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NOTATION

In Part I, the following conventions of notation are observed:

matrices are designated by capital letters, vectors by lower-case Roman

letters, and scalars by lower-case Greek letters except for indices,

and for certain other integers and bounds, such as the dimensionality

of a space.

In Part II, these conventions are relaxed, so that, for example,

scalar functions are represented by lower-case Roman letters. The

notation of Part II should be self-explanatory.
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PART I

ITERATIVE METHODS FOR THE APPROXIMATE

SOLUTION OF LINEAR ALGEBRAIC

SYSTEMS



I. INTRODUCTION

A. Scope of the Study

This part of the dissertation is concerned with iterative techniques

for the approximate solution of non-singular linear algebraic systems, and in

particular with a new modification of the so-called Seidel method analogous

to the classical method of steepest descent. In the course of the

investigation, a vector process analogous to the well-known scalar 5 -

process was defined. It was found that repeated application of this

2
vector 8 -process to the classical Jacobi iteration for linear systems

produces an iteration identical to the classical method of steepest descent.

2
On the other hand, it is shown that the vector 8 -process does not have

2
the property of the scalar 8 -process of increasing the order of an

iteration.

B. Definitions and Examples

The linear algebraic system under discussion has the matrix form

(1-1) Au = b

where u is the n-dimensional unknown vector, A is an n x n symmetric
•st

and positive definite real matrix, and b f 0 is an n-dimensional constant

*

The condition that A be symmetric and positive definite is not
particularly restrictive, since any linear system with non-singular matrix
can be transformed to an equivalent system with symmetric positive definite
matrix by multiplying by the transpose of the given matrix. Thus, for
non-singular F , the solution of Fu = g is identical with that of
T T

F Fu = F g .



real vector. In component form the system is

n

(1.2) Z aJk nk = 0 , j=1, ..., n
K—J-

We shall find it convenient to use the matrix notation wherever possible.

It is also convenient to make the further assumption that the matrix

A has unit main diagonal, that is, that all the diagonal elements

a = 1 , j = 1, ..., n

It is possible to transform any system with symmetric positive definite

matrix to this form by the following method: Given the system

(1=3) Fv = g ,

with symmetric, positive definite F . Let D be the matrix of positive

1/2
(F being positive definite) diagonal elements of F , and D be the

diagonal matrix whose non-zero elements are the positive square roots of

-l/2 l/2 -1
the corresponding elements of D . Let D ' = (D ' ) . Then setting

/-, i,\ . «-l/2 ra-l/2 J-/2 . „-l/2(1.4) A = D ' FD ' , u = D ' v , b = D '

the system

(1.1) Au = b

g



has a positive definite matrix A with unit main diagonal.

In the following we use two decompositions of A ,

(1.5) A = I - B

where -B is the symmetric matrix of non-diagonal elements of A , and

has zero main diagonal; and

(1.6) A = I-B1 -B^ ,

where -B1 is the lower triangular matrix of A exclusive of the main

diagonal.

Note that

(1-7) B = B1 +B^

If it is possible by a conjugate permutation P of rows and

columns of A to reduce A to the block form

When all the diagonal elements of F are equal, cp = 8 , the
J J

matrix D becomes the scalar matrix 81 ; then we may set

(1.4*) A =8"1 F , u=v , b=8_1 g ,

since 81 commutes with any matrix.



(1.8) PAP

then A is said to have property (A) Young (1954a), Householder (1955a) •

The transformed matrix will be called a "matrix canonical with respect

to property (A)".

It is to be noted that when A is a general symmetric positive

definite matrix, the lower triangular submatrix B.. is nil-potent of

index at most n , i.e., there exists a k ^ n such that

(1.9) B1 = 0

If A is canonical with respect to property (A), then the lower triangular

submatrix B, is nil-potent of index 2, whatever the order of the matrix

(1.10) B. + 0

(1.11) B-, = 0

This property of matrices canonical with respect to property (A) leads

to important simplifications, to be mentioned later, in the theory of

Seidel iterations.

Throughout the paper, bibliographic references are given by the
date in parentheses following the author's name. Where the references
are parenthetical, they are enclosed in square brackets.



Of the several ways in which linear systems (l.l) may arise in

applied mathematics, one of the most important is by the construction

of the finite difference analog of a boundary value problem with elliptic

partial differential equation. Examples of methods by which these analogs

may be constructed are found in Collatz (1951), and (for a restricted class

of self-adjoint equations) in Young (1954a); there are of course many

other similar discussions in the literature.

In many cases of physical interest, the matrices for these finite

difference analogs are symmetric and positive definite. This is indeed

the case when the given partial differential equation is the Laplace

equation (or its generalization discussed by Young (1954a)) and the

boundary value problem is the Dirichlet problem, that is, the solution

function itself is prescribed at all points of the boundary. In the

case of the Dirichlet problem, the matrix A in (1.1) reflects the

properties of the differential operator and the shape of the boundary,

and the constant vector b contains the boundary information. Each

component of the unknown vector u represents the value of the solution

of the finite difference equation at a point of the difference grid

interior to the region over which the solution is sought.

C. The Three Classical Iterative Methods

By the three classical iterative methods for approximate solution

of linear algebraic systems, we mean the Jacobi or "total-step" method,

the Seidel or "single-step" method, and the steepest descent method.

Of these, the first two differ from each other in the decomposition of

the matrix A employed, and the last is an optimized version of the first.
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(1) The Jacobi method, was, according to Forsythe (1953), first

published by Jacobi (1845). We shall hereafter use the symbol (T) ,

standing for the descriptive term "total-step" (Gesamtschritt), as a

designation for this method.

The method (T) is based on the decomposition (1.3) of "the matrix

A . Starting with (1.1), we have

Au = (I - B)u = b

u = Bu + b

which leads to the iteration

(1.12) u. , = Bu, + b
N ' l+l i

where u. stands for the i approximation to the exact solution u .

In studying this and the other iterations discussed in this paper,

it is often convenient to write the algorithm in terms of the error or

remainder

(1.13) si= u± - u

and/or the residue

(1.14) t± = Asi = Au± - b



One should observe that for practical purposes s. is unavailable, since

u is unknown, while r is available. We then have for (T)

(1.15)

= (I - A)Si

" Si " ri

Since the matrix B is constant, the iteration can also be written

(1.16) s. . = Bi+1 so
i+1 o

where sq corresponds to the (arbitrary) starting vector u .

Clearly, (l.l6) converges to zero for symmetric A if and only

if the eigenvalues [i. of B (= 1 - X. , where X, are the corresponding

eigenvalues of A ) lie in the interval

(1.17) -1 < |a < +1 , j = 1, ..., n

Hence we have the

Theorem Stein and Rosenberg (1948)1 For symmetric A ,the

iteration (T) converges if and only if both A = I - B and I + B

are positive definite.

