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NOMENC LATURE

radius of middle surface of shell
uniform thickness of shell

Vo

Young's Modulus of Elasticity
Poissomn's ratio

angle in meridional direction, positive from the axis
of symmetry

bending moment per unit length, positive increases curvature
normal force, per unit length, tension positive

radial shear, per unit length

subscript § - meridional direction

subscript © - circumferential direction

2 o - total centrel angle subtended by the circular hole,

results are for A = 5

2 B - total central angle subtended by outer edge of

spherical segment, results are for B = 450

subscript & - inner edge of shell

subscript B - outer edge of shell

' - differentiation with respect to @

v - tangential displacement in ¢-direction

w - radial displacement, positive inward

o¢- stress in @-direction

o.- stress in ©@-direction

e
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INTRODUCTION

The purpose of this paper is to give the results of & stress analysis
of a spherical segment with circular hole at the vertex which is loaded

symmetrically with respect to its axis along the edges of the shell.

Results were obtained and are given in this paper for two cases.
Case I: General Loading, i.e., normal force, radial shearing force, and
bending moment applied at each of the two edges of the shell (Figure 1).

Case II: General Loading at inner edge with outer edge rigidly fixed.

The classical, small-deflection theory of thin shells was used.
This method, in short, involves the evaluation of four hypergeometric series
and their deviratives which give the solution to a fourth order differential
equation for the shearing force, Q¢. The development of the classical theory

is presented in Timoshenko's text, Theory of Plates and Shells.

The above problem is then extended by attaching an axially loaded circu-
lar cylinder to the inner edge of the shell. The manner in which this was
done is shown in the appendix. Several cases were analyzed, and the results
are summarized. The cases differ primarily in their relative geometrical
dimensions and outer edge conditions. These differences are summarized in

Table A-2 in the appendix.

The relative dimensions for Case Al were selected, so as to coincide,
as nearly as it was possible to do so, with a physical model from which the
principal stresses were obtained experimentally. A comparison is then made
between the theoretical and the experimental results, Figures A2 and A3.

In general, the two results are in good agreement.



FIGURE 1:

Spherical Segment with General Loading
at Inner and Outer Edges.

SL891 *OM-4T=-"INYO
Q31dISSYIONN
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BASIC EQUATIONS OF THE CLASSICAL THEORY

Since Qo = O because of symmetrical loading, the subscript {§ on Q is

hereafter ommitted.

I. Equilibrium equations.

]
O

(Nés - Q)tang + Ny - N

it

(N¢ + Ny o+ Q')tanf + Q = 0

(Més - Qa)tang + M¢ -My; =0

II. The stress-strain relations (Hooke's Law) in terms of

displacements.

N¢ = 5%727 [:(V' - W) + v4 (vcot¢ - W):l
Eh
o T [t - ey (o0 -]
Eh3
M¢ = 1082(1 - 2) [(v' +W't )+ y (v + w')cot¢]
Eh3

6 = 12a2(1 - 72) [(v +w')cotd + 7 (v + w'') ]

THE CLASSICAL THEORY

By making the substitution V = v + w' and using V and Q as the dependent

variables, the following differential equations are obtained:

Q' - Q'C0t¢‘ - Q(co‘t2¢ - 7) = E:%— v I1la
3 2
V' + Vicotd - V(y + cot2¢) . z92a”(1 - 77) IITb

Eh>
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Substituting for V in IIIb, the expression IITa, one obtains a fourth

order differential equation for Q. This may be written as two second order

differential equations in the following form:

Q'' + cotf Q' - cot2¢ Q + 21 52 Q=0 1.

where N a2 > 72
& = o2 32 - 7)) -
By making the substitution
Q= z sinf and x = sin2¢,
equation 1 becomes

x(x - 1)z + (5%/2 - 2)z_+ (11 2187)z/4 = 0 2.

where the subscript denote differentiation with respect to x.

