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NOMENCLATURE 

a - radius of middle surface of she l l  
h - uniform thickness of she l l  
i -  VZ- 
E - Young's Modulus of E la s t i c i ty  
7 - Poisson's r a t i o  
9 - angle i n  meridional direction, positive from the axis 

M - bending moment per un i t  length, positive increases curvature 
N - normal force, per un i t  length, tension posit ive 
Q - rad ia l  shear, per un i t  length 
subscript fl - meridional direction 
subscript 8 - circumferential direction 
2 cx - t o t a l  centml.  nnq7.e subtended by the c i rcu lar  hole, 

resfits are f o r  A = 5' 
2 B - t o t a l  central  angle subtended by outer edge of 

spherical segment, resu l t s  are f o r  @ = 450 
subscript a - inner edge of she l l  
subscript B - outer edge of she l l  
' 
V - tangential  displacement i n  $-direction 
w - radial displacement, posit ive inward 

of symmetry 

- different ia t ion w i t h  respect t o  

- stress i n  @-direction 
be- stress i n  Q-direction 
"a 
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INTRODETION 

The purpose of this  paper i s  t o  give the resu l t s  of a stress analysis 
of a spherical  segment w i t h  c i rcular  hole a t  the vertex which is  loaded 
symnetrically w i t h  respect t o  i t s  axis along the edges of the shell. 

Results were obtained and are given i n  th i s  paper f o r  two cases. 
Case I: General Loading, i.e., normal force, radial shearing force, and 
bending moment applied a t  each of the two edges of the s h e l l  (Figure 1). 
Case 11: General Loading a t  inner edge w i t h  outer edge r ig id ly  fixed. 

The classical ,  small-deflection theory of th in  shells was used. 
This method, i n  short, involves the evaluation of four hypergeometric se r ies  
and their deviratives which give the solution t o  a fourth order d i f f e ren t i a l  
equation f o r  the shearing force, Q 

i s  presented i n  Timoshenko's text ,  Theory of Plates  and Shells. 

The development of the c lass ica l  theory PI' 

The above problem is then extended by attaching an ax ia l ly  loaded circu- 
lar cylinder t o  the inner edge of the shell. 
done i s  shown i n  the appendix. 
are summarized. 
dimensions and outer edge conditions. 
Table A-2 i n  the appendix. 

The manner i n  which this  was 
Several cases were analyzed, and the results 

The cases differ primarily i n  t h e i r  re la t ive  geometrical 
These differences are summarized i n  

The re la t ive  dimensions f o r  Case A 1  were selected, so as t o  coincide, 
a s  nearly as it w a s  possible t o  do so, w i t h  a physical model from which the 
pr incipal  stresses were obtained experimentally. A comparison i s  then made 

between the theoret ical  and the experimental resul ts ,  Figures A 2  and A3. 
In  general, the two r e su l t s  are i n  good agreement. 
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BASIC EQUATIONS OF TEl3 CLASSICAL THEORY 

Since QQ = 0 because of symmetrical loading, the subscript # on Q is 
hereafter omitted. 

I. Equilibrium equations. 

- Q)tan@ + Npr - Ne = o 

(MJ - Qa)tan# + Mpr - Me = 0 

11. The stress-strain relations (Hooke's Law) in terms of 

displacements. 

w)l NPr = - - -  [(VI - w) + y (vcot$ - 
Eh - [(vcotfi - w) + 7 (VI - N~ - a(l - y2 
Eh3 

1 M# = 12a2(1 - 72) [(VI + w" ) + y (v + w')cot# 

1 (v + w')cotpl + 7 (v' + w") M~ = 12a2(1 Eh3 - 72) c 
THE CLASSICAL THEORY 

By making the substitution V = v + w' and using V and Q as the dependent 
variables, the following differential equations are obtained: 

IIIa 

IIIb 

Q t l  - &'cot# - Q(cot2@ - 7) = Eh v 
3 

Eh3 
V" + V'cotpl - v(7 + cot2#) = -Q12a (1 - r2) 
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Substituting for V in IIIb, the expression IIIa, one obtains a fourth 
order differential equation f o r  Q. 
differential equations in the following form: 

This may be written as two second order 

2 1. Q I ~  + cot# QI - cot2$ Q,+ 2i 6 Q = o 

2 2 
4 a  where 
6 = 7 3 ( 1  - Y2) - 

By making the substitution 

Q = z sin$ and x = sin'$, 

equation 1 becomes 

2 x(x - 1) zxx + (5x/2 - 2)zX + (1 5 216 )z/4 = 0 2. 

where the subscript denote differentiation with respect to x. 

