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TOPICS ON THE NUMERICAL SOLUTION 
OF 

PARTIAL DIFFERENTIAL EQUATIONS 

R. C. F. Bartels 

I. Introduction 

51 Properly posed problems i n  p a r t i a l  d i f f e ren t i a l  equations 

O u r  discussion deals with the numerical solution of p a r t i a l  

d i f f e r e n t i a l  equations. 

and concepts t h a t  a re  studied, we w i l l  consider examples involving 

For the  purpose of i l l u s t r a t i n g  the methods 

* 
the  w e l l  known c la s s i ca l  equations : 

u + u  = o  j 
xx YY 

ut = u xx i 

Utt = u xx 

These are prototypes of more general p a r t i a l  d i f f e ren t i a l  equations of 

the second order t h a t  are important i n  the physical sciences. We w i l l  

not l i m i t  the  appl icabi l i ty  of the ideas which are introduced t o  equations 

i n  two independent variables, nor t o  equations t h a t  are necessarily l inear .  
-2 

We w i l l  a l so  deal with a system involving more than one dependent variable.  

~- 

* 
For a r e l a t ive ly  complete discussion of these p a r t i a l  d i f f e ren t i a l  

equations see, f o r  example, the reference [l] or  [2] l isted i n  the 
bibliography . 4 
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The type of problem which we w i l l  consider i s  t h a t  i n  which 

the solution satisfies the appropriate p a r t i a l  d i f f e r e n t i a l  equation 

together with cer ta in  prescribed supplementary conditions. These 

supplementary conditions a re  usually: 

(a) conditions prescribed on the  boundary of the region of 

space i n  which the solution of the p a r t i a l  d i f f e r e n t i a l  equation i s  

t o  be found, i.e., the  so-called boundary conditions; 

(b)  ( i f  t i m e  i s  involved) conditions prescribed a t  some de f in i t e  

value of the t i m e ;  the  so-called in i t i a l .  conditions. 

The d i f f e ren t i a l  equation, together with the supplementary conditions, 

i s  called a boundary-value o r  an i n i t i a l  value problem. 

only those problems which, i n  the terminology of Hadamard , are  properly 

posed; i.e., a problem f o r  which i t s  solution ex is t s ,  i s  unique, and 

depends continuously on the prescribed supplementary conditions. 

We w i l l  consider - 
* 

; 

It i s  important t o  remark t h a t  it is  not always possible t o  assign 

a r b i t r a r i l y  the two types of supplementary conditions (a) and (b) t o  a 

given d i f f e ren t i a l  equation i n  the  formulation of a properly posed problem. 

In fac t ,  p a r t i a l  d i f f e r e n t i a l  equations par t ion themselves i n  mutually 

exclusive classes  depending i n  some sense on the  type of supplementary 

conditions wlth which they wi l1 ,cons t i tu te  a properly posed problem. 

The c l a s s i f i ca t ion  of the  l inear ,  second order equations i n  two independent 

variables,  such as those i n  (l.l), (1.2)> (lo?), can be expressed very 

simply i n  terms of the  coeff ic ients  of the highest ordered derivatives.  

* 
See Hadamard [3] . 



More generally, an equation of the form 

where the coeff ic ients  A , B , and C depend only on x and Y , i s  

cal led e l l i p t i c ,  parabolic, o r  hyperbolic i n  a domain of the  (x, y)-plane 

according as the determinant 

A B  

B C  

i s  posit ive,  negative, o r  zero throughout the domain. According t o  t h i s  

c r i t e r i a  the equations (lei), (102), and (1.3) are c lass i f ied  in the 

order j u s t  naned. The type of supplementary condition tha t  i s  appropriate 

f o r  each of these types is illustrated i n  the  subsequent examples. 

52 Fini te  difference approximations of partial d i f f e ren t i a l  equations 

The usual method of obtaining an approximate solution of a properly 

posed problem f o r  a partial d i f f e ren t i a l  equation is  t o  replace the 

derivatives i n  the equation and supplementary conditions by f i n i t e  differences. 

In t h i s  procedure, the space variables assume the discrete  values 

corresponding t o  the points of a mesh or  l a t t i c e  imbedded i n  the  space 

and " f i l l i ng"  the region. 

assumes discre te  values to, tlj -, tnj 

The time variable, when it appears, a lso  

e ,  where tn = n A t .' 
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Accordingly, the  solution u i s  approximated a t  the discrete  points of 

space and time. 

FOP example, consider the simple i n i t i a l  value problem f o r  the  

parabolic equation (1.1) i n  which the function u(x, t )  i s  determined by 

t he  conditions ~ 

U(X> 0) = f (x )  I ( o <  x (1). 

L e t  the  continuous variables x and t be replaced by the  d iscre te  set 

where 

. 

= m A x  tn = n D t  , and A x  = ~/IVI xm 
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Then the simplest f i n i t e  difference approximation t o  the problem (2.1) is  

r 

In t h i s  case, the difference equation i s  obtained by replacing the time 

derivative by a forward difference, and the space derivative by the central  t 

difference on t h e  l i n e  

also be writ ten i n  the form 

t = tn The difference equation i n  (2,2)  can 

where 

(2.4) x = n t / ( n x ) 2  0 

In t h i s  form, it is c lear  t ha t  the values of v at the "interior" points 

of the mesh contained within the s t r ip  0 < x < 1 , t > 0 can be 

calculated successively, l i n e  by l ine,  s t a r t i ng  from the i n i t i a l  values . 
1 .  



v(xm, 0)  = f ( x  ) 

evaluate v(xm9 tn) f o r  m = 0 and M This i s  the so-called, exp l i c i t  

scheme f o r  approximating the  solution of (2.1) 

and making use of the  boundary data at each s t ep  t o  m 

On t h e  other hand, an a l te rna te  f i n i t e  difference approximation 

of the problem (2.1) can be obtained by replacing the  second order space 

derivative by a cent ra l  difference on the l i n e  In t h i s  way, 

one obtains the  so-called implici t  scheme f o r  approximating the  solution 

of (2.1) , namely, 

t = tn+l . 

I n  t h i s  case the  difference equation does not express the values of 

on the  l i n e  

v 

exp l i c i t l y  i n  terms of i t s  values along the l i n e  = tn+l 

9 = tn However, the difference equations i n  (2.5), f o r  m = 1, 2, ..* 
algebraic equations f o r  the  unknown M-1 , const i tute  a system of ( M - 1 )  

values of v at the ( M - 1 )  i n t e r i o r  grid points on the  l i n e  t = tn+l e 
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As a second example, l e t  us consider the Dirichlet  problem f o r  

Laplace's equation i n  the two dimensional domain R with boundary B : 

In order t o  approximate the  solution of t h i s  problem by a f i n i t e  difference 

procedure, l e t  us replace the  continuous variables x and y by the 

discrete  s e t  

(xm, yn) & (X + , y + nh) , m, n = 0, 1, 2,  ..., 

f o r  some arb i t ra ry  (5, 7) and f o r  h > 0 . If zo= (x,, yo) i s  a 

mesh point, then the four points 

. 



