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A MONTE CARLO STUDY OF THE GAMMA-RAY ENERGY FLUX,
DOSE RATE, AND BUILDUP FACTORS IN A LEAD-WATER
SLAB SHIELD OF FINITE THICKNESS

S. Auslender

The gamma-ray energy flux, dose rate, and buildup factors in a lead-
water shield of finite thickness have been calculated by a Monte Carlo
method. The calculation included 1-, 3-, and 6-Mev photons incident on the
slab both along a normal and at an angle of 60 deg. (Calculations for an
angle of 75-1/2 deg were also performed, but they are not included here
since the attenuation was quite large in spite of the large buildup factor.
For the same reason the results of l-Mev photons incident at an angle of 60
deg were also omitted.) The buildup factors for energy and dose obtained
in this calculation were compared with those obtained by use of the moments
m.ethodl for monoenergetic, plane monodirectional sources normally incident
upon a seml-infinite, homogeneous medium.

Table 1. Normal Thicknesses of a Lead-Water
Slab Shield

Thickness
mfp
Region cm 1 Mev 3 Mev 6 Mev
Pb 11.58 9.089 5.654 5.878
H,0 35.81 2.542 1.382 0.996
Total L7.40 11.630 7.035 6.874

1. H. Goldstein and J. E. Wilkins, Jr., Calculations of the Penetration of
Gamma. Rays, NYO-3075 (June 30, 195L4).
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Table 2. Dose Equivalent for Incldent Flux ,
E(Mev) D )
( o1 (7 [emPsec
1 0.001925%
b 0.00L4368
6 0.007206

The thicknesses of the lead-water shield in centimeters and in mean free
paths for the various incident gamma-ray energles are given in Table 1.
Table 2 gives the tissue dose equivalent for the incident flux (no shield
present).

The results of the calculations for l-Mev photons are presented in
Figs. 1 through 4, those for 3-Mev photons in Figs. 5 through 10, and those
for 6-Mev photons in Figs. 1l through 16. An index to the figures 1s shown
in Teble 3.

The normalized energy flux for the 1-, 3-, and 6-Mev energy groups is
plotted in Figs. 1, 5, and 11, respectively,as a function of the normal
thickness of the shleld in centimeter units. The uncollided energy flux,
nérmalized to unity at the initial boundary, is also plotted. The third
curve in each figure is the energy buildup factor, By, which is the ratio
of the two energy flux curves:

— Pe/Bfr _ P

o-t/r Eogre~t/* .

where

¢E(Mev/cm2 sec) = energy flux at the point of interest in the shield,
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Fig.1. Gamma-Ray Energy Flux and Energy Buildup Factor

as a Function of the Normal Thickness (Centimeters) of a

Finite Lead-Water Slab Shield: 1-Mev Normally Incident Photons.
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Fig.2. Gamma-Ray Energy Buildup Factor as a Function
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Finite Lead —Water Slab Shield. { - Mev Normally
Incident Photons.
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Fig. 3. Gamma-Ray Dose Rate and Dose Buildup Factor as a

Function of the Normal Thickness (Centimeters) of a Finite
Lead-Water Slab Shield: 1-Mev Normally Incident Photons.
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Fig. 5. Gamma -Ray Energy Flux and Energy Buildup
Factor as a Function of the Normal Thickness (Centimeters)
of a Finite Lead~-Water Slab Shield: 3-Mev Normally
Incident Photons.
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Eo(Mev/y) = initial photon energy, »
¢I(7's/cm2 sec)‘= number flux incident on shield,
t(cm) = distance between the initial boundary and the
point of interest in the shield,
»cm) = relaxation length,
e't/x = uncollided energy flux at the polnt of interest.

