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INTRODUCTION

A singular linear transformation L does not have an inverse.

Nevertheless, it is always possible to find a partial or pseudo-inverse

M of L , that is, a linear transformation M such that LML = L .

If L exists, of course, then L~ is a pseudo-inverse, for LL~ L = L

From the equation LML = L one can deduce an important application

of the pseudo-inverse. Suppose that the linear equation

Lx = yo ,

in which yQ denotes a given vector, is known to be consistent; that is,

there exists x such that Lx = y . Then since
o o o

LMy„ = LML x = Lx = y ,
o o o •'o '

it follows that My is a solution of the given linear equation.

A pseudo-inverse is also useful in solving the homogeneous

equation Lx = 0 . Since L is singular, I - ML ^ 0 . If z is in

the domain of L , then

L(I - ML)z = Lz - LMLz = 0 ;

in other words, x = (I - ML)z is a solution of the homogeneous equation

Lx = 0 . In fact, I - ML projects X onto the null space of L .
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In the finite-dimensional case L is a matrix, and an explicit calculation

is presented (Chapter II) for a pseudo-inverse M of L . This procedure

is suitable for machine programming and leads to an M with the desirable

feature that the non-zero columns of I - ML form a basis for the null

space of L .

K. 0. Friedrichs [5J is credited with coining the term pseudo-

inverse; he applied the notion to various problems in applied mathematics.

H. Hamburger [7J called M apartial inverse and applied it in his
study of non-symmetric operators in Hilbert space. As an algebraic concept

with perhaps a different name, the pseudo-inverse appears in several

works on linear algebra. The basic algebraic discussion of this topic

which best suits the needs of this paper is given by Reinhold Baer

The available material on linear transformations in Banach spaces is

8extensive [ct, 2 , 8 , [13JL

Chapter I presents notation and basic definitions.

In Chapter II the algebraic properties of singular linear trans

formation are investigated. Particular use is made of the notions of a

complementary transformation and of an expanded range. Chapter II

concludes with the finite-dimensional calculation mentioned earlier.

Since linear transformations in infinite-dimensional linear

topological spaces are not necessarily continuous, one is led to investi

gate properties of a linear transformation which assure the existence of

Numbers in brackets refer to the bibliography at the end of
this paper.
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a continuous pseudo-inverse. This investigation for normed spaces

constitutes the major part of Chapter III.

In Chapter IV it is shown that under proper conditions (slightly

more general than those used by R. G. Bartle in I3 ) a pseudo-inverse
l_ J

can be used to prove the existence and uniqueness of the solution of

certain nonlinear functional equations. As an illustration of the theory,

an existence and uniqueness theorem is given for the nonlinear differential

equation

x(n) (t) = f[a, t, x(t), x'(-t), ..., x(n_1) (t)"

An abstract application of the theory is presented in Chapter V.

A generalization of the Riesz-Schauder spectral theory of compact linear

transformations is developed in a manner somewhat analogous to the

classical method but more nearly along lines suggested by Chapters II and

III of this paper. This study was suggested by a recent paper of L. M.

Graves I6J ;however, a deviation in an early definition (cf .501)

eventually forced the investigation into a different vein, leading to

the notion of a pseudo-resolvent.



CHAPTER I

FORMAL PRELIMINARIES

Notation

X , with elements x , denotes a Banach space; that is, X is a

normed linear space, and in the topology induced by the norm, X is a

complete space. X denotes the Banach space of all bounded linear

functionals x (x) defined on X .

The notation jx; P, Q, ••• | indicates the set of all elements x

with properties P, Q , et cetera. That S is a proper subset of T is

indicated by sCIt . For a subset S ofX, S =|x; x £X ,

x(x) =0 for all x£ S~j ;similarly for T , T(ZX* .
When S is a linear subspace of X , the symbol x/S is used to

denote the set of equivalence classes obtained by defining x, to be

equivalent to x2 if and only if x, - x2£ S . Under the usual

definitions, x/s is a linear space; the elements of x/s are called

cosets of S . If S is a closed linear subspace of X , and if the norm

of a coset |£ x/S is defined by

IIIII - inf ||x|| ,
X£ |

it is known 12, Chapter 6, page 99 that x/S is a Banach space.

It is known 1, Chapter 1, page 12J that every linear subspace

S of the space X has a complementary subspace T( X . This means
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that an arbitrary element x 6 X has a unique decomposition as x = s + t ,

with s6 S and t € T ; or equivalently, that S f] T = 0 (the zero

vector) and S + T = X . It should be noted that a complement is

ordinarily not unique.

Let X and Y denote two Banach spaces and y = L(x) a linear

transformation, not necessarily bounded, with domain D(L)CZ X and

range R(L)CZ Y. N(L) = j~x; x£ D(L) ,Lx =0~\ is called the null

space of the linear transformation L . Evidently N(L) is a linear

subspace of D(L) , and if L is bounded, then N(L) is a closed linear

subspace of D(L) . If L is bounded, its domain of definition can be

extended to the boundary of D(L) by defining for an arbitrary boundary

point xQ ,

L(xQ) = 11m L(xn)
n —^ "o

where x is any sequence contained in D(L) and converging to xq .

When L is bounded, it can therefore be assumed without loss of

generality that D(L) is a closed linear subspace of X ; moreover,

since a closed linear subspace of a Banach space is a Banach space, it

can and will be assumed that D(L) = X . This convention is used also

whenever the discussion is purely algebraic in nature.

In conformity with modern terminology MDieudonne 4 , Yood 11

when L is bounded and when R(L) is a closed linear subspace of Y ,

L is termed a homomorphism. F. J. Murray 10 has constructed a closed
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linear subspace for which there does not exist a bounded projection of

the whole space onto the subspace (cf. 3»11 below). Thus when L is a

homomorphism and R(L) has the property that there exists a bounded

projection of Y onto R(L) , L is termed a P-homomorphism„ L is an

isomorphism if L is a homomorphism and the correspondence between D(L)

and R(L) is one-to-one»

For any transformation L , the restriction of L to a subspace

SCZD(L) is denoted by L0 » In particular I„ denotes the identity
b b

transformation on S .

The equality of two transformations K and L means that D(K) =

D(L) and K(x) = L(x) for all x in D(L) .

Some Basic Concepts

lo1 Definitiono A transformation J is said to be an inverse of

a linear transformation K provided that D(j) = R(K) , and

^ - JD(K) ' KJ " JR(K) "

It follows immediately that J = k"1 exists if and only if K(x) =

0 implies x = 0 . If K~ exists, it is unique; moreover, it is linear.

1,2 Corollary. If K is an isomorphism, then J = K exists

and is also an isomorphism.

Proof. It is clear that J exists and it follows from 12,

Theorem 1, page 162, and Theorem 6, page 163 that J is bounded.
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The following definition introduces the basic concept investigated

in this paper.

1.3 Definition. A linear transformation M is said to be a pseudo-

inverse of a linear transformation L provided

LML = L ;

that is, LML(x) = L(x) for each x £ D(L) .

It should be observed that the definition requires D(M) to

contain R(L) and D(L) to contain R(ML) .

-1 -11.4 Corollary. If L exists, then L is a pseudo-inverse;

and if M is any pseudo-inverse, then M = L~ .

Proof. Since L D(L)"j =R(L) ,it follows, if M is apseudo-
inverse, that L M(y) = y for arbitrary y£ R(L) ; therefore, LM = L,T,

R(LJ

The application of l" to the equation LML(x) = L(x) gives ML(x) = x

for each x£ D(L) ,and thus ML =I.^ . An appeal to Definition 1.1

and the remarks following it completes the proof. It will be seen that

M is not unique unless L exists.

In contrast with the definition of an inverse, from which linearity

of the inverse can be proved, the definition of a pseudo-inverse prescribes

linearity as a preferential condition. That this condition is independent

of the condition LML = L will be shown in the next chapter.



CHAPTER II

ALGEBRAIC DISCUSSION OF THE PSEUDO-INVERSE

Some Basic Properties

In this section some elementary lemmas and theorems are established

for reference.

2>1 Lemma° LML =L if and only if (LM)r(l) =I-. .
Proof. That the second property follows from the first was shown

in Corollary 1.4. Conversely, if (LM)r(l) =Ir(l) ,then clearly LML =

JR(L) L =L *

2.2 Lemma. If LML = L , then (ML)„/lJT x = I , x .
;R(ML) R(ML)

Proof. Clearly R(ML)(TX = D(L) . Suppose z£ R(ML) . Then

z = MLx for some x£X ; hence, MLz = ML(MLx) = M(LMLx) = MLx = z .

