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for Milne's Problem read Milne Problem
for Milne's problem read Milne problem

for T. C. Mark read J. C. Mark

for T. C. Mark read J. C. Mark

should read:

sinh(A - £)/A, ) o

- a s * <0 21
sinh AAg L e €< 2y

for T. C. Mark read J. C. Mark

for methods in a special read methods is a special

/oo (é) =

for u=cosQread pu = cos 6

the second line of equation (42)» should read:

(L+1)/2 14 (a/c)3()\a)p.
S NA2( + aNDpl-pp (W) ¥ : d (42)
: 3 L =) = kD) ()

for 4nZa, read 417 Y a

. - - - -

4n 4n
/or—s- /w(é) readT/‘o(O)l

should read:

08 ,
b=y A+ —
, 5 7aT75 Vel
Ag X (58)
a¥e

for formula (15) read formula (32)

for equation (15) read equation (32)
for spacial read special

should read:

A =G (g + A A )01 ) + (hg = A=A () (A30)
should read:
B =G [( = A p(=2 ) + (g + A (=2 )p(0,)] (A31)

after interpolation formula with add A = —
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Studies of the Spherical Harmonics Method in Neutron Transport Theory:

I. The relation between PL- and Gauss quadrature solutions of the

Milne§ problem.

*
Walter Kofink

Introduction

The fact that the Gauss quadrature (denoted here as the Chandrasekhar-
Wick [C-W] -) method and the spherical harmonics method of dealing with the

monoenergetic transport equation are closely related, has been of ten pointed

out in the literature. However, contrary to some statements which have beeq
made, the two are not identical -- basically the C-W method, as applied to
the Milne problem, is a non-analytic approximation, whereas all functions
uéed in the spherical harmonics method are continuous. It is the purpose

of this paper to examine in detail the relation between the two methods. The
Milne problem with p-wave scattering will be used as a convenient example for

the analysis. Incidental to these considerations will be derived completely

e P .

general spherical harmonics*ééiution to the Milne problem, and a comparison
with the Gauss quadrature solutions will be given. In a following report
it will be shown how these approximate results, in the limit, give the

rigorous results of the Wiener-Hopf method of solution of the Milne problem.

Fulbright and Deutsche Forschungsgemeinschaft grantee assigned to Oak
Ridge National Laboratory. Permanent address: Institute of Technology,
Karlsruhe, Germany.
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Previous general solutions of the Milne problem by application of
1

' 2
the spherical harmonics method have been given by C. Mark,™ by B. Carlson,

and by M. C. Wang and E. Guth.3 The considerations which follow are more
general than those of previous authors, first, in that the scattering is
assumed anisotropic, and second, in that the relation with the Gauss quad-

rature method is shown more clearly.

1. The P -approximation

Suppose a medium which occupies the region 2 £ 0 has s~ and p-wave
scattering of neutrons and has total macroscopic cross section 2 = Za"‘zs
where Za and Z g are the cross sections for absorption and scattering.

The anisotropy of the scattering is covered by a transport cross section Zt.
The x,y -plane is a plane boundary between the medium and the vacuum at Z 26_

Transpor’q theory yields the integro-differential equation
, ' + 1 +
o M) L 5 plap = 12, [ 1bpIep s S 2T [ lpip

where/,«: con #and '#is the angle between the positive 2 - axis and the direc-
tion of the directed flux 7{(2//“)’ At 2-~ oo there is an infinite source of .
neutrons. It is convenient, to introduce dimensionless quantities § = 2z
for the coordinate, ), = Za/z' &_=Zt/z and later € =1~} = ZJ /ZJ

=3 (""J’t)' The Boltzmenn equation takes then the form

p 2B 4l = 3 el | 000 3 i | A 08 40

1%@ C. Mark, The Spherical Harmonics Method I (CRT-340), II (CRT-338).
2 " B. Carlson, Neutron Diffusion-Spherical Harmonics Theory (MDDC-236).
3 M. C. Wang and E. Guth, Phys. Rev. 84, 1092 (1951).,




Applying now the spherical harmonics method, by assuming first that

e =Z o (7000

one finds for the partial fluxes [ L8 ‘foO/f)= density, %I;,O(i)= current in
2 - d.irectioﬁ, -7{; D(f} ’ %?o ( f))] the following infinite system of differ-

ential equations - (/= 0/of ) — !