*

The rate of convergence is given by

(1.18) R(T) = - /n (max |n. I ) -

*

For a discussion of the notion of "rate of convergence" in matrix
iterations, see Chapter II.
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(2) The method commonly known as the Seidel method was apparently

first advocated by Nekrasov (1884) who attributed it to Seidel Forsythe

(1953), p. 5footnoteJ . We shall hereafter use the symbol (s) ,

standing for the descriptive term "single-step" (Einzelschritt), as a

designation for this method.

The method (s) is based on the decomposition (1.6) of the matrix

A . Starting with (1.1) we have

Au = (I -B1 -B^) u = b

(I -B^u = B^ u+b

which leads to the iteration

(1.19a) (I -B±) ui+1 = B^ u± +b

or

(1.19b) ui+1 - (I -B^"1 (B* u± +b)

or, adding and subtracting u. on the right hand side,

(1.19c) ui+1 = vl± -(I -B-l)'1 (Au. -b)

In terms of s. and r. , we have
i i '



(1-20) si+1 = Sl -(I -Bj,)"1 Ast =Si -(I -B^'1

- (I -B^"1 B* 8t

-1 T
Setting C = (I - B,) B, , we have also

(1.21) si+1 - Ci+1so

r.

Reich (1949) has shown that positive definiteness of the matrix

A is a necessary and sufficient condition for the convergence of (S) .

As far as the rate of convergence is concerned, there is a theorem

of Stein and Rosenberg (1948): Let y be the maximum modulus of the

eigenvalues of C , and \i be the maximum modulus of the eigenvalues of

T
B . If the elements of B , and hence of B, and B, , are non-negative,

then either 7 < \i<.lory=\i=loryy, n > 1 . That

is, (S) and (T) converge or diverge together; if (T) converges,

then (S) converges more quickly.

In case the matrix A is canonical with respect to property (A) ,

(S) converges if and only if (T) converges, and if both converge,

(S) converges twice as fast as (T) [Young (1954a) J . The proof is

based on the fact that B, is nil-potent of index 2. This permits the

immediate computation of the exact inverse of I - B, :

(1.22) (I -B1)"1 = I+B2



for

Then

(1.23)

h °\/h °

P T / \ -P T1 •L2/ VI ±2/

10

C = (I +B-^B*

and the characteristic equation is

(1-24) det(7l - C) = det

II ° \ Z1! °

P I / \ P Irl x2/ VI "L2y

0

^Pl \

o piPi

T
7IX " Px

.o 7I2-PA

0 P,

0 0

= 0

But if |i is a non-zero eigenvalue of B ,

0 = det » det

= det
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since ^ ^ 0 implies

det \ £ 0

Therefore, the non-zero eigenvalues of C are squares of the non-zero

eigenvalues of B Young (1954a), Householder (I955a)j .

(3) As indicated previously, the classical method of steepest

descent is a modification of (T) . Forsythe (1953) finds the earliest

exposition in Cauchy (1847). Because of its relation to (T) , we shall

use the obvious designation (SDT) for this method.

The development of (SDT) may be traced as follows: Introduce

the scalar parameter a. into (1.13) to obtain

(1.25) s1+1 = 8jL -a± r±

or the equivalent

(1-26) ui+1 = u± -a± (Aa± - b)

Geometrically, (1.25) locates e, ^ as a point on the line in

the direction of r. through the point s. . The parameter a. is now

selected to fix s. 1 as the point at which the line is tangent to an
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T
ellipsoidal surface of the family s As = k ; that is, to minimize the

quadratic form

(1.27) bJ+1A81+1 - s* As. - 2Gi s* Ar, +a* r* Ar,

The minimum is obtained by taking

s Ar. r. r.

(1.28) a. x x x x
1 T . T .r± A^ rjL Ari

The algorithm (1.25), (1.28) converges for every positive definite

symmetric A [Householder (1955a)J and does so at an average rate over

m steps

(1-29) Ray (SDT) >U£4£ .£UJiL
n 1 1

where 0 < X ^ ... ^ 1 are the eigenvalues of A IjCantorovic'
(1948, 1948a)



II. NORMS AND CONVERGENCE

A. Introduction

As indicated in Chapter I, the notion of rate of convergence must

be precisely defined. In order to do this we must first introduce the

notions of vector and matrix norms, and also define what the concept

"convergence" is to mean.

The material of this chapter is not, for the most part, new, but

largely follows the exposition of Householder (1954b, 1955a). However,

it is felt that it has been possible to put certain aspects of norms

and convergence in a finite dimensional vector space into a clearer

light, and the chapter is included for this reason.

B. Vector and Matrix Norms

For convenience of reference, we collect here the definitions and

some of the properties of vector and matrix norms. For a more complete

discussion, see Householder (1954b, 1955a).

Definition. In a vector space X , a (vector) norm is a bounded

real valued function ||x| of the elements x e X satisfying the following

three axioms:

I. || x|| ^. 0 ; || x|| =0 if and only if x = 0.

II. ||ocx || = |a| ||x|| , where a is a (real or complex) scalar.

III. ||Xl + Xgll < ||xj + ||x2|| .

We are concerned here with the convergence of sequences in an

n-dimensional vector space, and in particular, whether convergence in an

arbitrary norm is sufficient to insure convergence. It is well known

13
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that the introduction of a notion of convergence or of a notion of norm

defines a topology in a space; either notion may be taken as basic, and

leads to a "natural" definition of the other, at least in a finite-

dimensional space. In other words, either the notion of convergence, or

the notion of a basic norm must serve as an undefined term.

In considering the iterative solution of a linear algebraic system,

one is doubtless concerned that each component of the approximating vector

\i^ can be made arbitrarily close to the corresponding component of the

solution vector u . Hence it is natural to take as basic the notion of

convergence by components.

Henceforth, then, let us restrict our attention to an n-dimensional

linear space X spanned by n independent basis vectors f . In terms

of the basis, any vector u e X has a representation

(2.1) u = Z cp, f,
j J °

where the scalars cp. are the components of the vector u „ Our notion
J

of convergence is defined in terms of convergence of scalar sequences

as follows:

Definition. A sequence fu/1 CZ X is said to converge to an

element u e X if and only if lim cp = cp , all j = 1, .„., n ;

i.e., for every e > 0 there exists an N > 0 such that m > N

implies |cpjm -cp^ < e ,all j=1, ..., n.

