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CHAPTER I
INTRODUCTION

The solution of a Fredholm integral equation such as

b
I.1.1 £(x) =s(x) + }JaK(x,y)f(y)dy

is often obtained by the method of successive approximations. Provided
b
that the integral faK(x,y)uo(y)dy exists, the right member of I.l.l is

considered as an operator T, which associates with a function U, en image

function uy defined by
§

’ b
I.1.2 ul(x) = s(x) + lfaK(x,y)uo(y)dy = Tuo(x).

It is the obJject of this thesis to develop a technique for finding
upper and lower bounds for the solution of I.1.1. If a sequence {;n} is
-1 under T,
then with suitable conditions on the kernel function NK(x,y), the sequence

defined inductively with w being the image of the function u

{;ﬁ} converges to a limit function which is a solution of I.1.l. With the
added condition that the kernel be nonnegative, it can be shown that the
image of an upper (lower) bound is an upper (lower) bound. Hence if the
initial function Uy is an upper (lower) bound then all the elements of
the sequence {#;} are upper (lower) bounds. The technique developed in
this thesis, which is referred to as the method of upper and lower func-
tions, develops methods of producing upper and lower bounds which are

easily recognized as such.



Definition I.2. A function g(x) is called an upper function if

for a nonnegative kernel

I.2.1 g(x) » gl(x) for all x € [a,b]
where

b
I.2.2 g,(x) = s(x) + A K(x,y)e(y)ay.

Definition I.3. A function h(x) is called a lower function if

for a nonnegative kernel

I.3.1 h(x) hl(x) for all x € [a,b]
where

b
I.3.2 hl(x) = g(x) + x[aK(x,y)h(y)dy.

Later it is shown that with certain conditions on the kernel the
upper (lower) functions are upper (lower) bounds for the solution. This
thesis develops methods which enable the choice of the initial functions
as well as their iteration to be performed on a digital computer.

In Chapter II the technique of upper and lower functions is developed

for the integral equations whose kernels obey the following restrictions:

(1.) 2K(x,y) > 0 X,y € [a,b]
b
(2.) A faK(x,y)\< p 1 X € [a,b] s 0 >0,

As in many applications of numerical methods, the original equation is re-
placed by a system of linear equations. Therefore in Chapter II the tech-
nique of upper and lower functions is extended to a system of linear

equations.



In Chapter III an effort was mede to relax somewhat the restric-
tions on the kernels. Chapter III also contains a section on a method
to speed the convergence of the sequence. This method is an analog of
the Gauss-Seidel method for linear algebraic equations.

Some numerical examples have been calculated on the Oak Ridge
National Laboratory's digital computer, the Oracle, and in Chapter IV
these examples are discussed. All the methods developed here are adapted
to use on a digital computer, and the problem is coded in such a way as
to insure that the computed functions are rigorous upper and lower bounds
for the solution of the integral equation. This is achieved by handling
rounding errors in such a way as consistently to increase upper bounds or

decrease lower bounds.



CHAPTER II

BASIC PROPERTIES OF UPPER AND LOWER FUNCTIONS

In this chapter some of the basic properties of upper and lower
functions are discussed. There follow some definitions and restrictions
needed in order to complete the proofs of these properties.

Definition II.1. ILet L be the class of real-valued functions

L(x,y) defined and bounded on a X,y £ b and satisfying the two condi-
tions:

g
II.1.1 for all [a,8] & [a,b] and all x € [a,b] the integral fa L(x,y)dy
exists in the sense of Riemann and is Riemann integrable as a function of
x in [a,b];

b
II.1.2 for every L € L the sup fa IL(x,y)ldy<< 1.
x € [a,b]

The notation Z~ (517) denotes the class of nonnegative (nonmpositive)
functions belonging to Z.

Definition II.2. The class of real-valued functions defined on

[a,b] and integrable in the sense of Riemann will be denoted by R.

Definition II.3. For each f € R a norm is defined by

-

Ifll= sw e
X € [a,b]

It is well known that R, so normed, is a Banach space.

b
Theorem II.4. If f € R then faL(x,y)f(y)dy exists for every

x € [a,b] and is Riemann integrable in [a,b].



>

Proof:1 If £ is a step function defined on [a,b] the agsertion is

an immediate consequence of condition II.1.l. For any f ¢ R and x € [a,b] ,
b
define g(x) = faL(x,y)f(y)dy. The integral exists since R is closed under

multiplication. The set of points x where the oscillation of f exceeds %
has Jorden content O. Thus there exists a finite set of disjoint intervals

{i.}m whose interiors cover the above set and such that the sum of their
J=1

m
lengths is less than % . The complement of the set _Ui Ig contains no
J:

points where the oscillation exceeds % s and thus about each point in the
complement a neighborhood may be taken in which the oscillation of f is

less than % . By the Heine-Borel theorem a finite number of such neighbor-

m
hoods cover the complement. Thus the complement of ’Ul 13 can be subdivided
: 5=

into a finite number of non-overlapping, closed intervals, each of which
lies in one of the neighborhoods. Since the oscillation of f on any such
interval is less than % a constant may be chosen such that f does not
differ from the constant in this interval by more than % » Thus, a step

m
function h may be defined such that {f(x) - hn(x), 4 %- for x .Ui Ig
J::'.

and with 'f(x) - b (x) f" for x e [a,b] . Let g (x) = f:L(x,y)hn(y)dye

< el

Then if N is a bound for !L

’

ollelin , (p-a)N
n n

b
a

) - g,00)| < 11w [20) - m )] avg

and thus g, converges uniformly to g on [a,b] . It follows that g € R.