8 

are cal led the neighbors of 

by N(zo) 

zo . 
We shal l  a l so  introduce the notation: 

This s e t  of four points w i l l  be denoted 

% i s  the set of l a t t i c e  points z such t h a t  the s e t  of 

F neighbors N(z) belongs t o  the closed region R + B j 

is the set of  l a t t i c e  points belonging t o  R + B 
not t o  % . 

but 

- 

(2.7) 

A simple difference approximation of the problem (2.6) is  then 

, 
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- -  
where fh  = f (xm,  y,) , and (zm, Fn) i s  any Point on ~AX? boundary B 

such tha t  

(2 .9 )  

More simply, t h i s  formulation of the difference problem const i tutes  a 

system of, say, M l i nea r  algebraic equations which express the values 

of the approximate solution v at the M i n t e r io r  l a t t i c e  points Rh 

i n  terms of the prescribed values on the  boundary points E$, . 
There are many more examples t h a t  we m i g h t  give a t  t h i s  point. 

However, these w i l l  serve t o  motivate the immediate discussion. 

A t  t h i s  point, l e t  us observe t h a t  i f  the function w(x, y) , 
f o r  example ( the  f a c t  that we have chosen the  independent variables 

and y is  not s ign i f icant ) ,  together with i t s  p a r t i a l  derivatives wx , 
x 

and w are continuous i n  a closed region of the (x, y)-plane, Y ’  
W x x ’  

then at any i n t e r i o r  point (x, y )  of t h i s  region 

c 
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3 

i w(x +Ax,y) - 2w(x,y) + w(x-Ox,y) - w (x9 Y )  xx 
o x +  lim 0 1- (A d2 

and 

where 0 < Q1 < 1 and 0 < Q2 < 1 These relat ions are eas i ly  

derived with the a id  of Taylor*s formula with remainder. It therefore 

follows that i f ,  on the one hand, the functions v(x, t )  i n  equations 

(2.2) and (2,5) i s  suf f ic ien t ly  smooth i n  the closed region 

1 , 0 4 t 4 T , and, on the  other, the function v(x, y)  i n  (2.8) 

0 < x 

i s  suf f ic ien t ly  smooth i n  the closed region R + B then the  f i n i t e  

difference quotients i n  the equations (2.2), (2.51, and (2,8) w i l l  

converge 60 the  corresponding derivatives i n  the  d i f f e ren t i a l  equations 

(2.1) and (2,6), respectively, as the incremenls o x  , A t  and Ay 

tend t o  zero. Consequently, the f i n i t e  difference problems in (2.2), 

( 2 . 5 ) 9  and (2.8) are said t o  be consistent approximations of the 

corresponding i n i t i a l  OP boundary value problem. 
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In the  sequel we w i l l  consider only f i n i t e  difference approximations 

of i n i t i a l  o r  boundary value problems which satism a c r i t e r ion  of 

consistency similar t o  tha t  described above. 

that t h i s  c r i t e r ion  i s  always suf f ic ien t  t o  insure tha t  the  solution of 

the  f i n i t e  difference problem w i l l  converge t o  the solution of the approxi- 

It does not, however, follow 

mated d i f f e ren t i a l  problem as the mesh s i ze  ( i o e o ,  the increments i n  the 

variables) tends t o  zero. This remark w i l l  be elaborated upon i n  the next 

paragraph 

5 3  Truncation e r rors  and the problem of the convergence of difference 

approximat ions 

Let v denote the  exact solution of a f i n i t e  difference approxi- 

mation of a given i n i t i a l  o r  boundary value problem f o r  a pa r t i a l  

d i f f e ren t i a l  equation. S t r i c t l y  speaking, v belongs t o  an i n f i n i t e  

sequence of approximate solutions corresponding t o  an increasingly f i n e r  

mesh. If u denotes the  true solution of the  boundary value problem, 

then the basic question i s  whether t he  sequence of difference approximations 

v converge t o  the solution u as the mesh s i ze  tends t o  zero. The 

difference between these two quantit ies,  namely, 

(3 .1)  w = u - v  

is called the truncation error .  

f i n i t e  difference approximation is  therefore the problem of showing t h a t  

The problem of the convergence of the  - 

the  corresponding truncation e r r o r  w tends t o  zero with the  mesh. 
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The problem of convergence is  not as important t o  the person 

performing an actual  computation as the prob,lem,of obtaining an expl ic i t  

appraisal of ,the magnitude of the truncation e r ror  a t  any s tep  of the 

calculation. I n  general t h i s  problem'is a more d i f f i c u l t  one. I n  the 

subsequent sections we w i l l  indicate by i l l u s t r a t ions  a method fo r  

establishing the convergence of a wide class  of f i n i t e  difference approxi- 

mations which will, a t  the same time, yield some information on the 

magnitude of the truncation error .  

* ?J 4 Computational s t a b i l i t y  of f i n i t e  difference approximations 

Because of the  l imitations of the computing machine, it i s  generally 

not possible t o  obtain the exact solution v of the  f i n i t e  difference 

problem. The machine performs a r i t b e t i c  operations i n  terms of quant i t ies  
' 

which are "rounded-off" approximations of the exact values. Consequently, 

instead of obtaining the exact solution v of the f i n i t e  difference 

problem coded f o r  the machine, an approximate machine calculation v 
* 

is obtained. The difference 

* 
s = v  - v  

* 
represents the remainder o r  departure of the approximate solution v 

from the t rue solution v. The departure s i s  an accumulation of the e r ror  

* 
The ideas expressed here were suggested by the lectures  of W. Wasow 

on the same subject, It i s  understood tha t  a vemextens ive  treatment 
of the  s t a b i l i t y  of p a r t i a l  d i f f e ren t i a l  equations by Wasow w i l l  soon 
make i t s  appearance i n  book form. 



introduced at each s tep of the calculation, i.e., at  each mesh point. 

The ideal behavior of a f i n i t e  difference approximation is  tha t  i n  which 

the maximum numerical value of the departure 

the variables tends t o  zero uniformly w i t h  respect t o  mesh s ize  as the  

magnitude of the individual errors  a t  each s tep tends t o  zero. 

s i n  the given domain of 

Thus, i f  

the mesh s ize  depends on a single parameter h and the maximum numerical 

value of the errors  introduced at  each s tep is estimated as 6 , then 

the ideal  s i tuat ion would be tha t  m a x l  s I -+ 0 as 6 0 uniformly 

with respect t o  h 

f o r  even the case of linear f i n i t e  difference problems. 

However, th is  ideal -- can not be expected i n  general 

Since there always exis t s  bounds f o r  the r a t e  of growth of the 

magnitude of s as a flmction of the mesh s ize  parameter h f o r  a 

fixed region of the variables, the maximum departure can i n  principle be 

controlled. 

precision, t h e  computed quantity v 

may be desired with the exact solution v 

In other words, by carrying out the calculation with suff ic ient  
-E 

can be made t o  agree as closely as 

of the f i n i t e  difference problem. 

