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INTRODUCTION 

The solution of a Fredholm integral equation such as 

1.1.1 

is  often obtained by the  method of successive approximations. 

t ha t  the integral  /,K(x$y)u,(y)dy exis ts ,  the  r igh t  member of 1.1.1 is 

considered as an operator T, which associates with a function uo an image 

function u defined by 1 

Provided 
b 

f 
b 

1.1.2 p ( x )  = S(X) + h.faK(x,y)uo(y)dy = Tuo(x)- 

It i s  the object of t h i s  thes i s  t o  develop a technique f o r  finding 

upper and lower bounds fo r  the solution of 1.1.1. 

defined inductively with un being the image of the function un 

then with suitable conditions on the kernel function xK(x,y), the  sequence 

With the  

6) is If a sequence 

under T, - 

converges t o  a l i m i t  function which is  a solution of 1.1.1. P4 
added condition that the kernel be nonnegative, it can be sham t ha t  the  

image of an upper (lower) bound i s  an upper (lower) bound. Hence if  the 

i n i t i a l  function I+, i s  ~ I J  upper (lower) bound then a l l  the  elements of 

the  sequence {un] are upper (lower) bounds. The technique developed i n  

t h i s  thesis ,  which i s  referred t o  as the method of upper and lower func- 

t ions,  develops methods of producing upper and lower bounds which are 

eas i ly  recognized as such. 
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Definition 1.2. A function g(x) i s  called an upper function if  

f o r  a nonnegative kernel 

1.2.1 g(x) 1/ g,(x) f o r  a l l  x E [a,b] 

where 

I*2.2 

Definition 1.3. A function h(x) i s  called a lower function if 

f o r  a nonnegative kernel 

1.3.1 h(x) < h+) f o r  all x c [a,b] 

where 

1.3-2 
b 

h l ( 4  = S ( X )  4- XIaK(X,Y)h(Y)dY. 

Later it i s  shown that with cer ta in  conditions on the kernel the 

upper (lower) functions are  upper (lower) bounds for  the  solution. This 

thes i s  develops methods which enable the choice of the initial functions 

as well as t h e i r  i t e r a t ion  t o  be performed on a d i g i t a l  computer. 

In Chapter I1 the technique of upper and lower functions i s  developed 

fo r  the in tegra l  equations whose kernels obey the following res t r ic t ions :  

A s  in many applications of numericalmethods, the or iginal  equation i s  re- 

placed by a system of l inear  equations. Therefore in Chapter If the  tech- 

nique of upper and lower functions i s  extended t o  a system of l inear  

equations e 
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In Chapter I11 an e f fo r t  w a s  made t o  re lax somewhat the  r e s t r i c -  

t ions  on the  kernels. 

t o  speed the convergence of the  sequence. 

the  Gauss-Seidel method for  l inear  algebraic equations. 

Chapter I11 a lso  contains a section on a method 

This method i s  an analog of 

Some numerical examples have been calculated on the Oak Ridge 

National Laboratory's d i g i t a l  computer, the  Oracle, and i n  Chapter N 

these examples are  discussed. 

t o  use on a d i g i t a l  computer, and the problem is coded i n  such a way as 

t o  insure tha t  the  computed functions are  rigorous upper and lower bounds 

f o r  the  solution of the  integral  equation. 

rounding errors  in such a way as consistently t o  increase upper bounds or 

decrease lower bounds. 

A l l  the  methods developed here are adapted 

This i s  achieved by handling 



CHAPTER I1 

BASIC PROIYERTIES OF UPPER AND LOWER FUMCTIONS 

In t h i s  chapter some of the basic properties of upper and lower 

functions are discussed. 

needed i n  order t o  complete the proofs of these properties. 

There follow some definit ions and res t r ic t ions  

Definition 11.1. L e t  a b e  the class  of real-valued functions 

L(x,y) defined and bounded on a 4 x,y 

t ions : 

11.1.1 for  a l l  [Cr,B] c [a,b] and a l l  x E [a,b] the integral  JCr L(x,y)dy 

b and satisfying the two condi- 

B 

exists i n  the  sense of Riemann and is  Riemann integrable as a function of 

x i n  [a,b]; 
b 

11.1.2 f o r  every L E 2 the  sup I, (L(x,y) /dy(  1. 
x E Ca9b-J 

The notation 2' (z-) denotes the class  of nonnegative (nonpositive) 

functions belonging t o  2 . 
Definition 11.2. The c lass  of real-valued functions defined on 

[a,b] and integrable i n  the  sense of Riemann w i l l  be denoted by R. 

Definition 11.3. For each f E R a norm i s  defined by 

It i s  w e l l  known t h a t  R, so normed, is a Banach space. 
b 

Theorem 11.4. If f E R then JaL(x,y)f(y)dy exists for  every 

x E [a,b] and i s  Riemann integrable i n  [a,b]. 



Proof:' - If f is  a s tep function defined on [a,b] the  

For any f E R an immediate consequence of condition 11.1.1. 
b 

and with 

5 
assertion is 

and x E [a,b] , 

f (x)  - hn(x) for  x E [a,b] e L e t  gn(x) = .f,L(x,y)h,(y)dy. 

