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FITTING LINEAR COMBINATIONS OF EXPONENTIALS TO

HUMAN URANIUM-EXCRETION DATA

INTRODUCTION

During the past several years the authors, with
the advice and generous assistance of the Mathe
matics Panel, have investigated several methods
for fitting linear combinations of exponentials to
excretion data. These curve-fitting techniques are
of interest as a possible method for determining
the parameters of uranium distribution and excretion
in humans.

A typical excretion curve is shown in Fig. 1.
The measured counts per minute in urine excreted
per hourare plotted vs timeof measurement following
an injection. These data are reported more fully
elsewhere (1,2).

Parameters of distribution and excretion may be
determined by applying a model of the distribution
and excretion of uranium based on principles
of linear kinetics. This is illustrated by letting

Sj be the amount of uranium present in the zth
compartment or body tissue. From a consideration
of the kinetics of linear systems,

(i) i, - £ V/ , i - 1, 2, ..., n,

where S is the amount excreted in urine and k . =

0 for all ] 4 n —1 and, also, k . = 0 for every /'
because there is no interconnection between urine

and any other compartment. The solution of Eq. 1
is of the form

n -\.t
(2) S. = 2 a e '

' ;=1 '>
i = 1, 2, ..., n,

where the A.'s are the roots of the matrix K, and
A = (a.) is a matrix with AKA~' = A = diag (A,,
A2, ..., A ). Hearon (3) has shown that A:- = 0 for
all i and at least one A. = 0. With measurements
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Fig. 1. Patient II Urinary-Excretion-Rate Curve.



of the Sn compartment, the data, when fitted with
Eq. 2, will determine the a . and A.. With these
values, the relation K= A~^ AA, and the charac
teristic equation, the &•• may be determined.
[Unique solutions for the parameters are not al
ways obtained. Some &•• may take on several
values, a few of which may not be physically
realizable. The procedure for determining these
£•• and their ranges of variation is discussed in
the paper by Berman and Schoenfeld (4).] When
the values of the k-. are determined the S-(t),
where i < n, can be computed and checked against
the measurements of S.{t), i < n, that is, the
amounts of uranium found in tissue samples taken
at autopsy.

In application, the usual procedure is to select
a value for n, the number of compartments in the
system, and then employ the graphical curve-
fitting method to estimate the parameters. Al
though this is a practical choice, it is inadequate
because it introduces a bias of the investigator
and does not yield estimates of the variances
associated with the parameters.

There are analytical methods for estimating n
and the parameters and their variances. Prony's
method, cited by Whittaker and Robinson (5) as
modified by Householder (6,7) offers some pos
sibilities. It was coded for the high-speed digital
computer, Oracle, and applied to excretion measure
ments and synthetic data, that is, values of the
function $nU) computed from Eq. 2 with specified
values for the a . and A. having appended errors,
Poisson-distributed at three different levels of

variance.

This report describes the results obtained from
the application of this method to the measured
excretion data and the synthetic data. In addition,
the results of similar tests of the method of

Garwood (S) and an alternate least-squares method
are described.

In general, it appears that these methods for
fitting linear combinations of exponentials can be
used for data which have small appended errors.
For measurements such as those shown in Fig. 1
some additional modification is indicated. One

possible modification was tested on a limited
scale and shows promise of successful application
to excretion measurements.

METHODS AND RESULTS

Terminology

The lower-case letter y corresponds to an ex

pected or true value of an ordinate, while Y desig
nates the observed or measured value.

Synthetic Data
The equation

(3) y. = 1,420,608 e
•0.11550t.

„ -0.014431.
+ 7800 e ' +

,„„„ -0.0016 1/.
+ 1300 e

which approximates the measurements shown in
Fig. 1, was computed for t = 0, 50, 100, ..., 400.
Poisson-distributed errors were appended to these
ordinates as follows: An aliquot, P, of v cubic
centimeters of urine excreted in h hours, when
analyzed for uranium, gave a count of y total
counts for T minutes. Consequently, the plotted
ordinate, y, is given by

V(yf.) =

y. =

' \r/\p/y-

Assuming that the variance in y is due to counting,
then

1 (y\

by virtue of the properties of the Poisson distribu
tion. Now let xi be a sample from (NID) having
zero mean and unit variance, or

Y. -t
Vi

Solving for Y. and substituting gives

Y. =
i

V7

The x/s are from a table of random deviates, and
the y.'s, the true ordinates, are obtained from
Eq. 3. The value of y is set equal to 1500 counts
which corresponds to ~3% counting error. In
order to change the variance level, the x.'s are
multiplied by 1, 3, and 10. The y's, x.'s, and the
ordinates having 1, 3, and 10 levels of error ap
pended to them are shown in Table 1. These
ordinates are plotted vs time as shown in Fig. 2.