Convergence in norm also is defined in terms of convergence of a

sequence of scalars:
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Definition. Suppose a norm || || is defined in the space X . A

sequence Xufl is said to converge in norm to an element u e x if andh] ia
only if for every e > 0 there exists an N > 0 such that m > N

implies ||um -u|| < e ;i^., lim U^ -u|| = 0.

It is easy to show that the function ||u || = max |cp, | is a norm,
J J

and that with this norm, convergence in norm is identical with convergence.

Theorem. For whatever norm defined on X , convergence in norm is

equivalent to convergence; that is, convergence in norm implies convergence,

and conversely.

This theorem is probably a classical one for finite-dimensional

normed linear spaces.

Proof . (a) Suppose Jul converges to a limit u ,i.e., for

all j , lim cp.. = cp . Then

"if <»J1 -♦jJ'jH

Since lim |cp - cp, |= 0 , all j , the sum on the right of the

inequality can be made as small as desired by taking i sufficiently

large. Hence lim ||u. - u||= 0 .

*

I wish to thank T. H. Hildebrandt for suggesting this proof.
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(b) For the converse, we need the following lemma.

Lemma. Riesz, F. (1917)

then each component sequence jcp .. [

Suppose at least one component sequence is unbounded. Then by a
n

possible rearrangement, lim E |cp.. | = <=>o . Consider the sequence
i j J1
n

where *ji =*Pji^ I'Pjil * clearlv> Uji I< 1,so j"* ^.
is a bounded sequence and, by the Weierstrass-Bolzano theorem, contains

If the sequence

is bounded.

a convergent subsequence It..* [ ,with lim \|r..

n

J=l J

it follows that

n

E U. I » 1 ,
J=i

n

OkO is bounded,

Since

= 1- , all i ,

so that not all \|/.
J

bounded,

0 . Let v. = E f.. f. Since {K«} is

lim ||"
k k

lim

k

J=l

11 \»
n

E

J=i
K J\

= 0

Hence v = lim v = 0 , which, together with the independence of the
k \

basis vectors

Nov sir-roos'"-

ff.' , leads to a contradiction; the lemma follows.

j*:..,. I converges to u in norm, i.e.,

lim

i

a, - u lim || s„|| = 0
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but that for some j , there exists a 8 > 0 and an M > 0 such

that |a. .| > 8 for all i > M . The sequence ||s. j| is bounded,
Jo x

hence, by the lemma, the sequence of components fa..1 is bounded

for all j . Applying the Weierstrass-Bolzano theorem again, it is

possible to pick asubset jO of the indices i such that the

subsequence \ a.. f converges for all j . Let lim ex.. = a. .
! J1kl n k J1k J

The corresponding limit vector s' = E a. f. has || s' ||= 0 , since
j J J

a subsequence of a convergent sequence has the same limit. It follows

that all a. = 0 , by the independence of the basis, and in particular
J

a. = 0 . This yields a contradiction, and completes the proof of the
Jo

theorem.

For the matrix norm, we have the following definition

Definition. A matrix norm is real-valued function || A || of a

square matrix A , bounded in the sense that if the elements of the

matrix are bounded, then the norm is bounded; and satisfying the following

four axioms (the first three are identical to the three for a vector

norm):

I. || A|| ^ 0 j || A|| = 0 if and only if A= 0 (where

0 is the matrix consisting of zero elements.)

II. ||aA|| = \a\ ||a|| , where a is any scalar.

III. || A+ b|| < ||A|| + ||BI! .

iv. ||abII4 I! aII HbII .

A matrix norm is said to be consistent with a given vector norm if for

every matrix A and vector u ,
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l|Au||< IIAII ||u|| .

A matrix norm is said to be subordinate to a given vector norm if it is

consistent, and, further, for every A there exists a u / 0 such that

lUull . || A || Hull .

In particular, if the matrix norm is subordinate, then || I || = 1 . The

notions of subordination and consistency seem to be first introduced by

Fadeeva (1950, p. 6l), (1950a, p. 85). See also Householder, loc. cit.

Householder has proved a number of theorems concerning matrix

norms of which we may need the following:

1) For the sequence of powers A of a matrix to converge

to zero, it is sufficient that J|a|| < 1 , however the norm may be

defined.

2) Let X be an eigenvalue of largest modulus of the

matrix A . Then for any € > 0 , there exists a norm such that

|| A || 4. I*• I + e » Moreover, if all eigenvalues of modulus |X|

are simple roots of the characteristic equation, then there exists a

norm such that || A|| = |X | .

The Euclidean norm of a numerical vector x , or a vector referred

to a unit orthogonal basis, is defined by

1/2II - U*x)
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*

where x is the conjugate transpose of the vector x . The matrix norm

subordinate to the Euclidean vector norm is the spectral norm : the

largest singular value of the matrix, i.e., the largest positive square

root of the eigenvalues of A A , where A is the conjugate transpose

of the matrix A . Clearly, in case A is complex Hermitian, or real

symmetric, the spectral norm is the maximum modulus of its eigenvalues ,

and thus is the limiting case referred to in 2) above. On the other hand,

for more general classes of matrices, the spectral norm may exceed the

maximum modulus of the eigenvalues: consider for example a matrix

This definition differs from that used by Young (1954a). To form
a matrix norm subordinate to a given vector norm following Fadeeya (1950,
1950a) one may proceed as follows: Given some vector norm II x II . Let

IAx|| A|| = max
x^O ||x||

It is easy to show that this definition satisfies the axioms for matrix
norm. That it is subordinate follows directly from the definition.

In particular, when ||x||= (x x) ' ,

,1/2

x (x" x)_
||A || = max (X \ AX)J2 = max u±/2

where [i is an eigenvalue of the non-negative semi-definite Hermitian
matrix A A ; thus the spectral norm defined above is obtained.

When A is itself Hermitian with real eigenvalues X. , then

there exists a unitary transformation U such that

A = U Au , where A= diag (X , ..., Xq)

But

AA = UAUUAu = UAU.

Hence max |i = max X , or ||A || = max | X| .
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whose Jordan normal form has all diagonal elements equal to X and

all elements of the super-diagonal equal to one. Thus, with n = 2 , let

T
The eigenvalues of A A are

X 1

A = f ), with real X > 0
0 X

T '^ 1
A A = A A = , p

X 1 + X

u = i (2 X2 + 1+ / k X2 + 1)

and

w > £ <2X"+ 2X +x> > x'

or

|| A|| > max | X|

C. Rate of Convergence

An iteration of the types mentioned in Chapter I may be represented

by the formula

(2.2) s. , = T, s.
v ' i+1 i l
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where the transformation T. may vary with the index i through dependence

on si as in (SDT) , or may be constant as in (T) and (S) . This

formulation is written in terms of the remainder s. = u, - u , where u
1 i '

is the solution of the given system (1.1). Clearly, any iteration can

be expressed in terms of s , since only a shift in the origin is involved.