- 
define g(x) = faL(x,y)f(y)dy. 

multiplication. 

has Jordan content 0. 

The integral  ex is t s  since R i s  closed under 

1 The set of points x where the  osci l la t ion of f exceeds 

Thus there ex is t s  a f i n i t e  set of d i s jo in t  intervals  

whose in te r iors  cover the above s e t  and such tha t  the sum of t h e i r  

m 
lengths i s  l e s s  than . The complement of the  se t  U 6) contains no 

n j=1 5 
1 
n points where the osc i l la t ion  exceeds - , and thus about each point i n  the  

complement a neighborhood may be taken i n  which the osc i l la t ion  of f i s  

less than 2 . By the  Ee'ine-Bore1 theorem a f i n i t e  number of such neighbor- 

m O  hoods cover the complement. Thus the  complement of +U I .  can be subdivided 
J=X J 

i n to  a f i n i t e  number of non-overlapping, closed intervals,  each of which 

l ies i n  one of the neighborhoods. 
2 in te rva l  is  less than - a constant may be chosen such tha t  f does not n 

d i f f e r  from the constant i n  t h i s  interval  by more than ;; . 

Since the  osc i l la t ion  of f on any such 

1 Thus, a s tep  

m 
function hn may be defined such tha t  1 f (x)  - hn(x) I < $ fo r  x \ U Io 

j=1 j 

Then i f  N is  a bound f o r  L , I I  

and thus gn converges uniformly t o  g on [a,b] . It follows tha t  g E R.  

'The proof of t h i s  theorem w a s  suggested by Dr. W. S. Snyder, 
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Thus i f  s E R then the operator T defined i n  1.1.2 may be eon- 

sidered t o  have domain R, and i ts  range i s  a subset of R .  

Theorem 11.5. If XK E 3 and if s E R then the  operator T defined 

That is, f o r  any u E R the  sequence on R by 1.1.2 i s  t o t a l l y  convergent. 0 

defined by un+l = Tun, n 2 0  converges uniformly t o  some function 

f E R, and 

The 

uniqueness 

P. 15 [: 4 

f is the  unique fixed element i n  R for  the  transformation 2, 

proof of the uniform convergence of the sequence kn] and the 

of t he  solution are standard i n  the  literature. See Lovitt 
2 

3. 
An interest ing sub-class of zis made up of functions whoae dis- 

cont inui t ies  a re  regularly dis t r ibuted i n  the  rectangle a < x,y 6 b as 

defined by Bbcher, p. 3 [ 1 1. 
b 

the  in tegra l  K(x,y)f(y)dy is  a continuous function of x. Throughout 

For a l l  kernels i n  t h i s  sub-class and f E R 

t h i s  chapter it is assumed, unless the  contrary is  exp l i c i t l y  stated,  that 

the  function XK E z+. 

Section I. Properties of Upper and Lower Functions 

for a Fredholm Integral  Equatiun 

In t h i s  section a c r i t e r ion  i s  developed by which cer ta in  upper 

(lower) bounds fo r  the  solution of the in tegra l  equation 1.1.1 may be 

recognized provided XK E z+. These upper (lower) functions have cer ta in  

properties which make them useful fo r  the  numerical solution of t he  inte- 

g r a l  equation. Such properties are developed and studied i n  this chapter. 

*References are t o  the bibliography at  the end of the thesis .  
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In  general, the  theorems are given for  both upper and lower func- 

t ions,  but since the proofs of the theorems fo r  the lower functions 

follow the proofs fo r  the upper functions, with only minor changes, the 

proof i s  given only fo r  the upper functions. 

Theorem 11.6. The property of being an upper (lower) function is  

hereditary. 

Proof: By defini t ion 

11.6.1 Qn+1 = Tgn and n = 0,l 

and 

Thus 

11.6.3 

4- Using the assumptionsXK E 2 and g,(x) 3 g,(x) it is  clear t ha t  

11.6.4 g,(x) - g,(x) > O  for a l l  x E [a,%] . 
Rence gl(X) > g,(x) for all x 6 [a,b] . 
upper (lower) function i s  an upper (lower) function. 

Thus any i t e r a t e  of an 

Theorem 11.7. If g(x) i s  an upper function then g(x) ;7/f(x), and 

if h(x) i s  a lower function then h(x) 4 f (x )  for  a l l  x E [a,b] where 

f ( x )  is  the  solution of equation 1.1.1. 

Proof: - Since g i s  an upper function the sequence kn} defined by 

1.1.2 i s  monotone decreasing. Let C be a bound for I g,(x) - go(x)/ fo r  

x E [a,%] . Then by induction 
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It follows that the sequence {gn} converges uniformly on [a,b] and that 

the l imi t  function i s  a solution, unique i n  the class  R, of equation 

1.1.1. Hence gn(x) a f ( x )  f o r  x i n  [a,b] . 

11.8.1 

Theorem 11.8. An er ror  estimate f o r  an upper (lower) function is 

Proof: If go(x) i s  an upper function go(x) > %(x),  but g,(x) + 

For any given E 7 0  there ex is t s  an x 0 such that 

Hence 

11.8.3 
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As E -+ 0 11.8.4 approaches 11.8.1. 
Theorem 11.9. A lower bound for the error estimate for any iterate 

of an upper (lower) function is 

11.9.1 

Proof: By definition 

it follows that 

Theorem 11.10. Any function p(x) that lies entirely between an 

upper (lower) function and its iterate is an upper (lower) function. 