It can be shown that equation 2 has two solutions 
M 

z = z l l n x + x  1: Bnxn 
n=O 2 

An may be found by substituting several of the initial terms of zl in 
equation 2 and equating the coefficients of like powers of x to zero. Then 
by mathematical imction, we find 

2 
n>l 

2(n - 1)(2n + 1) + 1 - 2i6 
An = *n-l 4n (n + 1) 

A. may be any arbitrary constant except zero. 



- 7 -  

Similarly, by substituting several of the initial terms of z2 in 

equation 2, we find 
-&A0 - 

Bo - 1 + 2ia2 

B may be any arbitrary constant. 1 

Since A and B may be any arbitrary constant, they were both taken 
0 1 

equal to 1, 

By evaluating A and separating the real and imaginary parts of z1 and n 
substituting for z and x we obtain two series Q 

z we obtain Q and Q4* It can then be shown that the complete general 

equation for Q is 

and Q 1 2’ Similarly, for 

2 3 

where C (j = 1,2,3,4) are constants of integration. J 

It can also be shown that the complete general solution of V is 

4. 2 
+ C3(YQ3 + 2s2Q4) + C4(7Q4 - 26 Q ~ )  

5 c  v + c  v + c  v +c4v4 1 1  2 2  3 3  

&wing the solutions for Q and V, one may obtain, after considerable 
algebric manipulation, the following relations : 

5. 
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a 

1 

+ c0 sin$J 

9 , B  = 6M#/h2 $,B = 6Mg/h2 

6 ,  

7. 

8 .  

9. 

10 

11 * 

12. 

where 
D = ~ h 3 / 1 2 ( 1  - , 

2 K = N s i n  a + Qa simcosa , a 

and Co i s  a constant of integration. 

The subscripts m and B designate membrane and bending, respectively. 

TABUS OF FUNCTIONS FOR T€E CLASSICAL THEORY 

Tables of values f o r  the various ser ies  appearing i n  equations 3 t o  
12 were evaluated for  5 deg intervals from 5' t o  45'. 

It should be noted that the hypergeometric se r ies  z1 and z 2 are con- 
2 vergent f o r  x = s i n  

u$on the value of $ and 6 ( r a t io  a/h and 7). 

4 1. Hence the clegree of convergedce is dependent 
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For a/h = 25 and 7 = 0.3 it was found that seventeen terms were naeded 
i n  each series i n  order t o  obtain an accuracy of f ive  significant figures. 

The following tables of values are included i n  th i s  report: 

Table I - Q and Qcotg 
Table I1 - Q’ and V 
Table I11 - M and Me Id 

IiESULTS 

Having the tables of values, one needs then t o  solve f o r  the four 
constants of integration C 
i n  turn, are substi tuted back into the various expressions (equations 5 t o  
12) t o  obtain the desired resul ts .  

by the conditions a t  the edges. These then, 3’ 

Case I - General Loading 

For the case of general loading the edge conditions are 

a t @ = 5 ’  N # = N ~  ~ = = : & o l  

a t  Id = 4 9  Q = QB 

The constant of integration, Co, 

by se t t ing  the tangential  displacemnt 

and Mg = Ma 

and 
= MB . 

f o r  equations 9 and 10 was determined 
equal t o  zero. a t  the outer edge, vB’ 

&By and M are shown i n  Figs.  2a, b, c, d, and e. B 
The tangential  displacement a t  the inner edge, 

va/h = (0.03% - 2 .840Na  - 4e0193Qp)/E.h 

The membrane and bending stresses are shown i n  

The radial deflections, w, f o r  each of the independent loads, Nap Qay 

v is a’ 

13 

Figs. 3 t o  10, inclusive. 



- k O -  

Q cot$  
3 $# Degrees Q7 

&2 Q3 i% I 4 

.08706 00686 

. 16 856 

.21764 - . lBo.16 .81225 I 0.61248 2.8054 0.26308 [ .75170 

- 0 40089 * 6502 8 46010 -1 1014 

= 0 20491 -1 * L525 2.7284 

1.26 705’33 5.0059 

-1.72213 6,6835 

6,3213 

-3 5467 3.5053 



V E h S C  v + c v  +c v +c v 
1 1  2 2  3 3  44 

$ Degrees Q, Q2 &3 ’ &4 ’ 5 V 
2 

V V 
3 ll 

-10 7324 48.83 2 80 57 .9 8874 

a 83161 10 

62.022 3 3436 

-3 0096 93 . 218 -19 . 215 

-40 7621 -1040 72 

-9 e 35’90 -23 8.54 

35 -130586 170552 

40 
45 

-8.420 

-74 0 Oh3 

-12 731 

1,9253 
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TABLE 111 

Mer and Plg 
a/h 25 y= 0.3 

h 

$ Degrees 

h 

M 
81 %2 $4 M M 

$3 
J 

-106.7$ 1 428.1 369.1 -11.93 

-180.60 

-262.75 

-6060 2: 