1The proof of this theorem was suggested by Dr. W. S. Snyder.



Thus if s € R then the operator T defined in I.1l.2 may be con-
sidered to have domain R, and its range is a gubget of R.

Theorem II.5. If MK € 7l and if s € R then the operator T defined

on R by I.1.2 is totally convergent. That is, for any u, € R the sequence

u |C  defined by u = Tu_, n 2 0 converges uniformly to some function
il -0 n+l T
f € R, and f is the unique fixed element in R for the transformation L.
The proof of the uniform convergence of the sequence {%%} and the

uniqueness of the solution are gtandard in the literature. See Lovitt
2

p. 15 [ 4 ].
An interesting sub-class of Z is made up of functions whose dis-
continuities are regularly distributed in the rectangle a € x,y £ b as

defined by Bdcher, p. 3 [ 1 ]. For all kernels in this sub-class and f € R

b
the integral fa K(x,y)f(y)dy is a continuous function of x. Throughout
this chapter it is assumed, unless the contrary is explicitly stated, that

the function AKX € 5L+.

Section I. Properties of Upper and Lower Functions

for a Fredholm Integral Equation

In this section a criterion is developed by which certain upper
(lower) bounds for the solution of the integral equation I.1.1 may be
recognized provided AK € 55+. These upper (lower) functions have certain
properties which meke them useful for the numerical solution of the inte-

gral equation. Such properties are developed and studied in this chapter.

2References are to the bibliography at the end of the thesis.

e
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In general, the theorems are given for both upper and lower func-
tions, but since the proofs of the theorems for the lower functions
follow the proofs for the upper functions, with only minor changes, the
proof is given only for the upper functions.

Theorem II.6. The property of being an upper (lower) function is

hereditary.

Proof: By definition

II.6.1 8,41 = T&, 8nd n = 0,1
and
I1.6.2 go(x) >/gl(x) for all x ¢ [a,b] .
Thus
b .
11.6.3 g,(x) - g,(x) =2A[ K(x,y) | &g,(y) - g, ()| ay.
1 2 J 0 1

Using the assumptions XK ¢ Z' and go(x) > gl(x) it is clear that
II.6.4 gl(x) - ge(x) 7 0 for all x € [a,b] .

Hence gl(x) > gg(x) for all x ¢ [a,b] . Thus any iterate of an
upper (lower) function is an upper (lower) function.

Theorem II.7. If g(x) is an upper function then g(x) > f(x), and

if h(x) is a lower function then h(x) £ f(x) for all x ¢ [a,b] where
f(x) is the solution of equation I.1l.l.

Proof: Since g is an upper function the sequénce {gn} defined by
I.1.2 is monotone decreasing. Let C be a bound for lgl(x) - go(x)' for

x € [a,b] . Then by induction

I1.7.1 €ni1

(%) - g ()| = 2%y e () - & (5)] ay| < co™
io) a n n-1
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It follows that the sequence {gn} converges uniformly on [a,b] and that
the limit function is a solution, unigque in the class R, of equation

I.l.1. Hence g (x) » f(x) for x in [a,b] .

Theorem II.8. An error estimate for an upper (lower) function is

| &%) - & (x)
, %
1 - M K(x,y)dy

I1.8.1 &g - €| €

Proof: If go(x) is an upper function go(x) > gl(x), but gl(x) +

7 78)(x) if v 3 ||g; - &)||- By definition

I1.8.2 go(x) - £(x) = [go(x) - gl(X)] + [gl(X) - f(X)]

-

b
= [gO(X) - g (x) |+ A K(x,¥) [go(y) - f(y)] dy

. b
¢ [SO(X) - g (x) | + M| g, - £l K(x,3)ay

For any given € >0 there exists an xo such that

go(xo) - f(xo) >/ Hgo - f“ - Ee
Hence

II.8.3
b
lleg - Tl - e ggplxy) - £(x))€ [so(xo) - gl(xo)] + 2 l[go - f” [ K(xq,y)dy.

Thus
go(xy) - & {(x,) + €

'b ~
1 - M K(x,,¥)dy

8o(x) - & (x) |
° |
1 - lfaK(x,y)dy

11.8.14 Hgo - f” <

1 -p"°




As € — 0 II.8.4 approaches II.8.1.

Theorem IT.9. A lower bound for the error estimate for any iterate

of an upper (lower) function is
b
I1.9.1 Hgo - fH > o { 1+ H)\fa K(x,y)dy“]

where ¢ = inf }go(x) - gl(x)J.

[a,v]

Proof: By definition

g+ g - f“ > Hc * lf: K(x,y)[go(y) - f(y)] dy“ .

I1.9.2 ]] gy - f“ >

b
since gy(y) - £(y) = gy(y) - g (y) = o and M_ K(x,y)dy 2 O for all x,

it follows that

b
L+ M, K(xv)ay|

i=c‘ .

b
o+ ckfa K(x,y)dyl

I1.9.3 Hgo - f“ >

Thus

I1.9.4 Hgo - f“ > 0 [1 + H}JZ K(x,y)dyH:].

Theorem IT.10. Any function p(x) that lies entirely between an

upper (lower) function and its iterate is an upper (lower) function.

Proof: Given go(x) > p(x) > gl(x), then

I1.10.1

b b
p,(x) = s(x) +2[_ K(x,y)p(¥)ay < s(x) + Af, K(x,7)gy(y)dy = g,(x) > p(x).

Thus pl(x) < p(x) and hence p(x) is an upper function.
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Theorem IT.ll. If go(x) is an upper (lower) function then

[go(x) + 6] is an upper (lower) function where & is any nonnegative
(nonpositive) constant.