The converse of 2.2 is valid if R(ML) - X . Then ML = t ,

LML =L ,and by 2.1, LM = IR/L\ - Thus one can state the following

theorem.

2°5 Theorem. A linear transformation L has an inverse if and

only if it has a pseudo-inverse M , with domain R(l) , whose range is X

2.4 Lemma. If M is a pseudo-inverse of L , then R(ML) is a

complement of N(L) in X = D(L) .

Proof. For arbitrary x£ X , MLx £ r(ml) , and since LML = L ,

x -MLx £ N(L) ; therefore, since x = MLx + (i -ML)x ,X = R(ML) + N(L) .

If, moreover, x£ R(jjL) f)N(L) ,then x =MLx' for some x1 £ X , and

Lx = 0 ; hence, 0 = Lx = LMLx = Lx' , and since M is linear, M(Lx') =

x = 0 .
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2.5 Lemma. LML = L if and only if R(ML) contains one and only

one element z from each coset C of N(L) in X and Lz = L(C) .

Proof. Let LML = L and let C be an arbitrary coset of N(L) ;

suppose z. and z are elements of C and both are contained in R(ML).

Let z± =My1 and zg = My2 . Since z± - z2 £ N(L) , L(Myx -My2) = 0;

that is, LMy1 =LMy2 . Since LM =1,^ ,y =y£ ;and therefore

z1 = z2 . On the other hand R(ML) does contain at least one element

z for which Lz = L(C) . In fact, if y = L(c) , z = My is this element.

Since LMy = y = L(C) , My £ C ; and since My = MLx for some x £ X ,

My £ e(ml) . Therefore My £ C D R(ML) and the first assertion is proved.

Conversely, if one has a prescription which selects one and only one

element z from each coset C and Lz = L(C) = y , one defines M by

the rule: My = z . Then LM = I-v and LML = L , but this M may

be nonlinear.

With the aid of the preceding lemma, a simple example shows that

there may exist nonlinear M for which LML = L . Let X = D(L) denote

the Euclidean plane with a cartesian (u, v) coordinate system and

suppose L is the matrix

0 1

0 1

It is easily seen that R(L) is the one-dimensional subspace coinciding

with the line v = u and that N(L) is the u-axis. Hence the cosets

of N(L) are the lines v = k , and L applied to one of these lines
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is just its intersection with the line v = u . Let G denote the graph

of any continuous monotone function f(u) ; for definiteness, suppose

f(u) = u5 . Clearly GPlC is a single point for any coset C . Thus

for y = C PlR(L) , define My by the rule: My = z = G C] C • Clearly,

M is nonlinear; yet, LML = L .

2.6 Theorem. Every linear transformation L has a pseudo-

inverse M .

Proof. This proof is an adaptation of the proof of 1, Proposition

2, page 179J . Since N(L) is a linear subspace of X = D(L) ,there

exists a complementary subspace S of N(L) in X . If x and x* are

elements of S such that Lx = Lx° , then (x - x') £ N(L)O S = 0 ,

and thus x = x* . Therefore the restriction L of L to S is a

one-to-one and linear transformation of S onto R(L) for R(L) =L j_XJ =

L S Q N(L) = L[si . Thus it is seen that Lg has alinear inverse
M . An application of Lemma 2.5 shows that LML = L ; thus M is a

pseudo-inverse of L .

It is quite possible for a pseudo-inverse M to have a domain of

definition which includes R(l) as a subspace. If, however, the domain

of M is restricted to R(l) , the following characterization of

M ; LML =L , M linear I can be noted. The proof is essentially

contained in 2.5 and 2.6.

2.7 Theorem. Each complement of N(L) in X determines a

unique pseudo-inverse of L , and conversely each pseudo-inverse M of

L determines a unique complement of N(L) in X ; that is, there is
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a one-to-one correspondence between the complements of the null space of

a linear transformation and the pseudo-inverses of the transformation.

Non-Singular Pseudo-Inverses

When R(L) is a proper subspace of Y , a pseudo-inverse M of

L , which is defined on R(l) only, has the obvious defect that it is

not defined for all y £ Y . Moreover, if the domain of definition of

M is extended to all of Y by some process, it may turn out that M is

singular on some subspace of Y and that R(M) is a proper subspace of

X . In this section it is shown that these difficulties may be circum

vented. Of fundamental importance in the discussion which follows is the

notion of a projection.

2.8 Definition. If the linear space X is the direct sum of the

linear subspaces S and U ; that is, for every x £ X there exist

unique s £ S and u £ U such that x = s + u , then the transformation

P defined by the rule Px = s is called the projection of X on S

along U .

Evidently P is linear and P = P . Just as easily seen is the

fact that Ijj - P is the projection of X on U along S . Lemmas

2.2 and 2.5 show that ML and L. - ML are projections of X on

R(ML) and N(L) respectively.,

2.9 Lemma. Any pseudo-inverse M of L can be extended from

R(L) to all of Y .

Proof. Let Z denote some complement of R(L) in Y and let

Q denote the projection of Y onto R(L) along Z . MQ is then
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defined for all y £ Y and is identical with M on R(L) .

2.10. Theorem. If there exists a one-to-one and linear transfor

mation A on some complement of R(L) onto N(L) , then there exists

a pseudo-inverse of L which is no?a-singular and is defined for all

y£ Y .

Proof. Let Z denote the complement of R(L) on which the one-

to-one and linear transformation A is defined, and let Q denote the

projection of Y onto R(L) along Z . Iy - Q is then the projection

of Y onto Z along R(L) . By 2.6, there exists an M defined on

R(L) such that LM = I , , . It is to be shown that the transformation

M]_ = MQ + A(l - Q)

has the properties stated in the theorem. It is evident that M-, is

linear and that M, is defined for all y £ Y . Suppose M1 y = 0 for

some y £ Y . Let y = r + z , r £ R(L) , z £ Z , denote the unique

decomposition of y ; then, M, y = 0 implies that

MQ + A(T - Q) (r + z) = MQr + A(l - Q)z
Y Y

= Mr + Az

Since r £ R(L) , Mr £ R(ML) , and by hypothesis Az £ N(L) ; therefore,

by 2.4, Mr = -Az = 0 . It follows from the non-singularity of M on

R(L) and A on Z that r = z = 0 , and hence that y = 0 . Since for
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r£ R(L) , M1 r =Mr , it follows that LMX r = LMr =r , and thus that

M, is a pseudo-inverse of L .

Complementary Transformations

In many linear problems in which the linear transformation L is

singular, particularly in differential equations, physical considerations

impose supplementary conditions on the solution of the linear problem.

Since the solution of any consistent linear equation Lx = r can be

written as

x = x_ +
*h

in which x is a particular solution and x, is the complete solution

of Lx = 0 , it follows that these supplementary conditions are conditions

on x^£ N(L) . If the conditions are linear and determine x, uniquely,

one interprets them as a non-singular linear transformation JL,, s on

N(L) into some appropriate linear space. The two transformations, L

and K-wjs , are then composed in some manner to form a non-singular

linear transformation T . In this section it will be shown that T can

be defined in such a way that T is given by the natural composition

of the pseudo-inverses of L and K.,/ ^ .

2.11 Definition. If X, and Xp are linear spaces, then X, =

xi ® x2 is defined by:

(1) X3 • {*y x5 =Up x2) ,xx£ Xx , x2 £XgJ.
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(2) if x3 = (xx, xg) and x' = (x|, xp , then

x5+x- =(x1+x|, x2+x«) ,

and for any scalar a ;

(3) a(x1, x2) = (axx, ax2) .

X^ is called the direct sum of X± and X2 ,and is evidently

a linear space. The subspaces X, © 0 and 0 © Xn of X may

and will be identified with X and X respectively.

2.12 Definition. Two linear transformations, L and K , each

with domain X and range in Y , are said to be complementary provided

that

N(L)On(K)=0 and N(L) © N(K) = X .

For Y = X it is clear that two projections P and L. - P

have the properties of the definition.

2.13 Definition, if l and K are two linear transformations,

each with domain X , and range contained in Y ,then the transformation

x —>(Lx, Kx) = (L, K)x

on X into Y © Y is called the direct sum of L and K .

