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A MONTE CARLO METHOD OF CALCULATING THE RESPONSE OF A POINT
DETECTOR AT AN ARBITRARY POSITION INSIDE A
CYLINDRICAL SHIELD
Abstract

A Monte Carlo method of calculating the response of a

point detector at an arbitrary position inside a cylindrical

shield is described. The general procedure is developed to

obtain the meximum amount of information from each history

and to minimize the statistical error.

The primary purpose of this report is to describe a Monte Carlo method
of calculating the response of a point detector located at an arbitrary
position inside a cylindrical shield. The secondary purpose, however, is
instructive since several techniques will be described to improve the
statistical estimates over the straight analogue procedure. In general
the attempt has been to get the most out of each randomly generated particle
history.

The approach taken in writing this report is to the reader who is not
too familiar with the Monte Carlo method; however, some basic knowledge is
assumed. The reader who is thoroughly familiar with the many "tricks" em-
ployed in Monte Carlo calculations will find nothing new, although the
application made of the techniques may be of some interest.

In this problem there 1s only interest in the detector response result-
ing from the radiation coming through the curved surface of the shield.

The contribution to the detector response resulting from radiation coming

through the end shields is assumed to be known or to be computable.
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In the particular problem of interest the radiation incident on the
shield is uniformly distributed over the outside surface, and the angular
distribution of the incident radiation will have cylindrical symmetry with
the axis of symmetry parallel to the axis of the cylinder. The cylindrical
cavity inside the shield is to be consldered s void.

In Fig. 1 a cross section of the cylindrical shield is shown. If the
circular ends of the shield are of sufficient thickness, t, then the radia-
tion entering the cavity through the curved surface, A, B will be distributed
almost uniformly over that surface. Making the assumption of uniformity
of the entering current over the surface A, B simplifies the problem to a
considerable extent so it will be made here. The simplification leads to
considering the cylinder to be of infinite length in which case the contri-
bution to the radiation entering the cavity is the same from each source
element of area on the outside of the shield. In this case the incident
radiation need be sampled at'only one point on'the outside surface’and all
penetrations into the cavity can be gathered to make up the angular dis-
tribution of the current into the cavity. A qualitative description of the
procedure can be had by referring to Fig. 2 where a cross section of the
cylinder is shown with three typical particle penetrations in the cavity re-
sulting from a source at point A. The procedure is then to take the coordinates
of the three particles and rotate and translate them in such a way that the
particle paths have a common point of intersection with the inside surface
and in this way make up the angular distribution of the entering current
as shown in Fig. 3. In practice the direction at which the
particle passes through the surface is referred to a coordinate system

with the normal to the surface at the point of passage as one of the
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Fig.1. Cross Section of Cylindrical Shield.
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Fig. 2. Cross Section of Cylindrical Shield Showing Three Typical
Particle Penetrations into the Cavity.
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Fig.3. Cross Section of Cylindrical Shield Showing Angular Distribution
of Three Typical Particle Penetrations into the Cavity.
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cartesian coordinates and axis of the cylinder as another. (This will be
called the normal coordinate system in what follows.) No record is kept
of its position relative to the source.

The particle current into the cavity can be calculated as follows:

D7 ng(®;)

ot (1)
np(E,) Ry
where
E, = source energy of the particles (Mev),
E; = energy of the 1M particle that passes into the cavity (Mev),
ny (E; )*= 1,

np(Ey) = total number of source particles,
R, = outside radius of the cylinder (ecm),

R = inside radius of the cylinder (em),

T = particle current into the cavity at the inside surface
normalized to one source particle per em? at the outside
surface.

The energy current is given by

2381 ng(E;) R
b~ i ——
b

K (2)

Ey nT(Eo) Rg
where

K = energy current into the cavity at the inside surface normalized to

unit source energy per cm® at the outside surface.

*The function nj(Ei) is introduced to indicate the values of the parameters
associated with the ith particle at the time it is counted. It always
has the value one since it represents one particle.

Pa
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The previous discussion appealed to the straight analogue technique
for its understanding; however, improvement can be made on this simple
method by statistical estimation of the integral representation of the penetra-
tions into the cavity. Consider the definition
iﬁK;,E,Ebd; = number of particles per unit solid angle about the
detectorla.per unit energy at energy E after making a
collision in the element of volume dg.

Then the number of particles penetrating the inside surface is

L = ”5 PEED o £(2)3(2) a04F dE, (3)
X T

where
- -
8(¢) = distance from position r to the inside surface along the
—
direction{l,
= & ifQ does not intercept the inside surface when extended,
Ezt(E) = total macroscopic cross section at energy E.