-1300 64 30 I -64.66 

35 I 606.19 
-322.0: 40 I 1901.1 



FIGURF: 2a,b,c: Radial 
Displacements (Dimensionless) 

(a )  
( b )  
( c )  Due t o  shearing force, 

Due t o  shearing force, &a( 
Due t o  normal force, Nu 

QB 
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R E V  

/ 
FIGURE 2d,e: Radial Displacements (Dimensionless) 

(d) 
(e) 

Due to bending moments, Ma 

B Due to bending moments, M 
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Meridional membrane stresses, d f o r  Case I - General 
Loading; Figure 3, due t o  shearing forces &a! and Qp, Figure 4, 
due t o  normal force Na and bending moments, Ma and M 

9’ m’ 

0’ 

d p -  DEGREES 
FIG. 3 

IO I 5  20 25 30 35 40 a5 5 -.5 

4- DEGREES 
FIG. 4 
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Case I - General Loading, due t o  shearing forces  Q and Q a 
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Case I - General Loading due t o  bending moments, Ma arid :L>. 
I 

7 
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Q -  DEGREES 
FIG. 10 

Circumferential  bending s t r e s ses ,  outs ide surface,  CQ, B, f o r  



Case I1 - General Loading a t  Inner Edge and Fixed a t  Outer Edge 

The edge conditions for t h i s  case are 

at (b = 5' 

a t  @ = 45' v + w' = v = o and 6 = (N@ - r ~ ~ l b h  = 0 

N g  = Na, Q = Qa and MPr = Ma 

Q 

C was evaluated by again k k i n g  ve = 0 ,  
0 

The rad ia l  deflections, w, f o r  Case 11 are shown i n  Fig.  11, 

The membrane and bending stresses are shown i n  Figs.  12 t o  15, in- 
c lus  ive + 

The tangential  displacement a t  the edge of the hole, va, w a s  found 
t o  be 

va/h = (0.22 &a! * 2,8412 Na)/Eh 14,  

The reactions a t  the fixed edge were found t o  be 

QB = 0.045 &ol -I- 0.000268 Na 

NB = 0.214 &a -I- 0.01865 Na 

M (k)hQa - 0.023 Ma + 0.006825 B 

1 5  

16. 

17 9 

It was not possible t o  re ta in  suf f ic ien t  accuracy t o  evaluate (k),  i n  
equation 17, however, it can be s ta ted  t h a t  
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Figure 15, Circumferential bending stresses, outside ~urface, Qo, B, for 
Case I1 - Fixed Outer E-, due to loads applied at inner edge. 
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DISCUSSION OF RESULTS 

It is  generally known that s t resses  produced by loads applied along 
a circular  bole (inner edge) of a spherical she l l  die out rather rapidly 
away from the hole. The resu l t s  of th is  paper bear this  out. 

On the other hand, it is not s t r i c t l y  correct t o  say that s t resses  
near the hole produced by loads a t  the outer edge are  neglibible, even 
though they are  smaller than the s t resses  produced i n  the v ic in i ty  of the 
outer edge. 
such as  i n  Case 11, these stresses are negligible. 
by the resu l t s  f o r  Case I1 (Equations 15, 16, and 17). 

It is  noted, however, if this  outer edge is  a supporting eQe,  
This is  substantiated 

It was found, f o r  a = 5' and f3 = 45O, that considerable accuracy was 
l o s t  i n  solving the s e t  of simultaneous equationst necessary t o  obtain the 
constants of integrationC ' For these par t icular  values of (31 and f3, it 
is desirable t o  have the or iginal  ser ies  evaluated t o  more than f ive  
s ignif icant  figures. 

3" 

In  considering the s t resses  produced by the shearing forces, &ol 
and &B and the nopmal force, Nay it may be helpful t o  point out khat each 
one of these loads i s  held i n  equilibrium by a normal force a t  the outer 
edge, N B "  

c O K  LUSIONS 

On the basis of the experience obtained i n  carrying out the numerous 
numerical work and the resul ts  presented i n  this  paper, the following con- 
clusions appear warranted: 

1, Convergence of the or iginal  ser ies  f o r  Q is very slow f o r  values 
of $ 7 4 5 O *  

2. Evaluation of the ser ies  must be carried out t o  a t  l ea s t  f i ve  
significant figures. More accuracy is  desired, par t icular ly  f o r  
small values of a. 