And the sequence J~u J. converges to the solution u if and only if

fs,l—> 0 , a fact we have already made use of in (B).

In general, in studying the convergence of a process, we consider

its effect on a measure, such as the remainder s. , of the deviation
i '

of an element in the sequence from the limit of the sequence. However,

in considering the approximate solution of linear systems the remainder

isuseless, because the solution u is unknown. As an alternative, we

may multiply (2.2) by the matrix A of the system (1.1), and,

providing T. and A commute, we have

(2.3) r1+1 - Asi+1 - AT. Bl - <?± ASj. = T.^

The residue r. is computable, as has been pointed out in Chapter I.

Let us now assume that a suitable measure of deviation of the i

iterate from the true solution exists, say r. , and that the iteration

is defined by

(2.3') r. . = T. r.
i+1 l l

(where T. may differ from that in (2.2) and (2.3) if the matrices in



22

(2.3) do not commute). Define the "instantaneous" rate of convergence

at the i step by

llr T. r.

where the norm is any vector norm. The introduction of a matrix norm

subordinate to the vector norm leads to

/ llTi" Nl a ii ii(2.5) R(Tt) > - U || r" || - -A HtJI.

The term on the right of the inequality obviously provides a lower

bound for the rate of convergence at a given step, which depends on the

choice of matrix norm. We may then use it as an estimate for the rate

of convergence, and designate it

(2.6) RK(T.) = -in HtJ

where the index N designates the norm chosen. In view of property (2)

of norms quoted above, the best estimate R^ for a given T. is obtained

by using the minimum norm for the matrix, which can be made as close as

desired to the maximum modulus of the eigenvalues of T. . When the

transformation is symmetric, this is the spectral norm, as indicated

earlier.

The average rate of convergence over m steps can be defined



(2.7)
m-1

-k * H(TJ
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1=0

> iin
m

m-1

TT T.
i=0

m

m'

m -°

n m-1

> -I £ /» ||T,
m

i=0

m-1

{Vn Vro
i=0

= R.
Nav

If T is independent of i , and the minimum matrix norm assumes the

maximum modulus A of the eigenvalues of T , then

(2.8) WT> n A

which is the definition used by Young (1954a) for the rate of convergence

of T .

Note that the second equality of (2.7) furnishes an algorithm for

the direct computation of the average rate of convergence, useful

particularly in experimental studies of iterative techniques, and requiring

no prior knowledge of the eigenvalues of the transformations T. . When

the measure of the deviation of the approximate solution from the true

solution is chosen to be the residue r. , there is the added convenience
i '

that most iterative methods require the computation of r. at each step.

The choice of the norm is not restricted, although it may affect the

value for the rate. One possible norm is the e-norm ^Householder (1955a)| ,

the maximum absolute value of the components of the given vector; another

is the e'-norm, the sum of the absolute values of the components. Both

of these norms have an advantage over the Euclidean norm in requiring

less computation for their evaluation.



III. THE 82-PROCESS

2
A. The Scalar 8 -Process

2
The scalar 8 -process was first applied in general numerical

analysis by Aitken (1926), but was apparently used in astronomical

computations by Delaunay about i860 IAndoyer (1902)J . The 8 -process

and its generalizations have been extensively studied in two recent papers

by Lubkin (1952) and Shanks (1954, 1955).

2
The 8 -process is a transformation involving the first and second

differences of a sequence which, under certain conditions, has the

property of transforming a convergent (or divergent) sequence into a

more quickly convergent (or more slowly divergent) sequence. It also

has the property of increasing the order of a scalar iterative process

[Householder (1953)J •

Let |"i-l te a se<luence of scalars. The first difference

(3-D 8Si - |i+1

and the second difference

(3.2) 82 g± = 8ft1+1 - 8ft±

" *i+2 " 2*i+l + h

2 r *Then the 8 -process defines a derived sequence J g. (:

24



25

(3-3) 'i " *i

(5 t±y

Equation (3-3) may also be written in a form involving a determinant,

and permitting the simplification

(3.*0 *i = ^

5g.

8g. 8 g,
bi *i

?T
*i+l

by row and column operations.

2
In applying the 8 -process to a scalar iteration of the form

(3-5) h+l " f<*i>

5i+l

5i+2

one must compute at least two successive iterates g, , , g. 2 . Then

g. computed from g. , g. , , g. p may be taken as a new starting

value g. and the process may be repeated [Householder (1953)J •
2

The 8 -process has been used with varying degrees of success to

accelerate matrix iterations (T) or (S) . In the case at least of

the iteration (T) it is possible to justify its application

(1954a) . The method of application is as follows: The matrix iteration

(3.6) u. . = F(u.)
l+l v l

Householder
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where u. is a vector, and F is a matrix function, defines a sequence

of vectors ju.l . Each component sequence J tj\ 'I ,j=1, ..., n ,

is treated as an independent scalar sequence, and the scalar 8 -process

used accordingly.

Of course, the component sequences are not actually independent,

being related by the iterative algorithm, which takes the component form

M 7\ n(i+1) - « fn(l) J1* T,(i>

For the report of an experimental study of the application of the scalar

2
8 -process to the iteration (S) for a system of order 361, which

arises in a Dirichlet problem for the Laplace equation, see the Appendix.

2
B* The Vector 8 -Process

Since matrix iterations deal with vectors rather than independent

sequences of scalars, it seemed desirable to define a process analogous

2
to the scalar 8 -process which takes account of the vector nature of

the iteration.

2
The vector 8 -process can be simply derived by introducing the

notion of a scalar product to account for the fact that the reciprocal

of a vector cannot be defined: For a sequence of vectors /"u."l

# (8 ui)T 8u±
(3-8) u = u - = 8 u

1 X (82 ut)T 8Ui 1
where

(3.9) 8Ui - u.+1 - u.
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(3.10) 82 u± = 8ui+1 -8UjL = ui+2 -2ui+1 +m± .

2
It is clear that for a sequence of scalars, this vector 8 -process is

2
identical with the scalar 8 -process.

2
Theorem. The application of the vector 8 -process to the iteration

(T) yields an algorithm identical to that for (SDT).