/

L=o %ﬂo ' * ;{00 = O
/ /.

{:4 %%o t 'i{OO +/t flo = 0
{ .

£ =2 %%30 +§ ,(I) + 7{20 = 0

w ! 3
t=3 5%‘!0 vy zé + fio = 0
: vy / ¢ / —
4 20+3 —T/eH’o +2[-,_6-llo> + éo N o

(3)

The general equation € holds for €22 ; the first two equations for £= g4,

however, are changed or "disturbed" if Jo¥F 1 and 4 # / . One may describe
the vacuum as far as its effect on the medium is concerned, as a perfect
absorber without scattering, i.e. }, =/ ’ &: / in the vacuum. In this
case the generai equation holds for all =0 s because % )0 [f ) =0 ; its
solution in this case will be simpler than in the general case.

In the L-approximation of the spherical harmonics method one cuts the

infinite system of differential equations after the Lth-equation and demands

()



that only the spherical harmonics up to and includin_g PL shall be used in

the series (2) as an approximation. This implies that 7/2+4, o [j) =0 ,
{2*2 ’ (f) =0 , }Z+3’ o (f) = O) i » The first of these equations,

VTPLH,IU (}‘-) = (0, turns out to be equivalent to the characteristic equation,
which determines the various modes of partial solutions of the finite sys-
tem left after the truncation of the infinite system of differential equa-
tions. To put the remaining ){2+21 0 (f)/ %UJ’,O(UJ ... =0 1is & process,

which is, properly taken, inconsistent with the infinite system of differ-

ential equations, because these later harmonics are related to the non-

vanishing ‘é o ( f ) by a recursion formula which keeps them different from
7
zero until £- oo .

The supposition
-t
{éo[f)=(zé+/)(7&(,x)e ! [332)

in the fth equation of (3) yields a recursion formula for the je ’s

ryg () +lg, [1)-Qli1)ag0)=0

which is identical with the recursion formula of the lLegendre functions

of the l.and 2,kind. Therefore, putting
| i ) B A ’)] ._i/’)
£, (F) = (2e0) [AC) T, )+ BL) Q)] e

with 2 arbitrary functions A /)/ and B (9 ), independent of € , one is able
to fulfill the set of differential equations (3) for 2 £ € £ =0,

The parameter A is arbitrary until now and the solution /{6 above is a
. o

(%)

(5)

it 4



partial solution only. From the Legendre function of second k1ndl+

_ / 1+A
Q00 =B O - W, () ik Gf)-i4 75 (1<)
one must use only the non-singular pa.r‘b ( A) in order to avoid

solutions which are singular at A=t . f hé_, satisfies the same
recursion fomula as 7} with the index on W lowered by 1 ; this is evi-
denk since@ and/’z satisfy the recursion relation e;nd Q , belng inde-
pendent of £ , does not disturb the recursion. Hence, one adopts simply

4 () = (20r1) [AG) T )+ BO) by e /8)

as a partial solution for Z?Z « The functions A[) ) ana B( A ) are to be
determined by a calculation of 7{;0 ( f ) and }‘{30 [ f) as a consequence of the

first two "disturbed” equations for £=0 ana =1 . Supposing
= }/)
%o (f ) = e

one obtains from equations (3) for

{=o0 N 7{,0/1()—‘- 3/4" €
o1 £ (f)=$[-4+3tded]e

£=2 f{;o(” 7[_(B{+3£J’a)’\+§fa/¢ "3]e

-}/a
- F/4

-}

A comparison of these 7/ (f} and 7{ /f/wrth those of equation (6) 'yie]_ds
A(J/}: 4+3J/Q‘4<,yt)') = 442/\ (’;}
BR) = =d[a=pq +3a (1-0) 7] —-—-A[C+q4}

T B, Jahmke and F. Hmde, Tebles of Functions, 4¢h Ed. Ch. VII.




. = = A i
If we characterize the vacuum by (}’a,‘ !/ and J/t_ l, Bvac (. ) venishes and
we have only the Legendre polynomials of /. kind with the coefficients
Avac(')) = | . Hence, the vacuum is described by the simplest solutions.
The usual Milne problem has vacuum on one side; but one may see that the
solutions above are adapted to two or even moré media with arbitrary dif-
)

ferent J'n} J SR

This method of connecting the solutions f; (f ) with a supposed

. 02/

partial solution 7/; o [ f ) was already used by B. Carlson in the case of

isotropic scattéering.