It can be shown that equation 2 has two solutions

N
Zq = ;Ez: Anxn

n=0
o0
1 n
z, = zllnx + z %io an

An may be found by substituting several of the initial terms of z4 i

n

equation 2 and equating the coefficients of like powers of x to zero. Then

by mathematical induction, we find

4 - 2(n - 1)(2n + 1) + 1 - 218°
n T n-l n (n + 1)

nz2zl

AO may be any arbitrary constant except zero.



Similerly, by substituting several of the initial terms of Z5 in

equation 2, we find

b
Bo =1 + 218°
and 5
_ 1 2(n - 2)(2n - 1) + 1 - 2id _
B, = n(n - 1) {:( L ) Bn-l
+ (en - 5/2)A 5 + (1 - 2n)An_%] nz?2
Bl may be any arbitrary constant.
Since AO and Bl may be any arbitrary constant, they were both taken
egual to 1. |

By evaluating An and separating the real and imaginary parts of Zq and
substituting for z and x we obtain two series Ql and Qg‘ Similarly, for

z,, we obtain Q_ and Qh‘ It can then be shown that the complete general

2 3
equation for Q is
Q = ClQl + 02Q2 + C3Q3 + ChQu 3.
where Cj (j = 1,2,3,4) are constants of integration.

It can also be shown that the complete general solution of V is
2 2
V =C (09 + 257Q,) + C,y(9Q, - 279,)

+ c3(yQ3 + 282Q4) + C), (7, - 252Q3) L.

:ClVl+C2V2+C3V3+Cth

Having the solutions for Q and V, one may obtain, after considerable

algebric manipulation, the following relations:

My ;"25 {-Vcot¢ + 7v'] 5.

—



My ¥_§§ [v' + 7Vcot¢] 6.
N¢ = K/sin2¢ - Qeotp &
N, = -K/sin°¢ - Q' 8
0= - sin @ - Q .
= ?-'—(—Elft-ﬁ [K(sinyj 1n tan@/2 - cotf) + Q
+C, sin¢] 9.
W o= —%E I:K(l + 7)(cos@ 1n tan¢/2 + 1)
-(N¢ * NQ) +C_ (1 + 7)cos¢] 10.
o
%.m = /n %m = o/ -
%,s = g2 T3 = 6M¢/h2 12.
where
D = Eh3/12(1 -4,
= .
K =‘Na51n o+ Qa sinocosa ,

and CO is a constant of integration.

The subscripts m and B designate membrane and bending, respectively.

TABLES OF FUNCTIONS FOR THE CLASSICAL THEORY

Tables of values for the various series appearing in equations 3 to

12 were evaluated for 5 deg intervals from 5O to 450.

It should be noted that the hypergeometric series z9 and z, are con-
vergent for x = sin2¢ < 1. Hence the dedree of convergence is dépendent

uron the value of @ and & (ratio a/h and 7).
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For a/h = 25 and ¥ = 0.3 it was found that seventeen terms were ngeded

in each series in order to obtain an accuracy of five significant figures.
The following tables of values are included in this report:

Teble I - Q and Qcotf
Table II - Q' and V
Table III =~ M¢ and M0 .

RESULTS

Having the tables of values, one needs then to solve for the four
constants of integration CJ, by the conditions at‘the edges. These then,
in turn, are substituted back into the various expressions (equations 5 to
12) to obtain the desired results.

Case I ~ @General Loading

For the case of general loading the edge conditions are

at § =5

o]
N¢ = Nd Q = Qa and M¢ = Md

at @ = 45° Q=Q

8 and M¢ = Mﬁ .

The constant of integration, Co’ for equations 9 and 10 was determined
by setting the tangential displacemnt at the outer edge, VB’ egual to zero.

The radial deflections, w, for each of the independent loads, Na, Qa’
QB’ and MB are shown in Figs. 2a, b, ¢, d, and e.

The tangential displacement at the inner edge, \~ is

va/h = (0.039q, - 2.8ko0N, - ’+.Ol93QB) /En 13.

