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INTRODUCTION

A singular linear transformation L does not have an inverse.
Nevertheless, it is always possible to find a partial or pseudo-inverse
M of L , that is, a linear transformation M such that me'= L.

If L-l exists, of course, then L-l is a pseudo-inverse, for LL-lL =L .

From the equation LML = L. one can deduce an important application

of the pseudo-inverse. Suppose that the linear equation

in which Yo denotes a given vector, is known to be consistent; that is,

there exists X such that on = yo . Then since

LMyO=LMLxO = LXO = yO ’
it follows that Myo is a solution of the given linear equation.
A pseudo-inverse is also useful in solving the homogeneous
equation Lx = O . Since L 1is singular, I -ML #0 . If z is in

the domain of L , then

I(I - M)z = Lz -IMLz = O ;

in other words, x = (I - ML)z 1is a solution of the homogeneous equation

ILx =0 . In fact, I - ML projects X onto the null space of L .
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In the finite-dimensional case I 1is a matrix, and an explicit calculation
is presented (Chapter II) for a pseudo-inverse M of L . This procedure
is suitable for machine programming and leads to an M with the desirable
feature that the non-zero columns of I - ML form a basis for the null
space of L .

K. O. Friedrichs [5] (1) is credited with coining the term pseudo-
inverse; he applied the notion to various problems in applied mathematics.
H. Hamburger [7] called M a partial inverse and applied it in his
study of non-symmetric operators in Hilbert space. As an algebraic concept
with perhaps a different name, the pseudo-inverse appears in several
works on linear algebra. The basic algebraic discussion of this topic
which best suits the needs of this paper is given by Reinhold Baer [l] .
The available material on linear transformations in Banach spaces is
extensive <}f. [2] s [8] s [lj}.

Chapter I presents notation and basic definitions.

In Chapter II the algebraic properties of singular linear trans-
formation are investigated. Particular use is made of the notions of a
complementary transformation and of an expanded range. Chapter II
concludes with the finite-dimensional calculation mentioned earlier.

Since linear transformations in infinite-dimensional linear
topological spaces are not necessarily continuous, one is led to investi-

gate properties of a linear transformation which assure the existence of

(1) Numbers in brackets refer to the bibliography at the end of
this paper.



a continuous pseudo-inverse. This investigation for normed spaces
constitutes the major part of Chapter III.

In Chapter IV it is shown that under proper conditions (slightly
more general than those used by R. G. Bartle in [5] ) a pseudo-inverse
can be used to prove the existence and uniqueness of the solution of
certain nonlinear functional equations. As an illustration of the theory,
an existence and uniqueness theorem is given for the nonlinear differential

equation
) gy - r[a, t, x(t), x'(%), ..., 21 (6)] .

An abstract application of the theory is presented in Chapter V.
A generalization of the Riesz-Schauder spectral theory of compact linear
transformations is developed in a manner somewhat analogous to the
classical method but more nearly along lines suggested by Chapters II and
IITI of this paper. This study was suggested by a recent paper of L. M.
Graves [6] ; however, a deviation in an early definition (cf . 501)
eventually forced the investigation into a different vein, leading to

the notion of a pseudo-resolvent.



CHAPTER I
FORMAL PRELIMINARIES

Notation

X , with elements x , denotes a Banach space; that is, X 1is a
normed linear space, and in the topology induced by the norm, X is a
complete space. X* denotes the Banach space of all bounded linear
functionals x*(x) defined on X .

The notation {?; P, qQ, ...} indicates the set of all elements x
with properties P, Q , et cetera. That S 1is a proper subset of T is
indicated by SCCT . For a subset § of X , S = {;*; f€EX
% (x) =0 forall x€ s} ; similarly for T, TCX .

When S is a linear subspace of X , the symbol X/S 1is used to
denote the set of equivalence classes obtained by defining Xy to be
equivalent to X5 if and only if X - x26§ S . Under the usual
definitions, X/S 1is a linear space; the elements of X/S are called

cosets of S . If S 1is a closed linear subspace of X , and if the norm

of a coset t€ X/S 1is defined by

el = inf  ||x]|| ,
Xe ¢

it is known [?2, Chapter 6, page 99] that X/S 1is a Banach space.
It is known [l, Chapter 1, page lQJ that every linear subspace

S of the space X has a complementary subspace T _ X . This means

M
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that an arbitrary element x € X has a unique decomposition as x =s + t
with s€ S and t € T ; or equivalently, that S T =0 (the zero
vector) and S + T = X . It should be noted that a complement is
ordinarily not unique.

Let X and Y denote two Banach spaces and y = L(x) a linear
trensformation, not necessarily bounded, with domain D(L)(C_ X and
range R(L)C Y . N(L) = {x; x € D(L) , Lx = o} is called the null
space of the linear transformation L . Evidently N(L) is a linear
subspace of D(L) , and if L is bounded, then N(L) is a closed linear
subspace of D(L) . If L 1is bounded, its domain of definition can be
extended to the boundary of D(L) by defining for an arbitrary boundary

point X,

L(x) = lim L(x.)
© n— co n

where X, is any sequence contained in D(L) and gonverging to X, -
When 1L 1is bounded, it can therefore be assumed without loss of
génerality that D(L) 1is a closed linear subspace of X ; moreover,
since a closed linear subspace of a Banach space is a Banach space, it

can and will be assumed that D(L) = X . This convention is used also

whenever the discussion is purely algebraic in nature.

)

In conformity with modern terminology (Dieudonne [h] s, Yood [ill),

when L is bounded and when R(L) 1is a closed linear subspace of Y ,

L 1is termed & homomorphism. F. J. Murray [io] has constructed a closed



linear subspace for which there does not exist a bounded projection of
the whole space onto the subspace (cf. 3.11 below). Thus when [ is a
homomorphism and R{L) xas the property that theres exists a bounded
projection of Y omto R(L}) , L is termed a P-homomorphism. L is an
isomorphism if I is a homomorphism and the correspondence between D(L)
and R(L) 1is one-to-one.

For any transformation L ; the restriction of 1L to a subspace
SQ;;TD(L) is denoted by LS o In particular IS denotes the identity
transformation on S

The equality of two transformations K and L means that D(K) =

D(L) and K(x) = L{x) for all x in D(L) .

Some Basic Concepts

1.1 Definition. A transformation J is said to be an inverse of

R(K) , and

it

a linear transformation K provided that D(J)

JK = ID(K) s KJ = IR(K) o

It follows immediately that J = K“l exists if and only if K(x) =
0 implies x =0 . If K™t exists, it is unique; moreover, it is linear.

1.2 Corollary. If K 1is an isomorphism, then J = Kwl exists
and is also an isomorphism.

Proof. It is clear that J exists and it follows from [}2,

Theorem 1, page 162, and Theorem 6, page 1631 that J is bounded.
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The following definition introduces the basic concept investigated
in this paper.
1.3 Definition. A linear transformation M is said to be a pseudo-

inverse of a linear transformation L provided

that is, LIML(x) = L(x) for each x € D(L)

It should be observed that the definition requires D(M) to
contain R(L) and D(L) to contain R(ML) .

1.4 cCorollary. If Lml exists, then L-l is a pseudo-inverse;
and if M 1is any pseudo-inverse, then M = Lml .

Proof. Since L [D(L)l = R(L) , it follows, if M is a pseudo-
inverse, that L M(y) =y for arbitrary y € R(L) ; therefore, IM = R(L)
The application of L™ to the equation IML(x) = L(x) gives ML(x) = x
for each x € D(L) , and thus ML = ID(L) . An appeal to Definition 1.1
and the remarks following it completes the proof. It will be seen that
M 1is not unique unless Lml exists.

In contrast with the definition of an inverse, from which linearity
of the inverse can be proved, the definition of a pseudo-inverse prescribes

linearity as a preferential condition. That this condition is independent

of the condition IML = L will be shown in the next chapter.



CHAPTER IT

ALGEBRAIC DISCUSSION OF THE PSEUL{-INVERSE

Some Basic Properties

In this section some elementary lemmas and theorems are established
for reference.

2.1 Lemma. IML = L if and only if (M)

R{L) © IR(L) ’

Proof. That the second property follows from the first was shown
in Corollary 1.4k. Conversely, if (LM)R(L) = IR(L) , then clearly IML =

IR(L) L=1L.
2.2 Lemma. If IML = L , then (ML)R(ML) = IR(ML)
Proof. Clearly R(ML)C X = D(L) . Suppose z€ R(ML) . Then
z =MLx for some x€X ; hence, MLz = ML(MLx) = M(IMLx) = MLX = z .
The converse of 2.2 is valid if R(ML) = X . Then M, = I s

IML =L , and by 2.1, IM = I Thus one can state the following

R(L) °
theorem.

