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NEUTRON SLOWING DOWN BY HYDROGEN IN THE
CONSISTENT Py APPROXIMATION

Albert Simon
Oak Ridge National Laboratory

Abstract
Some analytical solutions for the flux, slowing down density and
age are derived in the consistent Pl approximation to the Boltzmann
equation. One gsolution is for pure, non-absorbing hydrogen with a 1/v
scattering cross section. The‘other is for all cross sections constant
with the heavy elements aséumed to havé infinite mass. These results are
compared with the corfesponding predictions of the Selengut-Goertzel

theory, and a tentative explanation of the gross behaviour is advanced.



NEUTRON SLOWING DOWN BY HYDROGEN IN THE

CONSISTENT Pl APPROXIMATION

Albert Simon
Oak Ridge National Laboratory
I. Introduction

It is customary to use the age-diffusion approximation in calculat-
ing the criticality of systems which do not contain hydrogen. When hydro-
gen is present, however, it is clear that this methed is inappropriate
since the age-diffusion theory assumes continuous slowing down while the
neutron can actually lose all of its energy in a hydrogen collision. This
situation has been partially remedied by the introduction of the Selengut-
Goertzell method, which in effect makes use of the correct distribution of
energy loss suffered by a neutron in a collision with a proton but neglects
the correlation between energy loss and angle of scattering. The scatter-
ing by the heavier elements is treated in the same fashion as in age-
diffusion.

The neglect of energy-angle correlation 1n the S.G. theory has at least
one well-known consequence in that the predicted age in hydrogen, with the
heavier elements considered as non-slowing-down is :I.nc:orrect.2 On the
other hand, it is equally well known that when the energy-angle correla-

3

tion is included in a consistent manner, the age 1s then given correctly.

Since the starting point of all these approximation methods is the Pl



D

approximation to the Boltzmann equation, and since the energy-angle
correlation in hydrogen may be included in a consistentrganner, this
last method 1s often referred to as the consistent Pl approximation.

Several machine codes for calculating the criticality of reactor
systems in the S.G. approximation are in‘existence.h ‘A consistent Pl code
(Cornpene) 1s under development at the Osk Ridge Natizmal Leboratory’ and
numerical solutions for the Pl (and Bl) approximation in water have been
reported by KAPL.6 It is always advantageous, of course, in understanding
and predicting the results of such machine calculations to have some analy-
tical solutions available. The most relevant quantity for criticality
calculations is the slowing down density. This quantity has been calculated

in the S.G. approximation by Hurwitz and Zweifel.7

It is the purpose of
this note to provide some corresponding results for the comnsistent P1
approximation. The results to be given in this report are not as general
as that in reference 7 in that solutions are obtained only for very
specific choices of the cross section variation. Nevertheless, it is felt
that the two cases solved below, particularly the "1/v" bebaviour, may
provide some insight into the theory.

The basic equations of the consistent Pl approximation are derived in
Section IT along with a first order integro-differential relation for the
flux. This relation is solved in the next two sections for the case of
pure hydrogen scattering with a 1/v cross section, and for all cross
sections constant. A discussion of the results is given in the last

section.
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ITI. The Consistent P; Approximation

The one-dimensional Boltzmann equation with a neutron source whose

spatial dependence is of the form ein may be written

u
1B (u,p) + 2 (wp) = j 5" (') K (" u,,) +z‘: () Bt up,)
S

-00

'Qfﬁz',P')du‘ ag* + _ggEl

Here
F = the angle between the velocity vector and the x-axis.
54014&) = neutron flux in the lethargy interval between u and u + du,
angular interval p and p + dp and azimuthal engle @ and @ + ag.

All fluxes and cross sectiois are assumed independent of @.

Z%r = total cross section.

ZF = hydrogen scattering cross section.
s
M

D, = scattering cross section for all remaining elements.
s

K(u‘-)quo) = probability of scattering from a lethargy u' to lethargy u
throughrgn angle Bo-
2 | 2
bo=pp - J1-p2 [1-p7 cos ()
S(u) = source of neutrons, assumed isotropic.