3 .  If the c r i t i c a l  loads are  applied a t  the inner edge and the 
outer edge ac t s  prima,rily as a "supporting edge", the angle 
f3 may be reduced, say, around 35'. 
be s ta ted that the resul ts  a re  affected very l i t t l e  by the 
type of "support'l assumed a t  the outer edge). 

(Furthermore, it may 

4, In  viewing the resul ts  due t o  loads applied a t  the outer 
edge, one should exercise caution i n  extrapolating the resu l t s  
f o r  different  values of a and 8. 
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APPENDIX A 

AXIALLY LOAIED CIRCULAR CYLIM)ER AT17ACHED TO SPHERICAL SHEU 

Procedure 

We now consider a spherical shell with an ax ia l ly  loaded circular  
cylinder attached t o  the inner edge (See Fig,  A l ) .  We obtain Q, Na, 
and Ma i n  terms of the ax ia l  load,,P, w i t h  the following relationships: 

(a 1 &a! cosa + N~ si= = ~ / 2 n r  

(WC) = (3 - 
(dt)x = 0 (ad@)g = a 

Equation (a) is simply an equation of equilibrium, Equations (b) 
and (c) equate the displacements and the slopes a t  the lower edge of the 
cylinder and the inner edge of the shell, respectively. 

.. 

From the general theory of cylindrical  shells,  we have the following 
relations : 

t = thickness of cylinder 
r = radius of middle surface of cylinder 
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FIGURE A1 

Axially loaded c i rcu lar  cylinder connected 
t o  spherical  she l l .  
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And Qo = Horizontal (radial) force on lower edge of cylinder 

= N cosa - %sina! a 

The horizontal displacement a t  the inner edge of the shell, (wo)s, 
is the sum of the horizontal components of the rad ia l  and tangential  dis-  
placements a t  the inner edge, i.e., 

(wo)s = w a a !  s i n  - va!cosp (f 1 

It can be shown that the slope a t  the inner edge of the shell  is: 

Thus, it i s  seen that the second deriiwatlve qf the ser ies  f o r  Q is  needed. 
This was done f o r  $$ = 5' and loo, and the values are given i n  Table Al. 

TABLE A 1  

Degrees Q1" %I' Q3" Q( 

5 -0.32142 -5.4357 22.991 165.84 

10 -3 5127 -10.726 25.212 42 e 414 
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a/h 

RESULTS 

26.51 25 25 25 2.5 

Several cases of an ax ia l ly  loaded cylinder connected to a spherical 
she l l  were considered. 
condition a t  the outer edge for the several cases a re  summarized i n  Table 
A2.  The values of the dimension!.css, result ing loads 2 a r Q d h  , 2nrNdPh, 
and 2nrKaP, a t  the junction of the she l l  and cylinder, for each case a re  
summarized i n  Table A 3 ,  

The relat ive geometrical properties and edge 

TABLE A2 

Summary of the Geometrical Dimensions f o r  the Cases  Considered 

Partial Results 

2arNa/P 0.13488 0.3966 
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CASE A1 

The re la t ive  dimensions f o r  t h i s  case coincide as nearily as it was  
The principal stresses a t  possible t o  do so w i t h  those of a test  model. 

both the outside and inside su-rfaces were calculated and are plotted i n  
Figs. A2 and A3.  
on these f ig s .  and are  shown as enclosed dots. 
and r = 0.80, 
the r igh t  ordinate, 

The corresponding experimental* s t resses  are also plot ted 
The resu l t s  a re  f o r  P = 2000 lb 

The scale f o r  the dimensionless stress, 2flrhF'P, i s  shown as 

CASE A2 
Case A2 is the same as Case A1 except f o r  the outer edge condition. 

In  Case A1 it was fixed and i n  Case A2, Q = M = 0. B 8  
The resu l t s  f o r  Case A 2  are of very minor difference from Case A1 as 

The principal s t resses  were calculated and it was  indicated i n  Table A3.  
found that they were within 150 ps i  of Case A l ,  and hence a re  not included 
i n  this report ,  

CASE A 3  
Case A 3  differs from Case A 1  only i n  the r/t and h / t  r a t io so  The 

resu l t s  f o r  the dimensionless loads a t  the junction are shown i n  Table A3. 
The stresses were not calculated, 

CASE A 4  
Case A 4  differs substantially from the others i n  that the s ize  of 

cylinder re la t ive  t o  the shel l  is  larger (a = 10'). 
are also different ,  
sionless s t r e s s  2m0 

plotted i n  Figs. A 4  and A5, respectively. 