Householder's Modified Prony Method

Prony's method requires that the observations
Vq, y,, ..., YN be made at times t - 0, T, 2T,
..., NT. Since the expected ordinate y(t) is

(4)
r = n -a./

yW = 2 A.e
r=l '

-a.T
then, by letting u. = e * ,

(5) y, = y(rT) = V A.// ,
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where r = 0, 1, ..., N, and the y 's must satisfy

(6) Pp = V +

+ Vis»-i ,.. +

+ V«-lsl + *P+n = °
(where p = 0, 1, ..., N —n), an nth order difference
equation. The coefficients, Sj-'s, aretheelementary
symmetric functions of an nth order polynomial,
the roots of which are the required exponentials,
the u..

z

Two modifications were made by Householder.
First, he adapted an orthogonalization procedure
for the computation of the s.'s which not only
facilitated the computation but also permitted the
estimation of n, the number of exponentials. Second,
he converted the method to an iterative method,
more suitable for high-speed computation. In
addition, valid least-squares estimates of the
elementary symmetric functions are provided as a
result of the second modifications (9). Failure of
the Prony method to provide statistically valid
estimates has been one of the objections to the
method (6,7,9).

The orthogonal ization procedure prescribes the
matrix Zf having column vectors z~, z., ..., z ,
where the components of the z- are YQ, Y., ...,
YN-,j while those of the zf are Yf, yf+], ..., YN,
to be orthogonalized. Thus, VT is the matrix whose

Table 1. Synthetic Data

/ x.
2

True Ordinate Values,

yi
One-Error Level Three-Error Level Ten-Error Level

0 -0.036 1429708.000 1416418.578 1389839.735 1296813.782

50 + 0.59 9400.007232 9543.205062 9829.600723 10831.985534

TOO -1.11 2963.389980 2878.361497 2708.504530 2114.005145

150 -0.37 1916.577000 1898.267173 1861.647520 1133.478733

200 + 0.81 1377.327900 1406.133611 1463.856597 1665.385012

250 -0.49 1080.753700 1067.080220 1039.733261 944.018903

300 + 0.55 904.796100 917.645109 943.343128 1033.286194

350 -0.48 789.917700 780.127776 760.547928 692.018460

400 + 0.02 706.997200 707.362293 708.092480 710.648134

Y. = 1420608 e-°*,,550'i + 7800 e-°'01443/i + 1300 £-0.00161/,-



column vectors v., v., ..., v are orthogonal to
the columns of the Z matrix and

(7) Z = V u
r r r

where U is a unit upper triangular matrix,

(8) U =

"10 "20 •••

0 1 z/21 ...

0 0 1 ...

0 0 0

vo

M

r2

1

In the application, a maximal guess is made for
r, that is, r > n, and the Z matrix is formed sub

sequent to the orthogonal ization. The vectors v
and the elements of the U matrix are computed
sequentially. Householder proved that if the
theoretically correct values, that is, the y's, are
elements of the Z matrix, then the v +1 column
vector would vanish. Since the observed values,
y's, are used instead of the true values, then
f„+l can be expected to be small relative to the
other column vectors. Having established v , the
matrix U is then inverted and the nth column of

U contains the s.'s in reverse order. Thus n,
the number of exponentials, and the s.'s are de
termined. When these are substituted into the nth

order polynomial and its roots, £ are evaluated,
then the a's are given by (1/T) ln(f).