2. Scattering involving higher atomic angular momenta

Let us interrupt briefly the course of further calculations to show
that this method of determination of A'( )) and B() ) may be extended to
A,f,8,00000s=wave scattering. Then we shall have more "disturbed" equa-
tions in the system (3). We deal with d-wave scattering by putting a
factor §q before %2 0 in equation £=2 , with f'-wa.ve scattering by
putting a factor j/iﬁ before ﬂ in equation L= s and so on.

If E is the first "undisturbed" equation with a factor / before f

namely Ay

—Z+4 -/
42£—+3 %ZH)D 20 - 7{—-10 ” %Q_o

then A(}) ana B A ) have to be determined from the equations

7, - AL T+ B0) W (4
(22—“_) 7000 [) ) ) )

) |
Té+s - AT 0 N ()
sy s AT ) BO) b O

it ]



After the application of the relation

”/)L,/[))_/_ /,))L/ /4) =

the solution of these equations acquires the simple form

L+ f
A(’])= foo {ZZ+/ %fo (A)— L/Z—/ /A)}

..z ' | i
B(A) o 7{0/ {22+/ -/7/20 72_+/[A)—2F+3 ﬁ*fo 72[)/}

In a straightforward calculation one has to find 7/;-0- / 7(; 0 and fé- ) /,/é .
+/
/

2+3 '€t4o0

($)

from the "disturbed" system L=0 until £- Z—/ and the two subse-
quent "undisturbed" equations e =Z and L= 2— +! . Putting the result in
equations (8) one finds A[f\) and B(J ) in the extended case. |
In the speclal case Z—: 3 with & as & factoix;‘ before “7’;0 in the
equation £z 3 of the system (3) one obtains
AD) = 4+a42+[[341+9/"'c‘—-)\(f]
By = -7 craA + A[14-3(2-c- E)A + 9[4- ¢ - —)J"]f

where the additional terms with the factor

4 < %( 1= fu)
show the influence of the d-wave scattering. One recognizes that every
further "disturbed" equation increases the degréé inA of A [) ) and. B /) ) by
2. The degree of the characteristic equatioh in PL-appro}d.mation, however,
always remeins Z.-H in A , because it is independent of the constant

factors Ja J«*’ J/d el e Cor;sequently, some relations exist between the

‘(e‘)

(12



coefficients of all powers of AL in /4@ ) and - B()//J with the excep-

0 - -
tion of the power A . If one writes in our speclal case £=3 A[A) and

B(2) as polynomials of bl

Bl

2 y. o _ 2 ¥
A[))=41+A2)« +/\3/\) —A—:B,+.B?_zl +.Bj/\ )

one obtains in this way the relations

‘83:/'3 | 'BZ=AZ—‘§’43

) .
and the characteristic equation for the £=3 case (the analog of the fol-

lowing equation (12)) contains

-3 -4 A - 4 2 (4~ C- 3 4 _ —y‘- -
Aa 5 3 332 ( 3){/' J'A/‘ﬁfi_*;(
L+t
as coefficient of its highest power A .
Presumably this coefficient will be simply the product of all J' /S

in the general case of arbitrary ¢ < L-/ also.

3. The characteristic equation

We return to the case €= 2, i.e. to our main course. The partial
solutions 720 {f), ‘{o /f) and, 7{éo /f) for £ > 2 , when put in equation (2),
give s partial solution f( Z S ,J)of the infinite system (3) of differential
equations, characterized by an arbitrary parameter A. A general solution
could be constructed by superposition of a dense distribution of such so-

lutions

16 ~) <) P ;) 43

.
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where of ( J) should be chosen s0 igs to satisfy the boundary conditions.

