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GENERATED ERROR IN THE SOLUTION

OF CERTAIN PARTIAL DIFFERENCE EQUATIONS

1. sStatement of the problem. The results to be given here are largely

well known, but the form of the resultS’apd the method of obtaining them are
new and seem to have some advantages of simplicity and generality. The
partial difference equations being considered are those which arise in the
digital solution of certain linear partial differential equat%ons. The
regions considered are rectangular with sides parallel to the axes. For a
region in the plane, let it be subdivided by lines parallel to the y-axis
with uniform separation A x, and by lines parallel to the x-axis with
uniform separation Ay, and assume it to lie in the first quadrant with two
sides along the axes. Let there be n points in the horizontal direction
interior to the region and m points in the vertical direction. If

u(x, y) is the required function, define

w = ui+n(j-l) = ui,j =uw(inx, JAY).

In some cases values along the first line must be obtained independently of
the method to be discussed, and the numbering will start along the line 24y.
This should be plain from the context.

If u is the vector whose elements are the U s the equations to be

solved are of the forms
Au = b.

The matrix A will be triangular for the so-called explicit schemes, and in



“O.

any case can be partitioned into mxm blocks, each block being a matrix of
order n. All blocks on a line parallel to the main diagonal are equal.
The elements of A will depend upon the form of the partial differential
equations to be solved, and upon the particular difference approximations
to the derivatives. The elements of b will depend upon these factors and
upon the boundary values.

Let A* and b* represent the matrix and vector actually in the machine,
possibly differing from the true A and b because of rounding errors. Let
uw* represent an approximation to the true solution u, however it may have
been obtained. The approximate solution would, in general, be tested by
a substitution to compare Au* with b. However, AW will not be available
exactly, but only approximately as a machine product (A*u*)* of digital
elements. The maximal deviation of this vector from the desired Au*

will depend upon the machine and the method of programming. Consider the

decomposition

Alu - u¥) = [Au - (A*u*)*] + [(A*u*)* - A*u*] + (A% - A)u*

where dl’ de, and d5 are the bracketed vectors and d is their sum. Of these,
L

since, by hypothesis, Au = b, and (A*u*)}™ is the result of the machine compu-

tation, d. is known directly. The magnitude of 4, depends upon the pro-

1 2

gramming, but this being fixed o bound can be obtained. Also A* - A can be

bounded, and, in terms of any consistent norm (2, 3)

sl =12 = A =]




Hence each term on the right of
el =1yl + gl + lial
can be bounded. Since
u - u¥ = A_ld,

it follows that

la

Il - wx{ = {la™] . all.
Hence if, in terms of a suitable norm, it is possible to estimate HA_lH s

an upper bound on |ju - u*” can be had. This will be the objective in each
case to be considered.

Repeated use will be made of certain known, but perhaps not well known,
properties of matrices. In the interests of continuity these will be
assembled in an appendix.

An approach somewhat similar to the one taken here is developed by John
Todd (6). The present treatment differs, however, in the use of matrix norms.
For notation not explained here, see references g,and’g, The major lemmas
in the appendix are contained at least implicitly in referencelg. No attempt
is made to trace the various difference schemes to their sources, and only
some more recent papers are listed below. Since this report is intended
mainly to illustrate a method, the schemes selected for treatment certainly
are not assumed to exhaust the list of possibilties. Moreover, except in

the final example, no cases with variable coefficients are considered.
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2. The parabolic equation. Bgu/ax = du/dy. The simplest approxi-

mating difference equation is
2 2 ;
ulx, ¥)/(£%)° = b ulx, v)/by,

where GX denotes a central difference with respect to x and [3y\a forward

difference with respect to y. The matrix A has the form

I 0 0
-B I 0
A =
0 =B I
where
2
B=(1l-2X)I4+ g, Y = Ay/(Ox%)7,

and K = Kn is the matrix defined in Lemma VI of the appendix. Since

I 0 o .
N B I 0
A = 2
B B I

it follows from Lemmas I and II that

HA"'lHeén [1 F B 4 et |xm°l(3)ﬂ ,




-5-
where A(B) is a proper value of B of maximal modulus. By Lemmas V and VI,

the proper values of B are

lv(B) =1-2%4 2¥cos v O

=1 - 4Xx sin2(Vq)/2), o="/(n+ 1).
1f
Y 1/2,
then
\}\V(B)~ £ 1.