This method was coded for the Oracle, and both
the excretion data and the synthetic data were
processed. The elements of the Z, V, U, and
U matrices for the excretion data appear in

Table 2, while the elements for the synthetic
data, true ordinates, and one-, three-, and ten-

error levels appear in Table 3. As can be noted
in Table 2, the v~ column vector has the smaller

elements. Hence, the fourth column of U con
tains the s.'s. Note that these symmetric functions
correspond to an equation having no more tiian
two real positive roots. This is precisely the

The data for the true ordinates and the one-, three-,
and ten-error levels are biased because computation
errors were introduced into the calculations of the true
ordinates. Compare components of Z matrix in Table 3
with those data in Table 1. The calculations were not
repeated because changes in the memory unit of the
computer rendered the programs obsolete.

case of interest; positive real roots are required
because e > 0 for positive real values of a.
In Table 3 it is seen that negative roots do not
exist for the true ordinate values, but they do
exist for the one-, three-, and ten-error level
data. Therefore, this method has a limited ap
plication because it yields untenable estimates
for the a's.

The iterative version of Prony's method, when
applied to the above data, overcomes some of the
difficulty. This method evolves from considerations
of the function

(9) <f> - 2 w (y
=0 r r

N-n

>r + 2*\p=0 P P

where w is a statistical weighting factor, A is a
Lagrange multiplier, while the Y and y are, as
before, the observed and true values and P is
given by Eq. 6. Equation 9 was minimized by
setting

deb
— = 0
dy

deb
— = 0
ds

These, in turn, were made linear by expanding in
Taylor series about initial estimates Y and r. for

' r :

the yr and s. which are related in the following:

(10) Yf = yr + Vr , T. = S, + P. .

Thus, the rjr and pi are correction factors (pre
sumably small) to be calculated at the end of each
iterative step and used to adjust the y's and r's.
The equations, in matrix notation, to be solved for
these correction factors are

Y'Q~'Yp y'Q_1p

(11) ~}P - Q^Yp ,A = Q

The matrix Y is

y„

(12) y

77 = W_1RA

YN~n yN-n +l

while

(13) Q = R'WR

n-l

The value P is a column vector, its components
calculated with Eq. 6 by inserting r's and y's for
the s and y. The matrix R has N - n - 1 columns.



Components of the first column are the r's entered
in reverse order followed by a 1 and N —n zeros.
The second column has a zero followed by the r's
in reverse order, a 1, and N —n + 1 zeros, etc.
The matrix W= diag (u>n, wj, ..., u>N), a diagonal
matrix of the weights; p is a column vector; A is a
column vector; and r\ a column vector of 77's,
entered in reverse order.

The equations of Eq. 11 are solved sequentially.
From the first of these a solution for the p's is
obtained, and with the p's the second can be
solved for the A's and the last for the 77's.

This method was coded for the Oracle and the

solution was checked by a comparison with solu
tions obtained with desk calculators. The ex

cretion data were then processed, unit weights
were specified, and the initial estimates for the
r's were obtained with the orthogonal ization pro
cedure. Convergence set in rapidly. These new
r's were substituted into the polynomial and at
east one negative root was found.

The processing of synthetic data (true ordinate
values and the 1-, 3-, and 10-error levels ) re
veals that negative roots occur when data having
high levels of variance are processed. In com
putations with the synthetic data, unit weights
were assigned, but the true values for the r's were
used for initial estimates. Figure 3 shows the
plot of the r's computed at each iteration. Also
plotted, for purposes of comparison, are those r's