Clearly an estimate of L is

2 e 3y LB )s@yy)
D - Pl Rl LA
J

i

= Ei,é: Lij, (%)
i3

n(E )

where
Eij = energy of the ith particle after the jth collision,
}iij = the direction taken by the ith particle after the
jth collision,
-

ryj = the position of the 1th particle at the j*B collision,

- -
ny (r13,B135%35)%= 1,

XSee footnote on page k.
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and L is normalized to one source particle and L;j is defined in the equation.
To obtain the current into the cavity solve
=3 5 Ly 5 =,
i3 Ro
where T is defined as before.
With this method of statistical estimation many of the collisions of
each particle history will contribute to the estimate of T. It is obvious
that this will give a better estimate of T over the estimate given in
Eq. 1.
In practice each value Lij is treated as a particle penetrating into
the cavity and its coordinates gre cbtained relative to the normal coordinates.
It should be noted that in this scheme a particle that passes through the
inside surface during its history does not make a contribution to T.
An additional improvement can be had by letting the particle scatter
at every collision in its history and weighting it accordingly by its prob-

ability of survival. The survival probability is given by

o X (2) (6)
k+l - ;7 (E ) 4
B
where
E, = energy of the particle after the k'™ collision,
z;(Ek) = macroscopic scattering cross section at energy Ey,
EZT(Ek) = macroscopic total cross section at energy Ey,

probsbility of surviving the k + 15t collision.

1

W41
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To include this process, rewrite Eq. 5 as follows:

J - = - .- o
re T Ty TR L@ o

LN ij J
i jk":O nT(Eb) i j

where
Wi = probability that the i*! particle will survive the kB
collision,
and Tij is defined in the equation.

By referring each "fractional particle” Tij t0 the normal coordinates
and adding those that enter a particular solid angle and energy interval,
the complete energy spectrum and angular distribution of the current into
the cavity can be obtained.

The detector response at a position inside the cavity can be obtained
by statistical estimation of another integral which will be developed next.

In this problem the angular distribution of the source radiation has
cylindrical symmetry as stated before, and because of the source symmetry,
the angular distribution of the radiation current into the cavity also
has c§lindrical symmetry.: In addition, it is sssumed that the current is
uniform over the inside surface of the cavity. Using these two conditions
the integral representation of the detector response is easily developed.

The geometry and variables to be considered are shown in Fig. 4 which
represents the cylindrical cavity in the shield. In Fig. 4 the vector 53
lies along the normal to the surface at the element of surface area ds. In
addition, the following definitions apply:

R = radlius of the cavity,
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Fig. 4. Coordinate System for Determining the Detector Response in the Cavity of a
Cylindrical Shield.



h = length of the cavity,

x = fractional part of length h to the plane containing the point of
detection,

a = radial distance to the point of detection,

z = distance measured along the length of the cavity from the plane
containing the point of detection,

?,= vector from surface element ds to point of detection,

@ = polar angle between the z direction and the vector ;:

§ = azimuthal angle about the z direction measured from the normal
at the element of area ds,

P(E,4) = particles per unit solid angle in direction-fzper unit energy
at energy E per unit surface area,
K(E) = response of the detector to a particle with energy E.

The distance b and the angle 6 are best described in Fig. 4.

The detector response at position D in Fig. 4 is given by

h( -x)

ré:’ ’

T

f
"
=0

-J K(E)P(E,n)Rdedzdn . (8)
E =

Z

where integration is over only one half the surface and multiplied by 2 to

give the total detector response. Changing variables of integrationfby.lettiﬁg

(9)

tana):-g'.
b

and then using ‘the relation r2sin = b%, Eq. 8 becomes



~ 10~
-1 b

7 tan " e
® h(x-1)
, 2
D=2 K(B)P(E,2)RA64ME (10)
b
v -1b
E=0 0=0 w=tan™ o

The next step is to change the varisble of integration from 6 to §.

Starting with the law of sines

R - & (11)
sin(x - 6 - @) sing
by reduction one obtains
§-= sin6 ctn@ + cosé , (12)
and differentiation of Eq. 12 gives
(ctne ctng - 10 = L . (13)

sin @

Substituting into Eq. 135 for ctn¢ obtained from Eq. 12 gives the following

equation after some reduction:

1 (R cosp - 1)ae = 38 . (14)
sin®g \ a sin2¢
Using the relation ' -
b a
- ’ (15)
sin@ sing

Eq. 14 becomes

b2 \a

§‘-2.<Ii cosb - ])3.6 =dag . (16)
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From the law of cosines one obtains

b2 = R2 + a2 - 28R cosf ,

which can be solved for the cos6 and substituted into Eq. 16 to obtain

2b° g
R® - a2 - b2

dae

where b 1s a function of @ through the relation

a® = R® + b2 - 2Rb cos@

i ]

al

/
or =RJcosp + /2= - sin®g & .
=/ g2
Now let k = %-and make the following definitions:
by =R ‘iC°S¢ -\/;2 - sineé/% = R B
bp =R {005?5 +\,_/k2 - sin2¢f = RB,

where By and B, are defined in Egs. 21 and 22. Making the definition

=P

|

and using Eq. 18, one obtains for Eq. 10 the following: .