The/Pl approximation to this equation is obtained by expanding the scattering

kernels and neutron flux in Iegendre polynomials as follows:



. T

0 ¢}
' =>u, po) = 2, 2221 glur 5 u) P, (po
/Jw

(2)

F(up) = 1v4.(2) 2, (o),

Tovs
N

Multiplying Eq. (1) by either 1 or p and then integrating over all

angles, the resulting two equatlons have the form:

u : ;
wpy v B, - | {ZH @O (o w) + 2 R ) (arau +

-

u ‘
%13_5// o +ZTY'1 = {_S (u')Ki(u'—au) +Z§(u’)K?(u'—) u) Yl(u')du"
~-00 ,

At this point the approximations are made which differentiate' the age-
diffusion, Selengut-Goertzel or consistent Pl equations. The age-diffusion
approximation results from expanding Z ‘P and Z ‘/’ in a Taylor series
in lethargy about u and keeping only the first two terms for Z \l’
and the leading term for 2, e The 5.6. method’ différs 'from this only
in tl;a.t the lethargy expansion is not made in the term including KS. Finally,
the consistent P1 approximation is obtained by not msking the lethargy ex-
pansion in the terms including both Kg and Kf. Thus the hydrogen slowing

down is treated exactly.*

*It should be noted that the "consistent Pl approximation“ may include
approximations for the heavy element slowiiig down (KM) other than those
of age-diffusion (seeHreference 5). The essential feature is the exact

treatment of K and F& however,
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If isotroplc scattering in the center of mass system is assumed for

hydrogen, the following simple expressions r«e_sult:‘8

Kg(u‘—; u) = e~ (u-u") (ka)

-3 1
Kf(u'—a u) = e 7-2-(u-u ) (k)

If, in addition, the heavy elements are assumed to be non-slowing down,

their scattering kernels also take a simple form:
M
Ko(u'—> u) = J(u'-u)

1 = = 1
K (u'— u) = dlu’-u)
where ii is the average cosine of the scattering angle on the heavy element.

Meking these assumptions, the resulting consistent P, equations have the

1
simple form:
4 ]
i'BW]_ + (Za +Z‘:§)7Uo = j Z:(u') eu _u%o(u') du’ + 8, (52)
-0
% . 2(u'-u)
%Ey«o +Z.,I,>bl = ‘L zs(uv) e \/fl(u') du* (5v)

where now Z’I‘ = Za +Z§ + Zf(l-fl)

Equation (5) may be reduced to a single first order integro-differential
equation in the flux (\jbo). Differentiating Eqs. (5a) and (5b) with respect

to u, one obtains:



M

iz 9¥ < B ,
'13]2 T +'§9'£(Z‘T\//1) =é\P1 'g { 3 %% +ZTWI} (6v)

where the symbol Zg refers to hydrogen scattering only. Equation (6b) may

be readily solved for Z&‘+i and the result is:

[0]

b2
‘ = - 2 T 1 '
ZT\pl = - e \} e ¥o(ut)du

Wi

o

where the fluxes have been required to vanish above the source energy. Sub-

stituting this expressioﬁ in Eq. {6a), the following equation in %3 is

obtained:
L[(Z +2) Y 4+ B uYy 2 Yo u 2 N
Jul“a s #/o a o =5 e | Du Z;T € + ﬁ}i;E ° e
3
L - 2
EZT Zs u QZ\T"‘Z\
a 1 - Z o3 'V \f ZS s ar >
S |z ° T Lz e 2 o
B 40 . ’ i
oS | | 1y



Equation (7) has been solved in two special cases
M
(a) &, =0,Z_ =0, L ~1fv
(v) Za,ZI: and 7, are constant in lethargy.
s

These results are given in the following two sections. A quantity of more
immediate interest to criticality calculations is the slowing down density

g. This is related to ‘}/o as follows:
u 1
aw = [ Z ) vl) o aw (8)
-0

and is also calculated below.

III. Pure 1/v Scatterer

.M
Let Z‘a = O,Zs =0, Zs = 2%/2 and assume that the source is a delta

function at zero lethargy. Equation (7) takes the form:

u/2 2 . /2 \
“ gl ) e E T S s g s

This first order linear equation may be solved quite readily with the

following result.

(9)



(a +vr§3 e‘/) i
3 _ 2
%o(u) =< 32 )3 e u/2< (CZ - —-3-23) + (1 + 32 >6\(u) (10)
a+ _B-
> L
u,0
P (u) =0 u <0

The slowing down density q follows immediately by use of Eg. (8).

It is
a@) = 5y3 ) G-V G ey ety - ue™ (11)
where )
2
B
T
3a

For small values of y, this expression is of the form

afu) =1 -y { h - 3% - ueiﬁ}' Fmom = mmm - =

Hence the age, which is the negative coefficient of 32 in the expression

of q(u), is obtained immediately.