2.3 Theorem. A linear transformation L has an inverse if and
only if it has a pseudo-inverse M , with domain R(L} , whose range is X .

2.4 Lemma. If M 1is a pseudo-inverse of L , then R(ML) is a
complement of N(L) in X = D(L) .

Proof. For arbitrary x€ X , MLx € R(ML) , and since IML = L 5
X - MLx € N(L) ; therefore, since x = MLx + (I - ML)x » X = R(ML) + N(L)
If, moreover, x € R(ML) [)N(L) , then x = MLx' for some x'€ X, and

Lx = 0 ; hence, O =Lx = IMLx = Lx' , and since M is linear, M(Lx') =

Xx=0.
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2.5 Lemma. IML =L if and only if R(ML) contains one and only

one element =z from each coset C of N(L) in X and Lz = L(C)
Proof. Let IML =L and let C be an arbitrary coset of N(L) ;

suppose z, and z, are elements of C and both are contained in R(ML).

Let z, =My, and 2y = My, - Since z, - z,¢€ N(L) , L(Myl - Mye) = 0;
that is, LMyl = LMy2 . Since IM = IR(L) » ¥y =V 5 and therefore

Z) = 2, o On the other hand R(ML) does contain at least one element

z for which Lz = L(C) . 1In fact, if y = L(C) , z = My 1is this element.
Since IMy =y =L(C) , My €C ; and since My = Milx for some x € X ,
My € R(ML) . Therefore My € C {)R(ML) and the first assertion is proved.
Conversely, if one has a prescription which selects one and only one

element z from each coset C and Lz = L(C) =y , one defines M by

the rule: My =2z . Then IM =T

R(L) and IML =L , but this M may

be nonlinear.

With the aid of the preceding lemma, a simple example shows that
there may exist nonlinear M for which IML =L . Let X = D(L) denote
the Buclidean plane with a cartesian (u, v) coordinate system and

suppose I 1is the matrix

It is easily seen that R(L) is the one-dimensional subspace coinciding
with the line v = u and that N(L) is the u-axis. Hence the cosets

of N(L) eare the lines v =k , and I applied to one of these lines

L
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is just its intersection with the line v = u . Let G denote the graph
of any continuous monotone function f(u) ; for definiteness, suppose
f(u) = u3 . Clearly G({)C is a single point for any coset C . Thus
for y = C MNR(L) , define My by the rule: My = z = G{)C . Clearly,

M is nonlinear; yet, LML =1L .

2.6 Theorem. Every linear transformation L has a pseudo-
inverse M .

Proof. This prcof is an adaptation of the procf of [l, Proposition
2, page 179] . Since N(L) is a linear subspace of X = D(L) , there

exists a complementary subspace S of N(L) imn X . If x and x' are

elements of S such that Lx = Lx' , then (x - x') € N(L)( )18 =0,

and thus X = x' . Therefore the restriction LS of L to 8§ 1is a
one-to-one and linear transformation of S onto R(L) for R(L) =1L [X] =
L LS ©) N(L)] = L [Sj . Thus it is seen that LS has a linear inverse

M . An application of Lemma 2.5 shows that LML =L ; thus M is a
pseudo~inverse of L .

It is quite possible for a pseudc-inverse M to have a domain of
definition which includes R(L) as a subspace. If, however, the domain
of M is restricted to R(L) , the following characterization of
{M ; IML =L , M linear:} can be noted. The proof is essentially
;ﬁntained in 2.5 and 2.6.

2.7 Thecrem. Each complement of N(L) in X determines a
unique pseudo-inverse of L , and conversely each pseudo-inverse M of

L determines a unique complement of N(L)} in X ; that is, there is
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a one-to~-one correspondence between the complements of the null space of

a linear transformation and the pseudo-inverses of the transformation.

Non-Singular Pseudo-Inverses

When R(L) is a proper subspace of ¥ ;5 & pseudo-inverse M of
L , which is defined on R(L) only, has the obvious defect that it is
not defined for all y € Y . Moreover, if the domain of definition of
M 1is extended to all of Y by some process, it may turn out that M is
singular on some subspace of 'Y and that R(M) is a proper subspace of
X . In this section it is shown that these difficulties may be circum-
vented. Of fundamental importance in the discussion which follows is the
notion of a projection.

2.8 Definition. If the linear space X 1is the direct sum of the
linear subspaces S and U ; that is, for every x € X there exist
unique s€ S and u€ U such that x = s + u , then the transformation
P defined by the rule Px = s 1is called the projection of X on §
along U .

Evidently P is linear and P2 = P . Just as easily seen is the
fact that IX - P 1is the projection of X on U along S . Lemmas
2.2 and 2.5 show that ML, and IX - ML are projections of X on
R(ML) and N(L) respectively..

2.9 Lemma.. Any pseudo-inverse M of 1L can be extended from
R(L) to all of Y.

Proof. Let Z denote some complement of R(L) in Y and let

Q denote the projection of Y onto R(L) &long Z . MQ is then



12
defined for all y € Y and is idemtical with M on R(L) .

2.10. Theorem. If there exists a one-to-one and linear transfor-
mation A on some complement of R(1) onto N(L) , then there exists
a pseudo-inverse of I, which is non-singular and is defined for all
yE Y.

Proof. Let Z denote the complement of R(L) on which the one-
to-one and linear transformation A 1is defined, and let @q denote the
projection of Y onte R(L) along Z . IY ~ Q@ 1is then the projection
of Y onto Z along R(L) . By 2.6, there exists an M defined on

R(L) such that IM =TI It is to be shown that the transformation

R(L)

M, = MQ + A(IY - Q)

has the properties stated in the theorem. It is evident that Ml is

linear and that M is defined for all y € Y . Suppose Ml y = 0 for

1
some y€Y. Let y=r+2z, r€R(L), z¢€Z, denote the unique

decomposition of y ; then, Ml y = 0 implies that

[MQ + A(IY - Q) ] (r + z)

MQr + A(IY - Q)z

i

Mr + Az = O

Since r € R(L) , Mr€ R(ML) , and by hypothesis Az € N(L) ; therefore,
by 2.h, Mr = -AZ = 0 . It follows from the non-singularity of M on

R(L) and A on Z that r =2z = C , and hence that y = 0 . Since for
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r =Mr , it follows that LM, r = IMr = r , and thus that

r € R(L) ,‘ M 1

1

M is a pseudo-inverse of L .

1

Complementary Transformations

In many linear problems in which the linear transformation L is
singular, particularly in differential equations, physical considerations
impose supplementary conditions on the solution of the linear problem.
Since the solution of any consistent linear equation Lx = r, caen be

written as

X = xp+xh H

in which xp is a particular solution and Xy is the complete solution
of Lx =0, it follows that these supplementary conditions are conditions
on xhéi N(L) . If the conditions are linear and determine Xy uniquely,
one interprets them as a non-singular linear transformation KN(L) on
N(L) into some appropriate linear space. The two trangformations, L
and KN(L) » are then composed in some manner to form a non-singular
linear transformation T . In this section it will be shown that T can
be defined in such a way that T-l is given by the natural composition
of the pseudo-inverses of L and KN(L) .

2.11 Definition. If X, and X2 are linear spaces, then X3 =

1
X; ® X, 1is defined by:

(l) XB = {x3; x3 = (xl’ x2) 2 xle Xl b x2€ Xa} ]
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(2) if x, = (Xl’ XE) eand x! = (xi, xé) , then

3 3

X, +x!) = (x, + %!, x. + !
( l lﬁ 2 2) J

, D 3

and for any scalar a ;

(3) a(x), X,) = (ax), ax,) .

X3 is called the direct sum of Xl and X2 , and 1s evidently
a linear space. The subspaces L, ® 0 and 0 @ X, of X3 may

and will be identified with X and X respectively.

1 2
2,12 Definition. Two linear transformations, L and K , each
with domain X and range in Y ; are said to be complementary provided

that

N(L) MNEK) =0 and ML) @® NK) = X .

For ¥ =X it is clear that two projections P and IX - P

have the properties of the definition.

