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NOTATION

In Part I, the following conventions of notation are observed:
matrices are designated by capital letters, vectors by lower-case Roman
letters, and scalars by lower-case Greek letters except for indices,
and for certain other integers and bounds, such as the dimensionality
of a space.

In Part II, these conventions are relaxed, so that, for example,
scalar functions are represented by lower-case Roman letters. The

notation of Part II should be self-explanatory.
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PART I

ITERATIVE METHODS FOR THE APPROXIMATE
SOLUTION OF LINEAR ALGEBRAIC
SYSTEMS



I. INTRODUCTION

A. Scope of the Study

This part of the dissertation is concerned with iterative techniques
for the approximate solution of non-singular linear algebraic systems, and in
particular with a new modification of the so-called Seidel method analogous
to the classical method of steepest descent. In the course of the
investigation, a vector process analogous to the well-known scalar 62-
process was defined. It was found that repeated application of this
vector 62-process to the classical Jacobi iteration for linear systems
produces an iteration identical to the classical method of steepest descent.
On the other hand, it is shown that the vector Sa-process does not have
the property of the scalar 62-process of increasing the order of an

iteration.

B. Definitions and Examples

The linear algebraic system under discussion has the matrix form

(1.1) Au = b

where u 1s the n-dimensional unknown vector, A is an n x n symmetric

*
end positive definite real matrix, and b # O is an n-dimensional constant

*The condition that A be symmetric and positive definite 1is not
particularly restrictive, since any linear system with non-singular matrix
can be transformed to an equivalent system with symmetric positive definite
matrix by multiplying by the transpose of the given matrix. Thus, for
non-singular F , the solution of Fu = g 1is identical with that of

FTFu = FTg .



real vector. In component form the system is

n
(1.2) Z, o Uy = ﬁ ) j:l, esey I .
k=1 Jk k | J
We shall find it convenient to use the matrix notation wherever possible.
It is also convenient to make the further assumption that the matrix

A has unit main diagonal, that is, that all the diagonal elements

It is possible to transform any system with symmetric positive definite

matrix to this form by the following method: Given the system

(1.3) Fv = g ’

with symmetric, positive definite F . Let D be the matrix of positive

1/2

(F being positive definite) diagonal elements of F , and D be the

diagonal matrix whose non-zero elements are the positive square roots of

the corresponding elements of D . Let D-l/2 = (Dl/e)-l . Then setting

(1.4) A= D'l/2 FD’1/2 , u=D'“v , b= D'l/2 g ,

the system

(1.1) Au = b



*
has a positive definite matrix A with unit main diagonal.

In the following we use two decompositions of A ,

(1.5) A I-B

where -B 1is the symmetric matrix of non-diagonal elements of A , and

has zero main diagonal; and

(1.6) A = I-B, -8B

where -Bl is the lower triangular matrix of A exclusive of the main
diagonal.
Note that
T
(1.7) B = By +B]

If it is possible by a conjugate permutation P of rows and

columns of A to reduce A to the block form

*
When all the diagonal elements of F are equal, QJJ = 8 , the

matrix D Dbecomes the scalar matrix 8I ; then we may set
(1.4%) A=%"F, u=v , b=58%"g ,

since B8I commutes with any matrix.



(1.8) PAP® =

then A 1is said to have property (A) [Xoung (1954a), Householder (l955a)]f
The transformed matrix will be called a "matrix canonical with respect
to property (A)".

It is to be noted that when A 1is & general symmetric positive

definite matrix, the lower triangular submatrix B, is nil-potent of

1

index at most n , i.e., there exists a k < n such that
(l°9) Bl = 0

If A 1is canonical with respect to property (A), then the lower triangular

submatrix Bl is nil-potent of index 2, whatever the order of the matrix

A:

(1.10) B, = £ 0

0 0 0 0 0 0
(1.11) B] = = = 0 .
P, O P, O 0 0

This property of matrices canonical with respect to property (A) leads

no

to important simplifications, to be mentioned later, in the theory of

Seidel iterations.

*

Throughout the paper, bibliographic references are given by the
date in parentheses following the author's name. Where the references
are parenthetical, they are enclosed in square brackets.



Of the several ways in which linear systems (1.1l) may arise in
applied mathematics, one of the most important is by the construction
of the finite difference analog of a boundary value problem with elliptic
partial differential equation. Examples of methods by which these analogs
may be constructed are found in Collatz (1951), and (for a restricted class
of self-adjoint equations) in Young (195ka); there are of course many
other similar discussions in the literature.

In many cases of physical interest, the matrices for these finite
difference analogs are symmetric and positive definite. This is indeed
the case when the given partial differential equation is the Laplace
equation (or its generalization discussed by Young (1954a)) and the
boundary value problem is the Dirichlet problem, that is, the solution
function itself is prescribed at all points of the boundary. In the
case of the Dirichlet problem, the matrix A in (1.1) reflects the
properties of the differential operator and the shape of the boundary,
and the constant vector b contains the boundary information. Each
component of the unknown vector u represents the value of the solution
of the finite difference equation at a point of the difference grid

interior to the region over which the solutiomn is sought.

C. The Three Classical Iterative Methods

By the three classical iterative methods for approximate solution
of linear algebraic systems, we mean the Jacobi or "total-step" method,
the Seidel or "single-step" method, and the steepest descent method.

Of these, the first two differ from each other in the decomposition of

the matrix A employed, and the last is an optimized version of the first.




(1) The Jacobi method, was, according to Forsythe (1953), first
published by Jacobi (1845). We shall hereafter use the symbol (T) ,
standing for the descriptive term "total-step" (Gesamtschritt), as a
designation for this method.

The method (T) is based on the decomposition (1.3) of the matrix

A . Starting with (1.1), we have

Au (I -B)u = b

u = Bu+ b

which leads to the iteration

(1.12) : u, , = Bu + b

where ui stands for the ith approximation to the exact solution u .
In studying this and the other iterations discussed in this paper,
it 1s often convenient to write the algorithm in terms of the error or

remainder
(1.13) s
and/or the residue

(1.1%) r




One should observe that for practical purposes s is unavailable, since

i
u is unknown, while r;, 1s available. We then have for (T)
(1.15) §;,1 = Bsy
= (I -A)s,
= Si - ri .

Since the matrix B is constant, the iteration can also be written

i+l
(1.16) si+l = B g

where 8, corresponds to the (arbitrary) starting vector u, .
Clearly, (1.16) converges to zero for symmetric A if and only

if the eigenvalues of B (=1 -\, , where X are the corresponding

"3 J J
eigenvalues of A ) 1lie in the interval
(1.17) -1 < < 41, ij=1, ..., n

"3

Hence we have the

Theorem [étein and Rosenberg (19h8j] For symmetric A , the

iteration (T) converges if and only if both A =1 -B and I+ B

are positive definite.