Proof: By definition

b b
L1 [gya) + a]l = 50x) + M k(7)) 6y(3) + 8] oy = g (x) + BN K(x,)ay

< glx) + 8¢ gy(x) + 8.

Thus [go(x) + 8} L [go(x) + 8], and hence [go(x) + 8] is an upper function.
5 ,

Section II. Existence of Upper and Lower Functions

for Integral Equations

For this technique to be used with advantage it is desirable to
show not only that upper and lower functions exist and exist arbitrarily
close to the solution but also to find methods for producing them. One
simple method is to take go(x) to be a constant and then £ind the require-
ments for g, in order to make it an upper (lower) function.

Theorem II.1l2, The constant function with value go is an upper

function if

s(x)

II.12.1 8,y SUP

b
[o® 1 - Af K(x,¥)dy

and is a lower function if
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II.12.2 g, < _inf bs("l .
(2211 - o k(eymiay

Proof: By definition

b
IT.12.3 g,(x) = s(x) + 2g,f, K(x,y)ay < &y
Hence
IT.12.k4
X
g > _sup 2Ll :

b
[e] |5 - A, K(x,y)ay

Theorem II.13. There exist upper (lower) functions that lie

arbitrarily close to the solution.

Proof: Given any € > 0, it is to be shown that there exists an
upper function, g(x), such that £(x) < g(x)< £(x) + €. By the definition
of an upper function, f(x) is an upper function. Hence by theorem II.11,
f(x) + g is an upper function. Thus f(x) + % and all its iterates lie
within € of the solution.

It may be of interest at this point to mention some examples of

upper and lower functions. Using theorem II.12 it is eagsily seen that

(1) if [sugl s8(x) € O then gy = O is an upper function;
a,

(2) if sup s(x) > O then g, = _sup s(x) is an upper
[a,b] [a,v] b
1 -2, K(x,y)dy
funetion;

(3) ir Einf s(x) > 0 then g, = 0 is a lower function;
a,b

and
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s(x)
b
1 - }\faK(X)y)dy

(4) if inf s(x) < O then gy = _inf is a lower function.

Ce,e] [a]

Tt may be noted that in (1) and (3) the first iterate of g Will be s(x).

Section IITI. Approximation of Integral Equations

by a System of Linear Equations

As in many numerical methods it is sometimes advantageous to
approximate the original integral equation by a set of linear equations.
This section discusses one method of doing this.

Theorem II.14., Under the condition that AK is a member of Z the

solution of the integral equation depends continuously on the kernel and

b
the source function. More precisely, if £(x) = s(x) + lfaK(x,y)f(y)dy
b
and g(x) = S(x) + kfaH(x,y)g(y)dy, ‘then [If - g|| converges to zero as
b
',s - Sl’ami’!hfa|K(x,y) - H(x,y),dy,' converge to zero.

Proof: Let MK(x,y) be approximated by M(x,y) and s(x) by S(x)

with

b
IT.1hk.1 £(x) = s(x) + lfaK(x,y)f(y)dy
and

b
II.14.2 g(x) = s(x) + M H(x,y)e(y)ay.
Then

b b
II.1k3  £(x) - glx) = s(x) - s(x) + M K(x,7)£(y)ay - M _B(x,y)e(y)dy

b b
= s(x) - 5(x) +>»faK(x,y)}:f(y) - g(y)1 dy +>~Ia[K(x,y) - H(x,y):’ e(y)dy-
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b
Since |l| faIK(x,y)ldyng p < 1 it follows that given T such that p< 7 <« 1

b b
then | llfa[H(x,y)ldy<5 T & 1 if lk]falK(x,y) - H(x,y)!dygg,r - p. The

function g(x) is defined as the solution of an integral equation II.1k.2,

and thus by theorem II.12 it follows that

II.1b.4 Hg”éul? T“

Substituting this information into II.1k.3 one finds that

II.1k.5

e~ all = oll -+ fle - ol el el - s s
Thus -

II.14.6 Hf - gHs ”;”_ :psll + [11-,3_ Hl ‘f’ ~ (.x f: H(x,y) - K(x,y)'dy.

b
Therefore for any € > O andp ¢ T < 1 by making |} | falK(x,y) - H(x,y)|dy

less than the minimum of T - pand (i 8) (1“‘“7) € and making |js - S||
2 S

less than £ , it follows that [|f - g|| < e.
An example of such a modified equation is that obtained by

approximéting the kernel and the source function by step functions.

That is, divide [a,b] in equal intervals of length & and let

15+6+a jo+5+a
A I
82 i%+a jora

It

11.15.1 kij(x) K(¢,y)dtdy for id+a { x £ i3 + B + a

1]

0 for all other x,

and



II.15.2 hij(y) lfor d+agygdo+d+a

0 for all other y.

The notation 8¢ will be used to represent a + j8. Then define

I1.15.3 H(x,y) = i%hij(y)kij(x)’
and let
b
IT.15.k g(x) = s(x) + A _H(x,y)e(y)dy.
Then Bj+l
II.15.5 g(x) = s(x) +1T3 kij(X)fa‘j g(y)ay = s(x) + & §km(x)gj
1 6,j+l
where &5 =% J 3 g(y)dy. By integrating II.15.5 with respect to x
)

from m6 to m™+d

8m+l 6m.+l 6n:H-l

g(x)dx = fam s(x)ax + fsm 5L kij(x)gjdx

i
Sy

II.15.6 agm o
5

6m+l

ds. + 3 L g, k, .(x)ax
s, ingfsm 15(%)

6m+l
s, + B % g3 fam kmj(x)dx

S8 + SEZg.k ..
m § Jmd
Hence

I1.15.7 g, =8, *0 % LI

Thus by the introduction of the degenerate kernel, H(x,y), the integral

1k
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equation
b
I1.15.8 f(x) = s(x) + lfaK(x,y)f(y)dy
may be replaced by the matrix equation
11.15.9 E=5+ Ké.

