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FITTING LINEAR COMBINATIONS OF EXPONENTIALS TO
HUMAN URANIUM-EXCRETION DATA

INTRODUCTION

During the past several years the authors, with
the advice and generous assistance of the Mathe-
matics Panel, have investigated several methods
for fitting linear combinations of exponentials to
excretion data. These curve-fitting techniques are
of interest as a possible method for determining
the parameters of uranium distribution and excretion
in humans,

A typical excretion curve is shown in Fig, 1.
The measured counts per minute in urine excreted
per hour are plotted vs time of measurement following
an injection. These data are reported more fully
elsewhere (1,2).

Parameters of distribution and excretion may be
determined by applying a model of the distribution
and excretion of uranium based on principles
of linear kinetics. This is illustrated by letting

§; be the amount of uranium present in the ith
compartment or body tissue. From a consideration
of the kinetics of linear systems,

n .
(S, = 3 k.5, i =12 ...,n
where S is the amount excreted in urine and k.=
0 for all j # » — 1 and, also, ko= 0 for every ;
because there is no interconnection between urine
and any other compartment, The solution of Eq. 1
is of the form

2 =At .
(2) §; = X a;.e 7, i =12 ...,n

=17
where the A.'s are the roots of the matrix K, and
A =(a;) is a matrix with AKA™! = A = diag (A,
Ay veey )\n). Hearon (3) has shown that A, 20 for
all i and at least one A, = 0. With measurements
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Fig. 1. Patient ll Urinary-Excretion-Rate Curve,



of the S, compartment, the data, when fitted with
Eq. 2, will determine the a,.; and A, With these
values, the relation K = A"'A A, and the charac-
teristic equation, the /a,.]. may be determined.
[Unique solutions for the parameters are not al-
ways obtained. Some k. may take on several
values, a few of which may not be physically
realizable. The procedure for determining these
k;. and their ranges of variation is discussed in
the paper by Berman and Schoenfeld (4).] When
the values of the k;. are determined the Sl.(t),
where i <7, can be computed and checked against
the measurements of Sl.(t), i < n, that is, the
amounts of uranium found in tissue samples taken
at autopsy.

In application, the usual procedure is to select
a value for n, the number of compartments in the
system, and then employ the graphical curve-
fitting method to estimate the parameters, Al-
though this is a practical choice, it is inadequate
because it introduces a bias of the investigator
and does not yield estimates of the variances
associated with the parameters.

There are analytical methods for estimating »
and the parameters and their variances, Prony’s
method, cited by Whittaker and Robinson (5) as
modified by Householder (6,7) offers some pos-
sibilities. It was coded for the high-speed digital
computer, Oracle, and applied to excretion measure-
ments and synthetic data, that is, values of the
function Sn(t) computed from Eq. 2 with specified
values for the a
Poisson-distributed at three different levels of
variance,

. and A, having appended errors,

This report describes the results obtained from
the application of this method to the measured
excretion data and the synthetic data. In addition,
the results of similar tests of the method of
Garwood (8) and an alternate least-squares method
are described.

In general, it appears that these methods for
fitting linear combinations of exponentials can be
used for data which have small appended errors.
For measurements such as those shown in Fig. 1
some additional modification is indicated. One
possible modification was tested on a limited
scale and shows promise of successful application
to excretion measurements.

METHODS AND RESULTS
Terminology

The lower-case letter y corresponds to an ex-
pected or true value of an ordinate, while Y desig-
nates the observed or measured value.

Synthetic Data
The equation

-0.1 1550¢;

(3) 'y, = 1,420,608 € +

-0.01 .
+ 7800 ¢ 4431 +

~0.00161¢,
+ 1300 € r,

which approximates the measurements shown in
Fig. 1, was computed for ¢t =0, 50, 100, ..., 400.
Poisson-distributed errors were appended to these
ordinates as follows: An aliquot, P, of v cubic
centimeters of urine excreted in b hours, when
analyzed for uranium, gave a count of y total
counts for T minutes. Consequently, the plotted
ordinate, y, is given by

= ()

Assuming that the variance in y is due to counting,
then
2

< 1 2 Vi
V(}’,-) = %_P.—}) V(’yl.) = <§> .

by virtue of the properties of the Poisson distribu-
tion. Now let x; be a sample from (NID) having
zero mean and unit variance, or

Yi-w Y-y,

o o
Solving for Y, and substituting gives
1+ x,
1
Y, =y, .