(17)

(18)

(19)

(20)

(1)

(22)

(23)



e« tan™t sin~lx
p(x-1) 5
D(x,p,k) = 2 K(E)QE P(E,0)R = dndg
R2 za.2 b 2
B - B §
E=0 © =tan™t 2L @=0
Xp
-1 B 0
p(x-1) ,
- by
+ P(E,A)R dwag b . (24)
By
w=tan"t = gogin"}x
p
Reduction can be obtained by using Egs. 21 and 22 to give
b 1
1
— - —= (25)
® - a®- b12 R/X° - sing
and
b -1
2 = — . (26)
B - a2 -1b 2 B/k‘2 sin°g
2
Using Eqs. 25 and 26 in Eq. 24 gives
co 8in” tan
D(x,p,k) = 2 J y K(E)agan
- sin®¢
E=0 ¢=0 tstan~t —
B
tan~1 2
p(x-1)
+ (27)
1B
=tan -
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where the integration is over one.-half the distribution and is multiplied
by 2 to give the complete contribution.

Miltiply numerator and denominator of Eq. 27 by sin & and remember
P(E,?i) sinwdw APAE represents a number of particles. Then the statistical

estimate of D is

D) = S 57 Ty 3By 5% 50185 5D K(ES ) G +3)= 5 Y by, (@)

. L2 .
i3 sin wij/k - 81n ¢lj i 3
where
Q; =1 when 0 < sin ¥¢ijj < k
B B
tan-l = < . < tanl —2
xp 1 p(x-1)
= 0 otherwise,
Q =1 wvhen 0 < sin I¢ij) < k
-1 =
tan~1 — ®,. < tan
xp — 1J p(x-1)
= 0 otherwise,
D(x,p,k) = the detector response at position located by the parameters x,

P, and k and normalized to 'unit source strength per unit outside
surface area.
The quantity Djy 'is defined in the equation. The factor 2 is removed in
Eg. 28 because Tij gives ‘an. estimate of the complete current distribution and
the absolute value appears on the variable'¢ij because of the cylindrical

symmetry of the distribution.
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With this method of computation the direction relative to the normal
coordinates is esteblished by the variables & and ¢ as shown in Fig. k.

A singulerity appears in Eq. 28 when sin ¢ij = k, which cannot be
avoided. It is not unusual to find such a singulerity when trying to cal-
culate a detector response when the problem is simplified by considering at
least one dimension to be infinite. The infinity can be at least removed
by defining the Q's to have the value one only if sin ¢ij < k (see Appendix A);
however, unusual statistical fluctuations in the estimate of the current dis-
tribution may still cause wide fluctuations in the estimate of D if sin ¢1j
is close to the value k too frequently. The best procedure is to solve simul-
taneously the detector response at various values of k, keeping x and p
constant, and to plot the results to remove wide variations. It should be
noted that it is possible through Eq. 28 to find the detector response for
many different values of k, p, and x from a given set of values Tj . |

The definition of the Q's indicate for which values of k the best
estimates of D are obtained. It is obvious that the smaller the value of k
the fewer values of Ty 3 that will contribute, while the larger the value of k
the more values of Tij that will contribute. In fact, at k = 0 it is not
possible to get an estimate of the detector response. This means the
response of the detector at k near zero should be obtained by another
method. This can be done by gathering the wvalues Tij to get an estimate
of P(E,9,@) as defined for Eq. 27, plotting the results, and numerically

performing the integration. For the case k = 0 Eq. 27 reduces to

o tan~L
p(x- 1)
D(x,p,k=0) = 2x j j K(E)P(E,0,@=0) ddE. (29)

E=0 W=tan~l =—
Xp
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In this particular problem there are many different source distributions
for which the detector response is to be calculated; therefore, it is better
to solve a series of problems with a general source and integrate the separate
results to give the solution for any ﬁarticular source, In Fig. 5 an x,y,%
coordinate system is constructed at an arbitrary position on the outside
surface of the cylinder. The polar angle @ and azimuthal angle Védescribe
the negative direction of a particular incident particle in that coordinate
system. The incoming radiation will be independent of the angle ¢ because
of the cylindrical symmetry, thus, a general source that may be used is
one that is monoenergetic with energy Ee! and with a fixed polsr angle Qe
but uniformly distributed in the azimuthal anglebé. The response D(x,p,k)
of a particular detector is then calculated for a series of these general
sources where the set of variables Oy and Eg are selected to span the range
of interest. A smooth plot of the results of these separate calculations
glves