Henceforth if a symbol w is referred to as the vector w, what is
meant is a finite vector w (wl, W)y e w§), but if w is referred to as
the function or step function w then what is meant is a step function

defined by the vector w such that

1

I1.15.10 w(x) =W for 51<§ x < 5t ,a8nd i =0,1, ..., p - 1.

1
It might be well to note that the matrix equation II.15.9 is equivalent

to the integral equation
b
II.15.11 g(x) = 8(x) + M _H(x,y)e(y)dy

where S(x) is the step function defined by the vector § and H(x,y) =

kij for & £x <61+l and 5Y £ y< 6J+l.

In order to determine if the replacement of II.15.8 by II.15.9 is
a reasonable one it is necessary to show when g approximates f to the

desired degree.
Using equation II.14.3 f(x) - g(x) = s(x) - s(x) +
b b,
N oK(x,¥) [f(Y) - g(y)] dy + kfa[K(x,y) - H(x,y)] g(y)dy where £(x),
s(x) and K(x,y) are defined in equation II.15.8 and g(x), S(x), and

H(x,y) are defined in equation II.15.11. Thus



16

II.15.12

"f - g“ < Hs - S“ + “f - g|h>+l!1 5 T',Bl~\f:}K(x,y) - H(x,y)ldy} .

s e - of ¢ 452 35| [ e - s

For the case of a continuous source function, s(x), it is possible

for any given € to choose a &, such that .s(x - S, , J———l for

i+l

i
Slgxgbl

If the only discontinuities of s are at mesh points and are
simple discontinuities and if s and S are suitably defined at these

points then ||s - SII can still be made arbitrarily small. Take any <t

such that p < 7<¢1l. By definition K(x,y) - H(x,y) within the rectangles

5" £x <L 61+l, and 89 ¢ RS 63+l is equal to K(x,y) - kij' Hence

81+l 5j+l
1
I1.15.13 K(x,7) - k.. =K(x,5) -—= [ . [ K(x,y)dxdy.
’ 1d ’ 52 sl Tgd
Thus
II.15.14 K(x,7) - K, & K(x,¥) - B(x,¥)  K(x,¥) - Ky

where K, is the minimum and Ky the maximum of K(x,y) within the rec-

tangle. If K is continuous then for given € there exists a 62 such

that K(xl,yl) - K(xe,ye)l < min [;Ei‘ ;))(lil'ﬁé“,'r } for any X5 ¥q

and X55 Vo contained in the rectangle, and therefore
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I1.15.15 |K(x,y) - H(X:Y)l < Z&IZHE,‘J ?

and

b
5. 2 _ e(1-1)(1-p)
II1.15.16 M/, | K(x,5) - B(x,¥)|ay < AEL .
Thus for continuous source and kernel functions Hf - g][ will be less

than € if 3 is taken smaller than The arguments to follow are

1’ 52‘
still valid in regard to upper and lower bounds for the more general
kernels as defined at the beginning of this chapter and for more general
source functions, but it may be impossible for g to approximate f to

the desired degree if the approximations used are required to be step

functions.

Section IV. The Upper and Lower Functions

for a System of Linear Equations

It has been shown that the integral equation

b
II1.16.1 £(x) = s(x) + XfaK(x,y)f(y)dy
can be approximated by the matrix equation
11016-2 é = g -+ K%n

Also discussed was the relation between II.16.2 and an integral equation
b
II.16.3 g(x) = s(x) + M _H(x,y)e(y)dy

I
where S(x) is the step function defined by the vector s and H(x,y) = kij

for 5 € x < 81+1 and 89 ¢ y £ 8J+l. Thus in the ith‘interval

~

p-1 a+dj+d
IT1.16.4 g(x) = s, +kJ§O kijfa+js g(y)dy.
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Hence g(x) is a constant in the interval, and it can easily be shown that
g(x) is thus the step function defined by the vector é, It can also be
shown that the upper and lower functions of II.16.3 are equal to the step

functions defined by the vectors of the operator

A ~ ~
11.16.5 Up=s+ K Uy

Thus the two systems are equivalent, and the theorems given for upper and
lower functions for the operator T can be carried over directly to upper
and lower functions as defined by the integral equation of the type II.16.3
and hence to the upper and lower functions defined for the solution vectors
of the matrix equation II.16.2. The conditions on the matrix K become

(1) kij > 0 for all i and j
p-1

(2) Zxk,,€ p<1l for all i.
j:o itj -

Similarly any matrix equation of the form II.16.2 is equivalent to
an integral equation of the form II.16.3 having a degenerate kernel. If
the matrix K satisfies conditions (1) and (2) then the technique of upper
and lower functions for integral equations can be extended to apply to the
matrix equation. Throughout the remainder of this section, it is assumed
that the matrix K satisfies conditions (1) and (2). For a given matrix

equation =5+ A % an operator can be defined by
11.16.6 =5+ K&
and the technique of upper and lower functions for integral equations

applies to the matrix equation.

Definition II.1l7. A functiqngo(x) is called an upper function for
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the equation II.16.6 and %0 an upper vector if
IT.17.1 go(x) ),gl(x) for all x e [a,b] where gl(x) is defined by the
vector
I1.17.2 gl =8 +K @O.