In that event

Otherwise, however, one has the less favorable estimate

]e < n[(mr - 1#’“ - 1}/@().

=

Next consider
82 u(x, ¥)/@x)2 =u_ 5. u(x, y)Dy
X ’ Y Y ’ )

Thus




where
B =2%(K - 21),

with X as defined before. One verifies that

= e m e o wm @ o e m

where the polynomials mv(k) = mv(k, 1) are as definéd in Lemma IV.

The proper values lv' (B) are given by

)\V" = )\V' (B) = "16)(2 sin 2(\"@/2) (V“ =1, 2,--, n):
and those of mv(B) are given by wv(kvs, 1l). For any v', set A = kvﬂ in
Lemma IV. Then MMy = -1, and we can assume -ul:> 1> u2 > 0. For large

v,

v

wv()‘v") : Hy




_"{'_
approximately, and the method is unstable for all values of K.

The same formulas can be converted to an implicit scheme:

ai w(x, ¥)/(Cx)? = o, u(x, ¥)/Ay.

The matrix A now has the form

where B is the same as above. This matrix is the transpose of that con-
sidered in Lemma VIII, and has the same proper values. Let lv’ represent
the zeros of wm(l, 1), and let Bv represent the proper values of B. Then
the proper values of A are of the form lv' + Bv’ by the corollary to Lemma
IX. Hence those of A"~ are of the form (lv, + Bv)-l{ As m and n incresse,
with fixed N, there are values of v' and v for which A+ By becomes as
small as we please. Consequently this method, like the other, is unstable.

Consider, next, the implicit scheme
2 2
8, wlx, ¥)/(ax)” = 7 u(x, ¥)/oy,

Where<§& represents the backward difference in y. The matrix is
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with the same matrix B. The inverse is

-1

(I - B) 0 0
) -
L la-»F @-»7 0
AT =
- -2 -1
(:[-B)5 (I - B) (I - B)
The proper values of I - B are
1+ 8X sine(v‘cp/2) > 1, (vt =1, 2, ... , n).

Hence all proper values of (I - B)"Y are < 1 independently of Y, whence
”(I - 13)"’”e < n,
HALlne < oo
Another implicit scheme is
A5+ E) ux, ¥)/@x)7 = 24, ulx, A,

where Ey represents the displacement operator in the y-direction. The

matrix has the form




Let

P=1-8/2 Q= (1-8/2)7" (1 +8/2):

The matrices P and Q are commutative, so that

p~t 0 0 \

- - \

1 QP 1 p~t 0 1
AT =

QEP'l QP'l p~t )

and P and Q are diagonalized by the same orthogonal matrix. The proper

values of P are
KV(P) =1 + h\Csine(V@/E), @ =T/(n + 1)

and those of Q are

1 - 4X sin2(vcp/2)

A (Q) =
v 1 + %X sin®(v0/2)

Hence

\kv(Q)} < 1< (P),

and therefore

e
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independently of v and of Y(, Consequently

|P_1He<‘nm°

Mitchell (4) proposes a family of methods
o~

(o + g55Y) 57 ulx, ¥)/6x) =3, ulx, LY,

a+ B =1.
It
2
y = %" oy,
P=(20+7)I"£, ‘
Q = (28 - 7)1 -BK,
M=-p"q,
then
/
P 0 0 P 0 0 .. I 0 0
Q P O o O P O ° "M I O
A= = *
0 Q P 0 0 P o -M I

lam e e e o w @ w = am em om am e - @ o = e @

Hence




I 0 © p-d 0
4, M I o o ¢t
A =| 5

IM™ M I .f\-------

and

b = L el o s b )
The proper values of P and Q are
A(P) =7 + basin (w/2), o ="/(n+1)

and
1,(@) = -y + kg sin(vp/2)
while those of M are
A (M) = 2 (Q)/2 (B)-
‘Consider this function

_y-- k4p sin29
b b

s 0 <0 <m/2.
y + ho sin"6

o e)

On this interval ¢ is monotonically decreasing and

H0) =1, o(x/2) = L2,



If

then

and

In any case
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azl/2 -y/h,  B=1/2+y/k,

p(v/2)= -1

\XV(M)"’4 1.

lv(P)_> 7.