*
The rate of convergence 1is given by

(1.18) R(T) = - o (mgtx luJ| ) -

*
For a discussion of the notion of "rate of convergence" in matrix
iterations, see Chapter II.



(2) The method commonly known as the Seidel method was apparently
first advocated by Nekrasov (1884) who attributed it to Seidel [Forsythe
(1953), p. 5 footnotej . We shall hereafter use the symbol (S) ,
standing for the descriptive term "single-step" (Einzelschritt), as a
designation for this method.

The method (S) is based on the decomposition (1.6) of the matrix

A . Starting with (1.1) we have

Au = (I - B, - Bl) u = b
(1 - Bl)u = BE u+bd
which leads to the iteration
(1.19a) (I -B)u = Bl u, + 1
1/ 14l 11
or
(1.19b) w,, = (I-B)7 (B] u +b)

or, adding and subtracting u, on the right hand side,

i

(1.19¢) u = u -(I-B )'l

141 (fu; - D)

1

In terms of 54 and ry , e have



-1 -1
(1.20) 841 = 83 - (I -B)) " Asy =5, - (I-B) 1
21T
= (I - Bl) B] sy
-1

Setting C = (I - Bl) B] , we have also

(1.21) Si,1 = Ci+l 5, *

Reich (1949) has shown that positive definiteness of the matrix
A 1is a necessary and sufficient condition for the convergence of (S)

As far as the rate of convergence is concerned, there is a theorem
of Stein and Rosenberg (1948): Let » be the maximum modulus of the
eigenvalues of C , and p be the maximum modulus of the eigenvalues of

B . If the elements of B , and hence of B, and BE , are non-negative,

1
then either v £ p < 1 or y= p =1 or y > p > 1. That
is, (S) and (T) converge or diverge together; if (T) converges,
then (S) converges more quickly.

In case the matrix A is canonical with respect to property (A) ,
(S) converges if and only if (T) converges, and if both converge,
(8) converges twice as fast as (T) [?oung (195k4a) ] . The proof is
based on the fact that Bl is nil-potent of index 2. This permits the

immediate computation of the exact inverse of I - Bl :

-1
(1.22) (1 - Bl) = I+3B ’
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1 1 0] Il 0] Il 0 Il 0]
Pl I2 -Pl I2 0] I -Pl I2 Pl I2

for
I 0] I
Then
:
T 1
(1.23) C = (I+B))B =
3
0]
0]
and the characteristic equation is
1251
(1.24) det(yI - C) = det

But if | 1is a non-zero eigenvalue of B ,

T

uIl ~Pl
0 = det = det
= det

-P

puI
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since £ 0 implies

det £0

Therefore, the non-zero eigenvalues of C are squares of the non-zero
eigenvalues of B . [?oung (1954a), Householder (l955a)] .

(3) As indicated previously, the classical method of steepest
descent is a modification of (T) . Forsythe (1953) finds the earliest
exposition in Cauchy (1847). Because of its relation to (T) , we shall
use the obvious designation (SDT) for this method.

The development of (SDT) may be traced as follows: Introduce

the scalar parameter @, into (1.13) to obtain

i

(1.25) By, = 8y -y T,
or the equivalent
(1.26) W, o= ou om0y (Aui - b)) .

Geometrically, (1.25) locates s as a point on the line in

i+l
the direction of ry through the point Sy - The parasmeter a, is now
selected to fix s as the point at which the line is tangent to an

i+l
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ellipsoidal surface of the family sT As = k ; that is, to minimize the

quadratic form

T T T 2
(1.27) Bi41 BS540 = 5y Ay - 20y sy Ary + oy Ty Ary

The minimum is obtained by taking

T T
5; Ary Ty Ty
(1.28) a, = = .
i rT Ar rT Ar
i i i i

The algorithm (1.25), (1.28) converges for every positive definite

symmetric A [ﬂouseholder (l955ai] and does so at an average rate over

m steps
A+ A A
n 1 1 n
(l°29) Rav (SDT) > Zn i—-—--—-x-— - E Zn T—_
n 1 1
where 0 < ll < e K An are the eigenvalues of A [kantorovig

(1948, 19h8a)]




II. NORMS AND CONVERGENCE

A. Introduction

As indicated in Chapter I, the notion of rate of convergence must
be precisely defined. In order to do this we must first introduce the
notions of vector and matrix norms, and also define what the concept
"convergence" is to mean.

The material of this chapter is not, for the most part, new, but
largely follows the exposition of Householder (1954b, 1955a). However,
it is felt that it has been possible to put certain aspects of norms
and convergence in a finite dimensional vector space into a clearer

light, and the chapter is included for this reason.

B. Vector and Matrix Norms

For convenience of reference, we collect here the definitions and
some of the properties of vector and matrix norms. For a more complete

discussion, see Householder (1954b, 1955a).

Definition. In a vector space X , a (vector) norm is a bounded

real valued function "x" of the elements x ¢ X satisfying the following

three axioms:

I. “x“ 20 ; ||x|| =0 if and only if x = 0.
II. ||ex| = |a| “x|| » where o is a (real or complex) scalar.
1. lx + xll < =gl + lIxll e

We are concerned here with the convergence of sequences in an
n-dimensional vector space, and in particular, whether convergence in an

arbitrary norm is sufficient to insure convergence. It is well known

)



1k

that the introduction of a notion of convergence or of a notion of norm
defines a topology in a space; either notion may be taken as basic, and
leads to a "natural"” definition of the other, at least in a finite-
dimensional space. In other words, either the notion of convergence, or
the notion of a basic norm must serve as an undefined term.

In considering the iterative solution of a linear algebraic system,
one is doubtless concerned that each component of the approximating vector

u can be made arbitrarily close to the corresponding component of the

i
solution vector u . Hence it is natural to take as basic the notion of
convergence by components.

