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HIGH-THERMAL-CONDUCTIVITY FIN MATERIAL FOR RADIATORS

H. Inouye

ABSTRACT

This report is the result of a study to develop heat-resistant fin materials possessing a high
thermo! conductivity for air radiators. Since an economical and commercially feasible product
was desired, the investigation was restricted primarily to a study of electroplated copper, clad
copper, and copper alloys,

Sheet material 0,008 to 0.010 in. thick was evaluated for fabricability and for metallurgical
stability and thermal conductivity at 1500°F. From the results of the tests it was concluded
that: (1) electroplates were unsatisfactory; (2) clad-copper fins possessing a thermal conductivity
of 50% of that of copper are commercially feasible; (3) copper-aluminum alloys possessing a
Service tests of

thermal conductivity approaching that of copper at 1500°F are possible.

clad capper and the copper-aluminum alloys indicate that the choice of materials will be dictated

by the requirements of the radiator, since each presents some unique problems.

INTRODUCTION

This investigation was undertaken to develop
high-thermal-conductivity fin material for use in a
high-velocity air stream between 1300 and 1650°F.
Under the conditions of the intended use, the fin
material should be heat resistant, metallurgically
stable, compatible with Inconel tubing, and capable
of being rolled into sheet or strip 0.008 to 0.010
in. thick. Since large quantities of the material
are required, an economical and commercially
feasible product is desirable.

SURVEY OF LITERATURE

The previous work most applicable to the problem
was that of Haythorne,! who investigated the
thermal stability of numerous heat-resistant alloy
sheet materials heated between 1500 and 2000°F
followed by a 1-min air cool. Material failures
resulted from poor thermal conductivity and high
thermal expansion, which are characteristic of
heat-resistant alloys. Of the numerous composites
and alloys tested, Inconel-clad copper was the
most promising; however, the above author failed
to report the ratio of copper to Inconel in the
The thermal-conductivity data taken
from this report are shown in Fig. 1.

composite.

1P, A. Haythorne, Iron Age 162(13), 89-95 (1948).

PLAN OF INVESTIGATION

Of the several metals listed below which might
be used for high-thermal-conductivity fin material,
the selection was narrowed to the use of copper
as the base metal.

Thermal Conductivity

Metal (cgs units at 20°C)
Molybdenum 0.35
Gold 0.71
Copper 0.94
Silver 1.00
Tungsten 0.48

Because of the difficulties expected in protecting
molybdenum and tungsten from oxidation, they were
not considered further. Gold was not investigated
because of its cost, and silver was considered
only briefly because of its low melting point and
its tendency to dissolve oxygen. Joining silver
was also thought to present a problem, since an
oxidation-resistant brazing alloy for service up
to 1650°F with a melting point lower than that of
silver was not known,

Because copper oxidizes in the temperature
range of interest, several methods of protection
were studied.
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Fig. 1. Thermal Conductivity of Sheet Metal at Various Temperatures.

TEMPERATURE (°C)

UNCLASSIFIED
ORNL-LR-DWG 14684

CONDUCTIVITY (Btu/ftZ-hr - OF -in.)

1

R

3.75
3.35

2.95

2.50

1.65
1.45

1.25
1.10
0.920

0.835
0.750

0.670
0.585

0.500

0.420
0.375

0.335
0.290

0.250
0.230
0.210

0.190
0.165

0.145

0.125

CONDUCTIVITY (w/cm2 - °C - cm)













TABLE 1. OXIDATION OF COPPER ALLOYS IN 100 hr AT 1500°F IN AIR

Remarks

Dense black oxide

Uniform scale, dense black oxide
Numerous areas of localized oxidation
Scattered areas of localized oxidation
No change

No change

Weight gain, dimensional growth, crystalline
A|203 formed

No change

Uniform black oxide

Weight Loss
Alloy ¢ Scali
(wt %) rom Scaling
(%)
Copper 42.4
2 Al-98 Cu 28.5
3 Al-97 Cu 1.0
5 Al-95 Cu 0.16
6 Al-94 Cu None
8 Al-92 Cu None
10 Ai=90 Cu 0.42
2 Al-98 Ag None
1 Be~99 Cu 7.0
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Fig. 7. Oxidation of Copper-Aluminum Alloys
After Different Times ot 850°C. After Dennison

and Preece.

was determined in this investigation that oxidation
in alloys containing less than 6% aluminum was
localized and would therefore be unsuitable in the

form of 0.010-in. sheet.