It follows directly from the definition that (L, K) is linear
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and that (L, K) agrees with L on N(K) a,nd with K on N(L) . If

R(L) and R(k) are complementary subspaces in a linear space V , in

which addition between elements has been defined, (L, K)x may and will

be written as

(L, K)x = Lx + Kx

2.14 Theorem. The direct sum of two complementary transformations

is non-singular; moreover, the inverse of this non-singular transformation

can be represented as the direct sum of pseudo-inverses of the complementary

transformations.

Proof. Let T = (L, K) denote the direct sum of the complementary

transformations L and K . Then if (L, K)x = 0 = (0, 0) , it follows

that x£ N(L) Pi N(K) = 0 , and therefore that T is non-singular. By

2.6, 2.7, and 2.9, there exists a unique pseudo-inverse M of L for

which D(M) = Y = R(L) © R(K) and R(m) = N(K) . Similarly, there

exists a unique pseudo-inverse J of K for which D(j) = Y and

R(J) = N(L) . To see that T~ = (M, J) one observes that for arbitrary

x£ X , x has a unique decomposition x = s + u , s £ N(K) , u £ N(L) ,

and that

(M, J) (L, K) (s + u) = (M, J) (Ls, Ku)

= MLs + JKu

= s + u ;
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similarly, (L, K) (M, J)y = y for arbitrary y £ Y . This proves the

assertion.

2.15. Theorem. Every linear transformation has a complement.

Proof. Let L , mapping X onto R(L) , denote the linear trans

formation of the theorem and let K , v denote some one-to-one and linear

transformation of N(L) onto a linear space Z . A PL./ , certainly

exists; for example, let Z = N(L) and let Kf , be the identity.
NIL;

Let M denote a pseudo-inverse of L , and then consider the linear

transformation

K = Vl) (IX " ML) '

If Y denotes the linear space R(L) © Z , both L and K map X

into Y . By 2.4, S = R(ML) is a complement of N(L) in X and by

2.2, MLs = s for arbitrary s£ S . Thus for s £ S ,

Ks = KN(L) (IX ~m)s " Vl) (S "S) = °

therefore, s £ N(K) and S Q H(K) . If x £ N(K) , and if x = s+u ,

s £ S , u £ N(L) , is the unique decomposition of x , it follows since

Ks = 0 that

0 = Kx = Kjwjj (1^ -ML) (s + u)
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Since, by hypothesis, K^ is non-singular on N(L) ,it follows that

u = 0 ,and therefore that x = s£ S . Hence N(K)C S ,and this

together with the other inclusion shows that S =N(K) . N(L) and N(K)

are complementary and thus the requirements of Definition 2.12 are satisfied.

2.16 Corollary. Every linear transformation has a non-singular

pseudo-inverse whose range is X .

Proof. 2.10 proves this when the hypotheses stated there are

funfilled. Otherwise, the construction of 2.15 is used, and then 2.14

is applied.

In view of the foregoing discussion it is quite easy to set up a

schematic diagram showing the transformations involved in 2.10 et seq.

In the following diagram the various transformations are represented by

arrows which point from domain to range. The complementary transformations '':

are represented by diagonal arrows and the vertical arrows on the right

of the equalities indicate the restrictions of these transformations to

the domain on which they are non-singular. The transformations that are

represented by vertical arrows are non-singular and the inverse of each

is represented by an adjacent (oppositely directed) arrow. A pseudo-

inverse of a singular transformation is found by selecting the transfor

mation represented by a vertical arrow whose domain coincides with the

range of the singular transformation. Its extension to the whole space

is represented by the diagonal arrow with the same name, but without the

subscript.
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(L, K) = T

E(L) Q

Figure 1.
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In a dual manner a similar diagram may be constructed for the

transformations L* , K* , J* , and M* showing their behavior on the

appropriate subspaces of X* and Y* .

Since Y is the direct sum of R(L) and Z , it follows from

[12, Theorem 3, page 172J that

r iL xY* - [R(L)J © Z

The algebraic discussion of 112, Theorem 1, page 285 shows that

J. J-

ZX = [h(M)J = [r(K)J = N(K*) = R(M*) ,

and

R(L) = N(L*) = R(J*)

Hence

Y* = N(L*) © R(M*) » R(J*) © N(K*)

and dually,

X* = N(M«) © R(L*) = R(K*) © N(J*) .

The following diagram is then read in the same way as that in

Figure 1.
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Y* |r(l)] ©

(L*,K*) m T*
z

X* © [n(l)J

Figure 2.
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An Application in Finite-Dimensional Space

An explicit procedure is presented here for computing a pseudo-

inverse M of a given n x n singular matrix L . For a given

consistent linear equation

Lx = y0 ,

as was noted in the introduction, My0 is a particular solution, and it

Vill be shown that the calculation gives simultaneously a complete solution

of the homogeneous equation

Lx

The computational scheme uses nothing more than elementary row operations

on L ; and for a singular matrix L , the number of computations required

is less than that needed for a non-singular L . Thus the procedure could

be readily adapted for machine calculation.

The process makes use of the Hermite canonical form of an n x n

matrix.

2.17 Definition. A matrix H = Ih .1 is said to be in Hermite

canonical form provided

(1) h = 0 , whenever i > j ;

(2) h±i = 0 or 1 ;

(3) if h = 0 , then h., = 0 , (k = 1, 2, ..., n); and
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(4) if h... = 1 , then h = 0 , (j = 1, 2, ..., n, jj^ i).

2.18 Theorem. For a given n x n matrix L , there exists a non-

singular matrix M which is a product of elementary matrices such that

ML = H is in Hermite canonical form.

A proof of this theorem is given in many of the standard texts;

see, for example I9, Theorem 18, page 35 »
2

2.19 Lemma. If H is in Hermite canonical form, then H = H .

2
Proof. Let a„. denote an arbitrary element of H . By 2.17 (1),
n xK

a., - E h.. h vanishes if i > k and reduces, if i -C k , to
li£ „_. lj JK

k

Z h h . By 2.17 (2), h±± =0 or 1 ;and if h±± =0 ,then by
j=d

2.17 (3), h., = 0 for all j and thus a,,= 0 = h... If h. . = 1 ,
Xj XK XJ£ XX

then

aik = hik +.£ . hij V •

Now whenever h ^ 0 for some j > i , it follows from 2.17 (4) that
JLJ

h.. =0 , and hence from (3) that h„ =0 for all m and in particular

2
for m = k . Hence, in any case, a = h and H = H .

2.20 Theorem. If M is the product of the elementary matrices

which reduce L to H , then M is a non-singular pseudo-inverse of L .

Proof. By hypothesis ML = H , and since M is a product of

elementary matrices, M exists; therefore L = M H . Hence

LML = M""1 HM M=1 H = M"1 H2 = M™1 H = L .
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M can be computed by performing the elementary row operations

which reduce L to H on the identity matrix. If, however, one is

interested only in the solution of Lx = y , it is not necessary to

compute M . To solve the problem one proceeds in the following manner.

Form the n x (n + 1) matrix L = (L, y ) , and then perform the

elementary row operations on L which reduce L to H . The resulting

matrix ML is of the form (H, MyJ , where H is of the form

1 a 0 b d

0 0 0 0 0

0 0 1 c e

0 0 0 0 0

0 0 0 0 0

Since the only non-zero rows of H are those with a 1 in the diagonal,

it follows that the rank of L , which equals the rank of H , is given

by the number of l's along the diagonal. Moreover, any column which has

a 1 in the diagonal is a unit vector by 2.17 (*0- Since the (n +l)st

column of L becomes My as L is reduced to H and since by 2.1

and 2.2 L and M are full inverses of each other on E(L) and R(ML) ,

it follows that the equation Lx = y is consistent if and only if MyQ

has non-zero components only in the rows in which H has l's. In this

case, My is a particular solution of Lx = y . If H = ML has r

l's down the diagonal, then ML contains r unit column vectors and

hence I - ML = I - H contains exactly n - r non-zero columns. Since

(I - ML)u » u for arbitrary u £ N(L) , it follows that these columns
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of I - ML span N(L) ; and since N(L) is of dimension n - r , it

follows even that they are linearly independent. Thus the complete solution

of Lx = y is given by

x = MyQ + (I -ML)D ,

in which D is an arbitrary diagonal matrix containing only n - r

effective parameters since I - ML has only n - r non-zero columns.