In a similar manner the normalized dose rate and dose buildup factor,

B., for the three energies are plotted in Figs. 3, 7, 9, 13, and 15. Here

D/@; D

= =

Dge~t sece/h/¢I Dy et seco/)\

where
D(mr/hr) = dose rate (tissue) at the point of interest,
Do(mr/br) = dose rate (tissue) of the uncollided incident photons at
the initial boundary. .
The various energy builldup factors as a function of dblique thickness, | .

in mean free paths, are presented in Figs. 2, 6, and 12. Corresponding dose
buildup factors are given in Figs. 4, 8, 10, 1ki, and 16. Data from the re-
sults of the moments method solutionl are also plotted for purposes of
comparison, although it must be remembered that those calculations were for
infinite homogeneous media and are not directly comparable to the present
calculations for a finite two-region slab. The calculations for lead do
agree reasonably well for the first few relaxation lengths where the effects

stemning from the dissimilarity of the slabs should be least.

The dose rate and dose buildup factors resulting from an earlier Monte »

Carlo calculation for 3-Mev photons normally incident upon a one-region
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8-mfp-thick lead shield? are also presented (Figs. 17 and 18) as an example

of a case intermediate between the Monte Carlo calculation for a two-region
finite shield and the moments method solution for the one-region semi-infinite
shield. A comparison of the dose rate in the one-region finite shield with
the dose rate in the one-region semi-infinite shield (calculated from build-
up factors reported in Ref. 1) shows good agreement. The characteristic dip
near the final boundary of the finite lead shield is apparent.

The dose buildup factors for the 3-Mev incident photons in the two-region
and one-region finite shields (Figs. 8 and 18) are identical to within 2 mfp
of the lead-water interface. It is apparent that at this energy and angle of
incidence the back scattering is important in lead for a distance of about
b em (Ap, = 2.05 cm at 3 Mev). The scattering in the water tends to compensate
for the finite thickness of the lead-water slab. It can also be concluded that
the back-scattered flux at that interface is about 12% of the total flux and
about 20% of the scattered flux. The differences for the finite and the semi-
infinite one-region shields (Fig. 18) are partially due to differences in the
cross section data used for the calculations. An extensive discussion of the
errors In the calculations from the moments method is included in Ref. 2,
Consistent errors may exist that will bias the answers obtainediwith that
method. The Monte Carlo data is much less subject to bias than to statis-
tical fluctuation. (The large fluctuation of the data in Fig. 9 may
indicate a relstively large error, but this is still probably less than 10%.)

.Since the Monte Carlo calculations for the two-region finite shield and

the moments method solution for the one-region semi-infinite shield were in

2. 8. Auslender, unpublished work.
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general agreement, the striking differences in the buildup factors near the »
lead-water interface and near the final boundary should be enlightening.
In Figs. 2 and 4, for example, the energy and dose buildup factors for 1l-Mev
photons in a finite two-region shield increase sharply in water to a value
about halfway between those for semi-infinite one-region shields of water
and lead. At this energy the finite water region is 2-1/2 mfp-thick and
at first the buildup increases almost at the same rate as it does initially
in the semi-infinite water shield. This confirms that at this energy, which
is below the minimum in the total cross section, the uncollided radiation
dominates in the penetration of the lead, as it should.

In Figs. 6 and 8 the increase of the buildup factors in the water is
very small since for the primary 3-Mev photons for both lead and water the
major portion of the total cross section is attributable to scattering.
Hence, the difference in the behavior of the flux in water and in lead is .
due to that smali portion of the flux which is absorbed in the lead but 1s
scattered in the water. For 6-Mev photons (Figs. 12 and 1l4) the absorption
cross section of lead is no longer so small that the absorption in it is
almost negligible. 1In this case the bulldup factor increases rather abruptly
in the water almost to the buildup factor for 6-1/2 mfp at water calculated
using the moments method.

It is evident from the results of the calculations for radiation incident
at 60 deg (Figs. 9, 10, 15, and 16) that the practice of using only normal
incidence data for shield designs can lead to a poor approximation. This 2

problem becomes most acute when the number of mean free paths across the shield

is small or when the angular distribution is such that a large portion of
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the radiation is not normal or nearly normal to the slab. Figure 16, which
shows the flux depression near the initial boundary and the large buildup
factor into the slab, is an excellent example of streaming (or short-

circuiting).
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