Proof: Given go(x) >, p(x) >/ g,(X), then 

Thus p,(x) < p(x) and hence p(x) is an upper function. 
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Theorem 11.11. If go(x) is  an upper (lower) function then 

[go(x) + F] is  an upper (lower) function where 6 i s  any nonnegative 

(nonpositive) constant. 

Proof: By def ini t ion - 

is  an upper function. 

Section 11. Existence of U p p e r  and Lower Functions 

fo r  1ntegra-l Equations 

For t h i s  technique t o  be used with advantage it is desirable t o  

show not only that  upper and lower functions ex is t  and exist a r b i t r a r i l y  

close t o  the solution but a lso  t o  find methods f o r  producing them. 

simple method i s  t o  take go(x) to be a constant and then f ind the  require- 

ments f o r  go i n  order t o  m a k e  it an mer (lower) function, 

One 

Theorem 11.12. "he constant function with value g 0 i s  an upper 

function i f  

11.12.1 
r 1 

and is  a lower function if  
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11.12.2 

Proof: By def in i t ion  

Hence 

11.12.4 c 1 

Theorem 11.13. There exist upper (lower) functions that l i e  

a r b i t r a r i l y  close t o  the solution. 

Proof: Given any E > 0, it i s  t o  be shown that there  ex i s t s  an 

upper function, g(x) , such that f (x) < g(x) 

of an upper function, f (x )  i s  an upper function. Hence by theorem 11.11, 

f ( x )  + 5 i s  an upper function. ~ h u s  f ( x )  + 5 and a l l  i t s  iterates l i e  

within E of the  solution. 

f (x) + E .  By the def ini t ion 

E E 

It may be of i n t e re s t  at  t h i s  point t o  mention some examples of 

upper and lower functions. Using theorem 11.12 it is  eas i ly  seen that 

(1) if  sup s (x)  < 0 then go = 0 i s  an upper function; 
b b l  

(2) i f  sup s (x)  7 0 then go = sup [ ] i s  an upper 

1 - XI, K(X,Y)dY 
Wl  Wl 

function; 

(3) if inf s(x) >, 0 then go = 0 is  a lower function; 
C a N  

and 
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9 

(4 )  i f  inf s(x) < 0 then go = inf [ sf)  1 i s  a lower function. 
! 3 b l  1 - XjaK(x,y)dy 

It may be noted that i n  (1) and (3) the  first iterate of go will be s(x) . 

Section 111. Approximation of Integral  Equations 

by a System of Linear Equations 

A s  i n  many numerical methods it i s  sometimes advantageous t o  

approximate the  or iginal  in tegra l  equation b y  a set of linear equations. 

This section discusses one method of doing th i s .  

Theorem 11.14. Under the  condition tha t  AK i s  a member of ;z the  

solution of the  in tegra l  equation depends continuously on the  kernel and 

the  sowce function. 

and g ( x )  = S(x) +- A.faH(x,y)g(y)dy, then Ilf - gII converges t o  zero as 

1 1  s - s 11 anti / I  A ja I K ( x , ~ )  - ~ ( x , y )  I dy 11 converge t o  zero. 

b 
More precisely, i f  f (x )  = s(x) + hJaK(x,y)f(y)dy 

b 

b 

w i t h  

11.14.1 

and 

11.14.2 

Proof: Let AK(x,y) be approximated by AH( x, y) and S(X)  by S(x) 



dy ,< p < 1 it follows tha t  given z such tha t  p < T < 1 

function g(x) is  defined as the solution of an integral  equation II.14,2y 

and thus by theorem 11.12 it follows tha t  

11.14.4 

Substi tuting t h i s  information in to  II,14.3 one finds t h a t  

11.14.5 

b 
Therefore f o r  any F: > 0 and p < z < 1 by making IX I fslK(xyy) - H(x,y) 

l e s s  than the minimum of T - pand uu E and e i n g  11s - S ~ I  
2 llsll 

€ l e s s  than it follows t h a t  [ I f  - @;/I < € 9  

An example of such a modified equation i s  tha t  obtained by 

approximating the kernel and the source function by s tep  functions. 

That is, divide [a,b] in equal in te rva ls  of length 6 and l e t  

i6+6ta j&&a 
K(k,y)dgdy for  i6t.a < x 4 i 6  + 6 + a x 

= 0 f o r  a l l  other xy 

and 
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1125.2 h (y) = 1 for  j 6  + a <  y d  j6 + 6 + a 
i j  

= 0 for  a l l  other y. 

The notation 6' w i l l  be used t o  represent a + jS. Then define 

IIe15.3 

and let  

11.15.4 

Then 

I1 15 5 

3+1 
where g - 1 J6 g(y)dy. By integrating 11.15.5 with respect t o  x 

j - 8  ,j 

= 6sm + 6 c j g 3 kmj(x)dX 

2 = 6sm + 6 C g.k 
j J m j .  