Henceforth, then, let us restrict our attention to an n-dimensional
linear space X spanned by n independent basis vectors fj . In terms

of the basis, any vector u ¢ X has a representation
n

2.1 u = £

(2.1) JCPJJ

where the scalars @J are the components of the vector u . Our notion
‘of convergence is defined in terms of convergence of scalar sequences
as follows:

Definition. A sequence {ui}(:: X 1is said to converge to an

element u e X if and only if 1lim jS = QJ sall j=1, ..., n;

i.e., for every ¢ > 0O there exists an N > O such that m > N

implies IQJm - mjl < € ,all J=1, ..., n.
Convergence in norm also is defined in terms of convergence of a

sequence of scalars:
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Definition. Suppose a norm ]I " is defined in the space X . A

sequence {ué} is said to converge in norm to an element u € X if and

only E for every € > 0 there exists an N > 0 suchthat m > N

implies “um - u|| < € ;i.e., lim ”ui - u|l= 0.
i
It is easy to show that the function [ju]| = max ]@dl is a norm,
J

and that with this norm, convergence in norm is identical with convergence.

Theorem. For whatever norm defined on X , convergence in norm is

equivalent to convergence; that is, convergence in norm implies convergence,

and conversely.

This theorem is probably a classical one for finite-dimensional
normed linear spaces.
¥*
Proof . (a) Suppose {ui} converges to a limit uw , i.e., for
all lim @,. = . Then
Jd s - @Jl ¢j

1

n n
luy - ull = “% 9y T, -%cpj £,

n
”% (¢ji = ¢j) fj“

n
S; Eﬁ I@Ji - @jl ”fJ“

J

Since lim]cin - cpJI =0, all j , the sum on the right of the
i
inequality can be made as small as desired by taking i sufficiently

large. Hence lim [ju, - ull]=0 .
i

¥*
I wish to thank T. H. Hildebrandt for suggesting this proof.
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(b) For the converse, we need the following lemma.

Lemma. [Biesz, F

(1917)] . If the sequence ‘{”uil{} is bounded,

then each component sequence {ﬁj%} is bounded.

Suppose at least one component sequence is unbounded.

possible rearrangement,

n
liﬂl% o |

n
{Wji} » where V., = jS/g l@jil

is a bounded sequence and, by the Weierstrass-Bolzano theorem, contains

a convergent subsequence v, , with lim v, = V. Since
Ji Ji J
k k k
vl = T
ZW Z o..] L o] = 1,8l i,
Ji 1 Y/ g T
it follows that
n
Z v, | 1,
=1
so that not all vy, = Let v Z ¥, . Since {||u,|l
J i j=1 31 i
bounded,
tm 7, I = 1w  fw | |t =0
k k k k J=1
Hence = lim vy o= 0 , which, together with the independence of the
k
basis vectors ‘{fj} , Lleads to a contradiction; the lemma follows.
Now =zuoposs {?5} zonverges to u in norm, i.e.,

1lim ||a§ - uli
i i

= (o2}

Lim s, |
1

Then by a

Consider the sequence

Clearly, ( Wjil L 1, so {wj%}
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but that for some jo ; there exists a & > 0 and an M > 0O such

that Ioj il > b forall i > M . The sequence ||siH is bounded,
o}

hence, by the lemma, the sequence of components {oj{} is bounded

for all j . Applying the Weierstrass-Bolzano theorem again, it is

possible to pick a subset {Tik) 'of the indices i such that the
)

subsequence {—o. converges for all j . Let 1lim o.,. = o,
Ji Ji J
- k n k k
The corresponding limit vector s' = 2, o fj has [|s'|= 0 , since
J

a subsequence of a convergent sequence has the same limit. It follows
that all oj = O , by the independence of the basis, and in particular
o = 0 . This yields a contradiction, and completes the proof of the
theorem.

For the matrix norm, we have the following definition

Definition. A matrix norm is real-valued function "All of a

square matrix A , bounded in the sense that if the elements of the

matrix are bounded, then the norm is bounded; and satisfying the following

four axioms (the first three are identical to the three for a vector

norm):
I. llall > o; |lall = o if end only if A = 0 (where
O 1is the matrix consisting of zero elements.)
IT. HQAI| = ]al “All , where «a 1is any scalar.

r. la+sl < Jlall + sl .

. [lasll < lalllgl .

A matrix norm is said to be consistent with a given vector norm if for

every matrix A and vector u ,
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lawll < Mall fall .

A matrix norm is said to be subordinate to a given vector norm if it is

consistent, and, further, for every A there exists a u # 0 such that
lawll = falllluwll .

In particular, if the matrix norm is subordinate, then IlIll = 1. The
notions of subordination and consistency seem to be first introduced by
Fadeeva (1950, p. 61), (1950a, p. 85). See also Householder, loc. cit.

Householder has proved a number of theorems concerning matrix
norms of which we may need the following:

P of a matrix to converge

1) For the sequence of powers A
to zero, it is sufficient that llAl| < 1, however the norm may be
defined.

2) Let A be an eigenvalue of largest modulus of the
matrix A . Then for any € > O , there exists a norm such that
||A ” S; ll | + € . Moreover, if all eigenvalues of modulus | ll
are simple roots of the characteristic equation, then there exists a
norm such that ||A|| = I A i .

The Euclidean norm of a numerical vector x , or a vector referred
to a unit orthogonal basis, is defined by

lxll = < 0?

-
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where x* is the conjugate transpose of the vector x . The matrix norm
subordinate to the Euclidean vector norm is the spectral norm*: the
largest singular value of the matrix, i.e., the largest positive square
root of the eigenvalues of A*A , Where A* is the conjugate transpose
of the matrix A . Clearly, in case A 1is complex Hermitian, or real
symmetric, the spectral norm is the maximum modulus of its eigenvalues**,
and thus is the limiting case referred to in 2) above. On the other hand,

for more general classes of matrices, the spectral norm may exceed the

maximum modulus of the eigenvalues: consider for example a matrix

*
This definition differs from that used by Young (1954a). To form
a matrix norm subordinate to a given vector norm following Fadeeva (1950,

1950a) one may proceed as follows: Given some vector norm llx “ . Let
" A “ = nmax ————“ AX“ .
xto x|l

It is easy to show that this definition satisfies the axioms for matrix
norm. That it is subordinate follows directly from the definition.

In particular, when ||x||= (x* x)l/2 ,
* % 1/2
all = max (x A* AXJ)]Q - max o 1/2
X (x x)

where p 1is an eigenvalue of the non-negative semi-definite Hermitian
matrix A*A ; thus the spectral norm defined above is obtained.

* %
When A 1is itself Hermitian with real eigenvalues ki , then
there exists a unitary transformation U such that

*
u NU , where A\ = diag (X, ..., A)

k=3
il

But

* * * L
AA = UAUWW AU = U N U .