Hence when ¢ and B satisfy the above conditions

and

M'V P'l, Ie $n/7

[P

The scheme of Du Fort and Frankel (1),
e

f, 8, u(x, ¥)

u(x =ax, ¥) - wx, ¥y +Ay) - u(x, y -2y) + u(x +4x,

Y)

AY

(ax)® :
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leads to the matrix

/(1 + 201 0 0 .
-2¥g (1 + 201 0 ‘e
A =
-(1 - 201 -2Y(X (1 + 21

™ oo e W es P av w0 o ov @ > e an @ w e  om

§
Q
=
—
o

or e> s w m e oem e

\
__ex 2_l-2¥_, 5
O=1TTee P =T7onx”™ O
I 0 ©
C I 0
At (reoH] L ;
C, C I ..

Cv = (A)V(CEK) p)}
with the polynomial as defined in Lemma IV. The proper values of dK are

Ao = xv,(oK) = 206 cos V' @, ¢ =7/(n + 1),

and those of Cv are

W (X 5 p)"

il

A (c)



i

Tt will be shown that for any Y{, and any v',
va(}tvn p)|< v+ 1.

Since, by Lemma IV,

W v-1 v
Wy, =] vy Hp toees HHg

(reality of the y's is not required), the result will follow if it can be

shown that \“i\ < 1. Ifp

, and u, are complex, then ‘u l‘ = iuzl and

1.

'“1“2’ = ‘92

Ifu, andu, are real, p, > MQ , then

1
2
=g cos VIQ + (02 cos2 vigp + 1 - 20)1/

H1
but
(ul - g cos V' @)2 = (1 - 0 cos V' @)2 - 26(1 - cos v' )
(1 - o cos V' @)2, |

ul< 1.

This is the required result.

It follows that
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HCvHe <n(v+ 1),
whence, on summing
Zle[ls < n°/2,

and, therefore,

“A_l'le < -2n+mEY( '
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2 2 2
3. The hyperbolic equation. Bzu/ax = 0 u/dy". The simplest scheme is

2 2
Bx u(x, y) 5y u(x, y)

2 - 2
(ax) (2y)
with
I 0] 0]
-B I 0]
A= ’
I =B I
2
B=2(1-1T7)I+1T XK, T =Ay/Ax
Then
I 0 0 ..
-1 wl(B) I 0

wm e we oo me am ms me om e we

with the polynomials wv(k) = wv(k, 1) defined in Lemma III. The proper values

of B are
2 2
kve(B) =2 -kt sin”(v' ¢/2)) ¢ = ﬂ/(n +1).

Hence if 1 £ 1, one can define a real OV, > 0 by
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2 cos @, = lv,(B).

Then

sin(v + 1) o,
w’v [}\V'(B)J = sin GV. )

Hence
le‘[lv'(Bﬂl £ csc O, -

If T= 1, then

and el is the smallest of the 6's. For 1 <1, every GV, > nt/(n + 1). Hence,

neglecting terms of higher order, sin GV,E: n/(n + 1) and hence

v, [xv.w)] < o/r

Therefore, to the same order,

|

Somewhat analogous to Mitchell's scheme for parabolic equations is the

A-l“e £ 2 m/x -

following one for hyperbolic
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- 2
(dE_+BE l) 5, u(x, ¥) 632, u(x, y)

y y - —
2
(ax) &y)
a+ B =1.
If, this time, we define
T =aX/AY,
and
2
P=(1" +22)I - oK,
2
Q = (1 + 28I - BE,
then
P 0 0
-Q#EI P 0
A =
. Q -2£I P ..
I 0 0 P 0 O
-1
-2T P I 0 . O P O
QP 1 -ETEP . I . 0O 0 P

The matrices P and Q are symmetric and have the same proper vectors.
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Their proper values are

Let

and let

Consider

2
kv.(P) = 12+uasin(v' 0/2), @:nfl
2 2
XV,(Q) =1 + 4 B sin"(v' ¢/2).
MP) = atag [ (P), -, M (P)],
Ma) = atag [A(8), -or , A ()],
P=va(P) VS, qQ=va(Q) V.
I 0 0 /0 o
—2g2p~? I 0 e, 10
o Pt Pl 1oL c, ¢ I