VY

The xi's are from a table of random deviates, and
the yi's, the true ordinates, are obtained from
Eq. 3. The value of ¥ is set equal to 1500 counts
which corresponds to ~3% counting error. In
order to change the varience level, the x's are
multiplied by 1, 3, and 10. The y,’s, x,’s, and the
ordinates having 1, 3, and 10 levels of error ap-
pended to them are shown in Table 1. These
ordinates are plotted vs time as shown in Fig. 2.




Householder’s Modified Prony Method

Prony’s method requires that the observations

Yor Yqs «ee, Yy be made at times ¢+ = 0, T, 2T,
«ss, NT. Since the expected ordinate y(t) is

r=n -a.t
4) y{t) = % A, e

rp=1 1!

-a.T
then, by lettingu, =¢ * ,

/
r=n

(5) y, = y(rT) = Z A4,
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where 7 =0, 1, ..., N, and the y s must satisfy

(6) Pp = YpS, *

* YphySpmy toeee t
Yptp-151 F Yptn = 0

(where p =0, 1, ..., N = n), annth order difference
equation. The coefficients, s,’s, are the elementary
symmetric functions of an nth order polynomial,
the roots of which are the required exponentials,
the U

Two modifications were made by Householder.

641 First, he adapted an orthogonalization procedure
= e for the computation of the s,'s which not only
%~—-— 1 facilitated the computation but also permitted the
\ % = 4,420,608 011950 __] estimation of 7, the number of exponentials, Second,
10° =: i +7,800¢7 001430 4 43007000 | he converted the method to an iterative method,
‘\\ = f;:ﬁ'f;igﬁibi& . more suitable for high-speed computation. In
\ g ! S S addition, valid least-squares estimates of the
, i \ elementary symmetric functions are provided as a
E S— = result of the second modifications (9). Failure of
j o — the Prony method to provide statistically valid
s T estimates has been one of the objections to the
= e method (6,7,9).
T
, i The orthogonalization procedure prescribes the
102 I matrix Z, having column vectors Zge Zys enes Zy
0 %0 00 %0 2c’)o 80 300 380 400 where the components of the zg are Yo, Y, ..o,
Y 5~ while those of the z are Y, Y 41, 000, Yy,
Fig. 2 Plot of the Synthetic Data, to be orthogonalized. Thus, V_ is the matrix whose
Table 1. Synthetic Data
True Ordinate Values,
t x; y One-Error Level Three-Error Level Ten-Error Level
i
0 -0.036 1429708.000 1416418.578 1389839.735 1296813.782
50 +0.59 9400.007232 9543.205062 9829.600723 10831.985534
100 =1.11 2963.389980 2878.361497 2708.504530 2114.005145
150 —0.37 1916.577000 1898.267173 1861.647520 1133.478733
200 +0.81 1377.327900 1406.133611 1463.856597 1665.385012
250 —~0.49 1080.753700 1067.080220 1039.733261 944.018903
300 +0.55 904.796100 917.645109 943.343128 1033.286194
350 —~ 0.48 789.917700 780.127776 760.547928 692.018460
400 +0.02 706.997200 707.362293 708.092480 710.648134