This process of satisfylng the boundary conditions is reduced to an a_.l:gg_-
braic problem by cutting the i;rxfi‘i;i%tez system (3) after a finite L in the
spherical harmonics method. Then L+1 equations remain, the last one be-

ing

2Lr8 TLty o " 2d= 7{2—40 F o = O (11)

In the PL-approximation, however; %2 4/ 0 1s nmot allowed to appear; this
. /
is only the case if one selects the A’S of the partial solutions (5) in

such a manner, that ‘%Lf/ 2 (’)k) with these special I)K’S vanishes.

fZ,L,/o (%) = A(Ak)(’z,” [)x.)"ﬁ' B»[Jk,) W, (4,) =

(1+24,) 7)., (%) - Jk-'/mwf) W, () = 0, (12)

This is an algebraic equation of degree Z+/ , because the coefficients

of the higher powers cancel. If L is odd, L+/ is even and the equation
2

is of degree éi—’ in /\K 5 hence, one has i—;—/ pairs of roots /}k ) —f),(

In case L 1is even, L+ is odd, a root A=0 appears. This event is un-

comfortable and the following treatment is for odd L only.

4, The solutions on 'the vacuum a.nd. the medium side

Having obtained the 7{; [ f ) 5, we put them in equation (2) and ob-
tain the solutions for f(z-, )

(a) On the vacuum side f has a different meaning in comparison with
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the medium side; it is f= = 2 with an arbitrarily chosen cross section
for absorption EQ = I = =0 . After the calculation one may put
=,=Co ., but this is not essential. The soiution on this side, 220 ,
is in'PL-approximation |
L+:)/2 //u .
FGr)= 20 [f e JZ/e@I)M)@w]
/— ! .
v Clu)/?,
Lo By £ T S0 (i)
A ' J.

with arbitrary constants /3 , which are found later from the boundary

conditions at » = 0. The characteristic equation is

72+, Q«\/.):o) , //y)

from which we keep the positive roots /J [// = / Z LH) o One has

to take positive roots only because ;/[2/ {,14) shquld .tend to zero for 2: + e ;
hence the solution satisfies the boundary condition of the Milne problem

at =00 . From the second expression for /“//?/ /t«’) in equation (13) omne

sees immediately that it has zeros in the directions A==y for all

220 , Hence we fulfill the condition of no backward flux into the medium
only in LT"" discrete backward cones in the PL-app'ro_ximation, This result'
is valid for >=- ¢ also and is essential for 'evstabl_ishing the boundary
conditions on the medium side. f/f M )'has no poies in the forward direc-

tions 4t =+ because the denominator cancels ainst an equal
R A 222 2

factor in // /2[12)//{20'[[4f /]f //&a/j/)//oz “)

In the directions of the cones /_dc : ¥, uJ we have a finite flux for 2 2o

’

)
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! » - 2 [72/932/2 "547
7/(3; ?“JY‘(Z*’)/S lis 1) /403-) e J=(Z+’)ﬁj7 € :
v

(b) The solution on the medium side, which must satisfy the
boundary conditions at 2= o later, is in P -approximation, 220 f=22 2
(‘_I}/Z f/)k ) )
7/(3,‘/“)-“—'2 [Nxe {4“3/0,’(/“1‘-

/(10,0, 2,.

~~

L

+€§ (2[—;«1)(/’77"@4:) 72("’]4') * 3,('[062):_) Lé_, (-’)k))z?/é&)}]
(15)

drs
2

N

with arbitrary constants V/( . Instead of counting the roots from %, 2 ;e
in the sum (15), the largest root A, is distinguished from the others %,
Az) Aj o /)%, , because it, being essentially the diffusion length, plays
a somewhat different role in the Milne problem, which contains an infinite
source at 2= - OO , tha.n the other rodts, To represent this fact, the
sum contains one term with the coefficient o and the root A- = —., .
The exponential factor exp ( f’/)o-,-) = exp / -f /,;o / in this case tends to
Imfinity for f3—>-oo « It is the slowest decreasing solution with neg-
ative J/S s if one follows the positive 2Z-~direction from the source at
= - oo , because -, is the largest root of (12). Therefore, (15) al-
ready satisfies the boundary condition of the Milne problem at 2 = - o0
and the extra term K=03 is chosen to give the asymptotic behavior of
:r/[f//a/at f==00.

By applying Christoffels' sum formulae -- see Appendix I -~ on the

sum over 4 in equation (15) and by using the characteristic equation (12)



-]l

one may give the equation (15) a simpler form —( 2<L£0 ) —_
(l—/)/a )/ A 7) //a)
s c+a A L+1 [/5)
= o, 1, € -ﬁ’)k*"—ﬁ‘[/"_——]}' .
7/(2//4) g&' 01 K ) Z( 4“ e 7Z+((‘)k)

One recognizes immediately from equation (15) that 7f (2, M ) is a polynomial

in 4 of at most the degree L in 4 . The equivalent expression (16) has
7 —7
no poles in the directions J= Q-AA_ ; the denominators A, +/M ere remove-

ble again by developing 72-“ //,.) - (Z*,[—Jk) in a power series of/u-.«-),( .