7”P1 - ;§§ {:k - 3% —ue’ju :} | ‘~‘h' _5.  o (12)
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These expressions may be generalized to a distribution of sources
if 1t is recognized that by the definition of the cross section ¢ is the
value of the cross section at the (delta) source energy. Thus, for

example, Eq. (11) generalizes to

u
t

a@ = | s ptos Ja-n sy e  +ymmu)d T aw

where
‘ 2
y=__B8 (23)
i
3 Z (u t )2
S(u') = source distribution in lethargy.-
The corresponding results in the S.G.approximation are readily found
by the method described above or may be readily obtained from the results

of reference 2. They are:

qS'G'(u) T +lx {L + X é“u} (1%)

H

where

Bz/az

¥
1t

//\,So Go l "'u

(e - e (15)
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IV. Constant Cross Sections

Equation (7) can now be reduced to an inhomogeneons second order

differential equation with constant coefficlents. This is accomplished
by differentiating the equation with respect to u and eliminating the

integral by the use of Eq. (7) again. The result is:

2 « _
B n 2 5 Z 3 2. '
5ZT>\P° ! [%%T Te @2—“—2-5 *2 (T- ZTSEI*O '
(16)

;;) S(u) + (‘Z‘ - _%)5‘(11) +d‘"(nj

(Za +L o+

5 .
+ |2 BaZ (2- Zs = (Z-
2 SZT a\2 > o 2
where the source is assumed to be a delta function at zero lethargy. The
homogeneous part of this equation has a general solution which is of the

form

Homo
- riu rou . ,
YJO = C,e +Ce 2 ; (17)

A particular solution is then always obtained as follows:

A}

u
u
riu - _rou'
ekl 1 et I e T (ur) au' - 28 J'e 2% g(udan' | (18)
o Alr_-r_)
1 2%
where f(u) represents the r.h.s. of Eq. (16) and A is the coefficlent of

%“. The general solution is the sum of the homogeneous and particular
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solutions. However, since the flux must vanish for energies above the
source energy, it is clear that c1 = 02 = 0. Hence the desired solution
is the particular solution alone.

Some care must be used in evaluating the integral involving derivatives

of the delta function thus,

n

et 2 e—ru'J'(u')du' =t {r +e T d(u) b= re™ +(§‘(u)'

¥ |e™ Jru(urau’ = em{r fe-m' d*(a')du' + e'm§'(u)}

e r [r + e TU S(u)] +d*(u)

= &%y p Su) +5 1 (u)

Substituting the r. h. s. of Eq. (16) for f(u) in Eq. (18), one obtains

1 1 3 25\, /5 Lg 2|l r.u
/s = : - - + e’ 1" +
o (Z'a+Zs + B2 (rl-re) G ZT> (2 2o ntn
32.q

2 Z 21 Tou ()
- %_-Z:>+ %- Z;> r2+r2 € +' Z‘a"'”z‘s"' _If_ (19)

<

where r:L and r2 are the two possible quantities
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2 ' '
5 _3 +2 _Ls) . = 28\| 4+
232_'.T+ aé’ 'i‘:')+ 5(%'Z;}+

o)+

S

2 2 2
l B B E 1 Z Z 5
- _*‘GZQ +_{ (Ez‘; *\s@'
2 1/2'

C s et 2 |

It should be noted that the real part of both ry and r, is always negative.

An expression for the slowing down density q(u) is obtainec_l by use of

Eq. (8). The result, after some algebraic reductiozi, is

rq12
Z\s + rl) >e’1 +
2o

' Za S S | ‘
(u) = s | ; (%
g Z'a. + ZS + B ;(rli- r2)

3Z:T
rou
-ééfdé_;i'r% e (21)

The value of the age may be found by expanding this expression in powers

2
of B . For small BQ, Ty and T, have the values

Zia g2 S (L, +37)

L. i |
1 Za+2s 32p (Z, + 28)2 [Z& +3% -2(Z_+ Zs)(sz/\ZTﬂ. ’

L)
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b leo 3, 8 Zs /3 -1
2 Zs

B — Y
2= Sy Tg [Bat 3%, 20, B2, (22)

3

and the resulting expression for the age, after some lengthy algebra, becomes:

Pl 1 Z‘S(2 ZS - ZT) -Qu +
= . e
T 62p(2 +2)) @ |7 T2
ez - PR )

Pk et JNEPTREL O R | (23)

a2 g (Zp + 247
vhere Q = —% - és -3 Zﬁz‘ - It 15 worth reminding the reader that the

T A s

notation above is as follows:

H
-5

Zs
s
ZT =0+ Zg + Z‘l:(l-,‘z)

The corresponding expressions for the S.G. theory are:

2
5 B
A 34 .
- Ir 5 u (2h)
z e &
3
a(u)*= s e T
B
Rat Te 3T,
1 2

e (25)
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where the new symbol Z.qp. is defined as

H _ M .
Z, (1-pg) +2, (1 -p)

™
]

- L.
3 s s

The important point to notice is that the hydrogen transport cross section

1 .H

’-15- ZB appears in the S.G. theory, while it is effectively replaced by the
total hydrogen cross section in the more exact theory. This behaviour is
due to the inclusion of energy-angle correlation in the Pl theory thus

making hydrogen collisions more effective for slowing down of neutrons.