Hence they are symmetric and have the same proper vectors as P and Q. Hence
the diagonal forms A(CV) satisfy the same recursion with A(P) and 4(Q)

replacing P and Q. Let

2. -1 2
)‘Vl =27 )\V' (P)) pvl = )‘vt (Q) A

Then the v'th proper value of Cv is, by Lemma IIIT,

v
I sin (v' + 1) 0,

lv' (Cv) = sin QV,

where

P
H

2 P, COS QV,-

Direct verification shows that

A, <2p.,

and hence that QV, is real. Hence

and if




-21-

then

and
HCV‘I <n max csce e

From the definition ev, is least for v' = 1. For this

sin © ?% .
Hence
}‘v' (CV) = ':r—g
Hence
e = m e, =L
v
or

< me




-0

Another scheme considered by Mitchell is

2 -1 -2 2 2 _=-1
5, [a + (1 -2a) Ey +Q Ey ] u(x, y) =7 sy Ey u(x, ¥),
AX
T = ——— s
AY
The matrix is
P 0 0
-Q P 0
A= 3
P -Q P

2
=(1t°+2a)l-ak,

d
1

Q=2(12-1+2a)I+ (1-2aE

Again the matrices P and Q are symmetric and have the same proper vectors.

Let

Then

- e e o o e = - - " m e e = -




-23-

and

-1
P 0 0 I 0 0 ..
-1
-1 0 P 0 ¥y (M) I 0
A =
-1
0 0 P W2(M) wl(M) I ..

- e e e om e on w m I . T R,

The proper values of P are

kv'(P) = 1% 4 2 a sin2(v' 0/2), ® =g 1 T 3
those of Q are
lv,(Q) =2 [Tg- (L - 2q) sin2(v' @/2)}’
and
2, (@)
}\V,(M) = m = 2 cos Qv,é 2
Hence ev. is real and
q;v rL-}\V'(M)I £ csc QV,-
The maximum cosecant occurs at the minimum ev,. Neglecting terms of higher

order, this leads to




Also

Consequently

ok~

A, (P <17
a7, < Boe”




-25-

4, The elliptic equation. Bau/ax2 + Bzu/ay2

scheme

=0
5 5
(ax) Ay)
will be considered. If
T = é-y—
AX
the matrix is of the form
B -I 0
-I B -1
A =
0 -I B

with

[»)
B =21+ 1)1 - 7K.

The proper values of B are

A,(B) =2+ 21° sin2(v' 0/2), P

and, by Lemma IX the proper values of A are

0.

A

+

Only the simplest



The least of these occurs with v = v' = 1, giving

when terms of higher order are neglected. Let

Then, to the same order of approximation

2
-l)__ 2 m < 2m2
- 2 2 2
(1 + 02T ) T

A(A

Since A is symmetric and of order m n,

3
-1 2m’ n
O

Finally, consider the elliptic equation

2 2

 u 3 u
2+—_2"U(x)y)u=0(x: y)

d x dy

and the difference scheme




27

2 2
b, ulx, ¥) By ux, ¥)

5 + ) = p(x, y) u(x, ¥y) + o(x, }’)
(ax) y)

If one takes, for simplicity,

the matrix has the form

Bl -1 0
-I B -1 o
A= 2
0 -I B
>

- om G w ow om e

where

By = b1 + P1 -K

and P, is diagonal. If u(xX, y) > O everywhere, it is possible to apply

Lemma X with g = e, and
P = diag (Pl, Poyeres P ),

m

since clearly

(A -P) ez O.

Hence, since



it
wo=min p(x, y)
X ¥
then
P, =2,
and hence

”A-l“e s phe?

In any particular instance the requirement P 2 O is somewhat more
stringent than necessary, and somewhat stronger results can be had as follows.
The matrix M of Lemma X has the form of the matrix in Lemma VII with E
replacing B. Hence one can determine the  and g required in Lemma X, and

take

R=A-(uI -M).
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APPENDIX

Lemma I. If V is any unitary matrix of order n, then
W, <=2, (M|, =aY7
he = ’ e! — ’
By the Schwartz inequality, for any vector v,

Il

T 2 T T
(e” |v])" € (e e)(lv ,.]vl) =n Iv
where Ivl is the vector whose elements are the moduli of those of v, and

the vector e =:Zei is the vector of which each element = 1. If v is any

column, or VT any row, of V, then
'vT'.‘v| = 1.

Hence the lemma follows Iimmediately.