Y. =
i

1420608 €=0+115502; | 7800 ¢=0:01443t; . a0 (=0:001612;



column vectors v, Uy ses, v, are orthogonal to
the columns of the Z matrix and

7) Z, = VU,

r

where U, is a unit upper triangular matrix,

1 7
U]o U20 es Uro
O ] ll2.| v ur'l
® U=10 0 1 .. oa,l.
0 0 0 .. 1

In the application, a maximal guess is made for
r, that is, r > n, and the Z matrix is formed sub-
sequent to the orthogonalization. The vectors v
and the elements of the U matrix are computed
sequentially. Householder proved that if the
theoretically correct values, that is, the y's, are
elements of the Z matrix, then the v_,, column
vector would vanish. Since the observed values,
Y’'s, are used instead of the true values, then
v,4+1 can be expected to be small relative to the
other column vectors. Having established v,, the
matrix U is then inverted and the nth column of
U1 contains the sl.'s in reverse order., Thus n,
the number of exponentials, and the si's are de-
termined. When these are substituted into the nth
order polynomial and its roots, & are evaluated,

then the a's are given by (1/T) In(£),

This method was coded for the Oracle, and both
the excretion data and the synthetic data were
processed. The elements of the Z, V, U, and
U™' matrices for the excretion data appear in
Table 2, while the elements for the synthetic
data, true ordinates,’ and one-, three-, and ten-
error levels'! appear in Table 3. As can be noted
in Table 2, the vq column vector has the smaller
elements. Hence, the fourth column of U™' con-
tains the si's. Note that these symmetric functions
correspond to an equation having no more thian
two real positive roots. This is precisely the

]The data for the true ordinates and the one-, three-,
and ten-error levels are biased because computation
errors were introduced into the calculations of the true
ordinates. Compare components of Z matrix in Table 3
with those data in Table 1. The calculations were not
repeated because changes in the memory unit of the
computer rendered the programs obsolete.

case of interest; positive real roots are required
because €L > 0 for positive real values of a.
In Table 3 it is seen that negative roots do not
exist for the true ordinate values, but they do
exist for the one-, three-, and level
data.  Therefore, this method has a [imited ap-
plication because it yields untenable estimates
for the a's.

The iterative version of Prony's method, when
applied to the above data, overcomes some of the
difficulty., This method evolves from considerations
of the function

ten-error

N-
§ w(y —y)t42"5

© 6= % NP,

where w is a statistical weighting factor, A is a
Lagrange multiplier, while the Y  and y, are, as
before, the observed and true values and P, is
given by Eq. 6. Equation 9 was minimizecf by
setting

3 3
—¢=o, % 0.
dy ds

These, in turn, were made linear by expanding in
Taylor series about initial estimates Y and r, for
the y and s, which are related in the following:

(10) Y, =y, +n1n,, r,= S, P

1

Thus, the n, and p; are correction factors (pre-
sumably small) to be calculated at the end of each
iterative step and used to adjust the Y's and +'s.
The equations, in matrix notation, to be solved for
these correction factors are

Y0 'vo= vQ B,
(n A=Q7p -0 yp,
n = WIRA .
The matrix Y is
Y, Y, e Y,
(12) v = C e e e e ,
YN-n Ynept1 or Yy
while
(13) Q = R'WR .

The value P is a column vector, its components
calculated with Eq. 6 by inserting r's and Y's for
the s and y. The matrix R has N - n —~ 1 columns,



Components of the first column are the #'s entered
in reverse order followed by a 1 and N - » zeros.
The second column has a zero followed by the r's
in reverse order, a 1, and N — » + 1 zeros, etc.
The matrixW = diag (wo, Wi eeey wN), a diagonal
matrix of the weights; p is a column vector; A is a
column vector; and 7 a column vector of 3’s,
entered in reverse order,

The equations of Eq. 11 are solved sequentially.
From the first of these a solution for the po's is
obtained, and with the ©’s the second can be
solved for the A’s and the last for the ’s.

This method was coded for the Oracle and the
solution was checked by a comparison with solu-
tions obtained with desk calculators. The ex-

cretion dato were then processed, unit weights
were specified, and the initial estimates for the
r's were obtained with the orthogonalization pro-

cedure.

Convergence set in rapidly.
r's were substituted into the polynomial and at

east one negative root was found.