The r/t and h/t  r a t io s  
The principal dimen- QB = MB = 0, a t  the outer edge, 

;/P and garhd ,/P, w e r e  calculated and are $I> n Q9b , 

* The experimental resu l t s  were obtained from a personal commlnque t o  
the author from Professor R. L. Maxwell, College of Engineering, Uni- 
vers i ty  of Tennessee. 
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FIGURE A4: Principal Meridional Stresses for Case A4, 
see Table A2. 
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DISCUSSION OF RESULTS 

A glance a t  Figs, A 2  and A 3  indicate a f a i r  agreement between theo- 
Before attempting t o  ju s t i fy  the dif-  r e t i c a l  and experimental resul ts ,  

ferences which do exist ,  w e  make the following analyses, first: 

A comparison of the resu l t s  i n  Table A 3  between Case A 1  and A2, show 
that the outer edge condition has very minor influence upon the results. 
Hence, we may ignore that difference, f o r  the moment, i n  t h i s  discussion. 

In  order t o  obtain in tu i t ive  exceptance of the other results i n  Table 

A3, several factors  must be taken into account. 
Case Ab, and f o r  Cases A 3  and A 4  the increase i n  the r/t r a t i o  is  pa r t i a l ly  
offset  by the decrease i n  the h/t  ra t io .  

Namely, a has changed i n  

A cornparison of Figs. A 2  and A b  yield the following observations f o r  
the principal stresses i n  the meridional direction: 

1. 

2. 

3. 

The stresses a t  the outside surface decrease as a is  in- 
creased, i ,e, ,  the general shape of the curve shifts down- 
ward, a s  a is increased from 5' t o  10 
The s t resses  a t  the inside surface increase as a is  - in- 
creased; the general shape of the curve shifts upward, as 
a i s  increased from 5' t o  10'. 
Similarly f o r  the principal stresses i n  the circumferential 
direction by comparing Figs, A 3  and A S 0  
The stresses a t  both %he outside and inside surfaces, i n  the 
v ic in i ty  of a, increase as a is increased, i e e e ,  the general 
shape of the curves, f o r  a 5  $ *525', shif t  upward. 

0 

To obtain in tu i t ive  exceptance of the above observations, it may be 
helpful t o  keep the following i n  mind: 

(a) A s  a decreases, the cordition i n  the v ic in i ty  of the inner 
edge of the she l l  approaches that of a circular  hole i n  a 

f $at plate  ., 

A s  a increases, th i s  condition approaches that  of a circular  
cylinaer a 

(b) 



. 

If we now pass an average smooth curve through the experimental points 
i n  Figs ,  A2 and A3, and then make a similar analysis as was done above, 
we would be led t o  the same three observations a s  those l i s t e d  above. 
Hence, we conclude that i n  general, the major differences between the theo- 
r e t i c a l  and experimental results i n  Figs. A2 and A 3  a re  due pr jaar i ly  t o  
the f a c t  that a is of different  magnitude i n  Case A l  and the t e s t  model. 

It is  noted i n  Fig..A4 that only membrane s t resses  ex is t  i n  the 
v ic in i ty  of the outer edge, (the two curves coincide f o r  f8&37.50°). 
This may be at t r ibuted t o  the f a c t  that Q = Ms = 0 a t  the outer edge, 

It may be noted, 
hovever, by comparing corresponding points i n  Figs, A2 and A 3  (or A 4  and 
A5)  that the maximum shearing stress does not always occur on a plane 
normal t o  the sphere, 45' with the 
45' with the normal t o  the s u ~ a c e .  

B 
The mximum shearing stresses were not calculated, 

and 8 direction, but rather on planes 

CONCLUSIONS 

For Appendix A the following conclusions appear appropriate: 

1. There is very good agreement bebeen  theoretical  and experimental 
results -- taking into account a l l  of the physical differences between the 
models f o r  which theoretical  and experimental resul ts  were represented i n  
this paper, 

2. 
gration C j, when Q: = 10' than when a = 5'. 
of the spherical shell. 

More accuracy was retained in  solving f o r  the constants of inte- 
See conclusion 2 from analysis;; 

3. Conclusion 3 from the analysis of the spherical she l l  is  further 
substantiated by the resu l t s  represen-bed i n  the ampendix, 

4. One should exercise caution i n  using approximation methods i n  
which Q and/or aQ are  neglected i n  the mathematicab development o f  the 
theory, f o r  an ana.lysis of the problem considered i n  the appendix. 

v 