Hence 

+ 6 kmjgj. 11.15 Qm = sm 

Thus by the introduction of the  degenerate kernel, H(x,y), the integral  



equation 

11.15.8 

ma.y be replaced by the matrix equation 

P A  11.15.9 g = s + fig. 

Henceforth i f  a symbol w i s  referred t o  as the vector w, what i s  

meant i s  a f i n i t e  vector w ( w ~ ,  w4 ... w ), but i f  w is  referred t o  as 
P 

the function o r  s tep  function w then w h a t  is meant is  a s tep  function 

defined by the vector w such tha t  

i 11.15.10 W ( X )  = f o r  6 4 x < Si+’, and i = 0, 1, ..., p - 1. 

It might be w e l l  t o  note t h a t  the matrix equation 11.15.9 is equivalent 

where S(x) is  the s tep  function defined by the vector 

k i j  

and H(x,y) = 

f o r  f j i  4 x < E i + l  and 6’ 4 y < 8’”. 

In order t o  determine i f  the replacement of 11.15.8 by 11.15.9 is  

a reasonable one it is necessary t o  show when g approximates f t o  the 

desired degree. 

Using equation 11.14.3 f ( x )  - g(x) = s(x) - S(x) + 

H(x,y) are defined i n  equation 11.15.11. Thus 
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11.15.12 

For the  case of a continuous source function, s(x) ,  it i s  possible 

fo r  any given E t o  choose a B1 such t h a t  (s(x) - Silt for  

If the only discontinuities of s are at mesh points and are  
7 

simple discont inui t ies  and i f  s and S are sui tably defined a t  these 

points then 11s - SI1 c8.n s t i l l  be made a r b i t r a r i l y  s m a l l .  Take any T 

such thak p 4 ~(1. By defini t ion K(x,y) - H(x,y) within the rectangles ~ 

Hence i j j+l 6 < x < fji'l, and 6 & y < 6 is  equal t o  K(x,y) - kij. 

&i+l gj+l 
1 

11.15.13 K(X,Y) - ki j  = K(X,Y)  - 3 J6i Jgj K ( X , Y ) dxdY 

Thus 

where Km i s  the minimum and % the m a x i m u m  of K(x,y) within the rec- 

tangle. If K is continuous then f o r  given E there ex i s t s  a 62 such 

r 1 

and x2, y2 contained i n  the rectangle, and therefore 



11.13.15 

and 

€ 1-7 1-P) 
b 

11.15.16 I X \ l a l  K(X,Y) - H(X,Y) IdY ( ,,,LA . 
Thus f o r  continuous source and kernel functions 

than E if 6 i s  taken smaller than al, €i2. 

s t i l l  valid i n  regard t o  upper and lower bounds fo r  the more general 

Ilf - gll w i l l  be less 

The arguments t o  follow are 

kernels as defined a t  the  beginning of this chapter and f o r  more general 

source functions, but it may be impossible for g t o  approximate f t o  

the  desired degree i f  t he  approximations used are required t o  be s tep  

functions. 

Section IV. The Upper and Lower Functions 

f o r  a System of Linear Equations 

11.16.1 

It has been shown t ha t  the integral equation 

can be approximated by the matrix equation 

11 16.2 & ^ s +  y g *  
Also discussed w a s  the  re la t ion  between 11.16.2 and an integral  equation 

11.16.3 

A where S(x) i s  the s tep  function defined by the vector s and H(x,y) = kij 

f o r  tiid x < ai+’ and 8’6 y 4 8”’. Thus i n  the  i th . interval  

11 16 - 4 
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Hence g ( x )  i s  a constant i n  the interval ,  and it can eas i ly  be shown t h a t  

g(x) i s  thus the  s tep function defined by the  vector 

shown tha t  the upper and lower functions of 11.16.3 are  equal t o  the  s tep  

It can a l so  be 

functions defined by the vectors of the operator 

11.16.7 
A A A u = s + (Uo* 1 

Thus the  two systems are  equivalent, and the theorems given for upper and 

lower functions fo r  the operator T can be carried over d i r ec t ly  t o  upper 

and lower functions as  defined by the in tegra l  equation of the type 11.16.3 

and hence t o  the  upper and lower functions defined f o r  the solution vectors 

of the matrix equation 11.16.2. The conditions on the  m a t r i x  /‘( become 

(1) k 3 0  f o r  a l l  i and j 
i j  

P-1 

5=0 
(2) c kiJG P < 1 for  a l l  i. 

Similarly any m t r i x  equation of the form 11.16.2 is  equivalent t o  

an in tegra l  equation of the  form 11.16.3 having a degenerate kernel. 

the matrix satisfies conditions (1) and (2) then the  technique of upper 

and lower functions fo r  in tegra l  equations can be extended t o  apply t o  the  

matrix equation, 

that  the matrix K s a t i s f i e s  conditions (1) and (2 ) .  

equation f = ŝ + K f an operator can be defined by 

If 

Throughout the  remainder of t h i s  section, it i s  assumed 

For a given matrix 
h A 

11.16.6 

and the  technique of upper and lower functions fo r  in tegra l  equations 

applies t o  the matrix equationt 

Definit ion 11.17. A functiong (x)  i s  cal led an upper function fo r  0 



the equation 11.16.6 and ^g 
11.17.1 

an upper vector i f  0 

g,(x) >/ g,(x) fo r  a l l  x E [a,b] where g , (x )  i s  defined by the 

vector 
A 1  A0 11 e 17.2 = s + n g .  