CHAPTER III

PSEUDO-INVERSES IN NOEMED SPACES

Since the statements that were made in the previous chapter concerning

the pseudo-inverse were purely algebraic in nature, they are not sufficient

whenever approximations are employed. Then continuity requirements are

of paramount importance, and in this chapter conditions are given which

assure the boundedness (continuity) of the pseudo-inverse. First the

case in which no continuity requirements are placed on L is discussed.

Before undertaking this investigation, a definition is needed.

3.1 Definition. If S is any subset of D(L) , then L is said

to be bounded below on S provided there exists a positive real number

b such that

IUx|| ^ b||x|| ,

for all x £ S .

3.2 Theorem. A linear transformation L has a bounded pseudo-

inverse M if and only if L is bounded below on some complement of

N(L) in D(L) . Cf. 12, Theorem 3, page 163] .
Proof. Suppose M is a bounded pseudo-inverse of L . By 2.4,

R(ML) is a complement of N(L) in D(L) and by 2.2, x = MLx for

arbitrary x £ R(ML) . Hence

llxll = || MLx II 4 l|M||||Lx|| ;
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thus

iiLxii >iMir1 i|xii

for all x £ R(ML) , and b =||m ||~ is the required number. For the

converse, suppose S is the complement of N(L) in D(L) on which L

is bounded below. By Theorem 2.6, there exists a pseudo-inverse M of

L defined on r(l) into D(L) . By 2.1, (LM)^^ = n^, *. Thus for

y arbitrary in R(L) ,

||My || - llxjl < b"3-||Lx|| - b"1 |y|| ;

therefore,

Mil < b"1

and thus M is bounded.

Henceforth, unless specified to the contrary, it is assumed that

L is a bounded linear transformation. Thus, as indicated in Chapter I,

it is assumed that D(L) = X .

3.3 Definition. If L, and LQ are linear transformations with

domains X, and X? respectively, and if X, C Xp , then Lp is said

to be an extension of L, provided L, x = Lp x for all x £ X, .

3.4 Lemma, If L0 is an extension of L, and if M„ is a
—' d 1 t-

pseudo-inverse of Lp , then M0 is a pseudo-inverse of L, .
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Proof. Since S2 =Mg Lg (X2) is a complement of N(L2) in Xg ,

it follows that S± «X± f] Sg is a complement of N(L,) =X.p| N(Lg)

in X± . Let x± = b1 + u± ,s1£ S± , v^ £ N(LX) ,denote an arbitrary

element of X± . Then since Mg Lg s = s, , one observes that

Ll M2 Ll xl " Ll «2 Ll Sl = Ll «2 L2 Sl " Ll sl * Ll xl '

*

3.5 Theorem. L has a bounded pseudo-inverse M only if L

has a bounded pseudo-inverse J .

Proof. Suppose M is bounded and linear and that LML = L .

M is defined for all linear functionals x* £ E(L*) and by [l2,
Theorem 1, page 169J , M is linear and || M || » || M || . Hence for an

•X- -X-

arbitrary y £ Y ,

therefore,

L y (x) = y (Lx) = y* (LMLx) = L*.y* (MLx)

* * * . * * * *

= M L y (Lx) = L M L y (x) ;

* * * *

LML = L

Thus J = M is a bounded pseudo-inverse of L . As for the converse,

by 12, Theorem 3, page 170 J ,L on X 3 X is an extension of L
II ^^ II ll ll "*"*<• -Xt-Xt -X--X- -fHtand ||L || » ||L|| . By the proof just given, L J L = L ;
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hence, by 3,4, M = J is a bounded pseudo-inverse of L

The theorem that was just stated applies to the general case;

that is, it applies when E(L) is a proper subspace of the Banach space

Y . If R(L) = Y , the result can be sharpened.

3<.6 Corollary. If the range of L is the Banach space Y , then

^(L») • (L*rl '
Proof. By [12, Theorem 4, page 287 J ,L has an inverse, and by

Corollary 1.4, it must be M-z^v •

3.7 Lemma. For a bounded linear transformation L , let

I(L, y) = inf j ||x || ; Lx =yI

for each y , and

s(L) » sup (l(L, y); y£R(L) , ||y|| =l] .

Then R(L) is closed in Y if and only if s(L) is finite.

Proof. This is Lemma 6 in 6, page 143 •

3.8 Theorem, If L is a bounded linear transformation, the

following propositions are equivalent.

(a) L has a bounded pseudo-inverse.

(b) L has a bounded right inverse.

(e) The number s(L) of Lemma 3.7 is finite,

(d) L is a homomorphism; that is, R(L) is a closed linear

subspace of Y .
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(e) X/N(L) is isomorphic with R(L) .

Proof. That (a) and (b) are equivalent is merely a restatement of

2.1 for the insertion of the condition on boundedness does not alter the

argument in any respect. That (c) and (d) are equivalent is Lemma 3.7.

(b) implies (d). R(L) is clearly a linear subspace of Y so it

is sufficient to show closure. Suppose y —>y with y £ R(L) for

all n . Then z = My is a Cauchy sequence for, since M is bounded,

!!zn-zmll - llM(yn-ym)||< ||h| ||yn -yjl ;

and the latter expression tends to zero as n and m increase without

bound. Hence by the completeness of X , there exists a z £ X such

that z —3> z ; therefore, by the continuity of L , Lz —^ Lz .

Since Lz = LMy = y , Lz —> y ; therefore, by the uniqueness of the

limit of a convergent sequence, y = Lz and so R(L) is closed.

(d) implies (e). By assumption R(L) is a closed linear subspace

of a Banach space and is therefore a Banach space also. As noted in the

introduction, since N(L) is a closed linear subspace of X , X/N(L) is

a Banach space. For purposes of this theorem let -fxl denote that

element of x/N(L) containing the element x £ X . On X/n(L) define a

transformation T by the rule

T{x] = Lz = y , z£ [x]
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noting that y is independent of which z£ jx~l is used. Since T {x] =0

only for [xj = -[oj =N(L) ,and since L is linear onto R(L) ,it

follows that T is one-to-one onto R(L) and linear. Hence there

remains to be shown only the continuity of T and of T~ . Let

{xj£ X/N(L) be arbitrary. Then T(xj =Lz and hence

||t{x}|| - Hi*|| < UlIIIH! ,

for all z£ (xj . Since || (x] || =inf j||z|| ; z £ (xU , it follows
that

|| T {xj|| < ||L||||{x}|| .

Since jVj is arbitrary, it follows even that ||t|| ^ ||l| . Thus

is an isomorphism; hence, by Corollary 1.2, T~ is also bounded.

T

(e) implies (a). Let T denote the assumed isomorphism. By the

definition of an isomorphism, R(L) is a closed subspace of Y .

Theorem 2.6 shows that there exists a linear M on R(L) into X

such that LML = L . It must be shown that M is bounded. Let

S = R(ML) denote the complement of N(l) on which M takes its assigned

values. Since E(L) is a closed set, and since S is the complete

inverse image of the closed set R(L) under the continuous transformation

Lg , S is a»closed complement of N(L) in X . By Lemma 2.5, S

contains one and only one element from each coset of x/N(L) . Therefore
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defining for each z £ S ,

U(z) = [z] , (z}£ x/N(L) ;

one sees immediately that U is linear. U is one-to-one for U(z) =

[Oj = N(L) if and only if z=0 ;moreover, U is bounded for

Hu(z)|| - ||W|| =inf[||x||;x£{z}J ^ ||z|| .

Thus U is also an isomorphism and hence U-1 is bounded. Since T

was defined by the rule

T{z} = Lx = y ; x £ {z} ,

it follows that

y = LMy = TUMy

Hence

M = U"1 T"1 ,

and since U and T are bounded, M is bounded. The cycle of

implications is now complete and the theorem is proved.
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One gets an interesting corollary from the above discussion when

L is a compact linear transformation; that is, when L maps bounded

sets into compact sets. (cf. 12 ,Chapter 11, pages 3II-369

3.9 Corollary. If L is a compact linear transformation, E(L)

is closed if and only if E(L) is of finite dimension.

Proof. Since by I12, Theorem 1, page 311

transformation is bounded, Theorem 3.8 applies. Assume E(L) is closed.