Lemma II. Let B be a Hermitian matrix of order n, and let A(B) be a

proper value of maximal magnitude. Then

8, <h ®)]a.
In fact, if
B=VAV,

where V is orthogonal and A diagonal, then
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il =[] - 1ir]]-

for any norm. But
[l = e -

Hence apply Lemma I.

Lemma IIT. Define the polynomials wv

=
}-—‘
i}
-
e

If Ky and oy satisfy

2
o= XAl +p =

then
v+l v+1
v, o= ?
v Hy = Mo
v
WV =(v+1)p,
It

7]

(%, o) Pl

0,
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let
A =2 p cos 6.
Then
y o sin(vel)e
v sin ©
If
}\27402
let
A =2 p cosh 6.
Then

v - p” sinh (v + 1) 8
v o sinh © )

The proof is by induction.

Lemma IV. Define the polynomials wv(l, p) by

(-I)O=l,

e



I{'Jl and Ho satisfy

then
v+1 v+l
Hy =
w =
v My = Ho
A=2 o] sinh e,
then
B va cosh (2v + 1) ©
Woy ~ cosh © ’
oVt simaevoe
Woy-1 = cosh 6 .

The proof is by induction.

Lemma V. The zeros of the polynomials wv(l, p) defined in Lemma III

are

lv' =2 p cos V' Q, P =

By Lemma IIT,
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v = pV sin (v + 1) ®
v sin © ?

A = 2 cos 8.

Hence wv vanishes for

Corollary. The zeros of uv(l, p) as defined in Lemma IV are

lv' =-2p 1cos v' o, vi=1,2, ..., V.

Lemma VI. The matrix

L T

of order v has (-l)V wv(l, 1) as its characteristic polynomial, where

wv(l, 1) is defined in Lemma V.

One verifies that the polyncmial

det (A T - KV)

satisfies the recursion for wv

Lemma VII. Let the matrix B be a square matrix of order n, and let




B -I 0
-I B -I
A:
o -I B
be of order n m. Thus
W8 0 0 ¥ (B) -y (B) 0 \
¥o(B) ¥, (B) 0 0 ¥o(B) -y, (B) |
A =

¥o(B) ¥ (B)  ¥,y(B) -/r 0 0 ¥5(B) /

V-1 -1
‘/ Vo Vo Yo V¥ ¥ 0 0 \“’o o 0
1o-1 1
1 |0 o 0 Y1 ¥ 0 Vo ¥y O
= 1o-1
0 0 ’1’2 0 0 ‘er \if§ ‘Jfo Wl ‘er

The verification' is direct.

Lemma VIIT. Let the matrix B be a square matrix of order n, and let

B I 0

-I B I
A=

0 -I B

Eg of order n m. Then
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/’wO(B) 0 0 .o wl(B) wO(B) o} ..
[ wp(B)  w, (B) 0 A, o) wy(B)  w (B) ..
wO(B) wl(B) we(B) .. 0 o} ws(B) .o

where the polynomials wv(k) = mv(k, 1) are defined in Lemma IV.

The verification is direct.

Lemma IX. Let the matrix B of Lemma VII have proper values

kv,(B) (v’ =1, 2, ... , n). Thus the matrix A of that lemma has the proper

values

kv,(B) -2 cosanf]], v=1,2, ..., m.
From Lemma VII it follows that
det (A - AI) = det wm(B - AI).
Let
wm(k) =(x - kl) vee (X - km)
where the kv are those given in Lemma V. Thus

V(B = AI) = (B -2 - MI) ... (B - AL - 2 _I).

Hence express B in Jordan normal form and take the determinant of both sides

of the identity.
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Corollary. The matrix A of Lemma VIIT has the proper values

Apply the same argument using the corollary to Lemma V.

let M = 0,

Lemma X. Let D > 0, R 2 O be nonsingular diagcnal matrices,
g > 0, and
Dg =2 Mg-
Then
-1
o+ r-w™ gl =1
g
Hence if
(D+R =M x =1y,
-1
< .
HXHg "‘HR y”g
In fact,

(D+R -M) g2 Rg >0,

=1
and (D + R - M) = 0. Hence

-1
g>(D+R ~-M) Rg.

This proves the first assertion. Since
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X = [(D +R - M)-l R] (R'l y),

the second follows immediately.

Corollary. If Mg = pg, u being the maximal proper value of M and g

the proper vector belonging to it, then

H(“ I+R=m"T RHg = 1.
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