Table 2. Application of Orthogonalization Procedure to Patient Excretion Data

zo zl z2 z3 z4 z5

1420608 10687 2871 1412 1291 1123

10687 2871 1412 1291 1123 797

2871 1412 1291 1123 797 723

1412 1291 1123 797 723 557

1291 1123 797 723 557 462

1123 797 723 557 462 270

1420608

10687

2871

1412

1291

1123

IT1 =

'1

-26.709145

2790.402531

1390.347962

1280.351209

1113.263747

788.530742

0.007541637

1

0

0

0

0

-0.007541637

1

0

0

0

0

1.8193559

-415.0656693

385.6309315

291.7617557

74.1108537

210.5499037

0.002031849

0.646985974

1

0

0

0

0.002847484

-0.646985974

1

0

0

0

-0.0594230

-3.6305357

86.4600498

-114.1674027

50.0849149

-24.9372761

0.001003641

0.559022956

0.664941650

1

0

0

0.001318896

-0.128815041

-0.664941650

1

0

0

-11.104810

1159.634151

571.894343

532.096176

475.910446

333.835010

0.000916908

0.046271333

0.423464332

-0.059692129

1

0

-0.001695027

0.220014907

-0.463156115

0.059692129

1

0

-9.2729431

-980.3519978

-466.4129972

-412.3131088

-389.9031366

-369.8452503

0.000796541

0.350935487

0.446648177

0.522776159

0.842398162

0.001316664

-0.179959238

0.291129603

-0.573060735

-0.842398762



Table 3* Application of Orthogonalization Procedure to Synthetic Data

True Ordiinate Values* One-Eirror Level*

zo zl z2 z3 z0 zl z2 z3
1429708 9472.59 3095.51 1925.67 1416426 9617 3007 1907

9472.59 3095.51 1925.67 1458.95 9617 3007 1907 1489

3095.51 1925.67 1458.95 1082.32 3007 1907 1489 1069

1925.67 1458.95 1082.32 905.723 1907 1489 1069 919

1458.95 1082.32 905.723 790.413 1489 1069 919 781

1082.32 905.723 790.413 707.278 1069 919 781 708

vo v\ v2 v3 v0 "l v2 w3
1429708 -27.939755 0.7664598 + 0.02099546 1416426 -27.764746 0.764059 0.038804

9472.59 3032.563844 -211.7341596 15.91191562 9617 2941.515674 -200.991558 2.949331

3095.51 1905.100076 122.4216100 -94.97314580 3007 1886.524657 143.803882 -121.170140

1925.67 1446.153761 68.6905387 + 38.68072495 1907 1476.014806 17.472145 72.541593

1458.95 1072.625155 153.8381873 + 36.65699531 1489 1058.861062 164.398277 39.182146

1082.32 898.530893 160.8687278 + 41.64731336 1069 911.720937 131.713520 78.264595

,-1

0.006645084

1

0

0

-0.006645084

1

0

0

0.002178239

0.698013530

1

0

+ 0.002460119

-0.698013530

1

0

0.001357019

0.546675516

1.075144436

-0.000369298'

+ 0.203789847

-1.075144436

X3 - 1.07514 X2 + 0.20379 X - 0.00369 = 0

[ +0.83020
roots = < +0.24309

[+0.00185
f 0.00360 (0.00161)

a's = < 0.02846 (0.01443)

1 0.12420 (0.11550)

U =

7-1 =

0.006809226

1

0

0

-0.006809226

1

0

0

0.002136320

0.709649990

1

0

+ 0.002695847

-0.709649990

1

0

0.001356843N

0.561244647

0.885151683

+ 0.000078565

+ 0.066903236

-0.885151683

1



'0

1389848

9905

2829

1871

1550

1041

"0

1389848

9905

2829

1871

1550

1041

V =

Three-Error Level*

*1

9905

2829

1871

1550

1041

944

"1

8911.765975

2821.921540

1868.978298

1548.662918

1039.892316

943.256065

0.000714635

1

0

0

-0.000714634

1

0

0

^2

2829

1871

1550

1041

944

761

-889.6979732

781.6328955

829.2692347

443.8888501

542.9931099

397.3331114

0.000204939

0.385318007

1

0

0.000070423

-0.385318007

1

0

Table 3 (continued)

z3

1871

1550

1041

944

761

708

-247.6315533

346.1793110

70.9278861

275.5270827

175.8847338

230.2509927

0.000135749

0.272082760

0.556117708

1

+ 0.000019528

-0.057800593

-0.556117708

1

"0

1296817

10916

2208

1742

1764

945

1296817

10916

2208

1742

1764

945

U =

,-1

Ten-Error-Level*

"1

10916

2208

1742

1764

945

1034

vl

-25.107566

2115.902864

1723.371338

1749.302930

930.117319

1026.027135

0.008436894

1

0

0

-0.008436894

1

0

0

z2

2208

1742

1764

945

1034

692

-0.4763517

21.1759650

373.8995554

-465.1593527

+ 282.7680713

-134.975176

0.001718572

0.804415048

1

0

+ 0.005068192

-0.804415048

1

0

*3

1742

1764

945

1034

692

711

-1.9047993

311.2186718

-307.4434277

-77.0216785

-0.0292371

33.4055933

0.001358070

0.684009665

0.188933514

1

+ 0.003455284

-0.0532027395

-0.188933514

1

♦These data are biased because of the computation errors introduced into the calculations of the true ordinates. Compare components of Z matrix with
those in Table 1.
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computed by the orthogonalization procedure. As
can be noted, convergence is rapid. Larger changes
are experienced by the r's for the case of higher-
variance-level data. A usable estimate can be

obtained for the case of 1-error level data but not

for the higher variance levels. The investigation
of this procedure was terminated at this step in
favor of the method next described.