2.1%3 Definition. If L and K are two linear transformations,
each with domain X , and range contained in Y ; then the transformation
x —>(Lx, kKx) = (L, K)x

on X into Y @ Y is called the direct sum of I and K .

It follows directly from the definition that (L, K) is linear
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and that (L, X) agrees with L on N(K) and with K on N(L) . If
R(L) and R(K) are complementary subspaces in a linear space V , in
which addition between elements has been defined, (L, K)x ‘may and will

be written as

(L, K)x = Lx + Kx

2.1% Theorem. The direct sum of two complementary transformations
is non-singular; moreover, the inverse of this non-singular transformation
can be represented as the direct sum of pseudo-inverses of the complementary
transformations.

Proof. Let T = (L, K) denote the direct sum of the complementary
transformations L and K . Then if (L, K)x = 0 = (0, 0) , it follows
that x € N(L) M N(K) = O , and therefore that T is non-singular. By
2.6, 2.7, and 2.9, there exists a unique pseudo-inverse M of I for
which D(M) =Y =R(L) @ R(K) and R(M) = N(K) . Similarly, there
exists a unique pseudo-inverse J of K for which D(J) = Y and
R(J) = N(L) . To see that rt - (M, J) one observes that for arbitrary
x€ X, x has a unique decomposition x =s +u, s € NK) , u€ N(L) ,

and that

i

(M, J) (L, K) (s + u) (M, J) (Ls, Ku)

MLs + JKu

il
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similarly, (L, X) (M, J)y =y for arbitrary y € ¥ . This proves the
assertion. | |

2.15. Theorem. Every linear transformation has a complement.
Proof. Iet L , mapping X onto RK(L) , denote the linear trans-

formation of the theorem and let denote scme one-to~one and linear

Kyiw)
transformation of N(L) cato a linear space Z . A KN(L) certainly
exists; for example, let Z = N(L) and let KN(L) be the identity.

let M denote a pseudo-inverse of L , and then consider the linear

transformation

K = Kyoqy (I - M)

If Y denotes the linear space R(L) @ Z , both L and K map X
into Y . By 2.4, S =R(ML) is a complement of N(L) in X and by

2.2, MLs = s for arbitrary s€ S . Thus for s €8,

Ks = KN(L) (IX - ML)s = KN(L) (s =8 = 0 ;

therefore, s € N(K) and S N(K) . If x€ N(K) , end if x = s+u ,
s€5S , u€ NL) , is the unique decomposition of x ; 1t follows since

Ks = O that

&

= Ky (Ig - ML) (s + w)

= Kyy ©
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Since, by hypothesis, KN(L) is non-singular on N(L) , it follows that
U =0, and therefore that x = s € S . Hence N(k)C_ s , and this
together with the other inclusion shows that S = N(K) . N{L) and K{(K)
are complementary and thus the requirements of Defipition 2.12 are satisfied.

2.16 Corollary. Every linear transformation has a non-singular
pseudo-inverse whose range is X .

Proof. 2.10 proves this when the hypotheses stated there are
fullfilled. Otherwise, the comstruction of 2.15 is used, and then 2.1k
is applied.

In view of the foregoing discussion it is quite easy to set up a
schematic diagram showing the transformations involved in 2.10 et seq.
In the following diagram the various transformetions are represented by
arrows which point from domain to range. The complementary transformations &
are represented by diagonal arrows and the vertical arrows on the right
of the equalities indicate the restrictions of these transformations to
the domain on which they are non-singular. The transformations that are
represented by vertical arrows are non-singular and the inverse of each
is represented by an ad jacent (oppositely directed) arrow. A pseudo-
inverse of a singular transformation is Ffound by selecting the transfor-
mation represented by a vertical arrow whose domain coincides with the
range of the singular transformation. Tts extension to the whole space

is represented by the diagonal arrow with the same name, but without the

subscript.



(L, K) =T

' Figure 1.

®

Ky
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In a dual manner a similar diagram may be constructed for the
transformetions L* , K* , J* , and M* showing their behavior on the
appropriate subspaces of X* and Y* .

Since Y is the direct sum of R(L) and Z , it follows from
[12 s Theorem 3, page 172] that

4

T* = [R(L):]J- ® 2z

The algebraic discussion of [12, Theorem 1, page 285] shows that

7zt = [N(M)T - [R(K)]J_ = N(K*) = R(M*) |,
and
R(L) = N(L*) = R(J¥%)
Hence
Y* = N(L*¥) @ R(M*) = R(J*) @ N(K¥)
and dually,
X* = N(M*) @ R(L*) = R(K¥*) @ N(J¥)

The following diagram is then read in the same way as that in

Figure 1.



(L*,K*) = T*

Figure 2.

20
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An Application in Finite-Dimensional Space

An explicit procedure is presented here for computing a pseudo-
inverse M of a given n x n singular matrix L . For a given

consistent linear equation

as was noted in the imtroduction, My, 1s a particular solution, and it
vwill be shown that the calculation gives simultaneously a complete solution

of the homogeneous equation

Lx = O

The computational scheme uses nothing more than elementary row operations
on L ; and for a singular matrix L , the number of computations required
is less than that needed for a non-singular L . Thus the procedure could
be readily adapted for machine calculation.

The process makes use of the Hermite canonical form of an n x n

matrix.

2.17 Definition. A matrix H = Ihijl is said to be in Hermite
canonical form provided

(1) hiJ = 0, whenever i > j ;

(2) hii = 0 or 1;

(3) if b, =0, then h, =0, (k=1,2, ..., n); and

{

(4
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(%) 1if hi

4 =1, then hji =0, (j=1,2, ..., 0, j# i)-

2.18 Theorem. For a givem n x n matrix L , there exists a non-
singular matrix M which is a product of elementary metrices such that
M, = H is in Hermite ecanonical form.

A proof of this theorem is given in many of the standard texts;
see, for example [9, Theorem 18, page 35] .

2.19 Lemma. If H is in Hermite Canonical form, then H2 =H .

Proof. Let a,, denote an arbitrary element of H2 . By 2.17 (1),

ik
n
CI 3§1 hij th vanishes if 1 > k and reduces, if i L k , to
k
Jzi hij hjk . By 2.17 (2), hy;, =0 or 1; and if hii = 0 , then by
2.17 (3), hy; =0 forall § and thus &, =0=hy . If h, =1,
then
k
a,., = h + L h.,h .
ik e 7 g 10k

Now whenever hij #0 for some j > i, it follows from 2.17 (4) that

h,. = 0 , and hence from (3) that h,
Jd Ji

2
for m = k . Hence, in any case, 8 = hik and H =H .

2.20 Theorem. If M is the product of the elementary matrices

¢ for all m and in particular

which reduce L to H , then M is a non-singular pseudo-inverse of L .

Proof. By hypothesis ML = H , and since M 1is a product of

=1 =1
elementary matrices, M exists; therefore L =M H . Hence
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M can be computed by performing the elementary row operations
which reduce L to H on the identity matrix. If, however, one is
interested only in the solution of Lx = Vo o it is not necessary to
compute M . To solve the problem one proceeds in the following manner.
Form the n x (n + 1) matrix A (L, yb) , and then perform the
elementary row operations on L+ which reduce L to H . The resulting

matrix ML+ is of the form (H, M yo) ; where H 1is of the form

i
[E— £ s——

o O O O B+
o O O o p
o O K+ O O
o O 6o o v
©C O ® O

—

—

Since the only non-zero rows of H are those with a 1 in the diagonal,
it follows that the rank of L , which equals the rank of H , is given
by the number of 1's along the diagonal. Moreovér, any column which has
a 1 in the diagonal is a unit vector by 2.17 (4). Since the (n +1)st
column of L' becomes My, as L is reduced to H and since by 2.1
and 2.2 L and M are full inverses of each other on R(L) and R(ML) ,
it follows that the equation ILx = Yo is gonsistent if and only if My,
has non-zero components only in the rows in which E has 1's. In this
case, Myo is a particular solution of Lx = Yo * If H=ML has r
1's down the diagonal, then ML contains r unit column vectors and
hence I - ML =1 - H contains exactly n - r non-zero columns. Since

(I - ML)u = u for arbitrary ue€ N(L) , it follows that these columns
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of I -M, span N(L) ; and since N(L) is of dimension n - r , it
follows even that they are linearly independent. Thus the complete solution

of Lx = ¥, is glven by

x = My + ( -ML)D ,

in which D 1s an arbitrary diagonal matrix containing only n - r

effective parameters since I - ML has only n - r mnon-zero columns.