Definition 11.18. A function hdx)  i s  cal led a lower function for  

the equation 11.16.6 and;' alower vector i f  

11.18.1 ho(x) < % ( x )  fo r  a l l  x E [a,b] 

where hl(x) i s  defined by the vector 

11.18.2 i ' = $ + K h .  A 0  

Since the gn (x )$s  (hn(x)'s) are also upper (lower) functions fo r  an 

in tegra l  equation the theorems concerning upper and lower vectors of 

equation 11.16.6 follow d i r ec t ly  from the proofs given for  in tegra l  equations. 

Theorem 11.19. The property of being an upper (lower) function fo r  

the operator 11.17.2 is  hereditary. 

Theorem 11.20. If g ( x )  i s  an upper function defined by the upper 

vector 2 and h(x) i s  a lower function defined by the lower vector 2, then 

g(x) > f ( x )  3 h(x) where f(x) is  the function defined by the solution vector 

f of 11.16~2. 

Theorem 11.21, An error  estimate fo r  any function defined by an 

i t e r a t e  of an upper (lower) vector i s  

11.21.1 

i where the notation % means the mth component i of the vector g . 
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Theorem 11.22. A lower bound fo r  the error  estimate f o r  any 

function defined by the  i t e r a t e  of an upper (lower) vector i s  

11.22.1 

where 5 = min 
m 

Section V. The Use of Upper and Lower Vectors t o  Calculate 

Upper and Lower Bounds on the Solution 

of a Fredholm Integral  Equation 

It has been shown tha t  the  integral  equation 

11.23.1 

can be replaced by the system of l inear  equations 

n A  

11.23.2 g =  s + fig. 
To obtain upper and lower bounds on f ( x ) ,  the  system of equation 11.23.2 

i s  replaced by the  pa i r  of equations 

11.23.3 

and 

11.23.4 

where (h . )  i s  the supremum (infimum) of h(x) i n  the ith interval,  and 
1 1  

$+1- - 
(k. .) i s  the supremum (infimum) of K(x,y)dy in the  ith interval .  

,j k i j  3 

Theorem 11.24. The solution of 11.23.3 is  an upper bound fo r  the 
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solution of 11.23.2, and the solution of 11.23.4 is a lower bound f o r  

11.23.3 under the res t r ic t ions  on ( . 
Proof: By def ini t ion - 

11.24.1 

- - 
Let q be the value of m such tha t  sup (k - k) = gq - gq. 

m 
Hence 

11.24.2 

P- 1 

j=O 
Since 2 kaj< p < 1 for  a l l  i it follows t ha t  

11.24.3 

Thus 
- gm > g o n  for  m = 1, ..., p. 

I n  actual  practice the in tegra l  equation is thus replaced by both 

11.23.3 and 11.23.4. 

the aid of theorem 11.12 assuming that u 

An i n i t i a l  upper (lower) vector uo is  chosen with 

i s  a constant. This upper (lower) 0 
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vector i s  then i te ra ted  by 11-23.3 (11.23.4) until, gn+l - gn I/ < for  

some given E > 0. 

by the  " l i m i t "  functions fo r  t he  two sequencesr 

/I 
The solution of the  integral  equation is  then bounded 

Theorem 11.25. If g is  an upper (lower) ve,ctor f o r  t he  system 

11.23.3 (11.23.4) then the  s tep function g i s  an ugper (lower) function 

fo r  the equation 11.23.1. 

Proof: Let g be an upper vector. Thus 

P-1 - 
j=o m j  ii 11.25.1 ~m >,< + k g fo r  sm< x sm+l m = 0, 1, ..., p - 1. 

Now let  x E [a,b] belong t o  the mth in terval  of the subdivision. Then 

subst i tut ing g i n to  the r igh t  member  of 11.23.1 one sees that its trans- 

form a t  x satisfies the inequality 

Since m i s  arbi t rary,  x i s  an a rb i t ra ry  point i n  [a,b], and it follows 

tha t  g i s  an umer  function f o r  11.23.1. 



CHAPTER I11 

EXPANSION OF THE BASIC THEORY 

In  t h i s  chapter an e f fo r t  is made t o  extend the upper and lower 

function technique t o  a greater var ie ty  of Fredholm integral  equations 

and t o  modify the technique i n  order t o  speed the convergence. The 

first problem is t o  lessen t h e  res t r ic t ions  placed on the kernel i n  

Chapter 11. 