That is, given a starting vector u. . If one proceeds by (T) and

2 *the vector 8 -process to find u. , and by (SDT) to obtain vi+1 , then
*

u. = v. . .
i i+1

Proof. From (1.12), (T) becomes

(3-11) ui+1 = u. -(A u± -b)

" Ui " ri

and from (1.15) ri+1 = (I -A)^ . Then

5ui " "ri

&2 ui " " (ri+l " ri} = Ari

and

rIri(3-12) u* = u - 4-7- ri
riAri
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But, from (1.26), (1.28),

T

i i *
v. , = u. - -7= r. = u.
l+l i T . l i

r. Ar.
l i

2
Theorem. The application of the vector 8 -process to (S) yields

a new iteration which converges provided the matrix EA = (I - B,) A

has a positive definite quadratic form.

Proof• From (1.19c), (S) can be written

Ui+1 = Ui "Eri 'where E= (I ~Bi)"

or

(3.13a) u1+1 = u - t , where ^ = E r

and from (1.20)

1

Then

t. . = t. - EAt.
l+l 1 1

(3.15b) 5 u. = - t±

(5.13c) 82 u. = -(t, . -t.) = EAt.
x' J ' 1 v i+1 1' 1



29

and

(5.1*) u. = u.

The process defined by

(3.15)
i+1 i

T

*i\
tj EAtt

Pr~ itj EAti

— — _ TV

where u = u , t » t , u, = u in (3.14) is a new iteration based
o o ' o o 1 o v> /

on (S).

The proof of convergence is deferred to Chapter IV, where it

follows as Corollary 1 of Theorem 4.1.

2
The question arises whether the vector 8 -process increases the

order of a matrix iteration. That it does not do so, in general, can be

deduced from a study of (SDT), which we have shown to be the result of

2
applying the vector 8 -process to the basic iteration (T).

For the purposes of this discussion, the notations and definitions

of Ludwig (1954b) are in order:

Given an iterative algorithm

>"
(3.16a) *k+l = f(xk) ' Where *k "

00

v J
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(3.16b)
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•(V -

cp (e(k) e(k))

CP (:g(k) £(k))

Define the column operator

(3.17) d =

and let

a

*:

sn
v_

(3.18) = x, - x , where x = f (x)

Then the iteration can be written

(3.19) Sk+1 =(8£ d) f(X) +|y (s£ d)2 f(x) + +nT (<£ *>**(*) + •••

Definition. If the p term in the Taylor series (3-19) is the

th
first non-zero term, then the iteration is said to be of the p order.

For (T) , we have by (1.15)

(5.20) sk+l " B sk and
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(k)
Written in component form with a. the components of s. , e, the

j k j
th
j basis vector, and using the index notation for summation

(3.21) (s£ d)Bs = a(k) J- & a e^
k j do, pq q P

= a. p , e_ = Bs.
J PJ P k

/ T _.2_ (k) d d a
(s. d) Bs = c. ' a, -r— ^— P o e^ = 0k j £ doj day Kpq q p

Hence (3«20) describes an iteration of the first order. Incidentally,

it is clear that when f(x) = Fx for any constant matrix F , the

T
operator s d is a substitution operator.

Now, for (SDT) we have algorithm (1.25),(1.28)

Then

sk+l " f^sk) = sk " °kAsk

T A2
SkA Sk

°k = T A3
sk A sk

T T
(3.22) (s. d) (s - aAs) = s, - oAs, - As(s d)a

s A (I - aA)s
= (I -0A)sk -2— =-, £As

s As
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2 TWith || x || = x Ax , and letting I - oA = C
XT. d

(3-23) ||(sk d) (s - a As) II A

o T2P / TA2^ \2
2 sACs1ma / s A C s. \ - ,

ca \ H-*-f^ ^ V* ♦ »(-*f*J ' A
As As \ s As /

°k A

2 3
Thus, with a = lim a > X-,/X > 0

o ^ ^ ^ 1 n
s—>0

(3-24) lim || (s£ d)(l - aA)s || = || (1 - a A)s || ± 0
s—> 0 A ° A

unless l/cr is an eigenvalue of A and s. is the corresponding eigen

vector. We must conclude that (SDT) is in general a first order process;

2
hence, that the vector 8 -process does not increase the order of every

matrix iteration.



IV. THE STEEPEST DESCENT FOR SINGLE STEP PROCESS

The classical steepest descent process (SDT) optimizes, in a

certain sense, the basic process (T). In an analogous fashion, it is

possible to find a steepest descent process which optimizes the basic

single step process (S); this new process is called steepest descent for

single step- or (SDS).

A. Generation of Algorithm for (SDS)

The basic iteration (S) as given by (3.13) is modified by the

introduction of a scalar parameter p. .

(4.1a) ui+1 = u. - piti

or

(*.lb) B1+1 = 8± - ^t±

where, as before,

t = Er = EAs.

E = (I -B1)'1

Let H be an arbitrary matrix with positive definite quadratic form

T / ii ii 2 T(x Hx > 0 for all x f 0) , and let || x || = x Hx . Consider

33
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n

In order that ||s. . ||_ be a minimum,

T

*i Hsi(4.3) p. - 4 i
t. Ht.
i l

The algorithm (SDS) is given by (4.1) and (4.3).

When p satisfies (4.3),

<"> IIVlHl • K"H "4^ <W'Xti Hti

provided that if s ^ 0 , t. is not H-orthogonal to s. ; i.e.,
m

provided t Hs. ^ 0 .

There are at least two choices of H which satisfy this condition:

(1) H = EA , when EA has positive definite quadratic form; this is the

2
algorithm (3.15) obtained by applying the vector 8 -process to (S) ;

(2) H = A , the positive definite matrix of the linear system (l.l).

Furthermore, in each of these cases, the algorithm depends on the vectors

t and r. , which are available, and not on s. , which is actually

unavailable.

Theorem 4.1. If for positive definite H , s. / 0 implies

t. Hs. ^ 0 then (SDS) converges, and the limit of the sequence -Tu-1

is u ,that is, the sequence \BA converges to 0 .

Proof. Since ||s. || is a monotonically decreasing sequence of

positive numbers, it converges to a unique non-negative limit. We shall
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show that the limit is zero, hence lim s. = 0

t—>°<> 1
For suppose the

Then there existsunique limit of the sequence of norms is N > 0 .

a convergent subsequence js. [ such that

Now consider

lim s. = s and || s || = N
ik->^ \ H

N = lim ||s ||
*°° k H

lim lSi

(t* Hs f
\ 1k
T

t, H t.ik-^- k H

^xT

= N
(*X Hi)- < N2

since the fraction is a continuous function of s, , being a. rational
Xk

function of its components with non-zero denominator, and s ^ 0 implies

t = EAs ^ 0 because the matrix EA , the product of two non-singular

matrices, is non-singular. Thus we have a contradiction; hence

and therefore

(^•5)

lim ||Si ||L = 0I2
Hi-^7>°<>

lim s. = 0
l

Corollary 1. If EA has positive definite quadratic form, then

setting H = EA in (4.3) and (4.1) produces a convergent iteration (3-15)•
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Proof. If H = EA , (4.3) becomes

m m

tT EAS. tt t.
11 11(4.6) p, =

i T T
tT EAt. t. EAt.
ii ii

and (4.4) becomes

t. EAt.
i l

/ / T T
Since s. f 0 implies t. = EAs. f- 0 and t. EAs. = t t. > 0 , the

conditions of the theorem are satisfied.