The areas of localized oxidation characteristic
of low aluminum-content alloys are composed of
copper as oxide nodules. Their formation is
thought to arise from the fact that aluminum is
electropositive to copper. The reaction may occur
in the following sequence: (1) Both copper oxide
and aluminum oxide form initially in air. Coverage
of the reaction surface with one or the other oxide
is localized since there is an insufficient amount
of either to predominate. The copper oxide is then
reduced to copper at the expense of the aluminum
in the alloy with the resultant formation of porous
Al O;. (2) The depletion of the aluminum in the
alloy creates areas high in copper. (3) Additional
copper oxide is then formed at areas high in
copper. The conditions are then favorable for the
reaction to continue, The rate of growth of the
copper oxide nodules will depend upon the dif-
fusion rate of aluminum atoms to areas high in
copper.

Additional tests of the 6 ond 8% aluminum-—
balance copper alloys were extended to longer
times and confirmed that these alloys were oxi-

dation resistant. Test durations up to 1000 hr at




1500°F in air showed no adverse effects because
of either temperature cycling (warpage) or scale
formation,

The thermal conductivities of these two alloys
were determined, and it was found that they
exceeded the extrapolated values. As was an-
ticipated, the thermal conductivity of both alloys
continued to increase with increasing temperatures
up to 1562°F (850°C). Figure 8 is a plot of the
values obtained in measurements by using iron and
aluminum as standards. The assignment of abso-
fute values was uncertain by the amount indicated.
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Fig. 8. Thermal Conductivity of Aluminum Bronze.

The comparisons of Fig. 9 show that the ob-
jectives of this investigation can be realized in
the use of a 6% Al-94% Cu alloy. The joining
of the alloy fins to Inconel by brazing is, however,
a very great problem,
regenerative type of A|203 film will render the

By its very nature, the

alloy difficult or unsuitable to braze unless a
fluxing type of brazing composition can be de-
veloped,

Clad Copper

Fabrication, — Composites for this study were
fabricated by roll cladding the copper between
oxidation-resistant cover plates at 1832°F. In

order to maintain dimensional tolerances, the
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Fig. 9. VYariation of the Thermal Conductivity
of Several Alloys with Temperature.

copper was closely framed with alloy strips of
the same composition as the clad. The cover
plates which were welded to the frames formed
a capsule, which was evacuated prior to hot
rolling. Surface flaws and scaling of the clad
were minimized by heating in a hydrogen atmos-
phere and maintaining ‘‘good housekeeping.'’
Through experience, it was found that as the
thickness of the starting capsule was increased,
a higher ratio of copper-to-clad became necessary
to maintain a precalculated ratio when the capsule
was finished to a thickness of 0.008 or 0.010 in.
The change in ratio is necessary because the
copper is a relatively soft metal compared to
the heat-resistant alloys and, therefore, tended
to be ‘‘squeezed out'’ during the early hot-rolling
and especially during the cold-rolling
operation. The difficulties were overcome by hot
rolling the composite to the maximum total re-
duction commensurate with the ability of the
composite to hold the rolling temperature. This
was desirable since the frames prevented satis-

passes

factory reduction during cold rolling. By employing
these techniques, metal ratios in the composite
at the finished size could be held to within
10.0002-in, variation,

In the initial experiments, reductions in thick-
ness of about 20% per pass with 3-min reheats
were made. These reductions frequently caused
the rupture of the clad cover plates because of a
buildup of a wall of copper within the capsule.
The optimum rolling schedule, as determined by
the recovery of sound material, was established
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With clad copper, interface reactions are evident;

however, the extent of the reactions was not so
great that serious effects would be expected under
service conditions. Since interalloying was not
apparent in the successful composites, the thermal
conductivity is expected to be the average values
of metals which comprise it. The indications are
that the composites studied in this investigation
will have a thermal conductivity of about 50% of
~that of copper and little or no variation as a
function of temperature. Larger ratios of copper
in these composites are possible but may be

18

limited by the strength requirements in service.

The aluminum bronzes appear to be most satis-
factory, indicate that the
thermal conductivity approaches that of pure copper
at about 1500°F.
bility, ease of fabrication, and oxidation resistance
are good. The major deterrent to the use of these
alloys is the lack of a method for joining aluminum
bronzes; the layer of Al,O,, which adds the
oxidation resistance, also inhibits weldability or
brazeability.

since measurements

Furthermore, dimensional sta-
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