Section I. Nonpositive Kernels 

The r e s t r i c t ion  

w a s  placed on the kernel i n  Chapter I1 i n  order t o  insure the hereditary 

property of the upper or  lower functions. 

t o  extend the technique t o  include kernels of the form 

It is  quite simple i n  theory 

111.1.2 

If the integral  equation i s  i te ra ted  analyt ical ly  the equation becomes 

L J 
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Thus by se t t ing  

111.1.4 

a.nd 

111.1.5 

the equation becomes 

111.1.6 

where X K(x,t) >/ 0. 

The integral  equation 111.1.6 is  now one of those handled i n  
b 

Chapter I1 provided sup 1.f h ( x , t ) d t  < 1. Therefore if  the integration 

is  possible i n  a closed form and i f  the or iginal  kernel satisfies the 

conditions 

h b 3  a 

b b  
h2f J K(x,y)K(y,t)dydt < 1 for  x 6 [a,b] 
a a  

then the methods of Chapter I1 apply t o  the i te ra ted  equation. 

Section 11. Method of Wiarda 

The other major r e s t r i c t ion  on the kernel i s  thak 

111.2.1 

This r e s t r i c t ion  insures the  t o t a l  convergence of the Neumann 

series. 

method of successive approximations f o r  Fredholm integral  equations i s  

In papers by L. B. R a l l  [ 5 ] and H. BGckner [ 2, 31  a special  
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b 

introduced. 

the Wiarda operator T 

Instead of using the operator Tg(x) = s (x)  + Xl K(x,y)g(y)dy 
a 

defined by e' 

i s  used with 8 a number such tha t  O <  8 < 1. 

f i c i en t  conditions fo r  t o t a l  convergence is  

A set of necessary and suf- 

111.2.3 ( e  + (1 - e)G1xl < 1 (k  = 1, 2, ...) 

th where $ is the k eigenvalue. 

Theorem 111.3. An upper (lower) function for  t he  operator T i s  

an upper (lower) function fo r  T and conversely. e 
Proof: L e t  g(x) be an upper function f o r  T, thus 

Thus Teg ,(g(x).  Let q(x) be an upper function for  T Therefore e* 

By the def ini t ion of T 
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Thus it follows t h a t  

or 

Hence q(x)  >/ %(x) = Tq(x) proving tha t  q(x) is an upper (lover) function 

of T if and only if it is an upper (lower) function of Tee 

Theorem 111.4. 

f o r  Te is  hereditary. 

The property of being an upper (lower) function 

Proof: By def ini t ion of Te 

b 
111-4-1 T Q (X) = gl(X) = (1 - e ) g o ( X )  + 8 e o  
Assume that 

111.4.2 go(x) > g,(x) fo r  x E: [a,b] . 
Hence by def ini t ion 
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In  a l i k e  manner most of the theorems i n  Chapter I1 carry over t o  

Since an upper (lower) function i n  one system the Wiarda operator (TQ). 

i s  an upper (lower) function i n  the other, the discussion of the ex is t -  

ence of upper (lower) Rrnctions f o r  T d i rec t ly  implies the existence of 

upper (lower) functions f o r  T 

operator is tha t  the sequence [un) now converges f o r  classes of kernels 

t h a t  do not s a t i s fy  the res t r ic t ions  on the  kernel f o r  the integral  

operator T. 

The greatest advantage i n  the Wiarda e' 

Note t h a t  f o r  8 = 1 the two operators; are identical .  

Section 111. The Gauss-Seidel Method 

The number of i t e ra t ions  needed f o r  convergence increases quite 

rapidly i f  8 i s  required t o  be small. 

t ha t  the Gauss-Seidel method might decrease the number of i t e ra t ions  

D r .  A. S. Householder suggested 

required. Basically t h i s  method replaces the matrix operator 

111.5-1 

by the  operator 

I11 5 -2 A A A A 
f n  = Ufn + Lfn  - + s 

where U = (uij) and L = (Pi j )  with 

u = o  for i < j and i S  

Hence U + L = K. 

for i 7 j 

Qij = 0 f o r  i 7 j 

- - kij f o r  i <  j. 

It was fe l t  t h a t  it would be interest ing i f  a ty-pe of Gauss-Seidel 

method could be applied t o  the integral  equation operator T. In  the 
I 
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following discussion the Gauss-Seidel operator T is defined by 
G 

and by def ini t ion h,l(x) = %(x). 

Theorem III,.~. If g(x) is  a function such that Tg(x) ,< g(x) 

(Tg(x) >/ g(x)) Or TGg(x) 4 (TGg(x) >,g(x)) and @;(x> = h-l(x) then 

h,(x) >/ hn+l(x) (hn( x) 4 hn+,(x)) fo r  a l l  x e [a,b] and n = -1, 0,1, .. ., P - 1. 
Proof: Given that Tg(x)$ g(x) then by def ini t ion 

Thus e i the r  ho(x) = Th-l(x) = Tg(x) < g(x) = h_l(x) o r  ho(x) = g(x) = 

h-,(x), and therefore ho(x) 6 h-l(x) fo r  a l l  x E [a,b] . Assume t ha t  

h (x)  2 h (x) for q = 0, 1, ..., n. Then 
q-1 9 

111.6.2 hn+l(x) = h,(x) for  a < x < gn+’ 
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Hence h 

and for n = -1, 0, 1, 2, ..., p - 2 if TGg(x) < g(x). Should TGg(x) be 

less than g(x) for x e [a,b] then by definition 

(x) G h (XI, and thus by induction hn(x) 2 hn+l(x) for x E [a,b] n+l n 

Then for any n = -1, 0, 1, ..., p - 1 
n+l 111.6.4 hn+l(x) = hn(x) for a& x < 6 

= Th,(x) = h 

= g(x) = hJX) 

(x) < hn(x) = g(x) for tin+'< x < sn+* 

for s"'+2< x $ b, 

P-1 

Thus for an n( = -1, 0, 1, 2, . ., p - 2 it follaws that hn+l(x) \< hn(x) 

for x E [a,b]. 