CHAPTER III
PSEUDO~-INVERSES IN NORMED SPACES

Since the statements that were made in the previous chapter concerning
the pseudo-inverse were purely algebraic in nature, they are not sufficient
whenever approximations are employed. Then continuity requirements are
of paramount importance, and in this chapter conditions are given which
assure the boundedness (continuity) of the pseudo-inverse. First the
case in which no continuity requirements are placed on 1 is discussed.
Before undertaking this investigation, a definition is needed.

3.1 Definition. If S 1is any subset of D(L) , then I is said
to be bounded below on S provided there exists a positive real number

b such that

lexll > =l ,

for all x€ S .

3.2 Theorem. A linear transformation I has a bounded pseudo-
inverse M if and only if 1 is bounded below on some complement of
N(L) in D(L) . Cf. [12, Theorem 3, page 163] .

Proof. Suppose M 1is a bounded pseudo-inverse of L . By 2.k,
R(ML) is & complement of N(L) in D(L) and by 2.2, x = MLx for

arbitrary x € R(ML) . Hence

=l = lmx |l < el ]
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thus

-1
I

Frall 2 ull ™ =]
for all x € R(ML) , and b =|M Hml is {he required number. For the
converse, suppose S is the complement of N(L) in D(L) on which L

is bounded below. By Theorem 2.6, there exists & psevdo-inverse M of

L defined on R(L) dinto D{L) . By 2.1, (LM)R(ML) = IR(L) . Thus for

y arbitrary in R(L) ,

=1

I
o

Iy Il = =l < v [
therefore,
Imll € »*

and thus M 1is bounded.
Hencéforth, unless specified to the contrary, it is assumed that
L is a bounded limear transformation. Thus, as indicated in Chapter I,

it is assumed that D(L) = X .

3.3 Definit:’g__gg° It L1 and L, &are linear transformations with

domains Xl and X? respectively, and if XJ_C::IXE , then L2 is said

to be an extension of Ll provided Ll X = L2 x for all x é,Xl .

3.4 Lemma. If L, is an extension of L and if M, is a

pseudc-inverse of L2 , then M2 is & pseudo-inverse of Ll .
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Proof. Since 8, = M, L, (X2) is a complement of N(L2) in X, ,
it follows that s, = X, S, is a complement of N(Ll) = xlﬂ N(L2)
in X, . Let X) =8+, 8€ 8 ,15_6 N(Ll) , denote an arbitrary

element of Xl - Then since M2 L2 8, = 8, , one observes that

Ly Maly ¥ =Ly My Ly 8y =Ly My Ly 5) =Ly 5y =Ly xy
*
3.5 Theorem. L has & bounded pseudo-inverse M only if L
¥*
has a bounded pseudo-inverse J .

Proof. Suppose M is bounded and linear and that IML =L .

* »* *
M 1is defined for all linear functionals x € R(L ) and by [12,

* *
Theorem 1, page 169] » M is linear and ”M " = "M " . Hence for an
* ¥* ’
arbitrary y € Y ,
* X * * * %
L y(x) = y(Ix) = y (IMx) = L .y (Mx)
* *  * ¥* * * *
= ML y (Lx) = L M L y(x) ;
therefore,
* * * *
L ML = L
¥* * *
Thus J =M 1is a bounded pseudo-inverse of L . As for the converse ,

*¥ %
by [12, Theorem 3, page 170-J s L on X )X 1is an extension of L

% ¥ ¥* 3% ¥* ¥ ks g
and “L “ = ”L“ . By the proof just given, L Jd L =L H



28
*%

hence, by 3.4, M =J is a bounded pseudo-inverse of L .

The theorem that was just stated applies to the general case;
that is, it applies when R(L) is a proper subspace of the Banach space
Y . If R{L) =Y , the result can be sharpened.

3.6 Corollary. If the range of L 1is the Banach space Y , then

* * =1
Mpepwy = (L)
¥*
Proof. By [}2, Theorem 4, page 287 ] » L has . an inverse, and by
*

Corollary 1.4, it must be MR(L*)

©

3.7 Lemma. For a bounded linear transformation L , let

I(L, y) = inf {Hx”; Ix = y}

for each ¥y , and

s(t) = sw {11, y); yeRr@) , |yl -_-1}

Then R(L) is closed in Y if and only if s(L) is finite.

Proof. This is Lemma 6 in [6, page lh}] .

3.8 Theorem. If L is a bounded linear transformation, the
following propositions are equivalent.

(a) L has a bounded pseudo-inverse.

(b) L has a bounded right inverse.

(c) The number s(L) of Lemma 3.7 is finite.

(d) L is a homomorphism; that is, R(L) is a closed linear

subspace of Y .
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(e) X/N(L) 4is isomorphic with R(L) .
Proof. That (a) and (b) are equivalent is merely a restatement of
2.1 for the insertion of the condition on boundedness does not alter the
argument in any respect. That (c¢) and (d) are equivalent is Lemma 3.7.
(b) implies (d). R(L) 1is clearly a linear subspace of Y so it
is sufficient to show closure. Suppose yn——{>»yo with y € R(L) for

all n . Then z, = Myn is a Cauchy sequence for, since M is bounded,

|lzn - Zmll = “M(yn - yﬁ?“ < “M“ Hyn - yﬁ‘l ;

and the latter expression tends to zero as n and m increase without
bound. Hence by the completeness of X ; there exists a zoei X such
that z —>z_  ; therefore, by the continuity of L, LG'——B’Lzo .

Since Lz =1IMy =1y, LG-—%>'yo ; therefore, by the uniqueness of the

n n

limit of a convergent sequence, Yo = Lzo and so R(L) 1is closed.

(d) implies (e). By assumption R(L) is a closed linear subspace
of a Banach space and is therefore a Banach space also. As noted in the
introduction, since N(L) 4is a closed linear subspace of X , X/N(L) is
a Banach space. For purposes of this theorem let {X} denote that
element of X/N(L) containing the element x€ X . On X/N(L) define a

transformation T by the rule

T {x} = Lz = y , z € {x}
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noting that y 1is independent of which z € {x} is used. Since T {:g} =0

only for {x} = {O} = N(L) , and sidce L is linear onto R(L) , it
follows that T 1is one-to-one onto R(L) and linear. Hence there
remains to be shown only the continuity of T and of T-l . Let

{x:}E X/N(L) be arbitrary. Then T {x} = Lz and hence
It {x31l = Juzll < Yzl =zl

for all z € {x} . since H{x} |= inf ﬂlz” ; z € {x}} , it follows

that

Ir £ < lel i)

Since {x} is arbitrary, it follows even that ||T|| £ ||| . Thus T
is an isomorphism; hence, by Corollary 1.2, T-l is also bounded.

(e) implies (a). Let T denote the assumed isomorphism. By the
definition of an isomorphism, R(L) is a closed subépace of Y .
Theorem 2.6 shows that there exists a linear M on R(L) into X
such that IML = L . It must be shown that M is bounded. Let
S = R(ML) denote the complement of N(L) on which M takes its assigned
values. Since R(L) 1is a closed set, and since S 1is the complete
inverse image of the closed set R(L) under the continuous transformation

L S 1is arclosed complement of N(L) in X . By Lemma 2.5, S

S 2

contains one and only one element from each coset of X/N(L) . Therefore



defining for each z € S R
u(z) = fz} , {z}ex/mr) ;

one sees immediately that U is linear. U is one-to-one for U(z)

{O} = N(L) if and only if z = 0 ; moreover, U is bounded for

luez)ll = {3

]

wwt {5 x € {2} < lall.

Thus U is also an isomorphism and hence U"l is bounded. Since T

was defined by the rule

T{z}:Lx:y, xE{z} ,
it follows that
Yy = LMy = TUMy
Hence
M = g tot ,

and since U"l and T-l are bounded, M 1is bounded. The cycle of

implications is now complete and the theorem is proved.

31
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One gets an interesting corollary from the above discussion when
L 1is a compact linear transformation; that is, when 1L maps bounded
sets into compact sefs. Q%f. [?2] , Chapter 11, pages 311-36é> .