V. Discussion and Comparison of Results

The Fourier transform of the slowing down density to thermal appears
as an important factor in the aritical ewuation. If the usual assumptions
of asymptotic reactor theory are msade ,9 the critical equation takes the

form

:.;k'?rbegnez -
+(1 + I°B2) ' (26)

where k is the infinite medium multiplication constant, p is the resonance
escape probability, L is the thermal diffusion length and B is the buckling.
The quantity -Pw (32) in the usual notation, is Jjust what has been denoted
as q in this paper.

The slowing down density in pure hydrogen with a l/v scatterer is

plotted in Fig. 1 for both the consistent Py and S. G. approximations.
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The lethargy difference chosen (18.2) corresponds to the slowing down of
a source neutron at 2 Mev to thermal. There are two interesting features
to the 1/v case. The first of these is the fact that both the slowing
down and age approach a finite value as the lethargy increases indefinitely.
This may be seen from Eqs. (11) and (12), and is a direct result of a
cross section which increases rapidly with lethargy. Once the neutrons
have been partially degraded in energy, they are rapidly degraded further
and lose all their energy, on the average, in a finite distance. A similar
result occurs in the S. G. theory as may be seen from Eqs. (14) and (15).

For large u, the P. age approaches 4/ 3o° while the S. G. age goes to 2/0:2

1
vhich differs by 50%.

A second feature of the 1/v results is the cross over of the values
of q in the vicinity of B2/of = 1.3. In fact, for sufficiently large
values of IB‘Q/O.2 s 9p will even become negative. These results may
possibly be explaini-d in the following qualitative fashion. For a
large reactor (BQ/cwt2 <(l) with a 1/v cross section the leakage is deter-
mined by high energy escape. Once the neutrons have suffered a collision
and become degraded in energy they are quickly slowed down further by
the increased cross section. As has been remarked earlier in Section IV,
the Pl theory has a larger effective cross section for hydrogen than the
S.G. theory because of its inclusion of the energy-angle correlation.

The total cross section ZS is effective in the Pl case while the tregs-

port cross section zs(l—t“l) (= %fg) is applicable in the S. G. theory.
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Hence the fast leakage is larger for the S. G. case and ¢ is smaller.
When the reactor becomes small, however, (B>/a2)1) the newtron
flux should become highly singular in the normal direction, The im-
portant contribution to the slowing down is made by neutrons which
have suffered large angle collisions. It is an interesting point 10 if
one attempts to f£it a highly singular function with only two angular
polynomials, the resulting fit is negative in the backward direction.

Thus, for example, the expansion of a delta function in angle is

0 ,
(0) UZ 2Ltly (o) (27)

If only two terms are preserved

Ste) g%{i + 3 cos® } (28)

which 1s negative in the rearward directions. It is Just these
negative contributions from the collision density which make both
¥ o and g negative in the P, approximation for sufficiently small
reactors. Of course, it makes little sense to use .the Pl‘ theory in
this limit.

The previous effects are nowhere near as pronounced in the constant
eross section case. For one thing the age increases linearly with in-
creasing lethargy and the slowing down vanishes exponentially. The
variation of q with B°/ z: is plotted in Figs. 2 to 5 for several

assumptions regarding the absorption and heavy element scattering.
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. There is very little difference between the P, exd S.G. reSulté in the case
of no absorption, although a cross over is still observed. The Pl age
decreases more slowly however, with increasing absorption, until the cross

over disappears and 1, lies below qs for all bucklings.
'y .G,

ZVéifel a.nd Bigelow6 have evaluated q in the Pl approximation 'by

' numerical methods for the case of ‘q fission sour?e, in water. It is
interesting to note that their results show & cross over of the Py and
S.G. slowing a-own in a manner éimilar to the results given in this paper.
This may 'n"o‘t‘ be too surprising since the hydrogen cross section can be

. Fitted by & function of the form 1/A + ‘BE'ull
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The following corrections should be made in your copy of ORNL-2098:
Pg. 12
The expression at the top of the page should have a final brace,

i.e.,

~

L
2 H

/
Pg. 14 |

The equations at the top of the page should read

Tg = Sl - ug) + DR - W) + 2,

8

- : l H 7 -
| = 5-2: + E:g\l - u) + EZA'

Pg. 21

)

Figure 5 should be replaced with the enclosed graph

(ORNL-LR-DWG 13846).