In the following we always denote by % a sum over K= CT' 9, /, LT—/
and we téke an index S for summing only over S-= {2 [?'./ . after
removii;g the 2 summends with k = O, @ . ,
y T ) )
If we separate v;f(za//u) = 7:/ (2,/(),4 /f é/,) into two parts
r 2 | 2 ‘
L . _ e c+ Q Ve g
O R P (72)
K X +/4. .
?/x Y
) K S
A - — od ) e Cra / )
amol }/ (2}/«) {- x "k K L4y - n //c?//

& +/L 71*/(—4‘()

y
we have in ;f ('z; /t) the result, which would be found by applying the Gauss
‘ Z
.quadrature method to the problem according to C-W for positive /u o }/ é/,q)
has poles, however, in the é;—' negative directions /"""‘Ak and must be
replaced in the C-W method by another expression using the original infegral
I
equation, f (2/ /u} is zero for M =/4J' ; therefore the fluxes according to .

both methods coincide in the [_2*_’ positive directions u=m; for all 2<0,



»13=

The addition of %ﬂé /«) removes the poles of %I(z) M) at /4 = -4, again; the
spherical harmonics method unlike the Gauss quadrature method yields in 7/(2/ M )
a continuous expression for all /h )si but at the cost of a poorer approxima-
tion compared with the Gauss quadrature method.

Considering now the boundary at 2= O we remark that %(9 ) from
equation (16) for 2 < 0 contains the 43_3 unknown constants %) and
from equation (13) for 2 > 0 the l_-_z"“_/ tmknown constants ﬁ./' . .Therefore
one of the dx I.S‘ is still available for the normalization of the asymptotic
behavior of %(21 /4) et ==, We imtose on the first 2 coefficients the

condition ola- - d°= /'. This means that we choose the solution for the den-

sity 47 7{;00) in the folléwing manner /f < O)
' ' Z
Vfoo(f): Coxd, ;7;'0—[0/5‘ —a/o)JM %0 -/-?oc‘se s
or b . F/A_‘.
= b Ty = TR e $/a, +é: « e (9)

with the linear extrapolation distance d= ’)o /[da - o). The distance of

the extrapolated endpoint A is related to 4 by the equatien

A +d '
< ,} d )
An alternate representation of wf ( f )is therefore
equation (21) should read: e
) sinh(A— C)/)\o C///\ /2 /)
/00 (<€) 2_—;in—hw+ ; ag e (ééo) : (21) [

e —— >

- —— .
e g

—————— s —

e —

_ J and A are dimensionless quantities which are to be multiplied by S

in order to obtain the extrapolation distances in' centimeters. The SZ

is the transient part, which does not contribute to the asymptotic behavior



~1h-

at 2=-o0o0, because the )S are much smaller than ’}o '

5+« A short comparison with the Gauss quadrature method5.

The characteristic equation in the sphericel harmonics method was
: - % ; p <
shown to be (/H a )721-4(4“)-)‘((6'* Q"K) L‘é(f&) =0 Lvé(z)k)ma)’ pe

represented6 by 4

{ Ac) = +/(Lg) .

- '}k—({

The integrand is a polynomial of degree L in W ; hence the integral is
g:i.veri correctly by the Gauss quadrature method, which is here used only as

a mathematical aid to give another correct expression for L\é ()k) N

(L)l p ti)h g,
W()K): ) / a‘z /[i-/ (f)k)‘ 72-/-/&0‘/') - 31 Z Q\/ /£+/[/c) (23)
L PRI e VERY V2

-
- because ,/£+': ?ﬂj )= 0 —, where

bl ]

N /N U )
Y N S e .
PA-H//W - “A 7;/.)+1 %J) ‘ 7Z+/ é“J)

Putting the last value of 63/ in equation (‘23) one obtaing the formula
s [/_+ ) ‘
'42 (I)") = 7Z+/ ()k) Z WLOZ)/ )
g (/)k‘/'t)l) //_+: //ﬁ/j