However, t he  precision necessary i n  a given s i tua t ion  m i g h t  exceed the 

capabi l i t ies  of any computing machine, A f i n i t e  dffference method f o r  

which the lat ter i s  experienced m i g h t  for the purpose of c lass i f ica t ion  

be termed unstable. 

To be more precfse, we will consider the s tabi l i ty  of a f i n i t e  

difference procedure as a re la t ive  prbperty of the procedure which w i l l  

be measured i n  some sense by the order of magnitude of the maximum 

departure s For example, if the maximum numerical value of the 
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departure s i n  a fixed region i s  proportional t o  6ha f o r  some real 

(but not necessarily posi t ive)  number a! as the magnitude, 6 , of the  
i. 

errors  introduced a t  each s tep  and the mesh s ize ,  h , tend t o  zero, 

then the f i n i t e  difference procedure w i l l  be considered s table;  a i s  an 

index of the  degree of r e l a t ive  s t a b i l i t y ,  A f i n i t e  difference procedure 
-1 

i n  which the  magnitude of the  departure s i s  proportional t o  e q ( h  ) , 
say, as 31 3 0 w i l l ,  on the  other hand, be cal led unstable. 

Unfortunately, the precise order of magnitude of the maximum 

departure s as a function of 6 and h is  not ea s i ly  determined i n  

general, Several cases in which an estimate o f ,  the departure can be 

effected w i l l  be given in the  subsequent sections,  



11. ELLIPTIC DIFFERENTIAL EQUATIONS 

56 Truncation e r rors  i n  the solution of Laplace's equation by f i n i t e  

differences. 

L e t  us now deal with the problem of estimating the truncation e r ro r  

which r e su l t s  when the Dir ichlet  problem (2.6) f o r  Laplace's equation is  

replaced by the f i n i t e  difference problem formulated i n  (2.8). That is, 

we seek t o  obtain some appraisal  f o r  the m a x i m u m  numerical value of the  

difference w = u-v , where u is  the solution of the  Dirichlet  problem 

(2.6) and v is  the solution of the f i n i t e  difference problem (2.8). 

For the  purposes of convenience, l e t  us introduce the notation 

1 P ( x + h , y )  + v(x,y+h) + v(x-h,y) + v(x,y-h)-4v(x,y)} ': 

where 

Then a solution v of the f i n i t e  difference problem (2.8) satisfies the 

v(xi, yi) , ( i  = 1, 2, 3, 4)  , are the four neighbors of (x, y ) .  i 

equation 

(5.2) [v] = 0 f o r  (x, y )  i n  Rh Lh 

On the  other hand, if  the  harmonic function u(x, y )  sa t i s fy ing  the  

conditions of the Dir ichlet  problem is continuous and i t s  p a r t i a l  derivatives 
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up t o  and including those of the  fourth ordFr e x i s t  and are  bounded i n  

the closed region R + B , then, at  every i n t e r i o r  point of R it i s  

t rue  t h a t  

where GI1 , e2 , G3 , €I4 are numbers between 0 and 1 More simply, 

(5.4) 

where p(x, y) denotes the right-hand member of (5.3). Consequently, 

i n  accordance with (5.2) and (5.4), the truncation e r ro r  w satisfies 

the r e l a t ion  

(5.5) 



. 

If (x, y )  i s  a point of the boundary set Bh , then it fol lows 

from (2.6) and (2.8) t h a t  

= u(:x, y)  - u(Z, 7) 

where (E, f )  i s  a point of B such tha t  

Therefore, 

where 

(5.7) 

- c  

and (x ' ,y ' )  is a point lying between (x, y )  i n  Bh and (x,y) on B e 

We have thus shown tha t  the truncation error w i s  a solution of 

a f i n i t e  difference problem on the  given mesh. 

the  non-homogeneous terms p(xp y)  and u(x, y )  which appear i n  the 

It i s  of course t rue  that 
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difference equation (5 .5 )  and boundary condition (5.6) depend on a 

knowledge of the  solution u of the  difference problem. We are not, 

however, interested i n  the precise value of t he  truncation e r r o r  at each 

point of the mesh. 

of the maximum numerical value of t h i s  e r ro r  it i s  suf f ic ien t  t o  know 

We shall  show tha t  i n  order t o  obtain an appraisal  

the bounds on the  p a r t i a l  derivatives of u i n  the  closed region R + B . 
This appraisal  i s  based on the so called maximum principal  f o r  a f i n i t e  

difference equation of posi t ive type e 

lemmas. 

* 
For t h i s  purpose we need two 

** 

Lemma 1. If $ [w] 6 > 0 f o r  a l l  points of €$ , then 

(5 .8)  m s x w < m a x w  0 

Rh Bh 

Proof: It i s  c lear  from (5.1) t h a t  the i n e q w l i t y  $ [w] >/ 6 

implies t h a t  fo r  every point (xo, yo) of Rh 

(5 .9)  

where (xi, yi) ( i  = 1, 2, 3, 4) are  the neighbors of (x,, yo) Now 

suppose t h a t  the  maximum value of w does not occur a t  the  boundary 
I 

points but, instead, at  some point of Rh , s o  tha t  

* 
See t e general treatment of equations of t h i s  type by Motzkin 

and Wasow [43 e 

** 
See Wasow [ 51 f o r  generalizations of these lemmas and resylts. 



w 4 m a x w  
Rh 

f o r  every point of Rh + Bh . Then it would follow from (5 .9) ,  since 

the  coefficients are posi t ive and have sum equal t o  1 , t h a t  

- h2 6 

f o r  every point (xo , Yo) i n  Rh . This immediately leads t o  a contra- 

d ic t ion  on taking (xo, yo) a point of % at which w assumes i t s  

maximum value. 

Lemma 2. If I $ [w] I ,< k f o r  all points of Rh , then 

.. 
(5 .9 )  

2 
m a x I w I  k d  + m a x  l w l  , 

Rh Bh 

where k i s  a non-negative constant and d is  the  "diameter" of the  

region R 

Proof: W e  first define the function q(x, y) such that 

For example, these conditions are satisfied if  
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fo r  any point (a, p) in R + B 

* 
Now l e t  k > k Then, for all points of Rh , 

* Hence, applying the result of lemma 1 t o  the  function k q + w , we have - 

* * 
(k q P + w) ma%r(k q - + w )  

Rh Bn 
* < k m a x  q + m a x  (+ w) - 

' B n  a, 

* where d is t he  diameter of R Also, since k q > 0 in Rh , 
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* 
Hence, by combining (5.10) and (5*ll), it follows that ,  f o r  a l l  k > k , 

* 
The inequality (5.9) immediately follows on l e t t i n g  k -+ k . 