Note that the matrix EA does not have positive definite quadratic

form for all positive definite A , or even for A canonical with respect

to property (A) and having non-positive off-diagonal elements. For

consider

-a

A = f ], a > 0 .

-a

This 2x2 matrix is canonical with respect to property (A) and has

non-positive off-diagonal elements. It is positive definite if the

principal minors are positive, i.e., if

|a| < 1 •
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But, from (1.22),

1 0

E =

a 1

-a

EA =

and has the quadratic form given by its symmetric part

| (EA +(EA)T) =
-a/2

-a/2 l-a*

which is positive definite only if

2.4
a < 5

4 2
Thus, for the example, EA is not positive definite for «• ^ a < 1

Corollary 2. Setting H = A in (4.3) and (4.1) yields a

convergent iteration defined by (4.1) and

(4.8)

T
t: as,

i i
+Tt. r.

l l
r. Er.

l l

T
t: At.

1 1

T
t: At.

i i

T
t: At.

i i
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Lemma. The matrix E has a positive definite quadratic form.

Proof . Since the quadratic form on any real matrix depends only

on its symmetric part, we have, for any x ^ 0 ,

(4.9) 2xT Ex = xT(ET + E)x

T T -1 T
= x E (E + E )Ex

T T
= x E (I + A)Ex

mm T T
= x E Ex + x E AEx > 0 ,

T
for E E , being the product of a non-singular matrix by its transpose,

T T
is positive definite; the quadratic form x E AEx is positive definite

because A is positive definite; and x ^ 0 implies Ex ^ 0 , E being

non-singular.

Proof of Corollary 2. Since s. / 0 implies r = As. ^ 0 , and
m

E has positive definite quadratic form, then s jL Q implies t. As. ^ 0 ,

so the hypotheses of the theorem are satisfied.

Bo A Crude Estimate for the Rate of Convergence of (SDS) when H = A .

Theorem 4„2. If H = A , where A is positive definite and is

canonical with respect to property (A), then the average rate of

*

The method of proof follows from a suggestion of Professor Jack
E. McLaughlin.
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convergence of (SDS) over N steps is bounded from below:

(4.10) Rav(SDS) > \ U ^ ± -£/»£
Xn " 2X1 + 4" Xl \ X

where X is the least, X the greatest eigenvalue of A

Proof. From (4.4), setting H = A , we have

2 2 (r^Er,)2
(^•11) II s,., II = lis, " x ±

A A r. E AEr.
l i

KXWe ask for an upper bound on —ii—£• for || s || ^ 0 . From (4.9),
SiHA A

also

and

m 1 m T ITr± Er. = 5 r£ E1 (I +A)Er. = ± tj (I +A)t.

T T T
r. E AEr, = tT At,

l i l i

ll T A T a"1s. = s. As. = r. A r.
l •' ii l l
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Then

, , Hsi+i "a i (ti (I +A)ti)2(4.12) max 1+± / = 1 - ^ min * ^ i^-
s. \\l « (rj A- r.HtJ At,)

But

(t* d+A)ti)2 (l+x/ (tft/ X^l+x/ tfr,
(4.13; min —=—-, « > —^—m »— = m

(r^A ri)(t^Ati) x/ r,r_. X_tft, X r, r,
1 iinii nii

Now, under the assumption that A is canonical with respect to property (A),

. T. TT „
Vi = riE Eri

= r,(l +B^)(I +B]_)ri

r^(l +B^ +B1 +B^ B1)ri

m mm

rT(2I - A) r. + rT b, B-, r.
xs ' 1 1 1 1 1

> r^ (21 - A)rt

T
since B, B, , being the product of a singular matrix by its transpose

is positive semi-definite. Then

(4.14) tT t, -s (2 -X ) r;F r.
v ' 1 i <y v n' i 1
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Substituting from (4.l4) into (4.13), we have

. ^i ^ +A)tj)2 ^ h t1 +X/ <2 - V
mm - >,

(r^A r^i^At.) ' Xn

and from (4.12)

Then

or

max — —n -^ 1 - rr

X - 7t X. + t- X X
. n 2 1 4 1 n

•^ X
n

i, i, ,N1/2S. , . / X - ^ X. + r L a1 i+1 "A^/n 2 1 4 1 n
<

l"i»A V Xn

SN , /A " Ti K + f \ x '" Af , ( n 2 1 4 1 n
1

sollA V Xn

1 . ,\ N/2

To write the inequality in terms of the Euclidean norm || II , we note
E

that for any x ^ 0 ,



Hence

and

Rav
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X^2 ||x||E < ||x||A < X^2 ||x||E

1 , 1 , . \N/2
2Xl + ITXlXn

n

(SDS) > ±/n(- * T-— )4inI7
"2 Xl + ¥ Xl n

In order to obtain this estimate, we have used some rather crude

inequalities, as, for example, in (4.13), where no account is taken of

the fact that the numerator and denominator of the fraction are not

independent. Because of this crudeness, the estimate lacks sufficient

precision to permit a comparison between (SDS) with H = A and the

well-known methods, in particular (SDT). In short, the theorem serves

at best as an alternate proof of the convergence of the method.

In view of the known facts that when the matrix B of (1.5) has

all positive elements, (S) converges faster than (T) , and that (SDT)

converges at least as fast as (T) , one would expect that (SDS) con

verges at least as fast as (S) , and faster than (SDT) under similar

circumstances. But the problem remains to find a sufficiently precise

estimate for the rate of convergence of (SDS) . It is possible that
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this problem will be solved by finding a way to express the eigenvalues

T
of E AE in terms of those of A , or some other approach may prove

to be effective.

C. A Method for Computation using (SDS)

For computation of the vectors appearing in either of the (SDS)

algorithms, it is convenient to make use of the differences formed by

using (S) and/or (T) . We have already seen how the algorithm with
2

H = EA arises naturally by applying the vector 8 -process to (S) •

Recall, from (3.13) that (changing notation) if u' is formed from u

by applying (S) :

(4.15) ui = ui " E(Aui " b)

then

(4.16) t± = -8 u, = u± - u|

and if t' is formed from t. by the same algorithm with b = 0 , then

(4.17) EAt. = -St. = t - t,' .
x x x -L

With t. and EAt , it is fairly easy to compute the fraction (4.6).