Then by 3.8 (d) and (b), there exists a bounded linear transformation

M such that IM • L, , . Since L is compact and M is bounded, by

I12, Theorem 10, page 315 , LM =Ir/-l\ is acompact transformation.
But if an identity transformation is compact, its domain, E(L) , is of

finite dimension. The converse is easy for every finite dimensional

linear space is closed.

3.10 Corollary. If K is a compact linear transformation on X

to X , then for any complex number c ;

L = I - cK
c

, a compact linear

has a bounded pseudo-inverse.

Proof. By [l2, Theorem'2, page 352J , R(Lj is closed in X,
and the result follows from 3.8 (d and a).

In view of Theorem 3.8 and the results of the previous chapter,

it would appear that if L is a homomorphism, then a bounded non-singular

pseudo-inverse whose range is X could be found. As it will be shown
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presently, this is indeed the case when the Banach space Y is constructed

from two other Banach spaces by a prescribed rule. If, however, the

space Y must be considered as prescribed initially, other conditions

must be assumed. The technique employed in 2.9 and 2.10 was to extend

M by means of a projection. That this leads to topological complications

is evident from the following lemma.

3.11 Lemma. If S is a closed linear subspace of a Banach space

Y , then there exists a bounded projection of Y on S if and only if

there exists a closed linear subspace T of Y which is complementary

to S in Y .

The proof is given by F. J. Murray in [10, Lemma 1.1.1, page I38J .

To show that this lemma is non-trivial, he constructs a closed linear

subspace of the Banach space <t , and then proves that this subspace

does not have a closed complement.

3.12 Theorem. If L is a homomorphism and if there exists an

isomorphism A defined on some closed complement Z of E(L) in Y

onto N(L) , then there exists a bounded pseudo-inverse of L which is

non-singular and is defined for all y £ Y .

Proof. As in 2.10, let Q and ly - Q denote the projections of

Y onto E(L) and Z respectively, and let M denote abounded pseudo-

inverse with domain E(L) . Define, as before,

M1 » MQ + A(ly -Q)
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By 3.8, M is bounded, and by 3.H> Q and Iy -Q are bounded;

therefore, M.. is bounded and the remainder of the assertions follow

from 2.10.

Since a linear subspace of Y is closed if and only if it is

complete, it follows that if L is a homomorphism, then E(L) is a

Banach space. Thus for any Banach space Z isomorphic with N(L) , it

is useful to consider the linear space Y.,= E(L) © Z , as defined in

2.11. As shown in |_12, page 127j ,if for y± =(r, z) £E(L) © Z,
||y|| is defined by

s \ 1/p||y|| - (flr[|P + ||z«Pj , 1< P4-0 ,

then Y, is a Banach space. It should be noted that for any choice of

p in this definition, if r £ E(L) and z £ Z , then || r, 0 || =
1

HrIU(L} and (?' Z)''Y =Hz"z * <I!herefore> since the metric topology
induced by this norm reduces to the metric topology on E(L) and on

Z for points in these spaces, the space Y, may and will be called,

following Zaanen, the direct sum of E(L) and Z .

3.13 Theorem. Every homomorphism L has a non-singular pseudo-

inverse which is bounded and whose ??attgtt-~>ifc- X •

Proof. By 3.8, L has a bounded pseudo-inverse and by applying

the argument of 2.15, it follows even that L has a bounded complement

K . It is supposed that Y± = B(L) © Z is normed by the process just

given, and thus it follows that T - (L, K) is bounded for
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35

||P + ||̂ (L) (^-MDxlp]
1/P

|Lx||P +

4 lIP +K(l) (VML)"P) iwf
1/p

1/p- [IIlIP + ||k||p] ||x|| .

By 2.14, T exists; and since T is an isomorphism of X onto Y, ,

it follows from 1.2 that T~ is bounded. Since T~ is a pseudo-

inverse of L whose range is X (cf. Fig. 1), the proof is complete.

3.14 Corollary. If B(L) and Z are complementary subspaces

of X , and if ||L - T|| <£ 1 , then a non-singular pseudo-inverse T~

of L is given by

-i

=h +Ii k "(L'K)J

The proof of the above formula, given in 8, Theorem 5.2.1,

page 92J ,is just averification that T~ T=TT =Iy and that the

series converges. The implied convergence is convergence in norm for the

linear space of bounded linear transformations with domain X and range

in X . Expressed in terms of the metric topology of X it means, for

the sequence of partial sums determining T~ , that for a given number

a > 0 one can find an index N such that
a

4
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|SQ(x) - Sm(x)|| < a||xj

whenever m and n exceed N .
a

An Application

In many problems involving a bounded linear transformation L ,

the problem itself suggests what Banach space X one should employ as

D(L) . If some pseudo-inverse M of L can be found, then, as noted

in the introduction, if x £ X , then (L - ML)x is a solution of the

homogeneous equation Lx = 0 . Since it is often impractical to apply

L - ML to points of X indiscriminately, one looks for additional

properties of X which might be of assistance in characterizing N(L) .

Suppose X has a basis x (a £ A) , and that a bounded pseudo-

inverse M of L has been found. Although the vectors y =(j-ML)x

may not be independent, they span N(L) ;for, if u = Z u. x then
a

u = (T__ - ML)u » Z u (I - ML)x .
a. OC Of

Of greater practical importance is the following:

3.15 Theorem. Suppose that x 1 , (n = 1, 2, 3, ...), is a

countable set of points dense in X . If L and a pseudo-inverse M of

L are bounded, then the set of points (L. - ML) x is dense in N(L) .

Proof. Let u £ N(L) be arbitrary and let s denote some

arbitrary but fixed element in E(ML) . Then x = s + u is uniquely

determined, and by hypothesis for an arbitrary number a > 0 , there

exists x £ |x I such that



xn " XH < a Wh - ^l
a

Hence, since (L. - ML)x = u ,

.1 57

||(Ij - ML) xn - u|| = ||(^ - ML) xn - (lx - ML)x||

< IIXjj. - Ml|| ||xn - x|| <a .

The Weierstrass approximation theorem assures the separability of the

Banach space C with the uniform norm.

More general applications are discussed in the following two chapters.



CHAPTEE IV

ON SOLUTIONS OF A FUNCTIONAL EQUATION

A Fixed Point Theorem

The topological character of a pseudo-inverse is very important

when some iteration scheme or approximation method is being employed to

find a solution of a given equation. The equation considered in this

chapter is

G(x, y) = L(x) + F(x, y) = 0 ;

in which L denotes a homomorphism of a Banach space X onto a Banach

space V , F(x, y) denotes the nonlinear part of G(x, y) and F(x, y)

maps the product space X x Y , where Y is a metric space, into V .

Explicit hypotheses will be given later.

In order to study the solutions of the equation G(x, y) =0 , one

lets M denote a pseudo-inverse of L , chooses u £ N(L) , and shows

that the equation

(1)
x + M F (x) = u

«7

^ 'The notation F (x) is used to indicate that y is a fixed
quantity; that is, F (x) = F(x, y) with y fixed.
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has a unique solution x = f(u) . This is accomplished, with suitable

restrictions, by means of a fixed point theorem. Then for the same y ,

the pair (x, y) = f (u) , y is shown to be a solution of G(x, y) = 0
i_ y j

if and only if the pair satisfies a certain consistency condition.

The following fundamental existence and uniqueness theorem is the

basic tool used in this chapter. Numerous proofs (based on an iterative

process) are in the literature 5, Theorem 6.1, page 63J .

4.1 Theorem. Let X be a Banach space, let Y be a metric

space, and suppose that:

/g\
(HI) cp(x, y) is a continuous function on S (d)v ; x Y

A

into X ; there exists a number 6 = 6(y) such that 0 < 6 < 1 and,

if y £ Y and x , x" £ S (d) , then

9y(x) - cpy(x')|| < e||x -X'

(H2) There exists a number a, 0 <1 a < 1 , and a set

Y_( Y such that for x £ S (d) and y £ Y ,
0== x o

9 (x)|| < ad

(2)
'Closed spheres about the point p in the space X of radius

d are denoted by Sx(p, d) = fx; ||x -p|| ^ dl . If p is the origin,
it is omitted from the notation.