The processing of synthetic data (true ordinate
and the 1-, 3, and 10-error levels') re-
veals that negative roots occur when data having
high levels of variance are processed.

values'

Figure 3 shows the

plot of the r's computed at each iteration.

plotted, for purposes of comparison, are those r's

Table 2. Application of Orthogonalization Procedure to Patient Excretion Data

%0 2 Z2 Z3 24 o
1420608 10687 2871 1412 1291 1123
10687 2871 1412 1291 1123 797
2871 1412 1291 1123 797 723
1412 1291 1123 797 723 557
1291 1123 797 723 557 462
1123 797 723 557 462 270
1J0 1J.l U2 U3 U4 U5
1420608 —26.709145 1.8193559 —0.0594230 ~11.104810 —~9.2729431
10687 2790.402531 ~415.0656693 ~3.6305357 1159.634151 ~980.3519978
2871 1390.347962 385.6309315 86.4600498 571.894343 ~ 4664129972
1412 1280.351209 291.7617557 ~114.1674027 532.096176 ~412.3131088
1291 1113.263747 74.1108537 50.0849149 475.910446 ~389.9031366
1123 788.530742 210.5499037 —24.9372761 333.835010 ~369.8452503
1 0.007541637 0.002031849 0.001003641 0.000916908 0.000796541
0 1 0.646985974 0.559022956 0.046271333 0.350935487
0 0 1 0.664941650 0.423464332 0.446648177
U =
0 0 0 1 —~0.059692129 0.522776159
0 0 0 0 1 0.842398162
0 0 0 0 0 1
1 —0.007541637 0.002847484 0.001318896 -0.001695027 0.001316664
0 1 ~0.646985974 ~0.128815041 0.220014907 —0.179959238
- 0 0 1 —0.664941650 —0.463156115 0.291129603
U =
0 0 0 1 0.059692129 —~0.573060735
0 0 0 0 1 —0.842398762
0 0 0 0 0 1

These new

In com-
putations with the synthetic data, unit weights
were assigned, but the true values for the r's were
used for initial estimates.



Table 3. Application of Orthogonalization Procedure to Synthetic Data

True Ordinate Values*

One-Error Level*

z

o Zy % Z3 %o %) Z2 Z3
1429708 9472.59 3095.51 1925.67 1416426 9617 3007 1907
9472.59 3095.51 1925.67 1458.95 9617 3007 1907 1489
3095.51 1925.67 1458.95 1082.32 3007 1907 1489 1069
1925.67 1458.95 1082.32 905.723 1907 1489 1069 919
1458.95 1082.32 905.723 790.413 1489 1069 919 781
1082.32 905.723 790.413 707,278 1069 919 781 708
Yo “ Yy 3 Yo ] vy V3
1429708 —27.939755 0.7664598 +0.02099546 1416426 —27.764746 0.764059 0.038804
9472.59 3032.563844 —211.7341596 15.91191562 9617 2941.515674 —200.991558 2.949331
3095.51 1905.100076 122.4216100 ~94.97314580 3007 18864524657 143.803882 ~121.170140
1925.67 1446.153761 68.6905387 +38.68072495 1907 1476.014806 17.472145 72.541593
1458.95 1072.625155 153.8381873 +364165699531 1489 1058.861062 164.398277 39.182146
1082.32 898.530893 160.8687278 +41.64731336 1069 911.720937 131.713520 78.264595
1 0.006645084 0.002178239 0.001357019 1 0.006809226 0.002136320 0.001356843
v 0 1 0.698013530 0.546675516 0 1 0.709649990 0.561244647
= U -
0 0 1 1.075144436 0 0 1 0.885151683
0 0 0 1 0 0 0 1
1 —~0.006645084 +0.002460119 —0.000369298 1 —0.006809226 +0.002695847 +0.000078565
. 0 1 —0.698013530 +0.203789847 - 0 1 ~0.709649990 +0.066903236
0 0 1 —1.075144436 0 0 1 ~0.885151683
0 0 0 1 0 0 0 1
X3 — 1.07514 X2 + 0.20379 X - 0.00369 = 0