Alternate Least-Square Procedure
(Brute-Force Method)

A procedure, suggested by the members of the
Mathematics Panel, based on the least-squares
principle allows direct manipulation of the param
eters of the exponentials. This method begins by
minimizing the function

N i n -a.t 2
(14) eb = 2 wr[Y- 2 A. € "

r=0 r\r ;=, J
that is, setting

debdeb

da .

to obtain

(15)

*V,5oMy'-
n -a.t \ -a.t
2 A.e ") e >T = 0 ,

;=1 > /

cba; 2 w\Yr-
; r=0 rx r

n -a.t \ -a.t
-2A.e>r)te>r = 0.

Here, the w are the weights, the Y are the ob
servations made at time t , and the A . and a. are

the parameters whose values are to be determined.
Suppose initial estimates for the a's are available.
Inserting these values into the first of Eq. 15 and
expanding yields n equations linear in the A ,'s,
which can be determined easily. To improve the
a's, these A's and all the initial estimates for the
a s except one can be inserted into the second
equation of Eq. 15, and upon expansion a function
will evolve, whose root e a(= X) can be determined
with the Newton-Raphson root evaluation pro
cedure. Thus, an improved a is obtained by taking
the logarithm of X. This new a replaces the
initial estimate and, together with n - 2 of the
initial estimates for the a's, again may be sub

stituted into the equation for the eb , and the

function evolved after expansion is solved for its
root, thus yielding an improved value for another
a. This process is continued, n functions being
solved for their roots to obtain improved values
for the a's, it being understood that whenever a
new value for an a is evolved it replaces the old
value. When all the a's are determined they can
be substituted into the first part of Eq. 15 and
another set of A's can be determined and the pro
cess for adjustment of the a's can be repeated if
necessary. In summary, this procedure calls for
the following stepwise solution:

Step 1 - Insert the values for the y's, t's, and
w's together with initial estimates for the a's into
the equation

j r- 0 v

- 2 A.e
•a.t

J r ; r

j = 1,2, ..., n,

then expand and solve the linear set for the A's.

Step 2 —Insert these A's and the w's, Y's, and
t's together with n —1 of the a's into

(17) ebr Jo «v (Rrfc -W) <Xr =0,

(18)

and

(19) Rrk = Y -2'A. e > T
r i '

where 2' indicates / 4 k, and perform the indicated
summation in Eq. 17, then determine the root X, of

the resulting function with the Newton-Raphson
procedure. Calculate

(20) -ak = InX^ .

Whenever a new a, is determined, use it in Eq.
19. When all a, have been evaluated, return to
step 1 if the values of the a's are different from
the initial values.

This method was also programed for the Oracle,
and the synthetic data, true ordinates, and the 1-
and 3-error-level data were processed. Unit



weights and two iterations on each polynomial
with the Newton-Raphson procedure were specified.
The true values for the a's were used for initial

estimates. Results of this series of computations
are shown in Fig. 4. Here, the A's and a's are
plotted for each iterative step. Note that the
residual sums of squares decrease monotonically
but that the parameters course peculiar paths
throughout the course of the computation. This
code was outdated by changes made in the arith
metic unit of the computer. Further investigation

1,430,000 0.11750

is needed. Attempts to accelerate convergence
should be considered.

Garwood's Method

The Garwood method (8) is a well-known pro
cedure for fitting nonlinear functions in general.
It requires initial estimates for both the A's and
a's. The function is defined as in Eq. 14 and is
minimized with respect to the A's and a's as
given by Eq. 15. Equation 15 is then made linear
by expanding about the initial estimates for the
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Fig. 4. Application of "Brute-Force Method" to Synthetic Data with Unit Weights.



A's and a's in Taylor series, retaining only linear
terms in the expansion.

It is expedient to define the function whose
parameters are sought as

f(A-[i A2' '"' A2n'r ~ yr '

where the odd-number subscripts correspond to the
coefficients of the exponential terms, while the
even numbers are to be associated with the a's.