5 A similar comparison has been made by g, C. Mark I,
6 A. Erdélyi, etc., Higher Transcendental Functions, Vol. I, p. 154, Eq. (31).
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which could be found by an spplication of the Lagrange interpolation
formula also. With equation (23) the characteristic equation may be written

in the form

. i’(L*')/z a. 2
T - ____\.;
[4"4”\14-')’4(64&)")2 %z, WA Lﬂ(’”

' ™
vhere the factor ! L+ (’)x) is different from zero as long as C# 0, @ ¥ 0,

Hence, the characteristic equation of the spherical harmonics method is

also
:(14'[}/;
2 / a; (29‘
4+Q’Ik‘)k(c"‘afi/:)2-z —:)#— = 0. )
J.:'.*f k_/:j

The same equation will now be derived with the C-W-method. The original

Boltzmann equation was

* "
p oL Al - 2 omga )] Hr0gut s 2 O] #7004

Ihtegrating this equation over /u from -1 to +1 one gets

a]/x;[(f/uly/uvt/?[&/n ol

»Jm/ {/f//% /”ﬂ“ *5/7)//‘ FLEp) s ) ol

/
2



=16=

The last integral over /u vanishes and one finds the relation .

a—;g://' /1/(6/4) t:ﬁ.u :-JJQ;/",{(};/*)%‘ ‘ é-")

between the two integrals on the right side of the Boltzmann equation.,

‘This is an essential equation for solving the anisotropic case with the

C-W-method. If one assumes now a partial solution with an arbitrary

constant /\1, : ;/’)-
Ay~ Jpoe

one has » - ;/2
9; ~ - _1 &h} e v
5

and from equation (25)

[ Atbpde <gate [ #lprdn.

Hence, the Boltzmenn equation yields

*/
(_Ad+') jk) [51/"‘%-)*2-?0”&[”‘&) ’)‘f/‘];/, ;ﬁ/“;“’

= 2(crad u) @ (2¢)
+4
R
and one obtains the solution
C A. .
o= & —— (crad k) (22)
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as a /u. ~-dependent amplitude of the partial solution f(f/ M ) above. The expres-
sion (27) for y[/«) shows a pole at /u=.4,f . In conformity with thé physical
conditions of the Milne problem one supposes therefore j/:/ = o for positive
/« and equal to (27) for negative/« at f=0 . Equations (26) and (27) are
consistent only for cer‘l%a.in A Y’S » which one gets by carrying out the inte-

gral + 1/

'f)’o,) CQ'JY
C-fapap o £ Sy

. /
Hence, it follows a transcendental characteristic equation for the A-r S )

14 f232)

/’_fq,l -) (C*fﬂr‘)&dp

Selecting the A_,. S as roots of this equation, C in (27) may be considered

as an arbitrary constant. For f-f.- 0 , however, the backward scattering has
to be considered and the divergence of the integral would become manifest.
Therefore, one replaces the integral equation (26) by a system of

linear equations, evaluating the integral in L-approximation by Gauss quadra-

ture method and using instead the exact /\.,. of equation (27a) another 3,(
F(Lr1)/2
(-_+//;;« =f(crau )20 o g(m) (2¢)

J'.:‘i/
L+
(ie2i25 2 &)

/
Th 'S also in the Ga usdrature method the roots of ’7
e /4 are als e Gauss q //,‘,/ )=o0
and we have here [f/ linear equations for the determination of the } //4:/)
which depend on AK by equation (27). Therefore , one obtains by introduc=-
tion of 4 }«) from equation (27) the characteristic equation of the C-W

method for those possible /}k ; for which the system of linear equations
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(28) has a solution. This gives

/ 2+i)le A ) ) +Q+’)/2) [ +'QA;
4= <5 a (cradt) = 5 a aa, +
A 'ZJ‘::t/ J Y 7 —+/ ') A
2 I(‘“)/Z *2'“//2 J' )
s -2, al+-r?(c"0~")Z )
2 X J A=A
J‘:tl J= k J
* WUer)l2
because Z a.

= 2 we get finally the characteristic equation in
J )
»J\: i}

the C-W method

_'!‘(Z'#/,)/a

P q,
gradr —d (cradl )t Y (24)
_ =2 A MY

which is identical with equation (24).