The membrane and bending stresses are shown in Figs. 3 to 10, inclusive.
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TABLE I
Q and § cot ¢
ame2s  ¥eo.3
Q= 01Q1+02Q2+03Q3 +6th Q cot
g Degrees Q Q, % | %, Qlcot ¢ Q2 cot 4 3cot¢ thotslf
5| .08706 | -.00686 | -.3L373 | .5923 9951 -.07842 -3.928 6.770
10] .16856 | -.05460 | -.40865 | L9618 .95595 -.30967 -2,3176 | 2.8140
15 | .2176L | -.18016 | -.26308 | .75170 .81225 -. 67218 -.9818l | 2.805k
20 16746 =4 1;0089 .23668 1.1275 L6010 -1.101l »65028 3.0978
25 | -.09555 | -.67733 | 1.2723 }.1.3120 | ~-.20L91 -1.L525 2.728L | 2.8136
30 | ~.70533 | -.8517 2. 8901 «730 -1.2217 4 -1.4752 5.0059 | 1.26
3% [-1.72213 | -.57885 | L. 6600 =1.47h1 | -2.459L -.82901 6.6635 | -2.1036
Lo J-2.93L2 J69L8lL §5.3040  t-6.17h1 | -3.L970 .82811 6,3213 | -7.3563
1 |35h6r | 3.583 | 2,053 A-13.lsh | -3.5467 | 3.5653 2.053 | ~13.Lsh




TABLE II

Qtand V

a/h=25 Y =0.3

0'E 00 '+ % 04, 09, v %h..-. AATARIRE AN

@ Degrees Q! Q' QB' Qh' v, v2 v3 vh
5 9887, | ~-.23577} -1.732L4 | -5.2378 | =-.5L07 | ~7.19L 1,8.83 28,57
10 .83161 | -.9316L] .2833 | 1.4906 | ~L.L605 | -13.941 | LO.8B68 | 33.909
15 216739 | -1.9859} 3.3L36 | L.o27) | -1L.819 | -18.03Lh | 62.022 | 21.960
20 | -1.5383 | -3.0096| 8.4,879 | L.0187 | =33.069 | -13.955 | 93.218 | -19.215
25 | =L.7621 | =3.0396) 15.396 } ~.0816 | -55.986 7.691 | 108.77 | -10L.72
30 | -9.359 -.30L481 20.98L § -1L.133§ -70.57L | 58.01L 61.2 | -238.54L
35 | -13.586 | 7.6377] 17.552 | -38.197] -L8.338 | 1l2.10 | -120.3 | -387.07
ho | -12,731 22,813} -8.420 | -69.969} s56.52L | 242,20 | -508.L8] -LL0.03
L5 1.9253 LLo003 | -7h.0L3 | -92.983] 295.1L ‘r729u,09 -1110.9' -173.6
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TABLE III
My and Mg
a/he 25  ¥=0,3
:-2—7%% = Cyligfi Ooligo+ Otz Cplgy, () "27}31 Mo = OpMgy+Caligp #C03g34 O, (*%)
@ Degrees M¢l Moo M 43 M 4 Mgl Mgz 1»193 MGb,
5 -21.035 | -106.42 | -265.8 [239.,53 | -11.93 | -106.76 | L28.1 369.1
10 -8l.306 | ~92,701 192,73 | 3bo7h § -L8.312 | -99.759 | 268.72 | 185.L3
15 ~180.60 | -3L.62 1,03.16 §-250.,43 | -10L4.51 | -71.633 | 331.59 | =.5L9
20 ~276.35 | 114.69 411,39 {-715.85 | -165.58 | -.L8L 356,49 | -262.79
25 -288,56 | 397.L6 1.76 §-1339.6 | -195.82 | 13h.2L § 212,80 | -606,23
30 -6l.66 | 803.2L -1129,5{-1861.7 | -130.6L | 332.h2 | -2L2.0 | -93L.5}
35 606,19 | 1185.6 =3202,1}-1627.3 | 119.0L § SL0.3L |} -1117.0f =991.22
L0 1901.1 § 1ll5.2 -596L.7{ 517.3 | 631.63 | 606.23 | -23L40.9}| -322.09
L5 372h.l | -57.63 -8037.2 6037.0 | 1385.9 | 250.33 | -3Lh22.1} 1653.1
i - --__:%é [Vj cot ¢ -+ V
j = 1,2, 3, L
**Me,j - = _15_3? [Vj' +X‘Vj cot qf]
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FIGURE 2a,b,c: Radial
Displacements (Dimensionless)