Thus, for example,

/(A,, A2)r = A, e"*2'' ,

etc. In addition, we define

dyr
rd. = —

J dA.
/ = 1, 2, ..., 2n,

(21)
d\

rd.. =
*' dA .dA .

1 J

= 1, 2, ..., 2n.

Expanding Eq. 15 in Taylor's series and expressing
in matrix notation yields

(22) D'.WD.x - AWD..x = D.WV ,

where x is the column vector of iterates whose

solution is required. The matrix D. is a matrix of
first partials whose column vectors are rd^, rdj,
..., rd^n as defined in Eq. 21; Wis a diagonal
matrix of the weights and Visa column vector of
residuals whose components are YQ - y0, Y^ -y^,
..., y - v ; A is a matrix, the first column of

which contains the vector V followed by (2re —
])(n + 1) zeros, and the second column has (n + 1)
zeros followed by vector V and (2n - 2)(n + 1)
zeros, etc; W is a diagonal, partitioned matrix of
the w's, while D.. is a matrix of second partials
whose elements, rrf.., are given by the second
equation of Eq. 21. It is understood that the
function and its partial derivatives are evaluated
with the initial estimates of the A's and a's. Thus,
substituting the appropriate values into Eq. 22 and
solving yields the x's which are corrections
(presumably small) to be appended to the A's and
a's. These calculations are repeated with the
adjusted A's and a's if the corrections are too
Iarge.

This procedure was programed for the Oracle by
N. M. Dismuke for the general fitting case while
B. R. Fish coded the necessary subroutines for

processing exponential combinations. The code
employs single-line, floating-point arithmetic and
Jordan's matrix inversion procedure. The number
of iterations to be performed is specified. At the
completion of the last iteration the matrix D'WD
is formed. It is then inverted and the diagonal
elements of the inverse, multiplied by V'WV and
divided by the degrees of freedom (N - n), are the
estimates of the asymptotic variances.

This method has been tested extensively with
the synthetic data. The effect upon the convergence
properties was investigated by varying the weights
and the initial parameter estimates.

Table 4 presents the results of the application
to the true ordinate data. Note that finite variances

occur for the true ordinates; this result is probably
due to round-off error in the computer. Note also
the effect of weighting the residuals with \/Y ;
the estimated parameters are nearer the true
parameter values. When unit weights are specified,
one of the parameters, A3, differs from the true
value by as much as ~ 10%.

This method is poorly behaved and extremely
sensitive when the error level appended to the
ordinates is increased. The results of application
to the synthetic data, where unit weights and true
initial parameter estimates were employed, are
shown in Fig. 5. Convergence set in for the case
of the one-error level data. The value of the
parameters and the estimates of variance are

shown in Table 4. In the case of the three-error
level data, on the first iteration, the residual sum
of squares increased from 1010 to 1014, and three
of the parameters (A3, a2, a3) change sign. In
succeeding iterations the residual sum of squares
decreases and the a's move in the direction of the
true values, but the A2 and A3 increase in magni
tude. Obviously, the corrections calculated in the
first iteration are too large. The reasons for this
are not known.

Weighting the residuals with the inverse square
ordinate had the effect of reducing the tendency to
overcorrect a single parameter, but it did not im
prove the convergence properties. Nine iterations
were performed on the synthetic data. Again,
true values for initial estimates were used, but
weights were set equal to \/Y . These results
appear in Fig. 6. The paths followed by the
parameters and weighted residual sum of squares
are erratic and unpredictable. The parameters did
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Table 4. Estimates of Parameters and Standard Errors Determined with Garwood's Method

Error Level of 1, Weight

Factor of 1

Parameter

Value

Standard

Error of

Parameter

Error Level of 0, Weight

Factor of 1/r2

Parameter

Value

Standard

Error of

Parameter

Parameter

41 1,408,420 583.04 1,420,460 2,830.1

A2 1,210.45 322.52 1,342.56 34.84

A3 6,790.59 343.93 7,900.89 104.89

ai 0.113188 0.000566 0.115624 0.000178

a2 0.00148098 0.000637 0.00168348 0.000062

a3 0.0131895 0.001472 0.0147243 0.000225

Number of 7 4
iterations

to converge

Residual sum
of squares

1,723.96 0.0000117

Error Level of 0, Weight

Factor of 1

Parameter

Value

Standard

Error of

Parameter

True

Values

1,420,340 119.13 1,420,608

1,380.52 43.93 1,300

7,988.62 82.64 7,800

0.115751 0.000118 0.11550

0.00174982 0.0000080 0.00161

0.0149598 0.000038 0.01443

4

23.7345

not converge for the one-error level data, which is
unlike the case where unit weights were employed.
Some negative variances were computed for the
one-error-level weighted data since some of the
diagonal elements in the (D'WD) were negative.
These results may be the effect of ill-conditioned
matrices since negative diagonal elements for this
matrix are theoretically impossible.