Hence maxy = max 22 ,or ||a]l = max | 2] .
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vhose Jordan normal form has all diagonal elements equal to A and

all elements of the super-diagonal equal to one. Thus, with n =2, let

A 1
A = s with real X > O
0 2
2
* T A 1
AA = AA = 5
X 1+ A

The eigenvalues of ATA are

M NCRSEEERVARLIEY

and

1 2

(222420 +1) > X

TS

V]

max

or

lall > max |2

C. Rate of Convergence

An iteration of the types mentioned in Chapter I may be represented

by the formula

(2,2')' s = T, s,



o

.

where the transformation Ti may vary with the index i through dependence
on s, as in (SDT) , or may be constant as in (T) and (S) . This
formulation is written in terms of the remainder S, =u; - u, where u
is the solution of the given system (1.1). Clearly, any iteration can
be expressed in terms of 84 since only a shift in the origin is involved.
And the sequence {jug} converges to the solution u if and only if
{si}———é 0 , a fact we have already made use of in (B).

In general, in studying the convergence of a process, we consider
its effect on a measure, such as the remainder S; of the deviation
of an element in the sequence from the limit of the sequence. However,
in considering the approximate solution of linear systems the remainder
is useless, because the solution u is unknown. As an alternative, we

may multiply (2.2) by the matrix A of the system (1.1), and,

providing Ti and A commute, we have

(2°3) ri+l = Asi+l = ATi si = T As = Tir e

The residue r, is computable, as has been pointed out in Chapter I.
Let us now assume that a suitable measure of deviation of the ith
iterate from the true solution exists, say r. and that the iteration

is defined by
J o
(2.3") riq = 0Ty

(where T, mey differ from that in (2.2) and (2.3) if the matrices in
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(2.3) do not commute). Define the "instantaneous" rate of convergence

at the ith step by

75,4 Iz =l

(2')"') R(Ti) = - Zn ri = = Zn W

vhere the norm is any vector norm. The introduction of a matrix norm

subordinate to the vector norm leads to

g Il =gl

(2.5) R(Yy) » - 4o = - 4e lind
1

The term on the right of the inequality obviously provides a lower
bound for the rate of convergence at a given step, which depends on the
choice of matrix norm. We may then use it as an estimate for the rate

of convergence, and designate it
(2.6) R(T,) = - /n [, i

where the index N designates the norm chosen. In view of property (2)
of norms quoted above, the best estimate RN for a given Ti is obtained
by using the minimum norm for the matrix, which can be made as close as
desired to the maximum modulus of the eigenvalues of Ti . When the
transformation is symmetric, this is the spectral norm, as indicated
earlier.

The average rate of convergence over m steps can be defined
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m-1

1 1 (770 Ti)rou
1=

av iEO BT = - g L 5T =~ " m % IENL

n-1 [

I
=N o

(2.7) R

l,l m-1 1 m-1

s Tl > -2 2 2o nll - omy,
i=0 i=0

If T is independent of i , and the minimum matrix norm assumes the

maximum modulus /\ of the eigenvalues of T , then

(2.8) RNav(T) = - 4Zn./\

which is the definition used by Young (1954a) for the rate of convergence
of T.

Note that the second equality of (2.7) furnishes an algorithm for
the direct computation of the average rate of convergence, useful
particularly in experimental studies of iterative techniques, and requiring
no prior knowledge of the eigenvalues of the transformations Ti . When
the measure of the deviation of the approximate solution from the true
solution is chosen to be the residue T, s there is the added convenience
that most iterative methods require the computation of r, at each step.
The choice of the norm is not restricted, although it may affect the
value for the rate. One possible norm is the e-norm [ﬁouseholder (l955a{],
the maximum absolute value of the components of the given vector; another
is the e'-norm, the sum of the absolute values of the components. Both
of these norms have an advantage over the Euclidean norm in requiring

less computation for their evaluation.



III. THE 52-PROCESS

A. The Scalar 62-Process

The scalar 52-process vas first applied in general numerical
analysis by Aitken (1926), but was apparently used in astronomical
computations by Delaunay about 1860 [Andoyer (1902)} . The 62-process
and its generalizations have been extensively studied in two recent papers
by Lubkin (1952) and Shanks (1954, 1955).

The 82-process is a transformation involving the first and second
differences of a sequence which, under certain conditions, has the
property of transforming a convergent (or divergent) sequence into a
more quickly convergent (or more slowly divergent) sequence. It also
has the property of increasing the order of a scalar iterative process

[ﬁouseholder (1955)] .

Let {fi} be a sequence of scalars. The first difference

(5'1) 5 gi = §i+l - gi

and the second difference

(3.2) 5

SEi - B &y
- +
Ei42 28341 1

2 *
Then the 8 -process defines a derived sequence {—g.} :

i
2k



25

2
(3'3) gl = gi - —T—'
8 €.

Equation (3.3) may also be written in a form involving a determinant,

and permitting the simplification

(3.4) Ey = = 5

by row and column operations.

In applying the 62-process to a scalar iteration of the form

one must compute at least two successive iterates §i+l s §i+2 . Then
*
51 computed from gi ) §i+l s §i+2 may be taken as a new starting

value and the process may be repeated [ﬁouseholder (1953)] .

gi+5
2

The 3 -process has been used with varying degrees of success to

accelerate matrix iterations (T) or (S) . In the case at least of

the iteration (T) it is possible to justify its application [Householder

(l954a)] . The method of application is as follows: The matrix iteration

(3.6) wo o= Fu)
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wheqe uy is a vector, and F is a matrix function, defines a sequence
of vectors {jui} . Each component sequence {-qgi?} s, J=1, ..., 1
is treated as an independent scalar sequence, and the scalar & -process
used accordingly.

Of course, the component sequences are 223 actually independent,

being related by the iterative algorithm, which takes the component form

i (1) (1)
(3.7) n; el P A P

For the report of an experimental study of the application of the scalar
2
& -process to the iteration (S) for a system of order 361, which

arises in a Dirichlet problem for the Laplace equation, see the Appendix.

B. The Vector 62-Process

Since matrix iterations deal with vectors rather than independent
sequences of scalars, it seemed desirable to define a process analogous
to the scalar Se-process which takes account of the vector nature of
the iteration.

The vector Seaprocess can be simply derived by introducing the
notion of a scalar product to account for the fact that the reciprocal

of a vector cannot be defined: For a sequence of vectors {ui}

T
(d3u,) 5 u
(3.8) ug = u - ; . i 5 uy
(5 ui) du,
where
(3.9) du, = u, - u,



2
(3.10) 8 u, = du -duy = ow - 2ui+l + Uy

It is clear that for a sequence of scalars, this vector Bz-process is

identical with the scalar 52-process.