(a) Due to shearing force, Q
(v) Due to normal force, N,

(c) Due to shearing force, QB
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FIGURE 2d,e: Radial Displacements (Dimensionless)

(d) Due to bending moments, M,

(e) Due to bending moments, MB
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Case II - General Loading at Inner Edge and Fixed at Outer Edge

The edge conditions for this case are

at ¢ = 5° Ny = X

W Q= Qg end My =y

a

1}

at¢ h50V+w':v=Oand €O=(Ng~7N¢)/Eh=O

CO was evaluated by again taking vB = 0,

The radial deflections, w, for Case II are shown in Fig. 11l.

The membrane and bending stresses are shown in Figs. 12 to 15, in-

clusive.

The tangential displacement at the edge of the hole, Vo Was found
to be

va/h = (0.22 Qy = 2,8412 Nd)/Eh 1k,

The reactions at the fixed edge were found to be

QB = 0.045 ga + 0.000268 N, 15.
NB = 0.21k4 gm + 0.01865 N, 16.
MB = (k)hQa - 0.023 M, + 0.006825 hNd 17.

It was not possible to retain sufficient accuracy to evaluate (k), in

equation 17, however, it can be stated that

- 0.2=<k < O.
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FIGURE 11: Radial Displacements

(Dimensionless)
(a) Due to shearing force, Q
(b) Due to bending moment, M,
(c) Due to normal force, N,
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|

Figure 13, Merjidional Yending stresses, loutside

surface, | Oy o’ T9r Case IT - Fixed Outer Efge,
)

due to loads applied at inner edge.
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Figure 14, Circumferential membrane stresses, 0’6 m? for Case II - Fixed
4
Outer Edge, due to loads applied at inner edge.
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Figure 15. Circumferential bending stresses, outside surface, GB,B’ for
Case II ~ Fixed Outer Edge, due to loads applied at inner edge.
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DISCUSSION OF RESULTS

It is generally known that stresses produced by loads applied along
a circular hole (inner edge) of a spherical shell die out rather rapidly
away from the hole. The results of this paper bear this out.

On the other hand, it is not strictly correct to say that stresses
near the hole produced by loads at the outer edge are neglibible, even
though they are smaller than the stresses produced in the vicinity of the
outer edge. It is noted, however, if this outer edge is & supporting edge,
such as in Case II, these stresses are negligible. This is substantiated
by the results for Case II (Equations 15, 16, afd 17).

It was found, for a = 50 and B = h5°, that considerable accuracy was
lost in solving the set of simultaneous equations; necessayry to obtain the
constants of integration<cjl For these particulaf values of a and B, it
is desirable to have the original series evaluated to more than five

significant figures.

In considering the stresses produced by the shearing forces, qz
and QB and the normal force, Nd, it may be helpful to point out That each
one of these loads is held in equilibrium by a normal force at the outer

edge 2 NB o

CONCLUSIONS
On the basis of the experience obtained in carrying out the numerous

numerical work and the results presented in this paper, the following con-

clusions appear warranted:
1. Convergence of the original series for @ is very slow for values
of ¢ > us5°.

2. Evaluation of the series must be carried out to at least five
significant figures. More accuracy is desired, particularly for

small values of .
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If the critical loads are applied at the inner edge and the
outer edge acts primarily as a "supporting edge", the angle
B may be reduced, say, around 350. (Furthermore, it may

be stated that the results are affected very little by the

type of "support" assumed at the outer edge).