3.9 Corollary. If L 1is a compact linear transformation, R(L)
is closed if and only if R(L) 1is of finite dimension.

Proof. Since by [12, Theorem 1, page 311], a compact linear
transformation is bounded, Theorem 3.8 applies. Assume R(L) 1s closed.
Then by 3.8 (d) and (b), there exists a bounded linear transformation
M such that IM = IR(L) . Since L 1is compact and M 1is bounded, by

[12, Theorem 10, page 3151 ’ IM = IR(L) is a compact transformation.
But if an identity transformetion is compact, its domain, R(L) , is of
finite dimension. The converse is easy for every finite dimensional
linear space is closed.

3.10 Corollary. If K 1is a compact linear transformation on X

to X , then for any complex number c ;

has a bounded pseudo-inverse.

Proof. By |12, Theorem 2, page 332} , R(Lc) is closed in X ,
and the result follows from 3.8 (d and a).

In view of Theorem 3.8 and the results of the previous chapter,
it would appear that if I is a homomorphism, then a bounded non-singular

pseudo-inverse whose range is X could be found. As it will be shown
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presently, this is indeed the case when the Banach space Y 1is constructed
‘from two other Banach spaces by a prescribed rule. If, however, the
space Y must be considered as prescribed initially, other conditions
must be assumed. The tecknique employed in 2.9 and 2.10 was to extend
M by means of a projection. That this leads to topelogical complications
is evident from the following lemma.

3.11 EEEEE“ If 8 1is a closed linear subspace of a Banach space
Y , then there exists a bounded projection of Y on S if and only if
there exisﬁs a closed linear subspace T of Y which is complementary
to S in Y .

The proof is given by F. J. Murray in [}O, Lemma 1.1.1, page 138} .

i L
To show that this lemma is ﬁaﬁjfrivial, he constructs a closed linear
subspace of the Banach space ‘ZP , and then proves that this subspace
does not have a closed complement.

3.12 Theorem. If L is a homomorphism and if there exists an
isomorphism A defined on some closed complement Z of R(L) in Y
onto N(L) , then there exists a bounded pseudo-inverse of L which is
non-singular and is defined for all y€ Y .

: Proof. As in 2.10, let Q and IY - Q denote the projections of
Y'; onto R(L) and Z respectively, and let M denote a bounded pseundo-

inverse with domain R(L) . Define, as before,

M, = MQ + A(IY-Q)

emme
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By 3.8, M 1is bounded, and by 3.11, q and Iy - Q are bounded;
therefore, Ml is bounded and the remainder of the assertions follow
from 2.10.

Since a linear subspace of Y is closed if and only if it is
complete, it follows that if L is a homomorphism, then R(L) 1is a
Banach space. Thus for any Banach space Z isomorphic with N(L) , it
is useful to consider the linear space Yl =R(L) @ Z , as defined in
2.11. As shown in [}2, page 127] , if for y, = (r, z) € R(L) @ Z,

lyll is definea vy

1/
Il = (el® 1P) . 1< pg=

then Y is a Banach space. It should be noted that for any choice of

1
p 1in this definition, if r € R(L) and z € Z , then ||r, o||Yl =
“rllR(L) and |“§, %)“Yl = "zllz . Therefore, since the metric topology
induced by this norm reduces to the metric topology on R(L) and on
Z for points in these spaces, the space Yl may and will be called,
following Zaanen, the direct sum of R(L) and 2Z .

3.13 Theorem. Every homomorphism L has a non-singular pseudo-
inverse which is bounded and whose pangsmi$~ X .

Proof. By 3.8, 1L has a bounded pseudo-inverse and by applying
the argument of 2.15, it follows even that L has a bounded complement

K . It is supposed that Y, = R(L) @ 2 is normed by the process Jjust

given, and thus it follows that T = (L, K) is bounded for
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x|l = [z, ©)x] = [”LXHP N “KX“P:I 1/p
1/p
= UILXHP + ”KN(L) (IX - ML)x ”P]
/
< [ + gy ) 1]

/
TR TR

By 2.1k, T"l exists; and since T is an isomorphism of X onto Y,
it follows from 1.2 that T”l is bounded. Since T-l is a pseudo-
inverse of L whose range is X (cf. Fig. 1), the proof is complete.
3.14% Corollary. If R(L) and Z are complementary subspaces
of X, and if IIIX - T|| < 1, then a non-singular pseudo-inverse T-l

of L 1is given by

-1 o

T =Ix+:§1 [L‘-(L,K)]

The proof of the above formula, given in [8, Theorem 5.2.1,
page 92] , is just a verification that T 1 T = Tr T = I, and that the
series converges. The implied convergence is convergence in norm for the
linear space of bounded linear transformations with domain X and range
in X . Expressed in terms of the metric topology of X it means, for

the sequence of partial sums determining T.l , that for a given number

a > 0 one can find an index Na such that
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Isp(x) - s ()l < allxll ,

whenever m and n exceed Na o

An Application

In many problems involving a bounded linear transformation L ,
the problem itself suggests what Banach space X one should employ as
D(L) . If some pseudo-inverse M of L can be found, then, as noted
in the introduction, if x € X , then (IX - ML)x 1is a solution of the
homogeneous equation Lx = O . Since it is often impractical to apply
IX - ML to points of X indiscriminately, one looks for additional
properties of X which might be of assistance in characterizing N(L) .

Suppose X has a basis xa (@€ A) , and that a bounded pseudo-
inverse M of L has been found. Although the vectors yaF(IX-ML)xa
may not be independent, they span N(L) ;for, if u = E ua xa then
u = (IX - M)u = % u (1 - ML)xa .

0f greater practical importance is the following:

3.15 Theorem. Suppose that [xn1 , (n=1,2,3 ...), is a
countable set of points demse in X . If L and a pseudo-inverse M of
L are bounded, then the set of points [(IX - ML) xniJ is dense in N(L)

Proof. Let u € N(L) be arbitrary and let s denote some
arbitrary but fixed element in R(ML) . Then x =s + u is uniquely
determined, and by hypothesis for an arbitrary number a > 0 , there

exists xna € [x;] such that
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||xna - x|l € & ||IX - M|

Hence, since (IX - ML)x =.u s
(zg - ) =, -ull = [z -m) x; - (1 - Me)x]|
a a

Sl -l ke, - xll <a
a
The Weilerstrass approximation theorem assures the separability of the
Banach space Cn with the uniform:norm.

More general applications are discussed in the following two chapters.



CHAPTER IV

ON SOLUTIONS OF A FUNCTIONAL EQUATION

A Fixed Point Theorem

The topological character of a pseudo-inverse is very important
when some iteration scheme or approximation method is being employed to
find a solution of a given equation. The equation considered in this

chapter is

G(x, y) = L(x) + F(x,y) = 0 ;

in which L denotes a homomorphism of a Banach space X onto a Banach

space V , F(x, y) denotes the nonlinear part of G(x, y) and F(x, y)

maps the product space X x Y , where Y 1is a metric space, into V .

Explicit hypotheses will be given later.

| In order to study the solutions of the equation G(x, y) = O , one
lets M denote a pseudo-inverse of L , chooses ué€ N(L) , and shows
that the equation

(1)
X + M Fy(x)

]
[

(l)The notation Fy(x) is used to indicate that y 1is a fixed
quantity; that is, Fy(x) = F(x, y) with y fixed.

pEE YN
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has a unique solution x = fy(u) . This is accomplished, with suitable
restrictions, by means of a fixed point theorem. Then for the same vy ,
the pair (x, y) = [fy(u) , y] is shown to be a solution of G(x, y) = 0
if and only if the pair satisfies a certain consistency condition.

The following fundamental existence and uniqueness theorem is the
basic tool used in this chapter. Numerous proofs (based on an iterative
process) are in the literature [?, Theorem 6.1, page 65] .