In the C-W me'l:hod7 one has now to assume a superposition of partial

solutions -- for the negative 2 of our medium with the opposite sign of
/
the A, § --

Pox y
%C IV //A) Z j—k //A) e = Z y}c A/c C’Q/\(/t e
Kk P ,)K*/K
Vo Coo Al
= —ad s IE (o
= % O/k )K e [ a P ~ /)K*/‘ ] )

where the O(K/S replace the different constants E’ C: /_;‘of equation (27)

/ .
for the set of -Ak $ ; as before they must be determined from the boundary

condition at #2=0 . One recognizes the identity of the C-W expression

(30) ‘and the first pert % I(i/‘ /A) of the spherical harmonics method equation

7 S. Chandrasekhar, Radiative Transfer, Oxford 1950,
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an.

6. gggp;l,fetion of the solution

For the fluxes at the boundary 2-0 we have two expressions:

equation (16) on the medium side and équation (13) on the vacuum side

, C+ar; Phwy ()
For)y = I oAy § =@+ —— A [g- L]
Tf(ﬂ : A K{ ; Ak "’/‘t /Ar/ (A/(/‘ f
(’Lf’/b (3/)

(Z-H) L# Q‘) A

ff

!

They must be equal for every u between -/ £ 4 £ | ; it can be shown
by a suitable application of the Lagrange interpolation formula to the
medium side of this equation, that the /;'J s can always be chosen in

such a way to fit this’condition-. To determine the remaining ézi.’ %/.S
(this means for instance %(g‘do = g_-"/ A, v, oYy ) it is
sufficient to remark that the vacuum side expression van;shes at = 7‘9 .

Hence the medium side expression has to vanish at the same points; this

yields éé"_’ inhomogeneous linear equations for the remaining 4—-—;—’ o, ¢ K
4
o An L '
. - */
_s_ o(k/)Kz‘—a)K-}%_a_i}:o [J:/]Z'c...t) _2_)' K-?Z)
X Yl

Because 73_.,.( (:/:/‘) = 0 in equation (31) the C-W method and spherical

harmonics method lead to the same equations (32) for the coefficients of,
. . N

The appearance-of thé /} /.\‘ in both methods &?%1 a sgecial feature of the

Milne problem and other problems with a vacuum on one side. In these

cases the replacement of the vacuum by a perfect absorber leads in PL
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approximation to the use of the pure Legendre polynomials of the 1. kind
on the vacuum side, whereas they are introduced as a mathematical substi-
tute in the C-W method on the medium side.

The calculation of the coefficients o(K is carried out in the Appen-
dix II. In solving the system (32) of linear equations one is led to the

introduction of "half Legendre polynomials" which have only the positive

roots M of (14) and )_, /S= b2, %’) of (12), namely
(Lf—/)/; _(f:)/a (33)
) A . M (a-2
},()),JZ/—(/‘*/) and ~[A) he s)

excluding the largest root ’\o of (12) from 'f('\) . Intimately connected

with the extrapolation distances d and 4 is the following function of A

v D) p-2) + vEa) p(D) /24)
v [A) /a(-,\)- _v[-A)pﬁ\)_ ' _

J@A) = A

One may use this function for a shorter representatidn 6f' ‘the coefficients X

After introducing two further sbbreviations
| ' - (JE | f i
o = U5 | £ )

and for & common factor of the & ‘s independent bc‘)f Kk

(ro) TE3,) | I () [
fr(’\o)}"("\o) + T(-Au) /q()‘o) _ ' J(/\o) + CE ’)0 J(’\Q) g
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the solution ) of equation (32) may be written

d_-/V[A+ -J J@akz ka“ | €y

o] ’\0)

w = N[ 83, I0.)] /o(;» _ (3¢
= W[a- &4, 80, )] _Cﬂ 245 f (1) (39)

crads A3 ) 0
ézg%u. %’%
The extrapolation distances are -- see equations (19) aﬁd (20) --
J.) gf?olcf@a) |
7+ 2 d0e)d0) (9
T g [k B0 et 20,500

o
Introducing the coefficients Q(k in equation (16) one obtains the solution

d

it

for the directed flux "/(z‘/ 4} 1n every direction /a =z cOs@® and on every

L
with anisotropic scattering and absorption. The case of fission, with .

plane 2= }/z of the medium in P_-approximation for the Milne problem

production of neutrons having the same energy as the neutrons which induced
the fission, is covered by the foMsm by putting Jp < 4.