+0.83020
roots = +0.24309
+0.00185
0.00360 (0.00161)
a's = 0.02846 (0.01443)
0.12420 (0.11550)



Table 3 (continued)

Three-Error Level*

Ten-Error-Level*

o

1

Z2

z

2'3 o z 1 22 23
1389848 9905 2829 1871 1296817 10916 2208 1742
9905 2829 1871 1550 10916 2208 1742 1764
2829 1871 1550 1041 2208 1742 1764 945
1871 1550 1041 944 1742 1764 945 1034
1550 1041 944 761 1764 945 1034 692
1041 944 761 708 945 1034 692 m
Yo Y Y2 h<] Yo Y Y2 Y3
1389848 8911.765975 ~889.6979732 ~247.6315533 1296817 ~25.107566 —0.4763517 —1.9047993
9905 2821.921540 781.6328955 346.1793110 10916 2115.902864 21.1759650 311.2186718
2829 1868.978298 829.2692347 70.9278861 2208 1723.371338 373.8995554 ~307.4434277
1871 1548.662918 443.8888501 275.5270827 1742 1749.302930 —~465.1593527 ~77.0216785
1550 1039.892316 542.9931099 175.8847338 1764 930.117319 +282,7680713 ~0.0292371
1041 943.256065 397.3331114 230.2509927 945 1026.027135  —134.975176 33.4055933
1 0.000714635 0.000204939 0.000135749 1 0.008436894 0.001718572 0.001358070
v 0 1 0.385318007 0.272082760 v 0 1 0.804415048 0.684009665
] 0 1 0.556117708 0 0 1 0.188933514
] 0 0 1 0 ] 0 1
1 —0.000714634 0.000070423 +0.000019528 1 —0.008436894 +0.005068192 +0.003455284
-1 o 0 1 -0.385318007  ~0.057800593 -1 o 0 1 ~0.804415048  —0.0532027395
0 0 1 ~0.556117708 0 0 1 ~—0.188933514
0 0 0 1 0 0 0 1

*These data are biased because of the computation errors introduced into the calculations of the true ordinates.

those in Table 1.

Compare components of Z matrix with
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ESTIMATE OF SYMMETRIC FUNCTIONS BY;

ORTHOGONALIZATION

ITERATIVE PROCEDURE PROCEDURE
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Fig. 3. Plot of Symmetric Functions Estimated by Householder's Modified Prony Method. The data for the
true ordinates and the one-, three-, and ten-error levels are biased because computation errors were introduced into

the calculations of the true ordinates.



computed by the orthogonalization procedure. As
can be noted, convergence is rapid. Larger changes
are experienced by the r's for the case of higher-
variance-level data,
obtained for the case of l-error level data but not

A usable estimate can be
for the higher variance levels. The investigation
of this procedure was terminated at this step in
favor of the method next described.

Alternate Least-Square Procedure
(Brute-Force Method)

A procedure, suggested by the members of the
Mathematics Panel, based on the least-squares
principle allows direct manipulation of the param-
eters of the exponentials. This method begins by
minimizing the function

(14) ¢ = go w, <Yr - g Ai e‘aj1r> ,

that is, setting

do d¢
_ = = 0 ’ —_— = = 0
dA ¢A,‘ da . ¢a,'
7 7
to obtain
N
« ¢A ’ b w, <Y, -
§ r=0
=1
(15) N
¢a7' rzo w’<Y’ -

n -a.t -a.t
L5 Y
i=v 7 ’
Here, the w, are the weights, the Y _are the ob-
servations made at time ¢, and the A. and a; are
the parameters whose values are to be determined.
Suppose initial estimates for the @’s are available.
Inserting these values into the first of Eq. 15 and
expanding yields n equations linear in the A.'s,
which can be determined easily. To improve the
a's, these A’s and all the initial estimates for the
a’'s except one can be inserted into the second
equation of Eq. 15, and upon expansion a function
will evolve, whose root € *(= X) can be determined
with the Newton-Raphson root evaluation pro-
cedure. Thus, an improved a is obtained by taking
the logarithm of X. This new a replaces the
initial estimate and, together with n ~ 2 of the
initial estimates for the a's, again may be sub-