We now make the following appraisal of the truncation e r ror  f o r  
9 

the f i n i t e  difference problem (2.8) 

Theorem. L e t  u and v be solutions of the problems (2.6) and 

(2.8), respectively. If u and i t s  derivatives up t o  and including those 

of the fourth order exist and are  bounded i n  the closed region R + B , 
then the truncation e r ror  w = u - v i s  such tha t  

where 

first and fourth p a r t i a l  derivatives, respectively, i n  R + B e 

and depend on the bounds f o r  the numerical values of the 

The proof of t h i s  theorem follows immediately on applying the 

result of lemma 2 t o  the  par t icular  f i n i t e  difference problem formed by 

(5.4) and (5.6) of which the truncation e r ror  is  a solution. 

5 6 Generalizations and improvements of the previous resul ts .  

It i s  possible t o  extend the resu l t s  of the previous paragraph 

t o  boundary value problems with more general d i f fe ren t ia l  equstions of 

the e l l i p t i c  type. For example, consider the difference operator 

* 
The result stated here w a s  first obtained by Gerschgorn i n '  [6] . 
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z3 , 24 are neighbors of z the  coefficients c1 , where z1 , z2 , 0 9  
, c3 , c4 are  non-negative, and c > 0 i n  Rh + . It i s  eas i ly  0 C 

seen tha t  the conclusions of lemma 1 apply f o r  t h i s  difference operator 
* 

provided t h a t  

c > c l + c  + c  + c  i n  F$ + Bh 
0 2 3 4  

The details of the proof of the lemma f o r  t h i s  more general case are 

unaltered. The extension of lema 2 then follows without d i f f icu l ty .  * 

In particular,  suppose tha t  the d i f f e ren t i a l  equation i n  the 
r 

boundary value problem (2 .6)  i s  replaced by the e q d t i o n  of the e l l i p t i c  

t n e  

au + E z + F U  = G ,  a2u 
ax2 A 

where the coefficients A , G and their  second order derivatives 

are continuous, A > 0 , C > 0 , and F \< 0 i n  the domain R . 
This equation can be approximated by the  difference equation 

[v] = G , 

~ 

* 
See Motzkin and Wasow [ 41 , p. 257. 
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w i t h  the difference operator defined by (6.1) i n  which 

1 2  c 0 = 2 ( A + C - s F h )  , 

1 
C 4  = (C - 2 Eh) 1 = ( A  - 2 Dh) , 1 

c3 c2 = ( C  + 5 Eh) , 1 
C1 = (A + 5 Dh) , 

If the increment h i s  then chosen so tha t  

the coefficients co , c1 , c2 c3 , c4 sa t i s fy  the conditions i n  (6.1) 

and (6.2) The foregoing extensions of the results of the last section ? 

* 
then yields the resu l t :  

Theorem. Let u be the solution of the Dirichlet  problem f o r  

the e l l i p t i c  equation (6.3)9 and l e t  

f i n i t e  difference problem with the  equation (6.4),  If h satisfies 1 

v be the solution of the corresponding 

(6.5), and i f  

order ex is t  and are bounded i n  the closed region R + B , then the 

truncation e r ror  w = u - v is  such tha t  

u and i t s  derivatives up t o  and including those of fourth 

* 
See Gerschgoren [6] fo r  de t a i l s  of t h i s  extengion. 



24 

where M1 

p a r t i a l  derivatives of u at the boundary B and % i s  an upper bound 

depending on the coeff ic ients  of the d i f f e ren t i a l  equation and the  

is  proportional t o  the maximum numerical value of the  f irst  

derivatives of u including those of the fourth order. 
* 

Motzkin and Wasow have, considered general d i f f e r e n t i a l  expressions 

of the  form J 

x1 , x2 , *.., x which are n '  where x is  a point with coordinates 

uniformly e l l i p t i c  i n  the  closed region R + B , t h a t  is, 

det Caik >/ const. i" 0 i n  R + B .  

They have shown t h a t  f o r  su f f i c i en t ly  small h there  always e x i s t s  a 

difference expression which is a consistent approximation of the  d i f f e r e n t i a l  

expression and which s a t i s f i e s  a m a x i m u m  pr inciple  analogous t o  t h a t  of 

our lema 1. 

O u r  previous results can be improved i n  another direct ion.  Collatz 
** 

has shown t h a t  by a more careful  choice of the values at  the  boundary 

points Bh , the  truncation e r ro r  w satisfies the r e l a t ion  

* 
See [4] . 

** 
For details, see Collatz [7] . 
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B I  

where M Q  and % are constants depending on derivatives of the  solution 

of the  partial d i f f e ren t i a l  equation. 
1 

For example, t h i s  appraisal  of the 

truncation e r ro r  results i f  the values a t  the boundary point (xm, yn) are 
4 

defined by the weighted average (see f igure) :  

This  i s  equivalent t o  replacing the set of boundary v a l m s  i n  (2.10) by 

the set of non-homogeneous equations 

_- 

A 1 1  of the r e su l t s  which we have stated above suf fer  from the 

defect t h a t  the appraisals obtained depend on the  bounds f o r  the derivatives 

of the  unknown solution of the d i f f e ren t i a l  equation i t s e l f .  

cannot be found i n  the general case without e f fec t ive ly  solving the 

These bounds 
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diggerential  equation. I n  the case of Laplace's equation, s t r i c t  
.. Gb 

estimates of these bounds i n  terms of the boundary data can be obtained 

a t  in t e r io r  points of the mesh, provided tha t  the boundary B and the 

boundary data are suff ic ient ly  smooth, 
* 

Indeed, Wasow has resently 

extended an estimate of these bounds t o  the case i n  which the function 

prescribed on the boundary are piecewise continuous. 
** 

4 7 Stab i l i t y  of the f i n i t e  difference approximation of the Dirichlet  

problem 

The f i n i t e  difference problem i n  (2.8) i s  inherently stable. This 

is  eas i ly  demonstrated with the results of the  foregoing sections. 

54, l e t  the machine calculations of the solution of the difference problem 

be denoted by v Then, since the computed values do not i n  general 

As i n  

* 4 

sa t i s fy  the  difference equation (5,2) ,  o r  the boundary condition, w e  have 

and 

* 
v = fh + 62 

where tj1G2and 62 represent the errors  stemming from the ro&ding-off 

of the arithmetic operations. Subtracting these equations from the 

corresponding equations in (2.8) and using the  notation 'of (bel), one 

* 
See f o r  example Rosenblom [8]. 

H 
This work by Wasow is awaiting publication. 
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* 
obtains the following re la t ions  f o r  the  departure s = v - v : 

(7 .3)  

(7.4) s = 6* f o r  (x, y)  on 

Hence, in accordance with lema 2, 

where M1 and M2 are constants and 

Therefore 

s = 0 (6 ha2) &S h + O  , 

whence the procedure is stable ,  
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558 S t a b i l i t y  of‘ the simple f i n i t e  difference problem of parabolic type. 