4.1 Theorem. Let X be a Banach space, let Y be a metric
space, and suppose that:

(H1) ?(X, ¥) 1is a continuous function on Sx(d)(2) xY
into X ; there exists a number © = ©(y) such that 0 < € < 1 and,

if y€Y and x, x'€ Sx(d) , then

loj0 - 0,6 < ollx -l

(H2) There exists a number a , 0 < a < 1, and a set

Y« Y such that for x¢€ Sx(d) and ¥y € Y, s

lo, ) < aa

(2)Closed spheres about the point p 1in the space X of radius
d are denoted by Sx(p, d) = {x; ”x - p" <L d} . If p 1is the origin,
it is omitted from the notation.
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(c1) Then for each u € 5, [(l - a)d] and for y€ Y , the

equation

1l
[+4

x + cpy(x)

has a unique solution x = fy(u) .
(c2) The function fy(u) is continuous on Sy [(l-a)d]x Y,

to Sx(d) uniformly on 8, [(l - a)d] .
(c3) For d finite, fy(u) is the uniform limit of the

sequence of functions defined by

f§°’ (W) = u , fi,l’ () = u -9 (w), ...,

f§n+l) (u) = u - Py [f;n) (u)j] , ces

Solutions of the Functional Equation

The basic result of this section is the following theorem, which
is a generalization of Theorem 1.5 of the paper of R. G. Bartle [3] .
In his treatment of the equation L(x) + F(x, y) = 0 , he assumes that
L 1is a homomorphism and that the null spaces of 1. and L* have equal
and finite dimension. Here, the latter condition is dropped and it is
assumed only that L 1s a P-homomorphism. The finite dimensionality of
N(L*) is sufficient to show that I is a P-homomorphism; however, this

condition is not a necessary one.
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4.2 Theorem. Suppose X and V are Banach spaces and that Y

is a metric space. Let G(x, y) be expressed in the form

G(xJ y) = L(x) + F(x,y) ’
where
(H1) L 1is a P-homomorphism of X into V with pseudo-inverse
M (cf.3.8).
(H2) F(x, y) 1is defined for all (x, y)€ Sx(d) xY,

F(x, y)€ V , and
(a) F(x, y) 1is continuous on Sx(d) xY ;
(B) if y€ Y and x', x €Sx(d) , then for some number

©=0(y) suchthat 0 < o < 1,
e (xt) - e )l < o lxr - x5

(y) there exists a number a, 0 < a ¢ 1, and a

set Yo;Y such that for y € Y and x¢€ Sx(d) ,
lvr 0 ll < aa

(c1) Then, if y € Yo and u€Su [(l - a)d] =

5, [(l - a)d] M N(L) , then the equation

MF (x = u
X + y()
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has a unique solution x = %yhl)E Sx(d).

(c2) The function gy(u) is continuous on § [(l - a)d]x Y
to Sx(d) uniformly on § A [(l - a)d] .

(C3) For 4 finite, gy(u) is the uniform limit of the

sequence of functions defined by

g;O) (u) = u, gél) (u) =u - M [F

(ck) There exists a bounded projection Q of V onto R(L)
and the pair [gy(u), y] satisfies the equation G(x, y) = O if and

only if

Gy -9 [rlsw]] - o

Proof. By Hl and Theorem 3.8, there exists a bounded linear
transformation M' defined on R(L) so that IM'L =L . Since L 1is
a P-homomorphism, there exists by Lemma 3.11 a bounded projection Q
mapping V onto R(L) ; hence, M = M' Q is a bounded pseudo-inverse of
L defined for all v € v . This is the M of hypothesis (H2).

It follows from (H2) that MFy(x) satisfies the hypothesis of

Theorem 4.1 ; therefore, the conclusion of Theorem L.1 gives
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all the results of 4.2 except (C4). To prove Ch one observes th;t if
(x, y) 1is & solution of G(x, y) =0, then F(x, y) = -L(x) € R(L) ;
hence, Q [F(x, y)] = F(x, y) , and therefore (IV - Q) [F(x, y)] =0 .
To establish the converse, suppose that (Iv - Q) {Fy [gy(u)]} =0 .
Since IM = 1M'Q = Ip;)Q=Q, Lu=0, snd g (u) = u - M {Fy [gy(u)]};

it follows that

L {u-M l:Fy (gy(uD:\ + F [gy(u)]
= -Q [Fy (gy(u))] + Fy [gy(u)]l
= (1, - Q) [Fy ng(uD] =0 .

¢ (&), v]

4.3 cCorollary. If yOE Yo is such that Fyo(x) meps some closed
sphere Su(dl) , where &, £ (1 -a)d, into R(L) , then the equation
L(x) + 'F(x, y) hes a family of solutions [gyo(u), yo] which varies
continuously with u .

Proof. By (c2), gyo(u) is continuous on Su(dl) x Y, ‘Eo Sx(d) s
and since (IV -Q)v=0 for all v€ R(L) , the consistency condition
is evidently satisfied.

The consistency condition of Theorem 4.2 can be replaced by an
equivalent one which is quite often more practical.

L.4 Corollary. The pair (), ¥ is a solution of L(x) +
SRRt r &y

F(x, y) = 0 if and only if
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- {F [,(w), y:l} = 0

for all v*€ N(L*)
Proof. The assertion follows from the observation that
(1, - Q) {ij [gy(u), yi[} =0 if and only if F, [gy(u), y] € rL) ,
and since R(L) 1is closed, by [8, Theorem 2.13.6, page 28] , R(L) =
{v; L*(v*) = 0 implies v*(v) = O}
4.5 Corollary. If L maps X onto Y , then for each u € Su(d) s
the equation x + M Fy(x) = u has a unique solution x = gy(u)
Proof. In this case it follows from [}2, Theorem 4, page 287]
that N(L*) contains only the zero functional; therefore, the consistency

condition is trivially satisfied.

Example

As an example of Theorem 4.2, consider the nonlinear differential

equation

n
W) =22 - r o ¢, x(t), x'(8), .oy £ (4)]

(401)

in which o denotes a real parameter contained in some subset E of

the real line. Let C, denote the set of functions x(t) with n
continuous derivatives on the closed interval I = [a,'b] , and for

x € Cy, define
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n
||x||C = L mex |x(i) )| - (402)
n i= tel

One observes that the left side of (401) is a linear transformation
of C  omto C; if f is continuous and if x(t) € C, > it follows
that each of the arguments of f 1is continuous and therefore the function
f 1is a continuous function of t . Thus the right side of (40l) may be
interpreted as a continuous nonlinear function on Cn xE to C ; in
this way one is led to the following theorem.

4.6 Theorem. Suppose that there exists a set EOC;; E and a

real valued function y(a) such that 0 < y(a) £ 1 and if a€E,,

then
(1) if x €5 (d) then llfa(x)llC < l—:'d:F:E , and
(2) 1f x, , %€ Sx(d) then
7(a)
llfa(xl) - fa(xe)llc < R l=, - x2|lcn

4
Then for each u € Su <1—+:'F-a— and each o€ E, > equation (L401)

has a unique solution x = ga(u) .

Proof. The proof is merely a matter of showing that the hypotheses
n
of Theorem 4.2 are fullfilled. L= _EE is bounded for
at
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fexf = 1™ (o))l - =) (¢
x X ) o 22; X ) |
5 (i)
< iEO max [x 27 (8) ]| = !lX'lcn ;

therefore, ||L}]l £ 1 . L maps C, onto C ; for let o(t) C be

arbitrary, then the function

n-1
p(t) = f(t;‘fi, o(u) du (403)
a

is in C_ and Lp(t) = o(t) . The necessary projection is just the
identity IC , and therefore (HL) is fullfilled. For o(t) arbitrary
in C, let Mp(t) be defined by (403). If wu € N(L); that is, if u
is a polynomial of degree at most n - 1 , then L(u + Mp(t)) = o(t)
and thus M 1is a pseudo-inverse of I . Since fa(x) has the prescribed
continuity properties, it is necessary to verify only that Mfa(x)
satisfies (B) and () of H2. It simplifies matters to look first

for a bound for {IM H .

i
o a” | Mp(t)
|,M¢|’C = 2, max —-_E;?T__j
n i=0 +t€I dt

n-1 t(t-u)n'l'i

i 1=0 ??? ’ (n-1-1)7 p(u) du | + %?; lo(t)]

a

n-1 (t—a)n-i

< 2 mex | o(t)] n-i)! + max |o(t)]
i=0 teI £l




b7

¢ i+ T ot | o(t) |
+
< oo (@-1)1 ’::‘I‘ ?
i
- [z (b = 2) } max | o(t) |
i=0 tel
< ol

Hence |IM|] < e’"® | Thus to verify that properties (B) and

b-a

(y) are satisfied, choose © = o(a) = £ _g) for (B) and
l+e
b-a
a=1—E—F_-a for (y) . It is evident that 0 < © < 1 and
+ e

0 < a < 1 ; moreover, if a€E° and X, X , X, € C_, then

RENCHIEE ENCN) I F NS N NERY
) -y
< X, = X
= l+e e 1 2 Cn
‘ = oflx, - x, || ;
; 17 %2
®n
‘ and
” b-a eb- d
”M fa(X) é e “fa(X) ”C 4 —%a = ad
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Therefore the conclusion of Theorem 4.2 assures the existence and uniqueness
of a solution of equation (401) and Corollary 4.5 shows that the conmsistency
condition is fullfilled.