stituted into the equation for the ¢ and the

a,’
function evolved after expansion is sol\]led for its
root, thus yielding an improved value for another
a, This process is continued, n functions being
solved for their roots to obtain improved values
for the o’s, it being understood that whenever a
new value for an a is evolved it replaces the old
value. When all the o's are determined they can
be substituted into the first part of Eq. 15 and
another set of A’s can be determined and the pro-
cess for adjustment of the a's can be repeated if
necessary, In summary, this procedure calls for
the following stepwise solution:

Step 1 — Insert the values for the Y's, t's, and
w's together with initial estimates for the a's into
the equation

(16) ¢, ; % w,<y,-
j r=0

j= ], 21 vee, 7,
then expand and solve the linear set for the A's.

Step 2 — Insert these A’s and the w's, Y's, and
t’s together with » — 1 of the a’s into

N t t
(17) ¢ai; 20 w, <Rrk - Aka’> t’Xk’ =0,

r=

where
(18) X, =€ *,
and
_y
(19) Rpp = Y, =2, 77,

i
where 27 indicates j # %, and perform the indicated
summation in Eq. 17, then determine the root X, of
the resulting function with the Newton-Raphson
procedure, Calculate

(20) ~a, = In X,e .

is determined, use it in Egq.
19. When all a, have been evaluated, return to

Whenever a new a

step 1 if the values of the a's are different from
the initial values.

This method was also programed for the Oracle,
and the synthetic data, true ordinates, and the 1-

and 3-error-level data were processed.  Unit




weights and two iterations on each polynomial
with the Newton-Raphson procedure were specified.
The true values for the a’'s were used for initial
estimates. Results of this series of computations
are shown in Fig. 4. Here, the A's and a's are
plotted for each iterative step. Note that the
residual sums of squares decrease monotonically
but that the parameters course peculiar paths
throughout the course of the computation. This
code was outdated by changes made in the arith-
metic unit of the computer. Further investigation

is needed.
should be considered.

Attempts to accelerate convergence

Garwood's Method

The Garwood method (8) is a well-known pro-
cedure for fitting nonlinear functions in general.
It requires initial estimates for both the A’s and
a's. The function is defined as in Eq. 14 and is
minimized with respect to the A's and a’s as
given by Eq. 15. Equation 15 is then made linear
by expanding about the initial estimates for the
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Fig. 4. Application of
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A’s and a's in Taylor series, retaining only linear
terms in the expansion.

It is expedient to define the function whose
parameters are sought as

f(A]I A210001A2) = y,- ’

nr

where the odd-number subscripts correspond to the
coefficients of the exponential terms, while the
even numbers are to be associated with the a's.
Thus, for example,

~ayt
f(A]l A2)r = A] € T ’

etc. In addition, we define

ayr
rd].=('9A—j ’ ]=|,2,...,2n,
(21)
82y

r
d,, = —— i=1,2, 404, 2n,
r ij 9A OA . [ i r £ r L0

iy
Expanding Eq. 15 in Taylor's series and expressing
in matrix notation yields

(22) Di'WDix - AWD ;x = D,wv ,

where x is the column vector of iterates whose
solution is required. The matrix D, is a matrix of
first partials whose column vectors are rd,, rd,,
vesy 1dy, as defined in Eq. 21; W is a diagonal
matrix of the weights and V is a column vector of
residuals whose components are Yy ~yg, Y ~y,,
R A is a matrix, the first column of
which contains the vector V followed by (2n —
Wn + 1) zeros, and the second column has (n + 1)
zeros followed by vector V and (2n ~ 2}(n + 1)
zeros, etc; W is a diagonal, partitioned matrix of
the w's, while D . is a matrix of second partials
whose elements, rd,., are given by the second
equation of Eq. 21. It is understood that the
function and its partial derivatives are evaluated
with the initial estimates of the A’s and a’s. Thus,
substituting the appropriate values into Eq. 22 and
solving vyields the x's which are corrections
(presumably small) to be appended to the A’s and
a’s. These calculations are repeated with the
adjusted A’s and a's if the corrections are too
large.