Definition II.18. A function I%{x) is called a lower function for

the equation II.16.6 andh® a lower vector if
Ir.18.1 hy(x) by (x) for all x € [a,b]
where hl(x) is defined by the vector
II.18.2 Bt -aa K .
Since the gn(x)’s (ﬁn(x)'s> are also upper (lower) functions for an
integral equation the theorems concerning upper and lower vectors of

equation II.16.6 follow directly from the proofs given for integral equations.

Theorem II.19. The property of being an upper (lower) function for

the operator II.17.2 is hereditary.

Theorem II.20. If g(x) is an upper function defined by the upper

vector § and h(x) is a lower function defined by the lower vector h, then

g(x) > £(x) » h(x) where f(x) is the function defined by the solution vector
N

T of IT.16.2.

Theorem JI.21. An error estimate for any function defined by an

iterate of an upper (lower) vector is

0 1

I1.21.1 sup ‘g(x) - £(x) g sup *n 5 “m
[=,0] "h-ofx,

j=1 %

where the notation gi means the th component of the vector gl.
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Theorem II1.22. A lower bound for the error estimate for any

function defined by the iterate of an upper (lower) vector is

b
II.22.1 suplg(x) - f(x)l'} ’g(l + s;pjélkmj)

. 1
where { = m;n lgg - gml.

Section V. The Use of Upper and Lower Vectors to Calculate

Upper and Lower Bounds on the Solution

of a Fredholm Integral Equation

It has been shown that the integral equation

b
I1.23.1 f(x) = s(x) +AfaK(x,y)f(y)dy

can be replaced by the system of linear equations
11.23.2 g=5+Kaea.

To obtain upper and lower bounds on f(x), the system of equation IT.23.2

is replaced by the pair of equations

2 2 .
IT.23.3 g =8 + H g
and
11.23.L B=35+ |8

where E; (hi) is the supremum (infimum) of h(x) in the jth interval, and
- J+1

- 5 th
kij (ki.) is the supremum (infimum) of X f K(x,y)dy in the i*" interval.

&Y

Theorem II.24., The solution of II.23.3 is an upper bound for the
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solution of II.23.2, and the solution of II.23.4 is a lower bound for
II.23.3 under the restrictions onK .

Proof: By definition

r-l p-1

II.2k.1 gm-é;=(S-S)+ijgj Z=‘, kj—:j-

p-1 p-1

< g‘o Kns8s - J-E'o %n 38

p-1
Z k g.
£ £o i85 - &5
A o P-l
& s (g - g)j§O L
A ; —
Let q be the value of m such that sup gm gm) &
Hence
%, } [
II.2k.2 1- 2 k. -z |Lo.
s20 mj] 8 T B>
p-1
Since Z ny & p <1 for all i it follows that
J....
4 = 2 -3
IT.24.3 gq-gq =sgp [gm—gm]go
Thus é;\//‘gmform=1, cees Po

In sctual practice the integral equation is thus replaced by both

II.23.3 and II.23.4. An initial upper (lower) vector Uy is chosen with

the aid of theorem II.12 assuming that U, is a constant. This upper (lower)
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< € for

vector is then iterated by II.23.3 (II.23.4) until

sl ~ &n

gome given € > 0. The solution of the inﬁegral equation is then bounded
by the "1imit" functions for the two sequences.

Theorem II.25. If g is an upper (lower) vector for the system

II.23.3 (IT.23.4) then the step function g is an upper (lower) function
for the equation ITI.23.1.

Proof: Let g be an upper vector. Thus

m+1

1I.25.1 g >s_+ L kK g, for 8¢ x B m=0,1, -.., p - 1.

Now let x € [a,b] belong to the mth interval of the subdivision. Then
substituting g into the right member of IT.23.1 one sees that its trans-

form at x satisfies the inequality

b _p-1
IT.25.2  Tg(x) = s(x) +1[_ K(x,y)eg(y)ay < s, + j§0 gjfﬁj K(x,y)dy
— Pp=l —_—
SSm—"‘]g'o €5 “mj S

Since m is arbitrary, x is an arbitrary point in [a,b], and it follows

that g is an upper function for II.23.1.



CHAPTER III

EXPANSION OF THE BASIC THEORY

In this chapter an effort is made to extend the upper and lower
function technique to a greater variety of Fredholm integral equations
and to modify the technique in order to speed the convergence. The
first problem is to lessen the restrictions placed on the kernel in

Chapter II.

Section I. Nonpositive Kernels

The restriction
ITI.1.1 AK(x,y) > O for x ¢ [a,b]

was placed on the kernel in Chapter II in order to insure the hereditary
property of the upper or lower functions. It is quite simple in theory

to extend the technique to include kernels of the form
ITI.1.2 AK(x,y) £ 0 for x ¢ [a,b] .

If the integral equation is iterated analytically the equation becomes

I11.1.3 f£(x)

b b
s(x) + N K(x,¥) (s(y) + N K(y,t)f(t)dt} dy

b 5 P b
su)+gxummwmy+x£me gmLﬂﬂﬂM dy

s(x) + lgbK(x,y)S(y)dy + leéb .gbK(x,y)K(y,t)dyJ f(t)dt.
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Thus by setting

b

IIT.1.% S = s(x) + N K(x,y)s(y)ay
1)
and
I711.1.5 K(x,t) = }\E(LbK(x,y)K(y,t)dy
the equation becomes
b
III.1.6 £(x) = S(x) + M K(x,t)f(t)dt

where A K(x,t) > O.
The integral equation III.1.6 is now one of those handled in
b
Chapter II provided sup Af K(x,t)dt < 1l. Therefore if the integration

a,b] @
is possible in a closed form and if the original kernel satisfies the

conditions
s b Db

(1) 25J O R(x,7)K(y,t)dydt <1 for x ¢ [a,b]
a a

and

(2) AK(x,¥y) £0

then the methods of Chapter II apply to the iterated equation.