L e t  us ret= t o  the simple f i n i t e  difference problem f o r  t he  

parabolic p a r t i a l  d i f f e r e n t i a l  equation t h a t  i s  formulated i n  equations 

(2,2), (2,3), and (2,4), If we set Ax = h , A t  = k = Xh2 , where the  

r a t i o  

2 A = A t / ( A x )  

i s  regarded as fixed, then the difference equation i n  (2.3) can be expressed 

i n  the  form 

+% 
V(X, t+k)  = C V(X + rh, t )  P 

P=-l 

c = ( 1 - 2 X ) ,  e “ A ,  and C c r = l .  
F 

0 1 e: = A ,  -1 

Again, f o r  s implici ty  in writing, we use the notation 

1 L e t  us first obseme t h a t  for 0 < X 4 E the  r i g h t  hand 

member of equation (8.1) is  a weight average of v a t  three neighboring 
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mesh points with non-negative weight factors .  

at axqy i n t e r io r  mesh point 

Therefore the value of v 

(x, t+k)  w i l l  l i e  between the  upper and 

lower bounds of i t s  values at the mesh points on the  l i n e  

f o r  O <  x < l j  

t j t ha t  is, 

(804) min v(x9 t )  v(x, t+k)  4 m a x  v(x,t)  
O < x < l  O < x < l  

We now establ ish a result which i s  analogous t o  the  pr incipal  of m a x i m u m  

obtained in lemma 2 f o r  e l l i p t i c  equations. 

Theorem. L e t  v (x j  t )  be a solution of the  difference problem 

( o <  x < 1 )  D 

1 If 0 < X 4 p then 

where T 9  Gp v9 are the least upper bounds of the functions If I , 
I cp I I ~r I I p I respectively, in o \< x < 1 o \< t < T 
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Proof: L e t  us first observe tha t  we can reduce our discussion 

t o  difference problems in which the  difference equation i s  homogeneous. 

To begin with, l e t  V (x, t )  be defined by the conditions a 

(8.74 Lh [ V a l  = O for  t >/ (a+l)k 0 < x < 1 

(8.74 v,(x, t )  = 0 f o r  t 4 c=llr p 0 < x < 1 

Then the  function 

is a par t icu lar  solut ion of the difference equation i n  (805) t h a t  vanishes 

f o r  

follows that when t = cdr , 
t = 0 , x = 0 , and x = 1 But, from (8.7%) and (8,7c),  it 

Va(x9 t+k )  = c cr Va(x+rh9t) + kp(x,t)  = k P(X, t )  
r 

Therefore the  function V (x, t )  

value problem 

is a solution of t he  homogeneous i n i t i a l  a 

. 
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V,(x9t) = k p(x, t )  9 t = (at1)k 0 < x < 1 

va(x,t) = 0 y t < atk y 0 < x < 1 I 
V J O ,  t )  = v p ,  t )  = 0 , ' t > 0 0 1 

Hence, we can express the solution of the difference problem (8.5) , i n  

the form 

v(x , t )  = v ( x , t )  f v,(x,t) = vo(x, t )  + tk va(x,t) 9 
P 

-0 0 

where v ( x , t )  0 

equation, namelyp 

is a lso  a solution of a problem with a homogeneous difference 

vo(x, 0) = f ( x )  9 (0 < x < 1). 1 
Consider the function v (x, t )  1t . fol lows from (8.4) t h a t  0 

Ivo(xp t )  I \< 7 at i n t e r i o r  mesh points of the l i n e  t = k e Therefore 

! 
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Ivo(x9k) I \c max(T> 5 9  $1 for 0 < x < * 

The same argument can be 'repeated f o r  the step from t = k t o  t = 2k , 
e tc .  In  general, we obtain 

,( 8 e 11) 

The numerical values of the functions V -  in (8.9) can be estimated a 
i n  the same way. I n  fac t ,  since these functions vanish f o r  x = 0 and 

x = 1 , we have 

Theref ore , 

and , consequently, 

. 

n 
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This completes the proof. 

It follows immediately from the inequality (8.6) tha t  the difference 

procedure i n  (2.2) i s  s table  when the mesh r a t i o  X satisfies the c r i t e r i a  

(8.12) 1 o <  X <  5 .  

* 
To see th i s ,  l e t  

from the exact solution of the difference problem as a result of errors  

s = v - v denote the  departure of the computed values 

not exceeding 6 i n  numerical value a t  each mesh point. Then s i s  

i t s e l f  a solution of the problem formulated i n  (8.3) i n  which the upper 

bounds 'i; , , , 5; sa t i s fy  the inequalit ies 

Therefore, the inequality (8.6) yields 

I 

t 
I d X ,  t )  I \< 6 0  + E) , 

whence 

11 

l The foregoing result no longer applies when the r a t i o  h > 1/2 . 
There are examples tha t  exhibit  the in s t ab i l i t y  of the f i n i t e  difference 

equation (2.3) when X > 1/2 
I. 
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59 A n  appraisal  of the truncation error .  

L e t  it be assumed tha t  the solution u(x, t )  of the  i n i t i a l  value 

problem (2.1) and i t s  derivatives ut and u a re  continuous f o r  xx 

0 < x < 1 and t > 0 , and t h a t  the derivatives utt and u xxx 
ex i s t  and are  bounded i n  t h i s  region. Then, making use of Taylor's 

formula, and the f a c t  t ha t  u - u = 0 , one obtains from (8 .3 ) ' t he  t w r  
expression 

, 

where M1 and % are  functions of the  mesh such t h a t  

f- i 

Since the functions u(x , t )  and v(x, t )  s a t i s fy  the  sane i n i t i a l  and 

boundary values at the corresponding gr id  points, the truncation e r ro r  

w = u-v 

the upper bounds f , , , sa t i s fy  the relat ions 

i s  evidently a solution of the difference problem (8.3) i n  which 
- 



35 I 

Hence, if 0 < 
appraisal  f o r  the truncation e r ro r  

A 4 2 , the  inequality (8.6) yields  the following 

\ 

' 2  
Since k = X h , the  truncation e r ro r  w i l l ,  f o r  fixed A , satisfy the 

r e l a t ion  

w = O(h) as h-0 , 

provided t h a t  the solut ion u of the d i f f e ren t i a l  problem ex i s t s  and 

i ts  derivatives s a t i s f y  the assumed boundedness. 

The appraisal  i n  (9 .3)  a l s o  suffers from the  f a c t  t h a t  it requires 

a knowledge of the bounds of ce r t a in  derivatives of the solut ion u of 

the  differe 'nt ia l  problem. The question of convergence, however, i s  answered 

by the foregoing result if these bounds a re  merely known t o  exist .  
* 

Attention should be directed t o  the work of Juncosa and young 

on a problem o f , t h e  same type considered here. They have established 

orders f o r  the convergence of the  difference solut ion t h a t  require only 

assumptions on the i n i t i a l  and boundary data. 
H 

Attention should a l so  be called t o  the work of F. John i n  connection 

with the  f i n i t e  difference approximation of a very general c lass  of parabolic 

d i f f e ren t i a l  equations. In t h i s  work, the  general p a r t i a l  d i f f e r e n t i a l  

* 
Juncosa and Young 

*+ 
See F. John [U] . 
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equation 

ut = ao(x,t)u, + al(x,t)ux + a,(x,t)u + a 3 ( x , t )  

is  approximated by a difference equation of the type . 