40

(CI)

equation

Then for each u £ S (1 - a)d and for y £ Y , the
o

x + cpy(x) = u

has a unique solution x = f (u) .
Jf

(C2) The function f (u) is continuous on Sx
v

to S (d) uniformly on S
X x

(1 -a)d] .
(l-a)d x Y_

(C5) For d finite, f (u) is the uniform limit of the

sequence of functions defined by

f(0) (u)
y

u > fy (u) =u -cpy(u) , ... ,

*(n+l) i .
f (u) = u - qp
y v ' ^y f(n) (u)

y v ;

Solutions of the Functional Equation

The basic result of this section is the following theorem, which

is a generalization of Theorem 1.5 of the paper of E. G. Bartle 3 .

In his treatment of the equation L(x) + F(x, y) = 0 , he assumes that

L is a homomorphism and that the null spaces of T and L* have equal

and finite dimension. Here, the latter condition is dropped and it is

assumed only that L is a P-homomorphism. The finite dimensionality of

N(L*) is sufficient to show that L is a P-homomorphism; however, this

condition is not a necessary one.
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4.2 Theorem. Suppose X and V are Banach spaces and that Y

is a metric space. Let G(x, y) be expressed in the form

G(x, y) = L(x) + F(x, y) ,

where

(HI) L is a P-homomorphism of X into V with pseudo-inverse
M (cf.3.8).

(H2) F(x, y) is defined for all (x, y)£ S (d) x Y ,

F(x, y) £ V , and

(a) F(x, y) is continuous on S (d) x Y ;

(p) if y £ Y and x' , x £ S (d) , then for some number

9 = ©(y) such that 0 < 6 < 1 ,

MFy(x') -MFy(x)|| < 9 || x' -x|| ;

(7) there exists a number a , 0 <C a < 1 , and a

set Y0^=Y such that for y ^ Y and x£ S (d) ,

1MFy(x) || < ad

(CI) Then, if y£YQ and u£ Su [(l -a)d]
S \\l -a)dj Q N(L) ,then the equation

x + M F (x) = u
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has a unique solution x = g^(u) £ S (d) .

(C2) The function a(u) is continuous on S [(1 -a)djx Yc

to S (d) uniformly on S [(1 -a)dj .

(C3) For d finite, g^(u) is the uniform limit of the

sequence of functions defined by

gy0) (u) =u, g^ (u) =u-M[Fy(u)

^U+1) (u) =u-M]F 4n) (u)

(C4) There exists a bounded projection Q of V onto R(L)

and the pair [g^(u), y satisfies the equation G(x, y) =0 if and

only if

& -$ [Fy L«r(u)]} = 0

Proof. By HI and Theorem 3.8, there exists a bounded linear

transformation M" defined on R(L) so that LM'L = L . Since L is

a P-homomorphism, there exists by Lemma 3.11 a bounded projection Q

mapping V onto R(L) ; hence, M = M1 Q is a bounded pseudo-inverse of

L defined for all v £ V . This is the M of hypothesis (H2).

It follows from (H2) that MF (x) satisfies the hypothesis of
Jr

Theorem 4.1 ; therefore, the conclusion of Theorem 4.1 gives
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all the results of 4.2 except (C4). To prove C4 one observes that if

(x, y) is a solution of G(x, y) = 0 , then F(x, y) = -L(x)£ R(L) ;

hence, Q F(x, y)] = F(x, y) ,and therefore (1^. -Q) [f(x, y)J «0.
To establish the converse, suppose that (ly -Q) JF [gy(u)J| =°•
Since LM »LM'Q =IRzL) Q=Q, Lu =0,and gy(u) =u-MJFy [gy(u) I;
it follows that

">

G[gy(u), y] =L-u-MIFy (gy(uj) + F_. [<V<»>]
J

-Q (gy(u))] +Fy^Cu)]

•(Iv "Q) [Fy 0y(u)) = o

4-5 Corollary. If y £ Y is such that F (x) maps some closed

sphere S (d ),where d± ^ (1 -a)d , into R(L) ,then the equation

L(x) + F(x, y) has a family of solutions

continuously with u .

Proof. By (C2), g: (u) is continuous on S^d^ xYQ to Sx(d) ,
^o

and since (I - Q)v = 0 for all v£ R(L) , the consistency condition

is evidently satisfied.

The consistency condition of Theorem 4.2 can be replaced by an

equivalent one which is quite often more practical.

4.4 Corollary. The pair [gy^)* yj is asolution of L(x) +
F(x, y) = 0 if and only if

gy («), y0 which varies
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v* |f [ey(u), y]| =o

for all v*£ N(L*) •

Proof. The assertion follows from the observation that

(Iy -Q) j~Fy [fiy(u), y]l =0 if and only if Fy [gy(u), y] £R(L) ,
and since R(L) is closed, by |_8, Theorem 2.13-6, page 28J , R(L) =

jv; L*(v*) =0 implies v*(v) =OJ .
4.5 Corollary. If L maps X onto Y , then for each u £ Su(d) ,

the equation x+ MF (x) =u has a unique solution x = gy(u) .

Proof. In this case it follows from [l2, Theorem 4, page 287J
that N(L*) contains only the zero functional; therefore, the consistency

condition is trivially satisfied.

Example

As an example of Theorem 4.2, consider the nonlinear differential

equation

x(n)(t) s £* . -f [a, t, x(t), x'(t), ..., x^"1) (t)]
dt

(401)

in which a denotes a real parameter contained in some subset E of

the real line. Let cn denote the set of functions x(t) with n

continuous derivatives on the closed interval I= |_a, bJ ,and for

x £ cn , define
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|x|L = Z max |x(i) (t)| . (402)
n i=0 t€I

One observes that the left side of (401) is a linear transformation

of C onto C ; if f is continuous and if x(t) £ C , it follows
n n

that each of the arguments of f is continuous and therefore the function

f is a continuous function of t . Thus the right side of (401) may be

interpreted as a continuous nonlinear function on C x E to C ; in

this way one is led to the following theorem.

4.6 Theorem. Suppose that there exists a set E ( E and a

real valued function 7(a) such that 0 < 7(a) ^ 1 and if a £ EQ ,

then

(1) if x£S(d) then ||f(x)|| < ^g ,and
x a o ± + e

(2) if x± ,x2£ Sx(d) then

llfa(V -fa(x2)Uc < 7J^ l|Xl"A2"c_ 'x, - xr

1 + e n

Then for each u£S ( b~a ) and each a€ Eo 'equation (401)
V1 + e"J

has a unique solution x = 6a(u) •

Proof. The proof is merely a matter of showing that the hypotheses

dn
of Theorem 4.2 are fullfllled. L= —- is bounded for

dtn



Lx x(n) (t) max |x^n' (t)
t£I

^ Z max |x^ (t)
i=0 tei Cn '
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therefore, || L || < 1 . L maps C onto C ; for let cp(t) C be

arbitrary, then the function

P(t) =
(t-u)

n-1

cp(u) du (403)

is in Cn and Lp(t) = cp(t) . The necessary projection is just the

identity I , and therefore (HI) is fullfilled. For cp(t) arbitrary

in C , let Mp(t) be defined by (403). If u £ N(L); that is, if u

is a polynomial of degree at most n - 1 , then L(u + Mcp(t)) = <p(t)

and thus M is a pseudo-inverse of L . Since f\ (x) has the prescribed

continuity properties, it is necessary to verify only that Mf (x)

satisfies (p) and (7) of H2. It simplifies matters to look first

for a bound for II M || .

If Mqp
n

n

Z max
1=0 tei

n-1

Z max
1=0 t€I

Mcp(t)

dt

(t-u)""1-1 ,,fl
7—-z—r-TT Cp(u) dU(n-l-i)! YV '

n-i

+ max Icp(t )|
tei

n-1

•C Z max Icp(t) j
i=0 t£I

(t-a)
+ max Icp(t)

t€I



<

n-1 , .n-i
(b - a)

l + Z
1=0

(n - 1)1
max | cp(t)
t€l

y (b - a)
L, _

1=0 1#
max | cp(t)
t€I

4 eb"a||cp

b-aHence ||M|| < e Thus to verify that properties (£) and

b-a

(7) are satisfied, choose 9=©(a) =e 7^ for (p) and
1 + e

b-a

^Ta for (7) • It is evident that 0 < 9 < 1 anda =

1 + e

0 < a < 1 ; moreover, if a £ E„ and x , xn , x0 £ C ,
o 1 ' 2 n

and

b-aMfa(xx) -Mfa(x2)|| < eD"a ||fa(Xl) - fa(x2)||

^

b-a . .
e y(a)
" b-a
1 + e

Xl "X2

- e"xl -X2H i
Cn

n

then

b-aMfa(x)ll < eu"a ||fa(x)||c <
b-a ,

e d

b-a
ad

1 + e

47
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Therefore the conclusion of Theorem 4.2 assures the existence and uniqueness

of a solution of equation (401) and corollary 4.5 shows that the consistency

condition is fullfilled.