2
Theorem. The application of the vector & -process to the iteration

(T) yields an algorithm identical to that for (sDT).

That is, given a starting vector wu, . If one proceeds by (T) and

2 *
the vector & -process to find wu, , and by (SDT) to obtain Vil 2 then

*
Y17 Y
Proof. From (1.12), (T) becomes
(3.11) Wy o=y o- (A u - b)

and from (1.15) r = (1 - A)ri . Then

i+l

o

(=]
|
1

and

T
(3.12) u, = u, - -%————— r
i
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But, from (1.26), (1.28),

rTr
v = U iir--u ]
i+l i T i
r. Ar,
i™i

Theorem. The application of the vector 82-process to (s) yields

a nevw iteration which converges provided the matrix EA = (I - Bl)-l A

has a positive definite quadratic form.

Proof. From (1.19c), (S) can be written

_ -1
., = 4, ~-Er, , where E =(I - Bl)

or
(3.13a) W= ouo- ti , Where ti.EE E rs )
and from (1.20)

t, = t, - EAt,

i+l i i
Then
(3.1%b) Bu, = -t .
(3.13¢) 82w, = - (t, . -t.) = EAt .
i 141 T 74 i
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and
T
t, t
*

(3.14) uo=ou - Ti 1 ti

ti EAti
The process defined by
(3.15) u = U, - ——t

i+l i ET EAfi i

vhere 'ﬁé =u ,t =t , ﬁl = u: in (3.14) is a new iteration based
on (8).

The proof of convergence is deferred to Chapter IV, where it
follows as Corollary 1 of Theorem 4.1.

The question arises whether the vector 82-process increases the
order of a matrix iteration. That it does not do so, in general, can be
deduced from a study of (SDT), which we have shown to be the result of
applying the vector 82-process to the basic iteration (T).

For the purposes of this discussion, the notations and definitions
of Ludwig (1954b) are in order:

Given an iterative algorithm

-
gl(Lk)

(3.168) X1 = ?(xk) , where x_ = .
(0
n
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- cpl(§§.k)) A gl(lk))
flx) = :
®, (§§k), , gflk))
Define the column operator
ﬁ
[ s
%
(3.17) a = :
0
%,
_
and let
(3.18) 5, = X - X, vwhere x = f (%)

Then the iteration can be written

1

(3:19) s, = (5; @) B(X) + 57

- (s7 &) F(x) + «ov + 27 (sp Q) FE) + oo

Definition. If the pth term in the Taylor series (3.19) is the

th
first non-zero term, then the iteration 15 said Eg Eg g£ the p order.

For (T) , we have by (1.15)

o] ]
1]
o

(3.20) s = Bs and
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(k)

Written in component form with Uj the components of Sk eJ the
jth basis vector, and using the index notation for summation
(3.21) (si d)Bs = ogk) 5%3 qu oq e,
= ogk) Bpj eP = Bsk
(si d)2Bs = ng) o 5%3 5%2 qu o % = 0

Hence (3.20) describes an iteration of the first order. Incidentally,
it is clear that when ¥(x) = Fx for any constant matrix F , the
operator sTd is a substitution operator.

Now, for (SDT) we have algorithm (1.25),(1.28)

Sep1 = fls) = 5 - oy Asy
T 2
ak ) sk A sk

SE AE 8y

Then
T T
(3.22) (sk d) (s - afs) = s, - GAs, - As(sk d)a
2
sTA (1 - aA)sk
= (I - aA)sk -2 T3 As
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With “x“i:xTAx,and letting I - oA =C,
T 2
(3.23) H(sk da) (s - aAS)“A =
T 2 T2 2
2 sAC_ s sA C_ s
k T2 a’k T,3
= |c s ” -y @ XAt s+ 4 —F 3 s A”s
l a k A sTA3s ak sTA s
= llc s, |
ak A
Thus, with a_ = lim a > 12/x3 > 0
’ o 7 "1'"n
s—>0
(3.24) n [ (sp a)(T-aa)s]| = [[(T-ad)s || # O
s—>0 A ° A
unless l/aO is an eigenvalue of A and 8y is the corresponding eigen- :

vector. We must conclude that (SDT) is in general a first order process;
hence, that the vector 62-process does not increase the order of every

matrix iteration.



IV. THE STEEPEST DESCENT FOR SINGLE STEP PROCESS

The classical steepest descent process (SDT) optimizes, in a
certain sense, the basic process (T). In an analogous fashion, it is
possible to find a steepest descent process which optimizes the basic
single step process (S); this new process is called steepest descent for

single step or (8DS).

A. Generation of Algorithm for (SDS)

The basic iteration (S) as given by (3.13) is modified by the

introduction of a scalar parameter Bi .

(k.1a) Yo S Y oC B Yy
or
(k1v) Sis1 = S5 " By by
vwhere, as before,
ti = Eri = EAsi
_ -1
E = (I-B) .

Let H Dbe an arbitrary matrix with positive definite quadratic form

(xT Hx > O for all x # 0) , and let “x”: = x' Hx . Consider

33
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2 2 T 2.7
(k.2) |,51+1|'H = “SillH - ePy by Hsy + By Ty HYy

In order that llsi+l HH be a minimum,
t; Hs,
(4.3) By = -7
ti Ht,

The algorithm (SDS) is given by (4.1) and (4.3).

When B, satisfies (4.3),

T 2
(t, Hs.)

2 2 2

("I"LI') ”si+l||H = ”Si“H - I}I = “siHH
1 BYy

provided that if Sy £0, ti is not H~orthogonal to 85 3 i.e.,
provided tf Bs, £0.

There are at least two choices of H which satisfy this condition:
(1) H =EA, when EA has positive definite quadratic form; this is the
algorithm (3.15) obtained by applying the vector Be-process to (8) ;
(2) H = A, the positive definite matrix of the linear system (1.1).
Furthermore, in each of these cases, the algorithm depends on the vectors
ti and Ty which are available, and not on S5 » which is actually

unavailable.

Theorem 4.1. Iz for positive definite H , 8y # 0 1implies

tg Hsi £ 0 then (8DS) converges, and the limit of the sequence {ué}

is wu , that is, the sequence {éi} converges to O .