Section IT. Method of Wiarda

The other major restriction on the kernel is that
b
ITI.2.1 MOK(x,y)ay L p < L for x € (a,b] .
a
This restriction insures the total convergence of the Neumann

series. In papers by L. B. Rall [ 5 ] and H. Buckner [ 2, 3] a special

method of successive approximations for Fredholm integral equations is
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b
introduced. Instead of using the operator Tg(x) = s(x) + A K(x,y)s(y)dy
a .

the Wiarda operator TG’ defined by
b
ITT.2.2 f£.(x) = T.f.(x) = (1L - @)f.(x) + oA K(x,y)f.(y)dy + es(x)
1 80 0 Y 0
is used with © a number such that 0< 6 < 1. A set of necessary and suf-
ficient conditions for total convergence is
-1
I1T.2.3 \e + (1 - e))xk 1\ <1 (k =1, 2, ...)

where lk is the kth eigenvalue.

Theorem III.3. An upper (lower) function for the operator T is

an upper (lower) function for Tg and conversely.

Proof: Let g(x) be an upper function for T, thus

b
III.3.1 Te(x) = g (x) = s(x) + N K(x,¥)g(y)dy £ g(x)

and let

III.3.2 T.g gg(x) = (1 -0)g(x) + 6 |s(x) + lﬁbK(x,y)g(y)dy

e

(1 - ©)a(x) + 6g,(x) £ (1 - 6)g(x) + oe(x)  &(x).

Thus To8 £ g(x). Let q(x) be an upper function for Ty- Therefore

I35 Tea() = ag(x) = (1 - 0)a(x) + es(x) + O K(x,¥)a()ay £ alx).

By the definition of T

b
III.3.4 Ta(x) = ay(x) = s(x) + ?xé K(x,y)a(y)dy.



Thus it follows that

b
I1I1.3.5 a(x) > (1 - 6)a(x) + es(x) + er K(x,¥)q(y)ay

b
(1-90)a(x) + 6 [S(X) + lfaK(x,y)q(Y)dy}

(1 - () + o [a(x)]

or

III.3.6 ea(x) > qu(x).

26

Hence q(x) 2,q2(x) = Tq(x) proving that q(x) is an upper (lower) fumction

of T if and only if it is an upper (lower) function of Te.

Theorem III.4. The property of being an upper (lower) function

for TG is hereditary.

Proof: By definition of Te
b
TIT.4.1 Tego(x) = gl(x) = (1 - O)go(x) + 0 |s(x) + ljaK(x,y)go(y) dy.

Assume that

ITI.4.2 gO(x) > & (x) for x ¢ [a,b] .

Hence by definition

III.4.3 8y(x) - g (x) = [ 1- e][gl(x) - go("):'v |

b
+ A _K(x,¥) [gl(y) - go(y)] ygo,

and thus gl(x)‘a,ge(x).
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In a like manner most of the theorems in Chapter II carry over to
the Wiarda operator (TG)' Since an upper (lower) function in one system
is an upper (lower) function in the other, the discussion of the exist-
ence of upper (lower) functions for T directly implies the existence of
upper (lower) functions for TG' The greatest advantage in the Wiards
operator is that the sequence (un} now converges for classes of kernels

that do not satisfy the restrictions on the kernel for the integral

operator T. Note that for © = 1 the two operators are identical.

Section III. The Gauss-Seidel Method

The number of iterations needed for convergence increases quite
rapidly if 6 is required to be small. Dr. A. S. Householder suggested
that the Gauss-Seidel method might decrease the number of iterations

required. Basically this method replaces the matrix operator

ITI.5.1 | fn =§ + Kfn-l
by the operator
II1.5.2 2 =uf +1f | +%
vhere U = (?ij) and I = (ﬁij) with
uij =0 for i € and 1%3 =0 for 1 > J
= kij for i > = kij for i £ j.

Hence U + L = K.

It was felt that it would be interesting if a type of Gauss-Seidel

method could be applied to the integrel equation operator T. 1In the
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following discussion the Gauss-Seidel operator TG is defined by

I1I1.5.3 ‘I‘Ggo(x) = gl(x) = hp-l(x)
~ where
hn(x) = hn_l(x) for a £ x g'c‘)n
= Thn__l(x) for Sn\< x < i+t
= go(x) for 6n+l$ x£b,

and by definition hhl(x) = gn(x).

Theorem III.6. If g(x) is a function such that Tg(x) £ g(x)

(Ta(x) » &(x)) or T.e(x) < e(x) (To&(x) > g(x)) and g(x) = h_,(x) then
hn(x) 2hn+l(x) <hn(x-) < hn+l(x)> for all x ¢ [a,b:\ and n=-1, 0,1,...,p-1.

Proof: Given that Tg(x) ¢ g(x) then by definition

I1I1.6.1 ho(x) = Th_; (x) for a<{x ¢ d

i

g(x) for 8 £ x £ b.

Thus either ho(x) = Th_l(x) Tg(x) ¢ &(x) = h_l(x) or ho(x) = g(x) =
h_,(x), and therefore h(x) < h_,(x) for all x¢ [2,b] . Assume that

hq_l(x) > hq(x) for q =0, 1, ..., n. Then

I

n+l
I111.6.2 hn+l(x) hn(x) for a < x < 8

li

Th (x) < Th _,(x) ¢ Ta(x) ¢ &(x) = b (x)

for 5n+l < X< 6n+2

g(x) = h_(x) for ™2 ¢ x < b.