This theorem brings out the fact that it is often not necessary to

consider supplementary data in order to investigate the existence of a

solution of a differential equation. It should be noted, however, that if

u £ N(L) is the polynomial which satisfies given initial conditions at the

point t = a , then the existence proof given here coincides with the

classical proof by successive approximations.



CHAPTER V

A GENERALIZATION OF THE ELESZ-SCHAUDEB SPECTEAL THEOEY

Preliminary Lemmas

Throughout this chapter it is supposed that L is a bounded linear

transformation with a Banach space X as its domain and a Banach space

Y = E(L) as its range. Y can be different from X , equal to X or

even a proper subspace of X , and L is permitted to be either singular

or non-singular. It is supposed also that K is a compact linear

transformation with domain X and range in Y , and then the bounded

linear transformation

T = cL - K
c

is considered for an arbitrary complex number c .

The object here is to obtain results similar to those of the Eiesz-

Schauder theory 112, Chapter 11J of transformations of the form

Tc = cl - K .

In a recent paper L. M. Graves [_6J considered this topic and

obtained some elegant results. By modifying slightly Graves' definition

of a certain sequence of linear subspaces (cf. 501), it will be shown

that one is led to a generalized spectral theory.

One basic theorem in the classical Biesz theory is that there exists

a subspace S = E(T ) , such that when T is restricted to S , T
q N c ' c q ' c
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is non-singular and the whole space X is the direct sum of S and

N(Tq) . A suitable generalization of this result is found, and thus a

pseudo-resolvent can be defined and some of the usual properties developed.

It is perhaps of some interest to note that even when Y = X so

that iteration of T is possible, n(t||) =N[_(cL -K)nJ can be a
proper subspace of N(T ) for every integer n even though L has

a null space of one dimension. This can be seen by means of the following

example.

Let X be the real sequence space -^ and for x=(a1, ag,

a , ...) ,define L(x) = (a2, a ,a^, ...) and K(x) = (a2, 0, 0, ...) .

Since the range of K is finite-dimensional, K is compact. Let c .= 1

and consider T = L -K . Suppose \ = ei is the usual set of basis

vectors; that is, ek »1,ek =0 (1 ^It) . It is to be shown that
A X

Tk(xk+1) =°' Tk"1 (xk+l) ^°'f°r eaCh k* F°r k=X' TX2 =
(L -K) x2 =x1 -xx =0,and for k > 1, T(xk+1) =U\+1) -*(\+2) =
L(xfc+1) =̂ . Therefore Tk"1(xk+1) =xQ /0 and ^(x^) =T(Xg) =0.
Hence N(T)CZ N(T2) CZ N(T5) CZ ••• CI N(T ) ... ,and the inclusion is

proper for every integer k . That this difficulty can be overcome will

be shown in what follows.

Perhaps the first question to settle is - in this generalized sense,

what is an eigenvalue? In the classical theory one defines a non-zero

number c to be an eigenvalue provided T (x) = 0 for some element

x ^ 0 , and then proves that c is an eigenvalue of Tc if and only if

c is an eigenvalue of T* [l2, Theorem 13, page 338 . It is also shown
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that the dimension of the null space of T is finite and is equal to

that of T . Here, for Y f X and T = cL - K , it can very well
c c

happen that Tc(x) =0 for all x in a space of infinite dimension;

yet, TQ (y )= 0 will imply that y = 0 . With no restrictions on

N(T ) this is the case when E(T ) = Y ; then, by Corollary 3.6, T
*•* t» c

has an inverse. When Y £ X , the fundamental connection between T
X c

and Tc is given by the relation N(T )= [r(T )J ;therefore, the

theory promises to be more rewarding if the definition of an eigenvalue

pertains to the range instead of the domain of T . The definition below
c

is the one given by Graves and it is followed here.

5*1 Definition. A complex number c is said to be an eigenvalue

of K provided the range of T, = cL - K is a proper subset of Y = E(L)

5*2 Corollary. A complex number c is an eigenvalue of % if

and only if T y = 0 for some y ^ 0 .

Proof. This follows immediately from the fact that E(T )CI Y

r "ix * ' °if and only if E(T ) = N(T ) is not empty.

J. Dieudonne' [4J and B. Yood [llj have investigated the

properties of linear transformations preserved under addition of a

compact transformation. Some of these results are listed here for

reference.

5.3 Definition. A linear transformation T of X into Y is

said to have

Property A provided T is a homomorphism and N(T) is finite dimensional,

and to have
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Property B provided T is a homomorphism and the factor space y/e(T) is

finite dimensional.

The dimension of the null space of T is called the nullity of T

and is designated by nul T . The dimension of the factor space y/b(T)

is called the deficiency of T and is designated def T . A linear

transformation has finite deficiency n if and only if E(T) has a

complementary subspace Z in Y of dimension n .

5-4 Lemma. T has property B with deficiency n if and only if

T has property A with nullity n. [4, Theoreme 3"] .
5.5 Lemma. If L has property A (property B) and if K is

compact, then T=L+K has property A(property B). Ill, Theorem 3.7 j.

5.6 Lemma. If L has property A (property B), then for any complex

number c £ 0 , cL has property A (property B).

Proof. R(cL) = R(L) and N(L) = N(cL) .

5«7 Lemma. Suppose L is a homomorphism and K is compact.

Let S denote a closed complement of N(L) in X and let T = L + K .

Then if W is any closed subspace of S , the restriction TTJ of T to
w

W has property A. If 1^ has property B, then T has property B.

Proof. The first assertion follows from Lemma 5.5 and the observa

tion that L is non-singular on W . The second follows directly from 5.5.

5.8 Lemma. If a bounded linear transformation M on Y into X

has a bounded inverse and if Z is any closed subspace of Y , then M(Z)

is a closed subspace of E(M) .

-1
Proof. M is continuous.
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The Eigenvalues of K

It is supposed now that c ^ 0 is an eigenvalue of K and that

M is a bounded pseudo-inverse of L . An M with this property is

assured by Theorem 3.8. Consider the following two sequences of linear

spaces, in which the spaces S, are subspaces of X and the spaces V.

are subspaces of Y . Let

Vl = TC(X) ' Sl ' M(V '

V2 = Tc(Sl) , S2 = M(V2) ,

(501)

Vk " VW ' Sk - "<V '

Since this is the modification of Graves' definition referred to earlier,

the sequences he defined are listed for comparison. Graves [6, page 144J

defined

\ = TC(X)

Z, = the maximal subspace of X such that

L(ZX) =Wx ,

(502)

W, = T (ZL ) , and Z, such that

L(Z.) = W , Z, maximal,
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If L is non-singular, then W, = Vfc and Z^ = Sk for every k ;

however, if L is singular, it is easily seen that Z± =S1 © N(L) ,

W2 =V2 © K[n(l)"| ,etc. It can be shown [6, page 145J that each
Z. has a finite-dimensional complement in X , but this is impossible

for the spaces S, when N(L) is of infinite dimension, for Z^. II) Sfc

© N(L) for every k . That this presents no real difficulty will be

apparent in the discussion that follows.

5.9 Theorem. The spaces V, and S. are closed.

Proof. Since the restriction La of L to S (where X = S Q

N(L)) is the bounded inverse of M , it is sufficient by 5.8 to show that

the spaces V, are closed. The proof proceeds by induction on n . Since
K,

L is a homomorphism with property B (def L = 0) , it follows from

Lemma 5.5 that T is a homomorphism with property B; therefore, from

the definition of a homomorphism, V, = R(T )= Tq(X) is closed. Assume

now that V and S are closed and note that V = LM(V ) = L(S ) ;
mm m m m

hence, the restriction of L to S has property B. Therefore by Lemma

5.8, the restriction of T to S has property B. Since V^ =

(cL - K) S , V , is closed and the theorem is established,
m m+1

It is clear from the definition that

VXZ)V2 3 ... DVk ZD ..., and

Sl3S2 ID °°° 3Sk 3 '•• '
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It is shown next that a proper inclusion can hold for only a finite

number of the indices, and that the ) relation is equality from

that index onward.