For the case H = A , we need also the vectors r, and At. .

For their computation one may introduce also the algorithm (T) (1.13)

to compute
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(4.18) uV = u. - (Au. - b)
111'

whence

(4.19) r. = -8 u. = u. - u" ;
l ill'

similarly,

(4.20) t" = t. - At.
ill

so that

(4.21) At. = -8 t, = t, - t'.*
i i i i
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V. SELF-ADJOINTNESS IN ONE-GROUP MULTIREGION DIFFUSION PROBLEMS

A. Introduction

Multi-region diffusion problems are of current interest in nuclear

reactor theory, in the theory of biological systems, in heat transfer

problems, etc. In its most general form, the problem is concerned with

the diffusion of several substances simultaneously, which interact with

one another according to certain laws of equilibrium, a situation

described by a coupled system of partial differential equations. In

nuclear reactor theory, such a problem is known as a "multi-group"

problem.

The present discussion is limited to a one-group, multiregion

problem, i.e., we assume a single diffusing substance, so that in each

subregion the steady-state distribution of the substance satisfies a

single partial differential equation. The laws under which the diffusing

substance passes from one subregion into another contiguous subregion

are described by interface conditions, while the conditions at the outer

boundary describe the relations of the system of regions to the rest of

the world.

It is of particular interest to know under what circumstances the

problem is self-adjoint, so that, for example, its eigenvalues are

real, and eigen-functions corresponding to distinct eigenvalues are

orthogonal.

In this part of the present paper, we develop a condition which,

when satisfied at the interfaces, is sufficient to insure the self-

adjointness of a class of multi-region one-group problems. This is an

45
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extension to a more general situation of a result obtained by Sangren

(1953); Sangren limited his discussion to the case where the sub-regions

are topologically equivalent to the annular regions between concentric

spheres, while the discussion here applies to an arbitrary arrangement

of interfaces.

B. Definitions and Statement of Problem

Consider the bounded connected region S which is subdivided into

N subregions S. , i = 1, ..., N , by the piecewise smooth surfaces G, . ,
1 1 j

i = 1, ..., N ; j = 0, 1, ..., N . The surfaces

G,, and G.. are identical, except that their "outward" normals are
ij Ji '

oppositely directed:

(5.1) n

ji
n. .
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The surface G, is the portion of the outer boundary of S which is

common to the boundary of S, .

Let there be defined in each subregion S, the linear differential

operator with real coefficients

(5-2) Li(ujL) = V u± + D± u± , i= 1, ..., n

where D, is a real function of position continuous in S. , and u.
1 N X

is any function with first derivatives continuous in S. V [J G.. and
4=1

second derivatives continuous in S, .

The following boundary and interface conditions are to be satisfied

on each G,. , i = 1, ..., N ; j = 0, ..., N :

(5-3)

du.

ui = aij uj + pij dtfr

du.

an

ij

= 7, . u, + 8. , -r—
ij j ij on

du.

ij

where a.,, ..., 8,. are real and
i j i j

(5.4) *1J s (aij 6ij "'ij V ^ ° (J^ 0)

*io = °

The condition on the outer boundary G, contains as special cases the
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3u

u = 0 , or -r—
o ' dn.

io

= 0

Note that where two subregions S. and S. have no common inter-
i J

face, we may assume that a non-singular (cp. . £ 0) condition is satisfied
i J

vacuously, since G. . = 0 ; and also that cp., = 1 , G. . = 0 , which is to
J' ij ' vii ' ii

say that the function u. is to be continuous with continuous first

derivative within any given subregion S, .

Note also that cp. . ^ 0 implies

(5-5) cp.. = l/cp. .

For, by interchanging indices in (5-3), we have

du.

u. = a., u, + p ^—
j ji i pji dn

Ji

= a., u.
ji i

du.

ji dnTT
0 i«J

du. du. du.

3-i- = 7 . u. + 8.. -j-i- = 7.. u. - 8.. -5-i-dn^T 'ji l ji dn^ 'ji l ji dn^
du.

dn.
ij

au.
whence we may solve for u. , -* , by applying (5>3) to obtain

nij

a. . p. .\ /q,. -p..
IJ iJ \ / J1 o1

7. . 8. . . 7 .. 8 .. „

1 0

0 1
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or

'ij 9Ji = X

C. A Sufficient Condition for Self-Adjointness

A set of functions [u 1 satisfying the differentiability conditions

in each S. , and the interface and boundary conditions on each G,. ,

i = 1, ...,N;j=0, ..., N, are the components of an admissible

function U defined on S . The operator L, defined on each S.

induces an operation L(U) defined on S .

Definition. L(U) _is self-adjoint provided there exists a set of

N positive constants k. such that for any two admissible functions

u/v,

N : r- "I(5-6) Z ^III [vjL^) -u,!^)] dT = 0
i=l ^j

Theorem. A sufficient condition that L(U) be self-adjoint is

that

(5-7)

cpih cph. cp.i =1 for all 0 < i, j, h^ N

cp, . > 0 for all 0 < i, j 4 N
i J

Proof. By applying Green's theorem to the left side of (5-6)

we obtain
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N N

(5-8) ZkJ/J ^.(U^ - U^V..)] dT = Z kt /// [viV\ - U.y V.]dT
x—X o. X—X S

N N du dv

= Z k. Z [f (Vj -s - u, -t ) da
, , i . n JJ i dn, , i dn, .'
i=l j=0 g. . ij iJ

ij

For each i < j , and for j = 0 we introduce the boundary and inter

face conditions (5«3):

du. dv

X J

=ki // «VlJ "V«' (VJ 35^ ""J S^)4r

du, dv,
= k. tp, , // (v, x-a- - u. x-J-)do .

1 iJ G j^j °^J
ij

Since cp, = 0 , all terms with j = 0 vanish. The right-hand side of

(5«8) then becomes (upon interchanging the order of summation)

N j-1 du dv

(5-9) Z Z kicp // (v ^--u ^do
j=l i=l 1 1J G J ij J ij

X J

N N du. dv

+ ?, A \ U <'i S2- -ui 3ET-) d° •
j=l i=j G ij ij
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The second term of (5-9) can be transformed by interchanging the order

of summation, "renaming" indices, and observing that G,. can be

replaced by G , if n is replaced by -n . , as follows.

N N du. dv. N i-1 du. dv.

j=l i-j G ij ij i=l j=l G ij ij

N j-1 du dv.