Theorem 111.7. An upper (lower) function for the operator T is an 

G" 
upper (lower) function for the operator T 

Proof: By definition 

b 
111.7.1 Tdx) = g , ( x )  = s(x) + X I ,  K(x,y)g(y)dy 4 g(x) 

Then 

1 
= g(x) for 6 < x.\c b. 

Since Th_l(x) = Tg(x) = gl(x) 6 g(x) it follows that ho(x) 6 g(x). 

Assume that hn ,(x) < g(x). By definition - 



Thus hn(x) < g ( x )  f o r  (n  = 0, 1, ..., p - l), and since TGg(x) = h ( X I  P-1 
it follows tha t  T g(  x) 4 g(x) . G 

G Theorem 111.8. If g (x)  is  an image of g(x) under the operator T 1 

such thast gl(x) ,< g(x> (gl(x) >/ g(x)) then Tgl(x) ,< g,(x) (Tgl(x) > gl(x)) - 
Proof: By def ini t ion 

111.8.1 

For any interval  €in < x 4 8"l it follows tha t  

Since t h i s  w a s  any interval,  Tgl(x) < (x)  f o r  a ,<x ,<b. 

Given any two functions f and g such tha t  f ( x )  > g ( x )  
' Q1 

Theorem 111.9. 

for x E: [a,b] then TGg(x) > T f ( x ) .  ' G  

Proof: Let g(x) = h-l(x) and f ( x )  = k-l(x). Since the operator T 

i s  monotone, 

Thus h (x) >,kg(x) f o r  all x E [a,b] . Then assume hn(x) >kn(x)  f o r  a l l  0 



x E [a,b] . By definit ion 

Hence hn+l(x) 3 kn+r(x) for  a l l  x e [a,b] , and n = -2, -1, 0, 1, ..., p -  2.  

Then TGg(x) = h ( X I  >/ kp,l(x) = T G f ( x ) -  P -1 
Corollary 111.10. The property of being an upper (lower) function 

for  the operator TG is hereditary. 

Proof: Given tha t  TGg(x) < g( x) . Then by se t t ing  TGg(x) = f (x) 

i n  theorem 111.9, it follows tha t  if  TGg(x) = f (x )  < g(x) then TG(TGg(x)) = 

TGf(x) < TGg( x) . 
i s  an upper function fo r  the operator T 

Hence the image of an upper function fo r  the operator T G n  

G* 

A s  i n  the case of the Wiarda operator most of the theorems fo r  

upper and lower functions folluw direct ly .  

fo r  T i s  an upper (lower) function fo r  T 

ence of upper (lower) functions f o r  T implies the existence of upper 

(lower) functions fo r  T 

Since an upper (lower) function 

(c f .  theorem 111.7) the ex is t -  
G 

G' 



CHAPTER IV 

WOMERICAL EXAMPLES 

I n  order t o  illustrate the applications of some of the  methods an 

approximate solution w a s  sought f o r  the integral  equation 

This i s  the same example used by L. B. R a l l  [ 
was tha.t of section V, Chapter 11. 

the pa i r  of equations 

5 3 . The method used 

The in tegra l  equation w a s  replaced by 

1v.1.3 

and 

IV.1.4 

where s (s.  ) is  the supremum ( infimum) of s(x) i n  the  ith interval  and 

k i j  

interval .  

and si = (xi) . To determine the value of kijy three cases are t o  be 

i i  
t h  - - 

(ki j )  is the supremum (infimum) of q =  K(x,y)dy f o r  x i n  the i - 2 6 r: 
Thus i f  x is the value of x at a + 6 i  then s - 

i i - (xi+l) 
2 

- 
considered: 

for  i = j; 
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for i < j. 2 X 

X .  
( 3 )  kij = Af '+lK(x,y)dy = 

J 
j+l  [(l - X j )  - (1 - x 

X - 
Since kij = sup Af j+'K(x,y)dy f o r  x. 6 x xi+l 1 xJ 
(1) kij = -(x 1 2  - X j ) ( l  2 - Xi) - 

2 j+l  f o r  i > j (maximum a t  x = x.); 
1 

f o r  i = j (maximum at i+ 1 -2 (2 )  ki j  = 8 xi - x + 2~ - A [ :+1 - - 
x =  ( 1 -  X ) X ~ + ~  - xx where i 

i+l 9 

- 
x = ( 1 / 2 ) ( X i  + x )). 