+N 

r= -N 
v(x, t+k)  = cr(x, t9h)  v(x+rh, t )  e 

Suff ic ient  conditions m e  obtained under which a r e su l t  analogous t o  

tha t  in (8.6) hold f o r  these difference equations. 

t ha t  a d m i t s  of easy proof is  tha t  the coeff ic ients  

A very simple c r i t e r i a  

cr(x, t, h)  be non- 
- 

negative f o r  suf f ic ien t ly  small h e 

* 
.§ 10 Numerical integrat ion of a quasi-linear parabolic equation 

We consider the following non-linear, boundary value problem 

where F >/ p 

ex i s t s  i n  the closed region R :  0 x 1 , 0 \< t < T such tha t  

> 0 e It i s  assumed t h a t  a solut ion of t h i s  problem 

* 
The treatment i n  t h i s  section follows t h a t  given by Douglas i n  [12] ! 
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e x i s t  and are bounded i n  R Moreover, it is  assumed 
4 a U  

that the functions F(x,t ,u) and G(x,t,u) have bounded first p a r t i a l  

derivatives w i t h  respect t o  u i n  R 

We introduce a mesh i n  the region R by se t t i ng  

x = mnx , (m = 0, 1, O . o ,  M) , tn = n O t  , ( n  = 0, 1, T/nt) m 

with O x  = 1 / M  

by replacing t h a t  system with the f i n i t e  difference problem 

We then seek an approximation of the  solution of (1) 

1 (10.2) 

where we have used the notation 

v - 2 v  + v  A2 v - - m+l,n m,n m-l,n 
8 

( w2 x m,n 

v - v  - m,n+l mn - 
at 

t 



The truncation e r ror  introduced at any mesh point as a result of 

replacing the system (10.1) by the difference equations (10.2) i s  the 

difference 

t h i s  e r ro r  i n  terns  of the increments A t  

the previous examples, t o  develop the  difference equation of which wrn 

is  a solution. 

wmn = urn - v I n  order t o  estimate the  magnitude of mn 
and A x , we proceed, as i n  

It is  eas i ly  ver i f ied t h a t  

(10.4) 

(at)2 - 
2 FU %t 

( A t ) 2  - - 
2 Gu Utt 

where the barred derivatives are evaluated at the intermediate points 

required by the mean value theorem. 

the difference equation 

Substi tuting these i n  (10.1) yields  

c 
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where &mn contains the terms in (10.4) with the factors A t  and A x  . 
As a consequence of the assumptions which have been made regarding the 

boundedness of the derivatives of the functions u , F , and G , the 
function %n is such that, in R 

for some positive constants K1 and K2 

If the first of equations (10.2) is subtracted from (lo.?), we 

obtain 

But, since urn = v + w we can write mn mn 

Therefore (10.7) is equivalent to the equation 



by the difference quotient i n  (10.3), t he  equation t Wmn If we replace A 

can a l so  be wri t ten as 

(10.8) 

where 

t 

This i s  t h e  desired difference equation f o r  the  truncation e r r o r  

Because of t he  supposed boundedness of the  derivatives of G , 
and the  condition t h a t  F >/ p > 0 in R , it follows t h a t  t he  quantity 

hmn i s  a l so  bounded i n  R '; t h a t  is, i n  R ,  

w 

u , F , and 

An es tba te  of t h e  bounds f o r  t he  magnitude of e r r o r  I wmn I i s  

readi ly  obtained from the  difference equation (10.8) by an appl icat ion of 

t h e  following two lemmas: 

Lemma 10.1. If ym i s  a solut ion of t he  difference problem 

. 



(10.10) 

and i f  p > m 

(10.11) 

L 

0 f o r  all m then 

( m  = 1, 2, .-., ~ - 1 )  

Lemma 10.2. If en satisfies the.recwrrence re la t ions  - 

where a > 0 and @ >1 , then 

E < p n e o + n a p  n , ( n  >/o) a 

n \  (10 0 12) 

The proof of lemma 10.2 i s  by d i r ec t  induction. The proof of lemma 10.1 

is deferred u n t i l  later. 

Since v = u i n i t i a l l y  and on the boundary, the truncation mn mn 

e r ro r  wmn = u - vmn vanishes f o r  n = 0 , m = 0 , and m = M . There- 

fore the result of lemma 10.1 holds f o r  t he  solut ion of the difference 
mn 

equation (10.8). Note t h a t  pm = F(xm, tn+l, vm) > p . The inequality 

corresponding t o  (10.11) can be wri t ten i n  the  following form with the  a i d  

of (10.6) and (10.9) 
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'I s[.L A t  + K2(Ax) 
P 

As i n  the previous sections, l e t  

2 (10.14) x = A t / ( A x )  = const. 

Also,  l e t  E denote the 4 a x i m u m  numericd value of the truncation n 
e r rors  a t  the mesh points of the l i n e  t = tn , i .e.,  

E n = maxIwmI 
m 

Then cO = 0 and, i n  accordance with (10.13) and ( lO. lb) ,  f o r  a l l  

X >/ Xo > 0 there ex is t s  a number C > 0 independent of X such 

t h a t  

2 
(1 + Cnt) cn + C ( A t )  e n+l  E 

Hence, by lemma 10.2, 

E n \  < c n ( l  + c w n  ( A t ) 2  = c tn(l + CAt)" A t  0 
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Since 

our result can be formulated as follows: For any mesh point (x, t )  i n  

the region R , (0 ,< x ,< 1 , 0 ,< t ,< T )  u , i n  which the  functions 

F , and 

s t ipulated above, t he  magnitude of the truncation e r ro r  is  such that ,  

G and t h e i r  derivatives s a t i s f y  the  conditions of boundedness 

f o r  a l l  A > A. > 0 , 

p 
where C > 0 depends on the  derivatives of u , F , and G and i s  

independent of A 

Addendum t o  510. Proof of Lema 10.2 

The proof of lemma 10.2 consists of several  parts. L e t  

~m = g m +  + @in ,-where 4 >/ 0 , < 0 , and % e < = ~ .  + Then 

+ 
f$ , (m = 1, 2, f 2 f  - + 

~ ym = ym + ym , where yo = 4 = 0 and y- - p y- = x m  m m  
-.., M-1) e 

Consider first the function yi It can be shown tha t  y: \< 0 

+ f o r  a l l  m . For, suppose that y” > 0 f o r  some m Since yo = m 
= 0 , there  is  a t  least one value i n  the  set m = 1, 2, . , e o ,  M-1 at 

which yi i s  a maximum. For this  value of m , a2 yi \< 0 and 

0 
YM 

therefore, since pm > 0 , 
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+ 1 2 +  
= -(OXYm-<) 0 

pm yltl 

2 +  This is a contradiction. At a negative minimum, Ax ym > 0 and 
= - ( g - D  y ) <  - = + + 1 + 2 +  

x m  f’m 
Iym I = - Ym 

f’m 

Hence , 

A similar argument serves to prove that maximum of I yi I satisfies 

the same inequality. Therefore, combining these results, we have 

This completes the proof of the lemma, 

The following extension of lemma 10.1 is useful in establishing 

the stability of the difference procedure. 