This procedure was programed for the Oracle by
N. M. Dismuke for the general fitting case while
B. R. Fish coded the necessary subroutines for

The code
employs single-line, floating-point arithmetic and
Jordan’s matrix inversion procedure. The number
of iterations to be performed is specified. At the
completion of the last iteration the matrix D°WD
is formed.

processing exponential combinations.

It is then inverted and the diagonal
elements of the inverse, multiplied by V’WV and
divided by the degrees of freedom (N ~ n), are the
estimates of the asymptotic variances,

This method has been tested extensively with
the synthetic data. The effect upon the convergence
properties was investigated by varying the weights
and the initial parameter estimates.

Table 4 presents the results of the application
to the true ordinate data, Note that finite variances
occur for the true ordinates; this result is probably
due to round-off error in the computer. Note also
the effect of weighting the residuals with 1/Y%;
the estimated parameters are nearer the true
parameter values, When unit weights are specified,
one of the parameters, A,, differs from the true
value by as much as ~ 10%.

This method is poorly behaved and extremely
sensitive when the error level appended to the
ordinates is increased. The results of application
to the synthetic data, where unit weights and true
initial parameter estimates were employed, are
shown in Fig. 5. Convergence set in for the case
of the one-error level data. The value of the
parameters and the estimates of variance are
shown in Table 4. In the case of the three-error
level data, on the first iteration, the residual sum
of squares increased from 10'? to 10'4, and three
of the parameters (A3, ay, a4) change sign. In
succeeding iterations the residual sum of squares
decreasesandthe a's move in the direction of the
true values, but the A, and A, increase in magni-
tude. Obviously, the corrections calculated in the
first iteration are too large. The reasons for this
are not known.

Weighting the residuals with the inverse square
ordinate had the effect of reducing the tendency to
overcorrect a single parameter, but it did not im-
prove the convergence properties. Nine iterations
were performed on the synthetic data. Again,
true values for initial estimates were used, but
weights were set equal to 1/Y2 These results
appear in Fig. 6. The paths followed by the
parameters and weighted residual sum of squares
are erratic and unpredictable. The parameters did

11



Table 4.

Estimates of Parameters and Standaord Errors Determined with Garwood’s Method

Error Level

of 1, Weight

Factor of 1

Error Level of 0, Weight
Factor of ]/Y2

Error Level of 0, Weight
Factor of 1

True
Standard Standard
Parameter anaar Parameter anaar Parameter Standard Valuves
Error of Error of Error of
Value Value Value
Parameter Parameter Parameter
Parameter
A] 1,408,420 583.04 1,420,460 2,830.1 1,420,340 119.13 1,420,608
A2 1,210.45 322.52 1,342.56 34.84 1,380.52 43.93 1,300
A3 6,790.59 343.93 7,900.89 104.89 7,988.62 82.64 7,800
a, 0.113188 0.000566 0.115624 0.000178 0.115751 0.000118 0.11550
a, 0.00148098 0.000637 0.00168348 0.000062 0.00174982 0.0000080 0.00161
Oy 0.0131895 0.001472 0.0147243 0.000225 0.0149598 0.000038 0.01443
Number of 7 4 4
iterations
to converge
Residual sum 1,723.96 0.0000117 23.7345

of squares

not converge for the one-error level data, which is
unlike the case where unit weights were employed.
Some negative variances were computed for the
one-error-level weighted data since some of the
diagonal elements in the (D’WD)™! were negative.
These results may be the etfect of ill-conditioned
matrices since negative diagonal elements for this
matrix are theoretically impossible.