Proof. Since Hsi is a monotonically decreasing sequence of

I,

positive numbers, it converges to a unique non-negative limit. We shall
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show that the limit is zero, hence lim s, = 0 . For suppose the
t—> oo

unique limit of the sequence of norms is N > O . Then there exists

a convergent subsequence {éi } such that
k

lim s, = s  and II's HH = N
1—>eo Yk
k
Now consider
T 2
2 2 (t; Hs )
2 | . k k
N = lim Hsi +l|| = lim “si l' - 0
i—>ee 7k H i—>eo k H t, Ht,
k k i i
k k
o -2
2 2
=N-—(§,IT—H-S—_):—<N
- tTHt
. since the fraction is a continuous function of 8, being a rational

k
function of its components with non-zero denominator, and s # O implies

t = EAs £ O because the matrix EA , the product of two non-singular

matrices, is non-singular. Thus we have a contradiction; hence

lim "Si||2 = 0
i—>ee H
and therefore
(4.5) lim s, = O
- i_%oo 1

Corollary 1. If EA has positive definite quadratic form, then

setting H = EA in (4.3) and (4.1) produces a convergent iteration (3.15).
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Proof. If H = EA , (4.3) becomes

tg EAsi t? ti
()-F.6) Bi = T = T
t, EAt, 1, EAt,
i i i
and (4.4) becomes
T 2
) lopn 12, = leg M2, - it
.7 s = s - ——
i+l "EA i"EA tI EAti

. N | T T
Since 8 # 0 implies ti = EAsi £ 0 and ti EAsi = ti ti > 0, the

conditions of the theorem are satisfied.

Note that the matrix EA does not have positive definite quadratic
form for all positive definite A , or even for A canonical with respect
to property (A) and having non-positive off-diagonal elements. For

consider

This 2 x 2 matrix is canonical with respect to property (A) and has
non-positive off-diagonal elements. It is positive definite if the

principal minors are positive, i.e., if

[a] € 1



But, from (1.22),

and has the quadratic form given by its symmetric part

1 -a/2

5 B+ @) =
2
-a/2 1-q

which is positive definite only if

2
Thus, for the example, EA is not positive definite for % 4; a < 1.
Corollary 2. Setting H = A in (4.3) and (4.1) yields a

convergent iteration defined by (4.1) and

tz Asi tz ri rz Eri

(.8) By = 7 =TT = 77
t, At t: At t: At

1 1 1 1 1
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Lemma. The matrix E has a positive definite quadratic form.

*
Proof . Since the quadratic form on any real matrix depends only

on its symmetric part, we have, for any x # O ,

(%.9) oxT Ex xT(ET + E)x

]

-1

T T )Ex

-1
X ET(E + E

<7 ET(I + A)Ex

xTETEx+xTETAEx > 0 ,

for ET E , being the product of a non-singular matrix by its transpose,

is positive definite; the quadratic form . xT ET AEx 1is positive definite

because A is positive definite; and x # O implies Ex # O , E being
! non-singular.

Proof of Corollary 2. Since S5 # 0 implies r, = Asi #£0 , and

i
E has positive definite quadratic form, then s % 0 1implies t? Asi % o,

so the hypotheses of the theorem are satisfied.

B. A Crude Estimate for the Rate of Convergence of (SDS) when H = A .

Theorem 4.2, If H = A , vhere A is positive definite and is

canonical with respect 33 property (A), then the average rate of

s
The method of proof follows from a suggestion of Professor Jack
E. McLaughlin.
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convergence of (sDS) over N steps is bounded from below:

(4.10) R._(SpS) >

o+

’ n 1 ln
Zn -‘é—'Nzn')TI

where ll is the least, ln the greatest eigenvalue of A .

Proof. From (L4.4), setting H = A , we have

) T s L
11 S, = S, -
1+lI A v r? ET AET.
i i
2
o,y Iy
We ask for an upper bound on for ||s1|| £0 . From (4.9),
“si“A A
’ 1
r; Er, = 3 rg ET (I + A)Eri = % tg (T + A)ti
also
T T
rs E AEri = ti Ati
and
2
T -1
Ilsill = s{As; = r,A T,
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2 T 2
lsy s 1 - %ot (t; (T +8)%)
2 - T -1 T
I's, “A (r; A7 1;)(t] At,)
2 2 2
(47 (1+A)t,) (142.)° (£T%,) A (14, )° Tt
(4.13) min —1 1 1 e L A R 5
° "’ (rTA'lr ) (1AL, ) % Tt A thg, r orhT
A Tyl AT, 1 T1Ti Antit n TiTi

Now, under the assumption that A 1is canonical with respect to property (1),

tit r.E Er
i

T T T
i
T T
= ry(I+ Bl)(I + Bl)ri

T T T
= ri(I + By + B, + By Bl)ri

T T_T
= ri(QI - A) r, +T; B By Ty
> rT (21 - A)r
7 i i

since B{ Bl , being the product of a singular metrix by its transpose

is positive semi-definite. Then

(4.1k) t. t > (2 - kn) r, T,
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(67 (T + A),)°

min
-1
(rfA ri)(thti)
and from (4.12)
2 2
lIs,,, I M (1+2)7 (2 -2)
max —= B L1 - 5
e, 12 .
1 1
ln -] ll tn ll ln
< X
n
Then
\1/2
1 1 |
| i+l “A < Ay - 2 Mo+ i M ln‘é
PR .
or
1 1 N/2
l|~"’1\;||‘,&.‘.,4.‘5< A s M +EM A
HSO“A ln
To write the inequality in terms of the Euclidean norm || || » we note
E

that for any x £ 0 ,
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1l/2 1/2
2 xlly < dxll, < a2 gxl

Hence
1/2
1 1 N/2
“lelE < kn kn -3 kl tEF kl ln
TR 172 by
o 1, 2 a
and
kn 1 n
R, (sDS) > 7/n — T T ‘Eﬁlnxz
n" 32N tEM S

In order to obtain this estimate, we have used some rather crude
inequalities, as, for example, in (4.13), where no account is taken of
the fact that the numerator and denominator of the fraction are not
independent. Because of this crudeness, the estimate lacks sufficient
precision to permit & comparison between (SDS) with H = A and the
well-known methods, in particular (SDT). In short, the theorem serves
at best as an alternate proof of the convergence of the method.

In view of the known facts that when the matrix B of (1.5) has
all positive elements, (S) converges faster than (T) , and that (SDT)
converges at least as fast as (T) , one would expect that (SDS) con-
verges at least as fast as (S) , and faster than (SDT) under similar
circumstances. But the problem remains to find a sufficiently precise

estimate for the rate of convergence of (SDS) . It is possible that
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this problem will be solved by finding a way to express the eigenvalues
of ET AE in terms of those of A , or some other approach may prove

to be effective.