Lemma 10.3. If ym is a solution of the difference problem 

(10.6) 
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and if pm > 0 f o r  all m , then 

Proof. Define 

If ym is a solution of (10.6) , zm i s  a solution of the difference 

problem 

Consequently, by (10.11) , 

Hence , 

m 

m a x  
m 
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511 S t a b i l i t y  of the non-linear f i n i t e  difference equations (10.2) 

Let v denote an approximation of the solution of the  system 
* 

(10.2) obtained by machine calculation. In  par t icu lar ,  l e t  v * be a 

solut ion of the  difference equations 

(m=l, 2, ., M-1; n > 0 )  , I 
( n  > 0 )  9 

* 
(m = 1, 2, $.., M-1) , V = f(xm) + 6 > m, 0 m9 0 

& 

(11.1) 

where 6 represents the  residual  e r ro r  a t  the mesh point 

i s  not d i f f i c u l t  t o  obtain an estimate of the magnitude of the  departure 

s = - v  

xmn . It 
m, n 

* - v of the computed solution from the exact solut ion when the  

conditions f o r  t h e  convergence of the system (10.2) are satisfied. 

remains only t o  show tha t  the difference equation which the departure 

s satisfies is not very d i f fe ren t  from t h a t  i n  (10.8) from which the 

inequality in (10.15) w a s  obtained. 

There 

If equations (10.2) a re  subtracted from the  corresponding equations 

i n  (ll.l), one obtains, i n  the notation of equation (10.8)~ 

+ E  u s m,n + 6  m,n 9 b=1, 2, ., M-1; n 0 )  , 

0,n = 6  0,n S M,n = 6  M,n ’ ( n  > 0 )  , S 

S = 6  (m = 1, 2, ~ - 1 )  . m, 0 m, 0 

(11.2) 
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.n 

. 
Now 

. 

But, f o r  A t / ( n x ) 2  = X w i t h  X fixed, the  inequality (10.12) implies 

t h a t  w = O(nt) , 0, wm = O(1) , and, consequently, A v -)= O ( 1 )  m,n t m,n 
as A t  0 Since the residuals €jmn are O(l/n t )  as A t  0 , 
it is evident that the system (11.2) can be cas t  i n  the form 

where f o r  some posit ive constants A and B 

If, as before, e n  denotes the maximum numerical value of the  

e r ro r  at the  mesh points of t he  l i n e  t = tn , but i n  t h i s  case as a 



result of round-off, then, according t o  11.13 and lemmas (10.1) and 

(1003), it readily foPlows tha t  

E = O ( J O t )  as A t  - 3 0  n (11.4) 

for 0 4 t T The procedure is therefore stable, 
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512 Fini te  difference method f o r  a hyperbolic system of part ia l  

d i f f e ren t i a l  equations 

Let us consider the i n i t i a l  value problem f o r  the system of linear, 

* 

first  order, p a r t i a l  d i f f e ren t i a l  equations on the  i n f i n i t e  interval :  

I t >‘‘,O) 3 
r\ 

k12.1) 
+ -3 
u ( X )  0) = f ( x )  , (-- < x < + - ) 9  

where + u i s  a 1 column vector and A and B are n x n matrices. It i‘ 

is well known tha t  an i n i t i a l  value problem f o r  a higher order l i nea r  

d i f f e ren t i a l  equation (or  a system of higher order d i f f e ren t i a l  equations) 

can be reduced t o  an i n i t i a l  value problem f o r  a first order system 

For example, the i n i t i a l  value problem f o r  the second order d i f f e ren t i a l  

** 

equat i on : 

U tt = (-00 < x  < 00; t >o),  x x ’  

* 
See Lax and Keller [13j See also the paper by Lax and Richtmyer 

[14] i n  which both exp l i c i t  an implicit  difference systems are  t reated.  
** 

See, f o r  example, Petrovsky’ [l] p. 16. I 
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i s  equivalent t o  the  following: 

where 

It w i l l  be supposed tha t  the system of p a r t i a l  d i f f e r e n t i a l  

equations i n  (12.1) i s  of hyperbolic type. 

ex i s t s  a rea l ,  non-singular matrix P such tha t  

By th i s  i s  meant t ha t  there - 

(12.2) P A P-’ = D = dia(dl, d29 dn) ’ 

where D i s  a diagonal matrix; the diagonal elements di of the matrix 

D 

purposes of i l l u s t r a t ion ,  it w i l l  be suphsed t h a t  the coeff ic ient  matrix 

A i s  constant, The elements of the matrix P are then also constants. 

are the  so-called charac te r i s t ic  direct ions of the  system. For the 

The results i n  t h i s  simple 

case in which the  elements 

ease are  typ ica l  of those i n  the more general 

of A are functions of x and t It w i l l  



i4 

i 

+ 
u a l s o  be assumed tha t  a solution of the i n i t i a l  value problem (12.1) 

+ + ex i s t s  such tha t  uxx and utt ex i s t  and are bounded f o r  t > 0 
, 

A s  an approximation of the system of par t ia l  d i f f e ren t i a l  equations 

i n  (12el), we choose the  system of difference equations: 

+ 1  v (x+x,t)+ -+ v (X" $x,t)  1 + 1  v (x++x,t)- + l  v (X' $Car,t) 
O X  

+ A t  A I + 
2 v( x, t+ A t )  = 

L 
I 

(12.3) 

2 i .  + 1  v ( x + $ L x , t )  + - 1  v (x- p n x, t )  

+ B  
+ 1  - 1  v (x-t$x,t) + v (x- ij n x, t )  

2 
b L. + B  

* 
where the  values of the vector v (x, t )  are computed at  the mesh 

points of a staggered grid. 

V 

( x- A x, t+ A t  ) ( x, t t  A t  ) ( x+ A x, t+ A t  ) - A - - - 

- h 1 a I m - 
1 (x- $Lx,t) (x+ p A x 9 t )  

A t  the  mesh points of the i n i t i a l  l i n e  it i s  required that 

+ + 
(12.4) v (x, 0) = f (x)  
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It is evident that this constitutes an explicit difference method. 

components of the vector v/ at any mesh point 

The 

(x, t + At) are 

explicitly given in terms of the previously computed values at points 

on the line t . 
The truncation error in this case is the vector difference 

- j * +  w = u - v e The procedure f o r  estimating the magnitude of this 

error as a funct-ion of the mesh size is, in principle, the same as in 

the cases already considered. We first derive the difference problem 
---3 of which w is a solution. To this end, note that, because of the 

assumed properties of the vector function -3 u , we have 

where the primed derivatives are evaluated at intermediate points in 

accordance with Taylor's remainder formula., Substituting these expressions 

in the first of (12.1) yJelds 
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. 

x ? ( x  - 9,t) +  AX)^ + T ( A t ) 2  + ?Ax A t  , 

where I i s  the ident i ty  matrix, and 2,2, and r/ are  vectors 

depending on the values of t he  partial derivatives 

The components of these vectors are therefore bounded f o r  t 

On subtracting equation (12.3) from (l2.5), we obtain 

qt and u/ xx 

>/ 0 

(12.6) f;?)(x,t+At) = 1 A t  

4 _ -  
2 3  + BAt  w ( X  - -  OX,t) + 2 ( A X )  + p + ? A x  A t  . I’ 2 

Moreover, since ?=? on the i n i t i a l  l ine ;  

* 
w (x, 0) = 0 0 

9 

These are the equations defining the generation of the truncation error .  