Z Z k, // (v. ~J- - u. 3-^L)da
j-1 1-1 1 GM Ĵ Ĵ V

N j-1 du. dv

= - Z E k. // (v, y-i- - u. ^jL) da
J-1 i=l j g J^ J^U

Upon substitution of this term in (5«9) we obtain

N j-1 du dv
(5.10) Z Z (k cp -k)// (v 3-i- -u J)da

j-1 i-1 X 1J J G J dnij J onij

From (5-10) it follows that

(5-11) kj[ cpi<3 -kj =0, 0 < 1 < j < N

is sufficient to insure the vanishing of the right-hand side of (5.8);

that is, (5-11) is a sufficient condition for (5-6).

We now observe that (5-H) implies

kj " ki 'ij " \ %i - ki *ih %i ' i < h < j
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Therefore

'ij = 'ih'hj '

and in view of (5.5) and the condition k. > 0 , i = 1, ..., N , (5-7)

is equivalent to (5-11).

Theorem 5«2. Given the eigenvalue problem

N

(5-12) L (u ) = X 9. u 0 > 0 , i = 1, ..., N; Z 0. > 0
i i i i i=1

where X is independent of i , 9. is a real number constant in each

S. , and the u. are components of an admissible function U . If

L(U) i£ self-adjoint, then the eigenvalues are real and eigen-functions

corresponding to distinct eigenvalues are orthogonal over those subregions

S. where 9.^0.
l l r

Proof. Suppose there exists a complex eigenvalue X , and a

corresponding admissible solution U , such that 9. > 0 implies

u ^ 0 in S. . Because all the coefficients in the equation (5«12) and

the boundary and interface conditions are real, the complex conjugates X ,

U must also satisfy, i.e., in each S.

(5.13a) L.(Ui) = H.u.

(5.13b) L.(u.) = X 9. u.
iv i' 11
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Multiplying (5.13a) and (5«13h) by u. and u. respectively, and

integrating the difference, we have

(X -X) 9i /// u± utdT « /// (Ujy2 vl± - u±V2 u.)dT , i=1, ..., N.
Si Si

Since L(U) is self-adjoint, there exists a set of k > 0 such that

_ N
(X -X) Z k± Q± III vl± vl± dx = 0

i=l S.

Then X - X = 0 , since u u = |u.| > 0 , and not all 9, = 0 ;

X must be real.

The proof of orthogonality follows the same lines, except that

X - u ^ 0 implies

/// u. v. dT = 0 over each S, where 9. > 0
£« X X X X

si

D. Remarks

1. In certain frequently occurring special cases, condition (5-7)

is automatically satisfied.

(a) Continuity across the interfaces:

<

V.

u, = u.

du
i

h SnTT
ij

du.

ij

on all Gi- ,j/0

> 0,0 < i ^ N



Then cp. . = g./g. > 0
Tij °j' Di ^
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'ih'hj'ji = ^/«i> (gj/gh)(Si/gJ) = "

(b) Contact resistance at interfaces;

du.
1

SnTT

du.

= P = h. . (u. - u.) on all G.. , j ^ 0
j dn . ij i J U

Pt > 0

h. . ^ 0
ij

U

all 0 < i , j ^ N

can be rewritten

r

s

ui = - ♦ n1"J hij

du.
J

dn. .
ij

du.
i

dn. ,
ij

_ PJ ^j
Pi *nij

whence cp. .-p./p. > 0 and q>lh cph. cp.. = 1 .

2. While Theorem 5-2 gives assurance that the eigenvalues of

the operator L(U) will be real when the interface conditions satisfy

(5-7), one may well ask whether the result can be extended to the finite

difference analog of the problem. Such an extension has been made by

Mr. A. C. Downing of the Oak Ridge National Laboratory, in work soon to

be published in an ORNL Report.



APPENDIX

Computation of approximate solution of a Dirichlet problem for

2
Laplace's equation. Application of scalar 8 -process.

The problem was as follows: On the square 0 -^ x , y ^ 1 ,

find a function u such that

(A.l) ^72 u = 0

and on the boundaries

(A.2) u(0, y) = j- sin s y

u(x, 0) = u(x, 1) = u(l, y) = 0 .

A square grid with grid-spacing h= •p--- was laid on the region so that
2

there were 19 = 361 interior grid-points, and 76 active boundary points

(the values at the corner points do not enter into the computation).

The simplest finite-difference representation of the Laplace equation

was used:

With ti = u(jh, kh), 0 < j , k < 20 ,
J,K

(A'5) V = 5 UJ,k-i + \k+i + Vi,k + Vi,k}

55
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The basic iteration (S), often called Liebmann's method ILiebmann

(1918) in this special case, was used. It takes the form

, M (i+1) 1 ,(i+1) (i+1) (i) (i) X

The computation proceeds successively through all the interior grid-points

in the order

(A.5) (j, k) = (1, 1), ..., (1, 19), (2, 1), ..., (19, 19)

for each complete iteration.

For the machine computation, the boundary values and initial

estimates of the solution (V I = 0, 0 < j ,k < 20) were stored
J,K

in the order

(A.6) (j, k) = (0, 0), (0, 1) ... (0, 20); (1, 0) ... (1, 20);

(2, 0) ... (20, 20) .

The differences

(A,7) 5 nJ,k • 1j,k - nj,k

were computed and stored in the order (A.5), while the newly computed

values r\\ , were stored in the positions which originally held the

initial estimates. In view of (4.15) the differences (A.7) are the

negatives of the corresponding components of the vector t. .
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The differences (A.7) were used first to determine the end-point

of the iteration: when the maximum absolute value of the differences

(the e-norm of t ) fell below 2~ ^ , the iteration was stopped.
2

The differences were also used in the application of the scalar 8 -process,
p J.-U

The 8 -process was applied after every M full iteration, and M

could be varied to observe the effect upon the convergence of the method.
p ..

The 8 -process was actually arranged to coincide with the M iteration,

so that it was possible to obtain the second difference

^ & - ™̂ - * i%

at the time it was needed. The second differences were not otherwise

computed or stored.

The experiment produced the data given in the table: M = number

2
of iterations between successive applications of 8 -process; N = total

number of iterations required to reduce max |8*11 to at most 2~ .

M 90 100 110 115 120 125 i4o l6o l8o 200 300 387 >387

N 193 185 180 178 178 179 179 180 181 201 301 388 388

2
The algorithm without the application of the 8 -process required

2
388 iterations. A single application of the 8 -process after about 100

iterations was sufficient to reduce the total number of iterations by

2
more than 200. The optimum point at which to apply the 8 -process was

between 115 and 120 iterations.
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