In viewing the results due to loads applied at the outer
edge, one should exercise caution in extrapolating the results

for different values of O and B.
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APPENDIX A

AXTALLY LOADED CIRCULAR CYLINDER ATTACHED TO SPHERICAL SHELL

Procedure

We now consider a spherical shell with an axially loaded circular
cylinder attached to the inner edge (See Fig. Al). We obtain Qyr Ny
and M& in terms of the axial load, P, with the following relationships:

. Q'Ct cosa + Na sind = P/E“r (&)
(W) = (W)g (b)
() - (&)

(at)x = 0 (adg)f = a (c)

Equation (a) is simply an equation of equilibrium. Equations (b)
and (c) equate the displacements and the slopes at the lower edge of the
cylinder and the inner edge of the shell, respectively.

From the general theory of cylindrical shells, we have the following

relations:

() = - = 13D (oM + Q) (a)

(dwe = 1
dx)x = 0 2/02Dc

N L2 Bt3
where F’ = §—L————Z—)- D

(EFMO + Qo) (e)

- . 2
2 2 ¢ T 12 (1 - %)

t = thickness of ¢ylinder

r = radius of middle surface ol cylinder
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Horizontal (radial) force on lower edge of cylinder

Ndcosa - Qu51na

And QO

The horizontal displacement at the inner edge of the shell, (wo)s,
is the sum of the horizontal components of the radial and tangential dis-

placements at the inner edge, i.e.,

(Wo)é = W sin, - vV cosQ (£)

It can be shown that the slope at the inner edge of the shell is:

aw 1 . a
2df)¢ =« " Em [;K (1 + 7)(cotax - sina 1In tan.e)
-Q ' n N
. o
sin“o

Thus, it is seen that the second derdvative nf the series for Q is needed.

This was done for @ = 50 and lOo, and the values are given in Table Al.

TABLE Al
Q"
@ Degrees Q" Q" Q" Q"
5 -0.32142 -5.4357 22.991 165.84

10 -3.5127 -10.726 25.212 4o, hak
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Several cases of an axially loaded cylinder connected to a spherical

shell were considered.

The relative gecmetrical properties and edge

condition at the outer edge for the several cases are summarized in Table

A2.

The values of the dimensionless, resulting loads 2nrQqy/h , 2nrMo/Ph,

and 2nrNg P, at the junction of the shell and cylinder, for each case are

summarized in Table A3,

TABLE A2

Summary of the Geometrical Dimensions for the Cases Considered

Geometrical
Property Test Model Case Al Case A2 Case A3 Case Al
a 3.&0 5o 5o 5o AQSF
B 68.4° 1y5° 45° 15° 15°

Outer Edge :

Condition @=8 Fixed Fixed Q6=MB=O Fixed Q =MB=O
/% 1.599 1.599 T1.599 %.663 7.19
h/t 1.01k 1.014 1.01k 3.84 2
a/h 26.51 25 25 25 25

TABLE A3
Partial Results

Dimensionless
Load Case Al Case A2 Case A3 Case Al

PrrQa /P 0.9925 0.9919 0.9750 0.9455

oMo /Ph 0.8475 0.8421 0.06086 0.3810

PrerNot /P 0.1297 0.13488 0.3293 0.3966
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CASE Al

The relative dimensions for this case coincide as nearily as it was
possible to do so with those of a test model. The principal stresses at
both the outside and inside surfaces were calculated and are plotted in
Figs. A2 and A3, The corresponding experimental¥* stresses are also plotted
on these figs. and are shown as enclosed dots. The results are for P = 2000 1b
and r = 0.80. The scale for the dimensionless stress, 2nxrh0P, is shown as

the right ordinate.

CASE A2
Case A2 is the same as Case Al except for the outer edge condition.

In Case Al it was fixed and in Case A2, QB = MB = 0.