This theorem brings out. the fact that it is often not necessary to
consider supplementary data in order to investigate the existence of a
solution of a differential equation. It should be noted, however, that if
u € N(L) is the polynomial which satisfies given initial conditions at the
point t = a , then the existence proof given here coincides with the

classical proof by successive approximations.



CHAPTER V

A GENERALIZATION OF THE RIESZ-SCHAUDER SPECTRAL THEORY

Preliminary Lemmas

Throughout this chapter it is supposed that L is a bounded linear
transformation with a Banach space X as its domain and a Banach space
Y = R(L) as its range. Y can be different from X , equal to X or
even a proper subspace of X , and I 1is permitted to be either singular
or non-singular. It is supposed also that K 1is a compact linear
transformation with domain X and range in Y , and then the bounded

linear transformation

is considered for an arbitrary complex number c¢ .
The object here is to obtain results similar to those of the Riesz-

Schauder theory [i2, Chapter ll] of transformations of the form

Tc =cI -K .

In a recent paper L. M. Graves [6] considered this topic and
obtained some elegant results. By modifying slightly Graves' definition
of a certain sequence of linear subspaces (cf. 501), it will be shown
that one is led to a generalized spectral theory.

One basic theorem in the classical Riesz theory is that there exists

a subspace. Sq = R(Tg) , such that when Tc is restricted to Sq > T,
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is non-singular and the whole space X 1s the direct sum of Sq and
N(Tg) . A suitable generalization of this result is found, and thus a
pseudo-resolvent can be defined and some of the usual properties developed.

It is perhaps of some interest to note that even when Y =X so
that iteration of T 1is possible, N(Tz) =N [(QL - K)n] can be a
proper subspace of N(T2+l) for every integer n even though L has
a null space of ore dimemsion. This can be seen by means of the following
example.

Let X be the real sequence space 'Zl and for x = (al, 855

855 ...) , define L(x) = (2, a5; 8y ...) and K(x) = (ay, 0, O, eee)
Since the range of K is finite-dimensional, K 1s compact. Let c =1
and consider T =L - K . Suppose X = eg is the usual set of basis

k k
k::l’ei=

k k-1
T (xk+l) =0, T (xk+l) #0, foreach k . For k=1, Tx,=

vectors; that is, e 0 (i#%). Itis tobe shown that

(L - K) X, =X -x =0, and for k¥ > 1, T(le) = L(xk+l) - K(xk+l) =
L(xk+l) =x - Therefore Tk-l(xk+l) = X, # 0 and Tk(xk+l) = T(x2) =0 .
Hence N(T)C_ N(TQ)CN(TB)C CN(Tk) ... , and the inclusion is
proper for every integer k . That this difficulty can be overcome wili
be shown in what follows. '

Perhaps the first question to settle is - in this generalized sense,
what is an eigenvalue? In the classical theory one defines a non-zero
number ¢ to be an eigenvalue provided Tc(x) = 0 for some element

x # 0 , and then proves that c¢ 1is an eigenvalue of Tc if and only if

*
¢ 1is an eigenvalue of Tc [12, Theorem 13, page 338j] . It is also shown
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that the dimension of the null space of Tc is finite and is equal to
that of T: . Here, for Y % X and Tc,= cL - K , it can very well
happen that Tc(x) = 0 for all x in a space of infinite dimension;

*

* *
yet, Tc (y ) = 0 will imply that Y =0 . With no restrictions on

N(T,) this is the case when R(T,) = Y ; then, by Corollary 3.6, T.
has an inverse When Y # X, the fundemental connectlon between T
and T: is given by the relation N(T ) = [B (T )] ; therefore, the
theory promises to be more rewarding if the definition of an eigenvalue
pertains to the range instead of the dqmain of Tc . The definition below
is the one given by Graves and it is fellowed here.

5.1 Definition. A complex number ¢ 1s said to be an eigenvalue
of K provided the range of T, = cL - K is a proper subset of Y = R(L)

5.2 Corollary. A complex number ¢ 1s an eigenvalue of Gﬂg if

* * *

and only if Tc Yy =0 for some y _#lo .

Proof. This follows immediately from the fact that R(T )(C_ Y
if and only if [R(Tc)]i-= N(T:) is not empty.

J. Dieudonné [h] and B. Yood ‘[li]v have investigated the
properties of linear transformations preserved under addition of a
compact transformation. Some of these results are listed here for
reference.

5.3 Definition. A linear transformation T of X into Y is
sald to haye

Property A provided T is a homomorphism and N(T) is finite dimensional,

and to have

epen



52

Property B provided T 1is a homomorphism and the factor space Y/R(T) is

finite dimensional.

The dimension of the null space of T 1is called the nullity of T
and is designated by nul T . The dimension of the factor space Y/R(T)
is called the deficiency of T and is designated def T . A linear
transformation has finite deficiency n if and only if R(T) hes a
complementary subspace 2 in Y of dimension n .

5.4 Lemma. T has property B with deficiency n if and only if
7" has property A with nullity n . [h, Théoréme 3] .

5.5 Lemma. If L has property A (property B) and if K is
compact, then T = L + K has property A (property B). [ll, Theorem 3.7] .

5.6 Lemma. If L has property A (property B), then for any complex
number ¢ # 0 , cL has property A (property B).

Proof. R(cL) = R(L) and N(L) = N(cL) .

5.7 Egggga Suppose L 1is a homomorphism and K is compact.
Let S denote a closed complement of N(L) in X and let T =1L+ K .
Then if W is any closed subspace of S , the restriction Tw of T +to
W has property A. If Lw has property B, then Tw has property B.

Proof. The first assertion follows from Lemma 5.5 and the observa-
tion that L is non-singular on W . The second follows directly from 5.5.

5.8 Lemma. If a bounded linear transformation M on Y into X
has & bounded inverse and if Z 1is any closed subspace of Y , then M(2Z)

is a closed subspace of R(M)

Proof. Mml is contimmous.
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The Eigenvalues of K

It is supposed now that ¢ % 0 1is an eigehvalue of K e&and that
M 1is a bounded pseudo-inverse of L . An M with this property is
assured by Theorem 3.8. Consider the following two sequences of linear

spaces, in which the spaces §S are subspaces of X and the spaces Vk

k
are subspaces of Y . Let
v, = T.(X) ) 5, = M(vy) ,
v, = Tc(sl) , 5y, = M(V2) s
——————————————————— (501)
Vk Tc(sk_l) 2’ Sk = M(vk) 2’

- e e e e e e e = = - = — -

Since this is the modification of Graves' definition referred to earlier,
the sequences he defined are listed for comparison. Graves [5, page lhq

defined

W, = Tc(X)
Zl = the maximal subspace of X such that
L(Zl) =W,
(502)
W = Tc(Zk-l) » and 2 such that

—_——— mm o e o e wm e o wm a— — e e
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If L is non-singular,ﬂthen Wk = Vk and Zk = Sk for every k ;
however, if L 1is singular, it is easily seen that 2, =S5, ® N(L) ,

Wy =V, @ K [N(L)] , ete. It can be shown [6, page lh5] that each

2
Zk has a finite-dimensional complement in X , but this is impossible

for the spaces = when N(L) is of infinite dimension, for Z, ::)Sk

@ N(L) for every k . That this presents no real difficulty will be
apparent in the discussion that follows.

5.9 Theorem. The spaces Vk and Sk are closed.

Proof. Since the restriction LS of L to S (where X=5 @

N(L)) 1is the bounded inverse of M , it is sufficient by 5.8 to show that
the spaces Vk are closed. The proof proceeds by induction on n . Since
L is a homomorphism with property B (def L = 0) , it follows from
Lemma 5.5 that Tc is a homomorphism with property B; therefore, from
the definition of a homomorphism, V, = R(Tc) = TC(X) is closed. Assume
now that V_ and S are closed and note that V= IM(V ) = L(§,) ;
hence, the restriction of L to Sm has property B. Therefore by Lemma
5.8, the restriction of T, to S, has property B. Since Vm+l =
(el - K) Sy » Vpa is closed and the theorem is established.

