielded by the "peeling off" method are

^ = 0.32099 , (\ = 62.579 •

Finally, the third iteration with the Deming method after inserting the

new procedure estimates as initial estimates gives corrections -0.00021 ,

-0.076 , and 0.01135 which, when added to the products of the second

iteration, yield estimates 0.35258 , 2.836 and 65.261 respectively

for X , n and a, • In both this example and in the one presented in

Section 7«3 the Prony method apparently gives as good an estimate of X

as the new procedure does, but the new procedure results in more

reasonable estimates of the a. . The sums of squares of the deviations

of the y± from the y are 16.9220 and 7-7837 for the "peeling off"

and Deming procedures respectively. Such a sum of squares was not

„V * 1-r•««.*««£v3(*ttMF*»*»
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computed for the Prony method because of its negative estimate of aQ .

7-5 An Illustration for Case 2

As a final illustration of the new estimation procedure we shall

apply it to the data in Table 21. The logarithms of frequencies given

there describe the distribution of background pulses generated in a

proportional counter by neutron interaction with walls and gas plus

pulses due to circuit noise. The experiment was conducted by Dr. M. L.

Randolph at the Oak Ridge National Laboratory. No counts were made for

pulse heights of 14, 26, and 28 and those displayed in Table 21 for

these pulse heights were obtained by interpolation. A plot of the data

suggests a Case 2 model and therefore that is the model we shall attempt

to fit. This example will not be studied as completely as were those

in Sections 7-3 and 7.4, but only enough calculations will be carried

out to illustrate the general approach given in Chapter IV for the

computation of asymptotic variances.

There are sixteen evenly spaced t in Table 21 with an interval

of two between successive t± and there are four parameters to be

estimated, so K = 2 and n = 4 . Also, only one logarithm is recorded

for each t, , so m = 1 . It can be shown that substitution of these
1

values along with the data in Table 21 in the estimation equations

derived for Case 2 in Section 3.5 yields

s1 -18.600 , s2 =1.227 , s5 =0.158 , S^ =0.091 ;

4 =1.0457 ,%-0.0607 I x\ =0.9840 , \ =0.0617 ',
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^ =0.00202 , ^L 0.3482 ^ =0.0217 , b\ =9-8977

Table 21

LOGARITHMS y± OF FREQUENCIES OF PULSE HEIGHTS t

GENERATED IN A PROPORTIONAL COUNTER

*i yi

0 10.430

2 4.703
4 2.327

6 l.l4o

8 0.615

10 0.325

12 0.170

14 0.117

16 0.050

18 o.o4o

20 0.046

22 0.022

24 O.O36

26 0.021

28 0.018

30 0.016

ALet us use these results to estimate the asymptotic variances of X,

^ ~~" t^ apart from the estimation of 0 .'X2 ' % and

K'.ifiKw^ww^witwet^mpfli8* mwwtwmmmm
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In the general procedure for computing asymptotic variances it

is first necessary to evaluate the ox^/oT given by (4.2.12) in

conjunction with (4.2.3), (4.2.4) and (4.2.8) through (4.2.11). From

these equations it follows that

, oT- < >Y>
dYq * 8& >*)

where for Case 2

<^.i) - % - \\ ♦ % .

- afe. afe,

q q q

g^, Y) - 2x^ - \ . (7.5-3)

In all of these equations and in the rest of this section, k = 1, 2

and q = 1, 2, 3, 4 for Case 2. Using (7-5-3) and the estimates already

computed for this example, we find that

gx(xN1, Y) = 0.9223 , g^, Y) = -0.9223

But to calculate the ^- g(x^, Y) ,which are necessary for the
q

evaluation of (7-5-1), we must first compute the SEy/^Y •
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From (3-5.7) and (3-5-8) with s = mn Y ,

where we define

A Yl Y4 "Y2 Y3 J2
E = „ = — ,

Y Y - Y 111 x3 2 X

A Y2 Y4 "Y3 J3
E = „ = _

Y Y - Y 11l I3 z2 x

Jl =Yl Y3 "Y2 ' J2 =Yl Y4 "Y2 Y3 ' J3 =Y2 Y4 "Y3

Then differentiation of & and iL yields

5e\ Jx Y^ -J2 Y5 di2 -j3 Y3

^1 -J1Y3 +2J2Y2 ^2 JlYU +2J3y2
2 jf dY2 jf

o^ -J:LY2- J2Y1 o&2 -2 J;L Y3 -J^ Yl
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*1 \ A Y2
^ ~ J± ' ^4 = Ji

For our example Y = S /4 . Therefore,

Yx =4.6500 , Y2 = 0.3068 , Y, » 0.0395 , Y^ = 0.0228 ,

and

Jx = 0.08955 , J2 = 0.09390 , J =0.005435

From these Y and J values we compute
q r

o^ 35^
gji = -0.2079 , 3j? = -0.02677 ,

^± = 6.7444 , g-£ = 0.6705

afe, 4
^± = -3-9701 , ^f = -4.033^

3 3
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3yT " 51'9265 > oyT " 5'4260

Now we have everything at hand to compute the dg(x^, Y)/oT as

given by (7-5.2). Then substitution of these quantities and the ^(x^, Y)

previously computed into (7-5.1) for our example enables us to compute

ox, ox2
3j± = -0.1928 , gj= = -0.01513 ,

o& ox\
^ - 6.4686 , ^ = 0.2759

A 4
^ = 0.1375 , 35= = -4.1077

A ox\
^i = 51.6855 , 3j= - 0-2420

For the X^ , the a of Theorem 1 as defined by (4.1.9) may now
K q

be calculated by substitution in equation (4.2.13). In this way for X.

we compute

ax = 0.02449 , a2 = -0.8217 , a = 0.01747 , a^ = -6.5657
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and for x\ we calculate

ax = 0.03066 , a2 = -0.5591 , a = 8.3246 , a^ » -0.4904 .