C. A Method for Computation using (SDS)

For computation of the vectors appearing in either of the (SDS)
algorithms, it is convenient to make use of the differences formed by
using (S) and/or (T) . We have already seen how the algorithm with
H = EA arises naturally by applying the vector 62-process to (8) .

Recall, from (3.13) that (changing notation) if ui is formed from uy

by applying (S) :

(k.15) ui = u - E(Aui - b)
then
(.16) ty = Bu o= ou - ui

and if ti is formed from ti by the same algorithm with b = 0 , then
— - = - !
(k.17) EAt, = -Bt, t, -t

With ti and EAt1 , it is fairly easy to compute the fraction (4.6).
For the case H = A , we need also the vectors ry and Ati .
For their computation one may introduce also the algorithm (T) (1.13)

to compute



(4.18)

whence

(4.19)

similarly,

(4.20)

so that

(k.21)

1"

.t"

At,
i

L

_ - "
5] o= U - Uy
t, - At
i
=5 t, =t t"
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V. SELF-ADJOINTNESS IN ONE-GROUP MULTIREGION DIFFUSION PROBLEMS

A. Introduction

Multi-region diffusion problems are of current interest in nuclear
reactor theory, in the theory of biological systems, in heat transfer
broblems, etc. In its most general form, the problem is concerned with
the diffusion of several substances simultaneously, which interact with
one another according to certain laws of equilibrium, a situation
described by a coupled system of partiai differential equations. In
nuclear reactor theory, such a problem is known as a "multi-group"
problem.

The present discussion is limited to a one-group, multiregion
problem, i.e., we assume a single diffusing substance, so that in each
subregion the steady-state distribution of the substance satisfies a
single partial differential equation. The laws under which the diffusing
substance passes from one subregion into another contiguous subregion
are described by interface conditions, while the conditions at the outer
boundary describe the relations of the system of regions to the rest of
the world.

It is of particular interest to know under what circumstances the
problem 1s self-adjoint, so that, for example, its eigenvalues are
real, and eigen-functions corresponding to distinct eigenvalues are
orthogonal.

In this part of the present paper, we develop a condition which,
when satisfied at the interfaces, is sufficient to insure the self-

adjointness of a class of multi-region one-group problems. This is an
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extension to a more general situation of a result obtained by Sangren
(1953); Sangren limited his discussion to the case where the sub-regions
are topologically equivalent to the annular regions between concentric
spheres, while the discussion here applies to an arbitrary arrangement

of interfaces.

B. Definitions and Statement of Problem

Consider the bounded connected region S which is subdivided into
N subregions Si , 1=1, ..., N, by the plecewise smooth surfaces Gij ’

i=1, ..., N; §g=0,1, ..., N . The surfaces

G and G,, are identical, except that their "outward" normals are

i] Ji
oppositely directed:

(5.1) gy o= - By . .
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The surface Gio is the portion of the outer boundary of S which is
common to the boundary of Si .
Let there be defined in each subregion Si the linear differential

operator with real coefficients

2 R
(5.2) Li(ui) = U w + Dju, is= 1, ..., n

where Di is a real function of position continuous in Si , and ui
N

is any function with first derivatives continuous in S; vV U Gij and
J=1

second derivatives continuous in Si .

The following boundary and interface conditions are to be satisfied

oneach G,, ,i=1, ..., N; J=0, «o., N :

iJ
a du,
u, = ai u, + B J
J 13 Ony
(5.3) J
du du,
1 = 7 u + & J
3nij ij 3 iJ Bnij
N
vhere aij’ s 5ij are real and
(5.4) P15 = (@gy 854 =755 B3y) £ 0 (3 £0)
Pio = O

The condition on the outer boundary G contains as special cases the

io
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conditions

Note that where two subregions Si and Sj have no common inter-
face, we may assume that a non-singular (Qij # 0) condition is satisfied
vacuously, since Gij = 0 ; and also that P54 = 1, Gii = 0 , which is to
say that the function ui is to be continuous with continuous first
derivative within any given subregion Si .
Note also that @ij # 0 implies

(5.5) Pyy = l/@ij .

For, by interchanging indices in (5.3), we have

Bui Bui
uJ = aJi ui * Bji Enji = 031 i 7 BJi 5n1J
BuJ Bui Bui BuJ
n. T 751 %t %1i mmL T 7 e 5ji on T
ji ji ij ij
ou,
whence we may solve for u; Eﬁi— , by applying (5.3) to obtain
iJ
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or

i3 Py 1

C. A Sufficient Condition for Self-Adjointness

A set of functions {ui} satisfying the differentiability conditions
in each Si , and the interface and boundary conditions on each Gij ’
i=1, ..., N; =0, ..., N, are the components of an admissible
function U defined on § . The operator Li defined on each Si

induces an operation L(U) defined on S .

Definition. L(U) is self-adjoint provided there exists a set of

N positive constants ki such that for any two admissible functions

U£V,

N
(5.6) 2 ki fé{ vy Li(ui) -, Li(vi)] at = 0

i=1 i

Theorem. A sufficient condition that L(U) be self-adjoint is

that
Pip Pny Pji = 1 forall 0 < i, j, hg& N
(5.7)
P > 0 forall 0 < i, j ¢ N

Proof. By applying Green's theorem to the left side of (5.6)

we obtain
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N N
2 2
(5.8) iE.lkiféfi bor () - WL, (v,) ] & = i§1 K, féi [yoy - o v, ar
N N aui avi
= Lk, L ( - ) da
401 1 3=0 é; vy Bnij ui 5nij o

iJ
Foreach i < j, and for J = 0 we introduce the boundary and inter-

face conditions (5.3):

Bui Bvi
k., [[ (v -u ) do
i o i Enij i Bnij
iJ
Buj ij
=k JI aggdyy - Bygrsy) vy a5 - vy g )de
Gij iJ iJ
Buj ij
k., @ [/ - u, )do
i*id Gij J Bnij J Bnij

Since Qio = 0 , all terms with Jj = O vanish. The right-hand side of

(5.8) then becomes (upon interchanging the order of summation)

j-1 du v

N
(5.9) Z Y k,o9,. [f (v J _u J )do
j=1 i=1 4 ¢, 4 Jdagy 3 Omyg
N N du avi
J=1 i=j G i ij




51

The second term of (5.9) can be transformed by interchanging the order

of summation, "renaming" indices, and observing that Gji can be
replaced by Gij if nJi is replaced by -nij , as follows.
g N aul Bvi N i-1 aul avl
Lk [] (v -u Jdo = X L k, [[ (v u )do
. 1 i on i 9 . i3 i 9

J=1 1=3 "oy, 13 "1) =1 3=1 * gy, 13 1)

N j-1 auj BVJ

= X X k [ (v, -u Ydo
j1ia1 t g 3%y 4%y
Ji
N Jj-1 du ov

= - L X k ( -u, ) 4
J=li=ljéf Yy, TN,

Upon substitution of this term in (5.9) we obtain

g j=1 s auJ BVJ
(5.10) L o(kx, 9,, - k) (v -u ) do
| j=l i=1 T 1 , S

From (5.10) it follows that
(5.11) ky 9y - ky =0, 0 <1< 3 «KN

is sufficient to insure the vanishing of the right-hand side of (5.8);
that is, (5.11) is a sufficient condition for (5.6).