It is clear from the definition that

‘V:LQ‘V2 ) eeo _D_Vk _) ..., &and

8198 D e D8 D
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It is shown next that a proper inclusion can hold for only a finite
number of the indices, and that the ;;D relation is equality from
that index onward.
5.10 Theorem. There exists a finite index q = g(c) such that
if m < n  q then vm:)vn andxsm:)sn,andif T

then V_ =V and S =S
q q

T r '

Proof. If Sk = Sk+l P

and since M 1is non-singular, Vk = Vk+l . Thus it is sufficient to

then by the definition M(Vk) = M(Vk+l) s
consider the S sequence only.
Since the product of a bounded transformation and a compact

transformation is a compact transformation, it follows that

MTc = cML - MK = cIS - MK
1
is of the form cIy - K' , with K' compact. Therefore, since S, =
1
MT, (Sk-l) = 4. = (MTC)k (X) =R [(MTc)k] the desired result can be

deduced in exactly the same way as the comparable result in the classical
theory. A proof for the classical case is given in [}2, Theorem 7T,
page 335 | -

The above discussion shows that one may infer the validity of the
next three theorems in like manner.

k
5.11 Theorem, Let U ==N[:(MT)J . Then U,C_ U,C_ U
—_— k c 1= "2=— 73
C ... U --- » ond there exists an index p = p(c) such that

U

UP fpr s ;> p , while Uh is a proper subspace of Un+l for
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n < p. [12, Theorem 6, page 334] .
5.12 Theorem. The index p = p(c) of 5.11 is equal to the index
qa = q(e) of 5.10 [12, Theorem 7, page 335:] .
5.13 Theorem. The space X 1is the direct sum of Sq and Uq .
ElQ, Theorem 8, page 336] .
Suppose now that c denotes a sequence (finite or infinite) of

J
* *
distinct eigenvalues of K . Let N, denote the null space of Tc

f .
J
*
Since T, has property B, by Lemma 5.k%, Tc has property A; thus, let
iJ

space N

[y* ] (1=1,2, ..., kj) denote a basis for the finite dimensional
3 .
5.1% Theorem. For any positive integer n the elements [yi j]
(1 =1, 2, ..., kj 3 §=1,2, ..., n) are linearly independent.
Proof. The proof proceeds by inductionon Jj . For J =1 the
assertion follows from the definition of the basis. Suppose thet the

assertion is true for J = m , and suppose there exist scalars a’ij such

that the form

% m+l kj *
Bla, y) = I L &,¥y =0
J=1 i=1
* * * * £
Clearly Tc : [B(a., ¥ )] = 0 , and since Tc Yi{mel = 0 for
m+1 m+1

*
i=1,2, ..., km+l , it follows from the definition of Tc that
k
¥*

m
T (2 X
®mil j=l i=1

*

85y ¥yy)

]
e

N
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Since on N; ’ T: = 0 , and thus CJ L* = K* , it follows upon substitution
that !
m 5 x
'J§1 i§1 Cary =29 T (g 73y)
m kj
L* j§l iE,l (cm+l-cj) ai;j y:j = 0
Since L* is non-singular, the form itself must vanish; therefore, by
the induction hypothesis, since el # c'j , it follows that aij =0

for i =1, ..., kj sand j=1, 2, ..., m . Thus the relation

oy, - b T L,
8,y V533 = a,. ¥.. + a y =0
jo1 d=1 WL g0 4 HTR T D) Timel Timed
*
implies all scalars &,y must vanish since the elements y, .., area

¥*
basis for the space Nm+l . This completes the proof.
5.15 Theorem. The number of distinct eigenvalues cn of K 1is
either finite or countably infinite, and in the latter case 1lim

n— oo
Proof. It is sufficient to prove that if 4 is an arbitrary

cn =0 .

positive number, the number of distinct eigenvalues c, for which
|cn[ ;; d 1is finite. ©Suppose the contrary; that is, suppose Icnl ;; d

¥*
for an infinite pumber of ¢ Let Zn denote the finite-dimensional

* * ¥* ¥* *
linear space spanned by the spaces Nl, N2, cony Nn . Then Zl - Z2

*
C .. (::-Zn s where the inclusion is proper by Theorem 5.14. Hence

¥* ¥*
for each integer n there exists an element z, € Zn such that
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”z* |l =1 ana I 2 -2 | > 1/2 for every z 7. . . Since the
n n Z n-1
* *
sequence {zn} is bounded, and since M K 1is compact, there exists

¥* * * ¥* ¥* .
a subsequence {ZJ} of the {Zn} for wvhich M K zJ converges.

Thus for p and q sufficiently large,

*  *

v & z; - M K z: | € ¢ < a/2 . (503)

* »* * * * * ¥* *  *
Sinece by 3.6 M L =1 , and since M T =cM L -M K =cI-M K,
, v Y*
the left member of (503) can be expressed as

¥* ¥* ¥* »* ¥* *
If y € NP , Ky = cp L y ; therefore, for arbitrary c¢ ,

* * ¥ * * * * .
Tc Yy =clL ¥y = cP Ly =1L [(c - cp)y :\ , and this expression is
zero only for ¢ =c¢ Thus

¥* ¥* ¥* *
T, Z, Crz,

* -1 * -] o * * -]  * * *
and therefore the element 2z = c¢_ ¢ z -c M T zZ_+ cC MT z
N qQ P q P cp P p Cq q

is contained in Zp-l for p > q . Hence for p > q,

I & 2) " K2l = el gy -2 » a2, (504)

which contradicts inequality (503) and the assertion follows.



29

A Pseudo-Resoclvent

Suppose now that SR is an eigenvalue of K and gq = q(co) is

the index for which Sq = Sr » T 2> Q.

5.16 Definition. The values of c for which Tc‘ has a bounded
non-singular pseudo-inverse Rc = R(c, K) such that Tc Rc = I! form
the pseudo-resolvent set r(K) of K . The set of all these R(c, K)
is called the pseudo-resolvent of K . The values of ¢ not in r(K)
form the pseudo-spectrum s(X) of K .

5.17 Corollary. The complex number c¢ 1is contained in r(K) if
and only if c¢ is not an eigenvalue of K .

Proof. If c € r(K) , T, R, = IX and therefore for arbitrary
YEY, Tc [Rc y] = y ; thus, the range of Tc is Y and c¢ 1is not
an eigenvalue. If ¢ is not an eigenvalue, Theorem 3.8 shows that
c € r(K)

5.18 Corollary. The pseudo-spectrum s(K) contains at most a
countable number of elements. If Y is infinite dimensional, s(K) is
not empty.

Proof. Theorem 5.15 and Corollary 5.17 prove the first statement.
If ¢ =0, To = =K ; hence, To is compact. Corollary 3.9 shows that
TO does not have a bounded, non-singular pseudo-inverse Ro for which
Ty Ry = Iy - Therefore ¢ = 0 is contained in s(K) and this proves
the second statement.

5.19 Theorem. Let e, denote an element of the pseudo-resolvent

set and suppose that Rc is a pseudo-inverse of Tc . If |e - co|~<
ol o]
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( “Lll"Rc ll)-l , then c € r(K) ; that is, r(K) is open.
o

Proof. Since

lzy - [Tco-(co-C)L]RcO" = ||(CO-C)LRCO|| <1,

and since V_ = [Tc - (cO - c)L] R, 1is a bounded linear transformation
o o
on Y to Y and ||IY - Vo|| < 1, it follows from Corollary 3.1k that

=1
VO exists, VO is bounded, and that

=1 < n
Vo = Ig o+ z (IY-VO)
n=
n
= Iy + z [IY-Tc Rc+(c-c)LRc]
n=1 (o] (o} (o}
=1, + L (e - (LR )Y
n=1 (o}
. . -1 ]
Noting that T, =T - (cO - ¢)L , one obtains T.R, V., =1Iy; therefore,

o o]
Rc VO is a bounded, non-singular pseudo-inverse of Tc with the
o]

desired property. EXPliCitly,ﬁw%@Nm

n

R = R + R bl (co-c)n(LRc) (505)

o 0 n=l o
In the classical theory the final result is a calculation of the
resolvent of Tc for a number c¢ sufficiently near an eigenvalue ,

of index q by means of a Laurent expansion about S The finite sum

PRV
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in this expansion is of the form

; k
=1 (c-co)
The infinite sum is of the same form as that in (505) above, being restricted
to apply on Sq ; since on Sq R is not an eigenvalue. However, since
here iteration of T 1is not possible, and since the null space of Tc =
o}
c, L - K may very well be infinite dimensional, a direct Laurent expansion

as in the classical case is impossible. Whether or not this difficulty

can be circumvented seems to be an unanswered question.
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