Then substituting in (4.1.8) and dividing by mn = 4 since we want the

variance of the Q. instead of the v/mn (T^ - X. ),we compute

VCX^) =10.9461 s2 , V(^) =17.4633 s2 .

Now let us replace each S in (3.5.11) and (3.5-12) by the

corresponding mn Y , thus representing the t£_ as

\ -

% -

n(l -x^) (Y±/x2 -Y2)

(1 -x\) (£2 -x\)

n(l -4g) (Y2 -T1^L)
(1 -£,) (x\> -x\)

Then by differentiating the expression for bt, -and by referring to

(4.1.9), we find that for Q^ ,

ox\
A»n — ""2=^ =n(l-\)-2(%-\)-2 (l-^HV^) (1 - 'xT) (Y.1' K 1 w

or, oy0 a , A—1 ox\
+ X2 oY~ oYr") (Y1X2 V ^5 Xl 3TJ

A C& & A A ox\
^^-^-^-^of1

q q q

-i~\

-d-^KYivv y. (7.5.4)

_y
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Similarly, for Qk ,

&
aq = 3T

q

- n(l - £2)"2 (^ - x^f2 {(1 - &2)&2 - x\)
i oTQ o^,

(1 _ £P) (2 - y r-=
^ x2; ^3F 1 o^T

£ x1 (Y Y £ W1^ 21xi sr' (Y2 Yi V (i x2 oy"}
q q j

•(1-x^) (Y2-Yx \)
' c&0 cx\ A A ox\
(x4^ " oY^ " <V %> 3T

q q q J

(7-5-5)

All of the quantities needed to evaluate these derivatives have already

been calculated, so from (7.5.4) and (7-5-5) we compute

ax = 0.0168 , a2 = -0-5576 , a = 20.6095 , a^ = -3.2847

for it, and\

a., =,± = 2.5540 , a2 = -7-1179 , a = 76.2966 , a^ = -1.9009

Afor 'oL . Then substitution in (4.1.8) and division by mn = 4 as before

for the XI yields

V(^) =IO8.963O s2 , V(&2) =1470.4930 s'

2 2
An estimate s of 0 may be found in the same manner as it

was in Section 7-4, and it can be shown to equal 0.03997- Then the
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following standard deviations may be calculated:

s.d.Cx\) = 0.6614 , s.d.Cfrg) = 0.8355 ,

s.d.(^ =2.0869 , s.d.(^) » 7.6665 •
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VIII. SUMMARY AND CONCLUSIONS

A new estimation procedure has been developed in this paper for

a model specifying a linear combination of exponentials with data taken

at evenly spaced points, and for that model with a constant term added.

Besides the derivation of the estimation equations for the new procedure,

the distributions and statistical properties of the resultant estimators

were studied. It was found that as the number of observation points or

as the number of observations taken at each such point becomes large,

the estimators are consistent and that their distributions approach

normal distributions. It was also found that the estimators are biased

and generally inefficient. Then the new procedure was shown to be optimum

relative to certain similar procedures and conditions necessary for

admissible solutions were investigated. Confidence intervals were

developed and several examples plus a sampling survey were presented.

Extensions of the model for the new procedure as well as some approximations

to be used in the application of the procedure were also suggested.

In the efficiency study it was shown that the estimators yielded

by the new procedure are inefficient relative to the corresponding maximum

likelihood estimators, which may be obtained by iterative methods. The

convergence of these iterative methods is often slow. But the new

procedure is not an iterative procedure, and its estimates are much

easier to compute than are the maximum likelihood estimates. So we

conclude that the new method, when its model is realistic, is advantageous

relative to the method of maximum likelihood if adequate computing
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facilities are not available to calculate maximum likelihood estimates.

Also, if it is more practical to take a large number of observations,

and thus obtain small error estimates with the new method even though

it is inefficient, than it is to take fewer observations and compute

maximum likelihood estimates, the new procedure is again recommended.

In any case, the new procedure provides a quick and easy way of computing

initial estimates for iterative maximum likelihood calculations.

The limited empirical comparisons which have been made between

the new procedure and other non-iterative, easily applied procedures

do not provide an adequate basis for judging these methods relative to

each other. However, the new procedure appears to be as simple

computationally as the Prony and "peeling off" methods. Also, if the

variance of the observations can be accurately estimated, variance

estimates for the estimates from the new procedure can be calculated

and useful confidence limits for the corresponding parameters can be

constructed. No such measures of error are in general available for

estimates from the Prony and "peeling off" procedures. Furthermore,

unlike those for the "peeling off" method, the new procedure calculations

do not require any judgment decisions. So if the model for the new

procedure is appropriate, this procedure is in several respects better

than the other non-iterative methods discussed in this paper.
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