D(x,p,k,q,E) = response of a detector located by the parameters

X, p, and k, resulting from a unit source per unit
outside surface area which has incident angle  and
incident energy E and is uniformly distributed in the
angle }/r
Defining the source as ..
S(a,E) = incident particles per unit outside surface area per unit
solid angle in the negative direction @ per unit energy at
energy B,
the reésponse £or the source S(a;E) is obtaired by numerically

performing the integral



_16_

UNCLASSIFIED
2-01-059-84

VAN

Fig.5. Coordinate System for the Radiation Source on the Outside
Surface of a Cylindrical Shield.



o =
Dg(x,p,k) = f 5 75(o,E)D(x,p,k,,E) sinx da dE. (30)

E=0 a=0

Some simplification can be achieved with a reduction in the number of
cases to be run if for each set of Tij the detector response is cobtained
for a symmetrical pa.ftern of detectors such that for every detector response
D(x,p,k,0,,E,) one also obtains the response D(1-x,Dp,k,d,Eq). Then by the
symmetry of the situastion Eq. 30 can be altered as follows:

N

ao
2
Dy (x,p,k) = 5 5 75(a,E)D(x,p,k,0,E) sina da AF

E=0 a=0
@ ki
+ 5 S 7S(a,E)D(1-x,p,k,n-a,E) sina da 4E. (31)
E=0 o= %
2

This means that the set of values O picked for the general cases need only
span the interval [ o, g-J which reduces the number of cases by one half.

The variance on the estimate of D(x,p,k) is given by.

L gt - (Baf i~

O

whers

np = total number of source particles,

Di= _ZJ\DiJ .
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The variance on the estimate of T is given by

HTZTia - (_Zi Ti)2

i

, (33)
np

wherg
Ty = ZTiJ,
J

In conclusion a few statements should be made about the coordinate
system used. In general it is better to generate a history relative to
a fixed coordinate system which, in this case, shall be selected as the
X, ¥, Z coordinates shown in Fig. 6. Six numbers are carried at all times
to characterize the path and position of the state of the history. The num-
bers are the three position coordinates x, y, z of the last collision
point . and the three direction ¢osinés «, B, y of the path after the:
collision with the respective coordinates X, Y, Z. Now, because the cylin-
der is infinitely long,. the coordinate z can be set equal to zero after
each collision since none of the probabilities depend on that coordinate;
this avoids problems in scaling when coding the problem for machine
computation.

Another point to be made is on the simplified way of handling a
particle that crosses into the cavity at some time in its history. Since
the cavity is void, one need not calculate any attenuation. In addition,
because of the symmetry and because the absolute value of ¢ij is used
in Eq. 28, it is only necessary to determine the point at which the particle
leaves the inside surface with direction cosines «, B, y, reassign the
direction cosines as -a, -B, 7, and have it reenter the shield at the point

of exit.
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Fig.6. Fixed Coordinate System for Tracking Random Particle
Histories in a Cylindrical Shield.



Aggend‘ix A

Maximum Error Intruduced by Removing
Singularity in Eq. 28

In Eq. 28 there appears a singularity that can be removed if Q is

defined to have the value one if
0< sin [§y5] = k€, (34)

where 0 < € < 1. An upper limit to the error introduced can be had if

-—,
P(E,)) is expanded in a series as

J
P(E,q) = Z 'An(E) cosj'n¢ sin‘j'nw cos®w . Jz 1 (35)
n=0 3=1,2,3,h...
Now substitute Eq. %5 into Eq. 27, assume the cylinder to be infinitely
long, replace the upper limit of the integral over the @ variable by

sin‘lék, and make the transformation

sing = k SinP (36)
to obtain
3 sin~le
-n-1
D(k) = D A_(E,) (1 -x2 sin®¥) 2 ap, (37)
n=0 n=0

which clearly shows the dependence of D on the value of €. The correct

value of D is obtained if &€ = 1. Thus the fractional error is

J 1I/2 j-n-l
25 (E,D) (1-%° sin®) 2 ay
w -
AD(k) ) n sin-1¢ ‘ )
D(x) 3 /2 3-n-1
2 m(B,) § (1 - ¥° sin®y) 2 a¥
=0 o

-20~



To obtain an upper limit of this fractional error note that

J-n-1
‘ cosd™hp 2 cosdPLY ¢ (1 -2 sPp) & <1, (39)

Using these inequalities gives an upper limit to the fractional error

of

X _ gin-l x _ -1
4D(x) _ 2 sin-1é& 3 sin~*& (40)

D(k) n )
: P!
§ cosJ'l]/> ?—1__-2_»_3._)
0

2

Setting the error at 0.0l and picking the maximum value of J as 5 ..

gives the value of & as
€ = 0.999990 (41)

which gives a maximum value for the factor in Eq. 28 as

L . 1 223.6 (42)
Jx2 - sin k /1 - €2 k

max
/