For the purposes of convenience in effect ing an estimate of the 

magnitude of the truncation error ,  we define corresponding norms of a 

vector and a matrix re la t ive  t o  the  matrix P given i n  (12.2) To be 

precise, i f  ( z ) i  denote the i t h  element of the vector z/ 
of w/ w i l l  be defined as 

+ the norm - 

. 



(12.8) 

If ( C ) i J  denotes the elements of the matrix C , then the norm of the 

matrix A i s  defined as 

The def ini t ions of the  vector and matrix norms are such t h a t  

Then a measure of the magnitude of the truncation e r ro r  at the nth step 

of the process, tha t  is, f o r  

- 
t = n A t  , w i l l  be given by the  quantity 

(12.10) 

I 

where x ranges over a l l  the mesh points on the  l i n e  t = n at . 
L e t  us choose the mesh r a t i o  &/Ax so t h a t  

(12,ll) 

where 

( 12.12) 

A t / O x  4 1/2c , 

c = max I d i I  
i 
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, 

Then a l l  elements of the matrices 

S ( I  + 2 A n ? ; )  A t  S -1 = ( I t  2D72;;) A t  - 

are non-negative e Since 

it readily follows from these f ac t s  t ha t  

This being true, 

ex i s t s  a number 

L 

it i s  immediately evident from equation (12.6) t ha t  there 

p such tha t  

E ( l + p A t )  E + p +( A t ) 2  + Ax at] ; n+l n 

the number p depends on the upper bounds of 11 B 11 and the corresponding 

norms of the second order p a r t i a l  derivatives which appear in the  vectors 

2 ,  3, and 7. According t o  lemma (10.2), the  recurrence re la t ion  i n  

(12.13) implies t h a t  

and therefore 



(12,14) 

Let r a t i o  A = ( A t ) / ( n x )  be held fixed during the  procedure. 

Then, i n  view of (12.7), we have shown t h a t  when 

* 
the  magnitude of the truncation e r ro r  is such that 

E < p(x2 + x + 1) t e pt A t  , (n = t / A t )  , (12.15) n \  

whence, f o r  0 4 t 4 T , 

E = o ( A t )  as A t  + o n 

Therefore, under the  supposed conditions on the  solution of the d i f f e r e n t i a l  

system (12.1), the  difference procedure (12-3) converges. 

The inequality (12.4) also serves as a means of  estimating the  

magnitude of the  e r ro r  i n  the  approximate solution t h a t  stems from rounding- 

off of  the  computed quant i t ies .  I n  t h i s  instance, l e t  E denote the  0 

maximum numerical value of the  e r rors  introduced by t h i s  source at  the7 

mesh points of any l i n e  t = to , and suppose t h a t  al l  subsequent 

* 
Note that since the  matrix P is nonsingular the  norm I( 

can vanish i f  and only if  + w - 0 .  
I 2 1- 0 . Hence, E + 0 if  and only i f  n 

, 

. 
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calculations are  exact. 

difference equBtion (I-2,6) with 

Consequently, the m a x i m u m  numerical value of the departure at the nth 

subsequent step, which we again denote by 6 

first term i n  (12*14): 

The departure,  s i n  (4.1) then satisfies the 

+ + 3  a = f3 = 7 = 0 f o r  t > to . 
- 

does not exceed the n' 

where p has the same meaning as before. The departure resul t ing from 

an accumulation of the  round-off errors  introduced at each of n steps 

w i l l  therefore not exceed, i n  numerical value, the number 

Consequently, the departure s satisfies the following re la t ion  in any 

interval  0 \< t < T : 

(12.16) 

Hence, by the c r i t e r i a  adopted ea r l i e r ,  the difference procedure (12.3) 

is  stable.  



BIBLIOGWEY 

1. I. G. Petrovsky, Lectures on p a r t i a l  d i f f e ren t i a l  equations, Interscience 
Publishers, 1954, 

2. R. Courant and I. Hilbert ,  Methoden der mathematishen Physik. V o l .  I, 11, 
Interscience Publishers, 1943. 

3. J. Hadmard, Lectures on Cauchy's problem, New Haven, 1923. 

4. T. S. Motzkin and W. Wasow, On the approximation of l i nea r  e l l i p t i c  
d i f f e ren t i a l  equations by difference equations with posi t ive 
coefficients,  Jour. Math. Phys. 31, 253-259 (1953). 

5. W. Wasow, Discrete approximations t o  e l l i p t i c  d i f f e ren t i a l  equations, 
Jour. Appl. Math. and Phys. (ZAMP), 6, 81-97 (1955). 

S Gerschgorn, Fehlerabsch&zung fiir Differenzenverfahren zur L&iung 
p a r t i e l l e r  Differentialgleichungen, Z. Angew. Math. Mech., 10( 4),  

6. 

373-382 ( 1930 

7. L. Collatz, Bemerkungen zur Fahlerabschgtzung f& das Differenzenverfahren 
b e i  pa r t i e l l en  Differentialgleichungen, Z. Angew. Math. Mech., 13, 
56-57 (1933 1 * 

8. P. C .  Rosenbloom, The difference equation method f o r  solving the  
Dir ichlet  problem, N a t .  B u r .  Standards Appl. Math. Series,  18, 
231-237 (1952 1 

9. M. L. Juncosa and D. M. Young, On the convergence of a solution of a 
difference equation t o  a solution of the  equation of diffusion, 
Proc. h e r .  Math. SOC., 5, 168-174 (1954) 

10. M. L e  Juncosa and D. M. Young, On the  order of convergence of solutions 
of a difference equation t o  a solution of the  diffusion equation, 
Jour. S. I. A. M., 1, 111-135 (1953). 

11. F. John, On the  integration of parabolic equations by difference 
methods, Comm. Pure and- Appl. Math., 5, 155-211 (1952). 

12. J. Douglas, Jr., On the numerical integration of quasi-l inear 
parabolic difference equations, t o  appear i n  Eacific Jour. Math. 



59 

13. P. D. Lax  and J. B. Keller, The i n i t i a l  and mixed i n i t i d  and boundary 
value problem f o r  hyperbolic systems, Los Alamos Report LAMS-1205. 

14. P. De L a x  and R. D. Richtmyer, Survey of the s t a b i l i t y  of l i nea r  
f i n i t e  difference equations, Comm. Pure and Appl. Math., 9, 
267-293 ( 1956) 

RCFB : i h  
8/21/56 

6 