The overcorrection phenomenon also occurred
when the three-error-level data were processed
with a set of estimates found with the
graphical procedure. The values for the initial
parameter estimates were

initial

A, = 1,380,000 (1,420,608) ,
Ay, = 8,785 (7,800 ,
Ay = 1,150 (1,300) ,

a, = 0.1145 (0.11550) ,
a, = 0.015 (0.01443) ,
ay = 0.0013 (0.00161) ,

12

which are noted to be slightly different from the
true values appearing in parentheses. Figure 7
presents the results corresponding to this set of
parameters. Again, unit weights were used. When
true ordinates were operated upon, these initial
estimates were changed in the direction of the true
values, and the residual sum of squares decreased
from 107 to 102 after only four iterations. When
the three-error-level data were processed an over-
correction occurred on the second iteration, the
AS' a,, and ay changed their sign, while the sum of
squares increased from 10° to 1075,
iterations were performed and on the 26th a zero
entered into the denominator of a gquotient and
computations ceased at this point. The first nine
iterations were repeated, and the same results

Twenty-six

were reproduced, thereby eliminating the possi-
bility of machine error as being the cause of this

overcorrection,
Another approach, which is used in iterative

solutions of algebraic equations and which was
suggested to us by H. L. Lucas, shows some
promise for successful application of this method
to data with higher levels of variance appended to
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Fig., 5. Garwood Method Applied to Synthetic Data with Unit Weights and True Values for Initial Estimates.

them. Overcorrection can be suppressed by multi-
plying the solution vector x of iterates by a frac-
tion and employing it to correct the estimates rather
than the whole vector. This maneuver was applied
to the solution vector obtained at the second
iteration upon the three-error-level data. The
vector was multiplied by }‘30 and the resultant was
used to adjust the parameters.
change in the parameters was ™~ 10%.
set of parameters was then supplied to the com-
puter along with the three-error-level data and
unit weights.
plotted in Fig. 7 also.
creased from 10° to 10% and after nine iterations
reduced to 104, thereby improving the parameters.
This single test cannot be said to be adequate, but,

The maximum
This new

The results of this maneuver are
The sum of squares in-

in view of the improvement it offered, it certainly
warrants additional investigation. There was in-
sufficient time to code this additional step into
Garwood’s method before the scheduled shutdown

of the Oracle.

SUMMARY AND CONCLUSIONS

Householder’s modified Prony method, Garwood’s
method, and a modified least-squares approach for
fitting linear combinations of exponentials were
coded for the Oracle and opplied to a set of syn-
thetic data which approximately represents human
uranium-excretion measurements. The synthetic
data were determined with the function

y = 1,420,608 €70-11530¢

+ 7800 6‘0.014431 + 1300 6—0.001611

by appending errors (Poisson-distributed) of dif-
ferent level to the ordinates,

A brief description of the methods employed
precedes the discussion of the results obtained,
the emphasis being placed on the findings.

In general, the aforementioned methods recover
the true values of the parameters when the data
depart slightly from the correct ordinates, but
when the higher levels of error are appended the

13



methods either do not converge or, if they do, they
converge upon estimates which are not tenable.
fn the application of the modified Prony method
convergence set in rapidly, regardless of the
variance level, but the parameters converged upon
for the high variance level were not tenable. An
alternate least-squares method, on the other hand,
in converging; the residual sum of
squares decreased slowly but monotonically;

however, the parameters followed unusual paths

was slow

as iterative improvement is applied. The Garwood
method was found to be extremely sensitive, its
behavior depending upon the error level appended
to the data, the initial parameter estimates, and

the weights employed. It converges for the case

of data slightly different from the theoretically
correct ordinates, recovers the parameter values,
and yields estimates of the variance associated
with these parameters, but when the error level is
increased the method overcorrects the parameters,
This overcorrection phenomenon could be suppressed
by applying a fraction of the iterates rather than
the whole.
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