5.10 Theorem. There exists a finite index q = q(c) such that

if m < n < q then V ZD V and S 3S„ , and if q / r
^ m — n m — n ^

then V = V and S = S .
q r q r

Proof. If SR =Sk ,then by the definition M(Vfc) = M(Vfc+1) ,

and since M is non-singular, V. = V, , . Thus it is sufficient to

consider the S sequence only.

Since the product of a bounded transformation and a compact

transformation is a compact transformation, it follows that

MT = cML - MK = cL, - MK

Sl

is of the form cl - K" , with K' compact. Therefore, since Sfe =

MT (S. )= ... = (MT ) (X) =EI(MT )J the desired result can be

deduced in exactly the same way as the comparable result in the classical

theory. A proof for the classical case is given in Il2, Theorem 7,

page 335J •
The above discussion shows that one may infer the validity of the

next three theorems in like manner.

5.11 Theorem. Let Uk =N[(MTc)k] . Then I^CZ U2CZ U?
( ... (^2 Uk CZ °" *and there exists an index p = p(c) such that

U = U for s > p , while U is a proper subspace of U , for
s v ' n n+x



56

n <C p . 12, Theorem 6, page 334J .

5.12 Theorem. The index p = p(c) of 5-H is equal to the index

q=q(c) of 5.10 [l2, Theorem 7, page 335 j .
5.13 Theorem. The space X is the direct sum of S and U .

12, Theorem 8, page 336J .

Suppose now that c. denotes a sequence (finite or infinite) of
J

* *

distinct eigenvalues of K . Let N. denote the null space of T .

Since T has property B, by Lemma 5.4, T has property A; thus, let

*

yij
*

space N

(i = 1, 2, ..., k) denote a basis for the finite dimensional

.3
*

y5.14 Theorem. For any positive integer n the elements
ij

(i = 1, 2, ..., k. ; j = 1, 2, ..., n) are linearly independent.
J

Proof. The proof proceeds by induction on j . For j = 1 the

assertion follows from the definition of the basis. Suppose thafe the

assertion is true for j = m , and suppose there exist scalars a.. such

that the form

* m+l <3 *
B(a, y ) = Z Z a y = 0 .

j=l i=l 1J 1J

* r * ~i * *

Clearly Tc |_B(a, y )J =0 ,and since Tq ^sh-I*1 ° for
m+l m+l ^

i = 1, 2, ..., k , , it follows from the definition of T that
' ' ' m+l ' c

* mj x mj# *
T ( Z Z a y ) = Z Z T (a y ,)
cm+l j=l 1=1 ° J j=l 1=1 m+l 1J 1J

S «J * * z * ,
= £ * (cm+l L "K><aij yij} =°*

j=l 1=1
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Since on N , T = 0 , and thus c, L = K , it follows upon substitution
j Cj j

that

k.
m J * #

j=l i=l (Cm+1 "CJ} L **« ^ =

* m J *

L j=l i=l (Sm+1 "^ SjLJ 7±* =° *

Since L is non-singular, the form itself must vanish; therefore, by

the induction hypothesis, since c ^ c. , it follows that a = 0
HH*X J X J

for i = 1, ..., k. , and j = 1, 2, ..„, m . Thus the relation

m+l j * m j m+l #
Z Z a y = Z Z a y , + Z a y , = 0
j=l i»i W ^ j=i i=i iJ ^ i=i ^+1 I**1

*

implies all scalars a.. must vanish since the elements y. , are a
ij Jim+1
#

basis for the space N , . This completes the proof.

5.15 Theorem. The number of distinct eigenvalues c of K is

either finite or countably infinite, and in the latter case lim c = 0
n —> <*=>

Proof. It is sufficient to prove that if d is an arbitrary

positive number, the number of distinct eigenvalues c , for which

|c I ^ d is finite. Suppose the contrary; that is, suppose |c | ^. d

for an infinite number of c . Let Z denote the finite-dimensional
n n

linear space spanned by the spaces N», N„, ..., N . Then Z., £Z zp
, * .

( ... ( Z , where the inclusion is proper by Theorem 5-14. Hence
^-— n

* *

for each integer n there exists an element z £ Z such that
n n



58

|z || =1 and || z -z|| > l/2 for every z Z 1. Since the

sequence jz | is bounded, and since M K is compact, there exists

asubsequence [z "I of the {znl for which M K z. converges.

Thus for p and q sufficiently large,

M K z - M K z 4 € < d/2 . (503)
p q " ^

Since by 3.6 M L = I , and since M T=cM L -M K =cJ-M K,
vY* C

the left member of (503) can be expressed as

* * * * * * *

cz-cz-MT z+MT z„-P P q. 0. cp p cq q

If y € N , K y = c Ly ; therefore, for arbitrary c ,

T y =cL y -c L y =L I(c -c )y J ,and this expression is
C Jt* sr

zero only for c = c . Thus
P

* * „ * #

D Z (H L Z
c P P-

* -1 * -1 * * * „i * * *
and therefore the element z = c c z - c M T„ z + c MT zq.pq.p cppp cq1
is contained in Z x for p > q . Hence for p > q ,

IIM* K* z* - M* K* zj| = Icp| || Z; - z*|| > d/2 , (504)

which contradicts inequality (503) and the assertion follows.
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A Pseudo-Eesolvent

Suppose now that c is an eigenvalue of K and q = q(c ) is

the index for which S = S , r > q .
q r ^

5.16 Definition. The values of c for which T has a bounded
c

non-singular pseudo-inverse E = B(c, K) such that T R = L. form

the pseudo-resolvent set r(K) of K . The set of all these R(c, K)

is called the pseudo-resolvent of K . The values of c not in r(K)

form the pseudo-spectrum s(K) of K .

5.17 Corollary. The complex number c is contained in r(K) if

and only if c is not an eigenvalue of K .

Proof. If c£r(K), T R = I» and therefore for arbitrary

y£Y,T Ryj=yj thus, the range of T is Y and c is not

an eigenvalue. If c is not an eigenvalue, Theorem 3.8 shows that

c € r(K) .

5.18 Corollary. The pseudo-spectrum s(K) contains at most a

countable number of elements. If Y is infinite dimensional, s(K) is

not empty.

Proof. Theorem 5.15 and Corollary 5«17 prove the first statement.

If c = 0 , T = -K ; hence, T is compact. Corollary 3.9 shows that

T does hot have a bounded, non-singular pseudo-inverse R for which

T R = I„ • Therefore c = 0 is contained in s(K) and this proves
o o Y

the second statement.

5.19 Theorem. Let c denote an element of the pseudo-resolvent

set and suppose that R is a pseudo-inverse of T . If |c - c |<C
co o



(||l||||Rc II) , then c£ r(K) ;that is, r(K) is open,
o

Proof. Since

6o

IY" [Tc "(co "e) L]H || - :c0 - O LE || < 1,
° co

and since V =.
o

T - (c - c)L
c x o '

L o

E is a bounded linear transformation
c
o

on Y to Y and ||lY -V || < 1 , it follows from Corollary 3.14 that
-1 -1

V exists, V is bounded, and that
o o

v„ = iw + Z (i„-vjn
Y "-, Y o'
x n=l

IY + Z
n=l

IY - Tc Bc + (cn - c) L Er
o o

Iy + Z (c0 -=)D (L R= )B
A n=l o

Noting that T = T - (c - c)L , one obtains T B V = Iy ; therefore,
"C C " o

o
ceo

o
-1E V is a bounded, non-singular pseudo-inverse of T with the

c o
o

desired property. Explicitly,.:-«*»**..

R = R + R Z U -c)n (L R„ )n
c c c , o ' c^

o o n=l o

(505)

In the classical theory the final result is a calculation of the

resolvent of T for a number c sufficiently near an eigenvalue c

of index q by means of a Laurent expansion about c . The finite sum
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in this expansion is of the form

q (Tc >
Z 2.
k=l (c-co)k

The infinite sum is of the same form as that in (505) above, being restricted

to apply on S , since on S c is not an eigenvalue. However, since
q qo

here iteration of T is not possible, and since the null space of T
o

c L - K may very well be infinite dimensional, a direct Laurent expansion

as in the classical case is impossible. Whether or not this difficulty

can be circumvented seems to be an unanswered question.
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