Hence hn+l(x) < hn(x), and thus by induction hn(x) > b
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(x) for x ¢ [a,b]

and forn=-1, 0, 1, 2, ..., p - 2 if TGg(x) < g(x). Should TGg(x) be

less than g(x) for x € [a,b] then by definition
II1I.6.3 TGg(x) = hp-l(x) < g(x).

Then for any n = -1, 0, 1, ..., p - 1

III.6.4 hn+1(x) = hn(x) for a{ x < shtL
+1 +2
= 'l‘hn(x) = hP_l(x) < hn(x) = g(x) for &% <x<&°
= g(x) = hn(x) for 8n+2\< x £ b.

Thus for an n/= -1, 0, 1, 2, ..., p - 2 it follows that hn+l(x) < b (x)

for x e [a,b].

Theorem III.7. An upper (lower) function for the operator T is an

upper (lower) function for the operator Ty

Proof: By definition

III.7.1 Tg(x) = g, (x) = s(x) +>~f: K(x,y)e(y)dy € e(x).
Then
ho(x) = Th_,(x) for a ¢ x ¢ &
= g(x) for alg x g b.

Since Th_l(x) = Tg(x) = gl(x) < g(x) it follows that ho(x) < elx).

Assume that hn_l(x) < &(x). By definition
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III.7.2 hn(x) hn_l(x) < g(x) for a £ x < 5"

il

b
Thn-l(x) = S(X) + }‘é K(x)y)hn_l(Y)dy

b
£ s(x) + lg K(x,y)e(y)dy = g (x) g g(x) for 3" & x < ™t

= g(x) for & L x (0.

Thus hn(x) £glx) for (n =0, 1, ..., p - 1), and since TGg(x) =h_ .(x)

p-1
it follows that TGg(x) < g(x).

Theorem III.8. If gl(x) is an image of g(x) under the operator ‘I‘

such that g (x) < &(x) (g,(x) > &(x)) then Tg (x) < &, (x) (Tgp(x) » gl(x>)

Proof: By definition

I11.8.1 Tgl(x) = Th_ ,(x).

p-1

For eny inmterval 8° ¢ x < 8™ it follows that

I111.8.2 Tgl(x) = Thp_l(x) < Thn_l(x) =

Since this was any interval, Tgl(x) gl(x) for a £ x £b.

Theorem ITI.9. Given any two functions f and g such that f(x) > g(x)

for x € [a,b] then TGg(x) > T f(x)
Proof: let g(x) = h_l(x) and f(x) = k_l(x). Since the operator T

is monotone,

1
III.9.‘l ho(x) Th_l(x) >/Tk_l(x) = ko(x) for a £ x £8

ko (x) for 81\< x ¢b.

=

i

Thus h (x) k (x) for all x € [a,b] Then assume hn(x) >kn(x) for all
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x ¢ [a,b] . By definition

n+l
II11.9.2 hm_l(x) = hn(x) > kn(x) = kn—:—l(x) for ag x <8
. n+l n+2
= Thn(x) > Tkn(x) = kn+l(x) for 8 g X < B
= - n+2
= g(x) 3 f(x) = k 1(® for 87 ¢ x < b.

Hence hn+l(x) > kn+l(x) for all x € [a,b] ,and n= -2, -1, 0, 1, ..., P-2.

Then TGg(x) = hp_l(x) > kP

Corollary III.1l0. The property of being an upper (lower) function

_l(x) = TGf(x).

for the operstor T, is hereditary.

G
Proof: Given that TGg(x).g g(x). Then by setting TGg(x) = £(x)
in theorem ITI.9, it follows that if T.g(x) = £(x) ¢ &(x) then TG(TGg(x)) =
TGf(x) £ TGg(x). Hence the image of an upper function for the operator T, »
is an upper function for the operator TG'
As in the case of the Wiarda operator most of the theorems for
upper and lower functions follow directly. Since an upper (lower) function
for T is an upper (lower) function for TG (ef. theorem III.T) the exist-
ence of upper (lower) functions for T implies the existence of upper

(lower) functions for Ty



CHAPTER IV

NUMERICAL EXAMPLES

In order to illustrate the applications of some of the methods an

approximate solution was sought for the integral equation

1
v.1.1 £(x) = x° + N K(xy)E(r)ay
where
Iv.1.2 K(x,y) = x(1 - y) for 0 {x gy K1
=y(l - x) for 0 { y £ x £ 1.

This is the same example used by L. B. Rall [ 5 ] . The method used
was that of section V, Chapter II. The integral equation was replaced by

the pair of equations

v.l.3 @ = g + R é

and

Iv.1l.k E=8+KE

where E; (si) is the supremum (infimum) Of:i£X) in the 12 interval and
E;; (kij) ;; the supremum (infimum) of %é?a K(x,y)dy for x in the ith
inter;;z. Thus if x, is the value of x at a + 81 then E; = (Xi+1)2

and s, = (xi)g. To determine the value of k three cases are to be

——

considered:

1§’

[
]

x
i Ax 2 2 . .
(1) kij = %&j K(x,y)dy = [(l - xj) - (1 - xj+l) } for j €1

i
I}

X,
@) gy =¥ Ry - 567 -0 - w0+ G {(re -0f - - xmﬂ

J

for i = j;
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bs
j+1 A 2 2 .
(3) kij = )£.3+ K(x,y)dy = —% [(l - xj) - (1 - x.+l) } for i € j.