( 3 )  kij  = A [(l - x j )  2 - (1 - xj+l)2] f o r  i < j (maximum at x = x 1. 
- 

i+ 1 

X 
E$y def ini t ion of k = in f  f j+k(x ,y)dy  fo r  xi..( x <  xi+l it follows t h a t  i j  - 

j X 

for  i > j (minimum at  x = xi+l) ; 

2 
(2) - kii = 7 (1 - Xi)  - (1 - xi+l)e] for  i = j (minimum at  x = x i ) ;  

AXi 2 ( 3 )  kij  = - (1 - X j )  - (1 - x )2  - 2 j+l  
for  i < j (minimum at  x = x . ) .  

1 

- 
I n  the case of k 

have been gotten by finding the m a x i m u m  (minimum) f o r  each term. This, 

however, increases t h e  difference between the upper and lower function, 

which is undesirable. 

(k . . ) ,  t ha t  i s  for  i = j ,  a maximum (minimum) could ii 11 - 

Approximate solutions were calculated f o r  A = 1, 2, . . . , 9 .  The 

I n  a l l  cases graphs of the solutions are found i n  Figures 1 through 9.  

the i n i t i a l  function considered was  taken t o  be a constant as prescribed 
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by Theorem 11.8 and the functions i terated u n t i l  /(pn - gn-l(/ 4 2-36. It 

should be noted t h a t  lix, K(x,y)dyll = and thus for cases X = 8 and 9, 

X K t 2 ' .  For these cases the convergence of the  Wiarda operator was 

needed, The eigenvalues f o r  t h i s  example are \ = k n 

and it follows by 111.2.3 t h a t  the Wiarda operator i s  t o t a l l y  convergent 

f o r  a l l  8 i n  0 < 8 <l. 

b x 
a 

2 2  f o r  k = 1, 2 ,  ... 

In Figures 10, 11, and 12, the graphs represent the solution of 

the systems 1V.l.g and IV.1.4 f o r  various interval  sizes.  The interval  

s izes  are determined by taking p = 10, 100, 200, and 500. For p = 200 

and 500 and f o r  the chosen scale the upper and lower solutions are not 

distinguishable. 

The results of applyingthe method i n  a case where the solution 

w a s  not continuous are shown i n  Figures 13 and 14. The function chosen 

w a s  defined by 

f(x) = 2x f o r  O,< x (2 1 N.1.5 

By substi tuting IV.1.5 in to  equation IV.1.1 a new source term, s ( x ) ,  was  

calculated. 

r 1 

Care was  used i n  defining s (x )  at i, so t h a t  S ( X )  was single valued 

throughout the interval  [0, 11 . An interval  s i ze  wa.s a lso  used tha t  



35 
1 caused a mesh point t o  fa l l  a t  p .  

maximum (minimum) i n  the  interval  x i <  x < x 
Mote a l so  tha t  < (si)  i s  defined as - 

fo r  t h i s  example. i+ 1 
I n  order t o  study the behavior of the method f o r  a symmetric 

source function another source term w a s  chosen t o  be s (x )  = $(1 X - x) .  
The solution of t h i s  example i s  symmetric about E 1 w i t h  a m a x i m u m  a.t t ha t  

point. Figures 15, 16, and 17 are  gra4phs of the approximate solutions 

of t h i s  integral  equation obtained f o r  various interval  sizes. 

For nonpositive kernels, the equation 

was used. Thus XK(x,y) = -xy. By i te ra t ing  analyt ical ly  once 

c 1 

rv.1.8 

By se t t ing  

IV.l.9 

and 

Iv.l.10 

a new integral  

Iv.1.11 

equation 

= I -  t x t d t  + ?[ (xt2y3t] f(y)dy. 
0 O 

X 
- 2  s ( x )  = 1 - p d t  = 1 

f ( x )  = (1 - $) + ,?sf(y)dy 
0 3  

i s  formed. 

and 19 f o r  various interval  sizes. 

The approximake solutions of Tv.1.11 are shown i n  figures 18 
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I n  the paper by Ra.11 [ 5 ] p. 981 two estimates fo r  t h e  e r ro r  

are given as 

El 

and 

E2 

Where x i s  the solution of the integral  equation, x 

function, and p i s  a function of a bound on the integral  operator. 

i s  the nth i t e r a t e  n 

From 

these equations it was possible t o  calculate t h e  number of iteratiions 

thak were needed t o  insure a given accuracy. I n  figure 20, curve @ is  

a graph of the number of i tera,t ions plotted against 1 f o r  

llxn - x ~ - ~ / I  < 2 -36 . Curve @ is  the actual number of  i terat ions required 

i n  the numerical examples f o r  the corresponding integral  equation. 

number of i terat ions used by the Gauss-Seide1 operator is  shown as curve 

0. It w i l l  be noted t h a t  the  use of the Gauss-Seidel operator great ly  

decreases the  number of  i terat ions f o r  values of h near the smallest 

eigenvalue hl = n . 
acquired by the use of upper (lower) functions i n  the  i t e r a t ive  procedure 

The 

2 It seems on the whole tha t  the extra precision 

does not greatly increase the number of i t e ra t ions  required. 
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