The overcorrection phenomenon also occurred
when the three-error-level data were processed
with a set of initial estimates found with the

graphical procedure. The values for the initial
parameter estimates were

A, = 1,380,000 (1,420,608) ,

A2 = 8,785 (7,800) ,

A3 = 1,150 (1,300) ,

a, = 0.1145 (0.11550) ,

a2 = 0.015 (0.01443) ,

03 = 0.0013 (0.00161) ,

which are noted to be slightly different from the
true values appearing in parentheses. Figure 7
presents the results corresponding to this set of
parameters. Again, unit weights were used. When
true ordinates were operated upon, these initial
estimates were changed in the direction of the true
values, and the residual sum of squares decreased
from 10 to 10 after only four iterations. When
the three-error-level data were processed an over
correction occurred on the second iteration, the
A3, a2, and a3 changed their sign, while the sum of
squares increased from 10 to 10 . Twenty-six
iterations were performed and on the 26th a zero
entered into the denominator of a quotient and
computations ceased at this point. The first nine
iterations were repeated, and the same results
were reproduced, thereby eliminating the possi
bility of machine error as being the cause of this
overcorrection.

Another approach, which is used in iterative
solutions of algebraic equations and which was
suggested to us by H. L. Lucas, shows some
promise for successful application of this method
to data with higher levels of variance appended to

12
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them. Overcorrection can be suppressed by multi
plying the solution vector x of iterates by a frac
tion and employing it to correct the estimates rather
than the whole vector. This maneuver was applied
to the solution vector obtained at the second

iteration upon the three-error-level data. The
vector was multiplied by \0 and the resultant was
used to adjust the parameters. The maximum
change in the parameters was "° 10%. This new
set of parameters was then supplied to the com
puter along with the three-error-level data and
unit weights. The results of this maneuver are
plotted in Fig. 7 also. The sum of squares in
creased from 10 to 10 and after nine iterations

reduced to 10 , thereby improving the parameters.
This single test cannot be said to be adequate, but,
in view of the improvement it offered, it certainly
warrants additional investigation. There was in
sufficient time to code this additional step into
Garwood's method before the scheduled shutdown

of the Oracle.

SUMMARY AND CONCLUSIONS

Householder's modified Prony method, Garwood's
method, and a modified least-squares approach for
fitting linear combinations of exponentials were
coded for the Oracle and applied to a set of syn
thetic data which approximately represents human
uranium-excretion measurements. The synthetic
data were determined with the function

y = 1,420,608 £-°-U5S0t +

+ 7800 e-0-01443' + 1300 e"0-00161'

by appending errors (Poisson-distributed) of dif
ferent level to the ordinates.

A brief description of the methods employed
precedes the discussion of the results obtained,
the emphasis being placed on the findings.

In general, the aforementioned methods recover
the true values of the parameters when the data
depart slightly from the correct ordinates, but
when the higher levels of error are appended the

13



methods either do not converge or, if they do, they
converge upon estimates which are not tenable.
In the application of the modified Prony method
convergence set in rapidly, regardless of the
variance level, but the parameters converged upon
for the high variance level were not tenable. An
alternate least-squares method, on the other hand,
was slow in converging; the residual sum of
squares decreased slowly but monotonically;
however, the parameters followed unusual paths
as iterative improvement is applied. The Garwood
method was found to be extremely sensitive, its
behavior depending upon the error level appended
to the data, the initial parameter estimates, and
the weights employed. It converges for the case

of data slightly different from the theoretically
correct ordinates, recovers the parameter values,
and yields estimates of the variance associated
with these parameters, but when the error level is
increased the method overcorrects the parameters.
This overcorrection phenomenon could be suppressed
by applying a fraction of the iterates rather than
the whole.
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