3 Jd
— ¥
Since kij = sup )ij K(x,y)dy for X, £ XL X
(1) k., = A(xe - x2)(l - X, ) for i > J (maximum at x = x_);
ij ~ 27+l 3 i ' 17
2 XE
— A 2 2 i . . .
(2) kij =g [xi - Xiqt 2Xi+l} - for i = J (ﬁax1mum at
x = (1 - x)xi+l - xx, vhere
X = (1/2)(xi + xi+l)>;
(3) k.. = 2\-(x Yy (1 - x )2 - (1 -x )2 for i ¢ J (meximum at x = x
i 2 i+l 3 J+1 i+l

X,
By definition of k;, = inf [ Fl(x,y)ay for x, £ x x,,, it follows that

).

i
— xj
(1) k., = ﬁ(l p'e )(x2 - xg) for i > j (minimum at x = x, .)
iJ 2 i+l J+l J i+l’ 2
Axy 2 2
(2) Eii = > (1 - Xi) - (1 - xi+l) for i = j (minimum at x = xi),
Axy 2 2
(3) kij = — (1 - xj) - (1 - xj+l) for 1 ¢ j (minimum at x = xi)

In the case of E;; (ky;), that is for i = j, a maximum (minimm) could
have been gotten by ;;;ding the maximum (minimum) for each term. This,
however, increases the difference between the upper and lower function,
which is undesirable.

Approximate solutions were calculated for A =1, 2, ..., 9. The

graphs of the solutions are found in Figures 1 through 9. 1In all cases

the initial function considered was taken to be a constant as prescribed
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by Theorem II.8 and the functions iterated until 2-36. It

[ - € <
should be noted that “lf K(x,y)dyl|| = g and thus for cases A = 8 and 9,
AKRZfF. For these cases the convergence of the Wiarda operator was
needed. The eigenvalues for this example are lk = kang for k = 1, 2,
and it follows by III.2.3 that the Wiarda operator is totally convergent
for all @ in 0 ¢ 6 (1.

In Figures 10, 11, and 12, the graphs represent the solution of
the systems IV.l.3 and IV.l.4 for various interval sizes. The interval
sizes are determined by taking p = 10, 100, 200, and 500. For p = 200
and 500 and for the chosen scale the upper and lower solutions are not
distinguishable.

The results of applying the method in a case where the solution

was not continuous are shown in Figures 13 and 14. The function chosen

was defined by

Iv.1l.5 f(x) = 2x for 0 { x < %

1

2x - 1 for%gxgl.

By substituting IV.1.5 into equation IV.l.1 a new source term, s(x), was

calculated.

Iv.1l.6 s(x) = @’% {8;:2 + h}} for 0¢ x <%

ol
n
s
N
H

- [&é - 12x° 4 55x - 27] for

Care was used in defining s(x) at §, so that s(x) was single valued

throughout the interval [O, l] . An interval size was also used that
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caused a mesh point to fall at %. Note also that E; (Si) is defined as

maximum (minimum) in the interval xi,g x < xi+ for this example.

1
In order to study the behavior of the method for a symmetric
source function another source term was chosen to be s(x) = g(l - X).
The solution of this example is symmetric about % with a maximum at that
point. Figures 15, 16, and 17 are graphs of the approximate solutions

of this integral equation obtained for various interval sizes.

For nonpositive kernels, the equation

V.17 £(x) = 1 - élmf<y>dy

was used. Thus MK(x,y) = -xy. By iterating analytically once

1 1
Iv.1.8 f(x) =1 - [ xt {1 -J tyf(y)dy] at
0 0
1 1
=1 - [ xtdt + [ xt tyf(y)dy | dt
0 0
1 1
=1 - [ xtdt + j’l[ £ xtzydt] f(y)dy.
0 o0LO
By setting
1
Iv.1.9 s(x) =1 - é xtdt = 1 --’25
and
1.2
IV.1.10 K(x,y) = é xt“ydt = —"%
8 new integral equation
1
Iv.1.11 £(x) = (1 -3) + é%f(y)dy

is formed. The approximate solutions of IV.1l.1ll are shown in figures 18

and 19 for various interval sizes.
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In the paper by Rall [ 5 ];p. 981 two estimates for the error

are given as

& e - s < -
= e - =l € 55 P - e

Where x is the solution of the integral equation, X is the nth iterate
function, and 4 is a function of a bound on the integral operator. From
these equations it was possible to calculate the number of iterations
that were needed to insure a given accuracy. In figure 20, curve <:> is
a graph of the number of iterations plotted agasinst A for

Hxn - Xn-l” < 2_56. Curve <:> is the actual number of iterations required
in the numerical examples for the corresponding integral equation. The
number of iterations used by the Gauss-Seidel operator is shown as curve
<:>. It will be noted that the use of the Gauss-Seidel operator greatly
decreases the number of iterations for values of A near the smallest
eigenvalue Kl = ﬁe. It seems on the whole that the extra precision
acquired by the use of upper (lower) functions in the iterative procedure

does not greatly increase the number of iterations required.
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Fig. 1. Example One — A=1, P=1{00.
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Fig. 2. Example One — A =2, P =100.
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Fig. 4. Example One — A= 4, P = 100.
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Fig. 6. Example One — A=6, P=100.
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Fig. 8. Example One — A =8, P=100.
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Fig.9. Example One — A=9, P=100.
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Fig.10. Example One —A = {, P =10,100.
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Fig. 11. Example One — A =1, P = 200.
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Fig.13. Example Two — P=10, 100
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