The results for Case A2 are of very minor difference from Case Al as
indicated in Table A3. The principal stresses were calculated and it was
found that they were within 150 psi of Case Al, and hence are not included

in this report.

CASE A3
Case A3 differs from Case Al only in the r/t and h/t ratios. The
results for the dimensionless loads at the junction are shown in Table A3.

The stresses were not calculated.

CASE Ak

Case Alt differs substantially from the others in that the size of
cylinder relative to the shell is larger (o = 100). The r/t and h/t ratios
are also different. Q, = M, = 0, at the outer edge. The principal dimen-
sionless stress 2ﬂr0¢’n/P énd QﬁrhO;;n/?, were calculated and are

plotted in Figs. Al and A5, respectively.

¥ The experimental results were obtained from a personal commingue to
the author from Professor R. L. Maxwell, College of Engineering, Uni-
versity of Tennessee.
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FIGURE A4: Principal Meridional Stresses for Case Ak,
see Table A2.
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DISCUSSION OF RESULTS

A glance at Figs. A2 and A3 indicate a fair agreement between theo-
retical and experimental results. Before attempting to justify the dif-

ferences which do exist, we make the following analyses, first:

A comparison of the results in Table A3 between Case Al and A2, show
that the outer edge condition has very minor influence upon the results.

Hence, we may ignore that difference, for the moment, in this discussion.

In order to obtain intuitive exceptance of the other results in Table
A3, several factors must be taken into account. Namely, & has changed in
Case A4, and for Cases A3 and A4 the increase in the r/t ratio is partially

offset by the decrease in the h/t ratio.

A comparison of Figs. A2 and A4 yield the following observations for

the principal stresses in the meridional direction:

1. The stresses at the outside surface decrease as @ is in-
creased, i.e., the general shape of the curve shifts down-
ward, as ¢ is increased from 50 to 10°.

2., The stresses at the inside surface increase as Q is in=
creased; the general shape of the curve shifts upward, as
¢ is increased from 50 to 100.

Similarly for the principal stresses in the circumferential
direction by comparing Figs. A3 and A5,

3. The stresses at both the outside and inside surfaces, in the
vieinity of @, increase as & is increased, i.e., the general
shape of the curves, for a‘i’¢,§§25°, shift upward.

To obtain intuitive exceptance of the above observations, it may be

helpful to keep the following in mind:

(a) As a decreases, the condition in the vicinity of the inner
edge of the shell approaches that of a circular hole in a
flat plate.

(b) As o increases, this condition approaches that of a circular

cylinder.



If we now pass an average smooth curve through the experimental points
in Figs. A2 and A3, and then make a similar analysis as was done above,
we would be led to the same three observations as those listed above.
Hence, we conclude that in general, the major differences between the theo-
retical and experimental results in Figs. A2 and A3 are due primarily to
the fact that o is of different megnitude in Case Al and the test model.

It is noted in Fig..Alk that only membrane stresses exist in the
vicinity of the outer edge, (the two curves coincide for ¢}{’37.50°).

This may be attributed to the fact that QB = Mﬁ = 0 at the outer edge.

The meximum shearing stresses were not calculasted. It may be noted,
however, by comparing corresponding points in Figs. A2 and A3 (or Ak and
AS) that the maximum shearing stress does not always occur on a plane

normal to the sphere, hSo with the ¢ and © direction, but rather on planes
45° with the normal to the surface.

CONCLUSIONS
For Appendix A the following conclusions appear appropriate:

1. There is very good agreement between theoretical and experimental
results -- taking into account all of the physical differences between the
models for which theoretical and experimental results were represented in
this paper.

2. More accuracy was retained in solving for the constants of inte-
gration Cj, when o = 10° than when o = 50. See conclusion 2 from analysis
of the spherical shell.

3. Conclusion 3 from the analysis of the spherical shell is further
substentiated by the results represented in the appendix.

i, One should exercise caution in using approximation methods in
which Q and/or %% are neglected in the mathematical development of the
theory, for an analysis of the problem considered in the appendix.