We now observe that (5.11) implies

kj = klcpiJ = khq)hj = kqulthhj ) i < h < J -



Therefore

®i5 ° ®in®ny

and in view of (5.5) and the condition ki > 0,1i=1, ..., N, (5.7)
is equivalent to (5.11).

Theorem 5.2. Given the eigenvalue problem

N
(5.12) Li(ui) =26, u, O > 0,1i=1, ..., N; Elei >0

where A is independent of 1 , Gi is a real number constant in each

Si , and the u, are components of an admissible function U . If

L(U) 1is self-adjoint, then the eigenvalues are real and eigen-functions

corresponding to distinct eigenvalues are orthogonal over those subregions

S. where 6, #0 .
i —— 71
Proof. Suppose there exists a complex eigenvalue A , and a
corresponding admissible solution U , such that Oi > 0 1implies
uy % 0O in Si . Because all the coefficients in the equation (5.12) and
the boundary and interface conditions are real, the complex conjugates X

U must also satisfy, i.e., in each Si

(5.138) I (w)

i
P
O

[N

[+

(5.130) Ly (%)

i
b
©

=3

)
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Multiplying (5.13%a) and (5.13b) by Ei and u, respectively, and
integrating the difference, we have
— - - 2 2 — ,
(A-X)e, [/fu, var = [[f A, g w, -uwv-wl)dr, i=1, ..., N.
i S i1 g i i i i
i i

Since L(U) is self-adjoint, there exists a set of ki > 0 such that

™M=

(x - X)

k, o, [J[ u, u, dat = 0
i S

1 %1 et
1 1

Then A = X =0 , Since ui Ei = |ui|2 > 0, and not all gi = 0 ;
A must be real.
The proof of orthogonality follows the same lines, except that

A - p £ 0 implies

J[f u, v, dT = O over each 84 where Oi > 0.
g 1
i
D. Remarks
1. 1In certain frequently occurring special cases, condition (5.7)
is automatically satisfied.

(a) cContinuity across the interfaces:

-

ui = uj on all Gij s J # 0
<
Bui auj :
& 5o T &5 ;- gg > 0,0<1iLX
_ iJ ij
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Then q)ij = gj/gi > 0

|
=

iy Py Py = (g/8;) (85/8)(e,/8;)

(b) Contact resistance at interfaces:

Bui Buj
P 55;3 = o, 53;3 = hij (w, - uj) on all G, J#0

ij
can be rewritten
/— pj BuJ
u;, = uJ T %.. on..
iJ 1J
<
du du,
1 EQF‘L
Enij Py o0y
N
h = )
whence q)ij pj/Pi > 0 and Pin cPhj q)jj_ 1

2. While Theorem 5.2 gives assurance that the eigenvalues of
the operator L(U) will be real when the interface conditions satisfy
(5.7), one may well ask whether the result can be extended to the finite
difference analog of the problem. Such an extension has been made by
Mr. A. C. Downing of the Oak Ridge National Laboratory, in work soon to

be published in an ORNL Report.



APPENDIX

Computation of approximate solution of a Dirichlet problem for

Laplace's equation. Application of scalar Ba-process.

The problem was as follows: On the square O Q x,y £ 1,

find a function u such that

(A.1) \V/ 2 u = 0 ,
and on the boundaries
(A.2) u(o, y) = IlI sinx ¥y
u(x, 0) = u(x, 1) = u(l,y) = O

A square grid with grid-spacing h= E% was lald on the region so that

2
there were 19 = 361 interior grid-points, and T6 active boundary points
(the values at the corner points do not enter into the computation).

The simplest finite-difference representation of the Laplace equation

was used:
With Mk = u(jh, kh), o < J, k < 20 ,
)
(A.3) 1 - 3 (n + 1 + 1 + 7 )
j,k L Y,k-1 3, k+1 j-1,k 3+1,k
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The basic iteration (S), often called Liebmann's method [Liebmann

(1918)] in this special case, was used. It takes the form

(1+1) _ 1, (i+1) (1+1) (1) (1)
(a-4) Mk T B0 Y Nkt Mgk gk )

The computation proceeds successively through all the interior grid-points

in the order
(A.5) (3, k) = (1, 1), ---,‘(l, 19), (2, 1), ..., (19, 19)

for each complete iteration.
For the machine computation, the boundary values and initial
estimates of the solution (ngoi =0, 0 < j,k < 20) were stored
b

in the order

(A'6) (-j: k) = (0) 0), (0: 1) ... (0, 20); (1, O) ... (1, 20)5

(2, 0) ... (20, 20)

The differences

i) - -

were computed and stored in the order (A.5), while the newly computed

(i+1)
T3,k

initial estimates. 1In view of (4.15) the differences (A.7) are the

values were stored in the positions which originally held the

negatives of the corresponding components of the vector ti .




o7

The differences (A.7) were used first to determine the end-point
of the iteration: when the maximum absolute value of the differences

(the e-norm of t fell below 2.23 , the iteration was stopped.

i)
The differences were also used in the application of the scalar 52-process.
2 t
The & -process was applied after every M h full iteration, and M
could be varied to observe the effect upon the convergence of the method.
2 th
The & -process was actually arranged to coincide with the M = iteration,
so that it was possible to obtain the second difference
2 (1)
5 1.
Jrk
at the time it was needed. The second differences were not otherwise
computed or stored.

The experiment produced the data given in the table: M number

2
of iterations between successive applications of & -process; N = total

-2
nunber of iterations required to reduce max |51]| to at most 2 5 .

M I 90 100 110 115 120 125 140 160 180 200 300 387 >387

N |l93 185 180 178 178 179 179 180 181 201 301 388 388

The algorithm without the application of the Se-process required
388 iterations. A single application of the 52-process after about 100
iterations was sufficient to reduce the total number of iterations by
more than 200. The optimum point at which to apply the 82-process was

between 115 and 120 iterations.
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