At the boundary z=o0 the 1, part of f[ 4 ) nemely "ﬁ/»l) i.e. the
C-W part for positiv%/Q.—- equation (17) with the coefficients (37)-(39) --

can be summed up to a closed expression by a calculation carried out in
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the Appendix III:

L 2 a , 7
? ory = 2N (erads)la e G il Pt TEM) i

This expression has poles at 4= - JS‘ Remembering that 7Qé/u)is a
/ ——

polynomial of degree L in /a, coinciding with *r/J'/O, y ) at the points /u = /-:/

. $
and having zeros at the points /u: --/L& one is able to apply the Lagrange
interpolation formula to construct this polynomial, which represents the

directed flux at the boundary according to the spherical harmonics method

and which is regular for all /u, (-1 ¢ < /)

(Z+/)/z N
Lopy= 5 F0D e 0
J= 0‘!/"/) L+I%

“the second line of equation (42) shouldgre_:d-: T h T , }
(Len/z Ve @edh (¥2)

= 2N)\g(c + a)\g)P(-#)P (p) Z (42) “
2 2 ’, .

By comparison of equation (42) with the second expression of equation (13)
for f=0 finally the coefficients ﬂ) of the vacuum side representation

are obtained

1% ) WAy (evaly )[1e & dla)ps] plr) (¢3)

/J n([’”) 72&0')72:/ Q'J') (l“) 72%) 7[)://3) (/)01‘/?/'1) 7(‘/"/) | )
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S. Chendrasckhar introduced in his book "Radiative Tramsfer," p. 127,
a function Hfa), to which the functions /4/4) and ’V/A ) here are related

by the equation

_ ’)o ’)l\“"/)(l")/:r_ —/3[—/“)

Ase M (o) TCA)
L e o wlor PCA
.:1/4- c-@afs) Cotrrilrd At Pl TEp)

(RLM—\MIC K 4-—C—§-— :J"‘/t)

Him)

i

—

L
7. Investigation of \rﬁ (0, M)

The representation‘ of ‘7/[0/ ) glven in equation (11-2)4 has the form
-of equation (13) for 2=o0 5 or of the second term on the right side of
equation (31), both of which were derived from a consideration of the
vacuum' side. Therefore it was possible also td deduce from formula
(42) the coefficients /SJ- (equation 43) of the vacuum side representa-
tion of %{ 0/ /u) . We obtaln the medium side representa;tion if we put
« the o, s of equations (37)=(39) in the first térm on the righﬁ side of
equation (31) or in equation (16) for 2=0 . Then we get the medium
side representation, which is rather lengthy.:
The connection between medium side and x;acuum side representation
is -quickly obtained by an -application of the Lagrange interpolation
formula to-t.he medium side representation of 4 I[a/ )« To this end we

construct the function f()=7-/41 with the use of its values at the



2

L+2 points ')' =( )a, "o) "1, e ))_._) Vatya TS /‘[4-/ )a.t which
the polynomial R()) () 4 )’Y[/\) /o( 4) has its zeros. Then the

Lagrange interpolation formula

Zh) 5 7l4)) (¥%)

RB) ~awa's (-4 RI(H)

v

gives for A= -p

(4°=35) top) o) Po) 2% G20 pRo)  (otr) 235 T0o) - As)
‘ ~1)/2
+E 1 =/3 s
z/ (e (A=4,) 7 1s) p4s)
lH)/,_
PS5 AtLA } (%5)

J= Q“A)('“/g C )k )

Now 7{ / 0/ /") in medium side representation (See equation (18))

_ -c+aAm. h,/‘) cerre P PEAM)
¥(/‘)_ KKAV"/Z-H(J) %’ k’)/("/" /o(‘\r)}’('/“‘)

with the coefficients ® from equations (37) - (39)-

Eoba) 1= Il
=N (eraky ) p ol { b Cugpn) 7Oy AR
(L")/?.

+ 23, 1- & Ila) s
Z (s +/<)(A =43 ) ()/4(,\:) f («¢)
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is simply proportional to the first 3 terms on the right side of equation
. Q
(45) with the constant /3 == J(f\a). Hence by comparison with equation

(45) we may write f M(O/ ) of equation (46) also in the following form

£ p) = - 225 (c+2d)) pgu) sy o
s LU e L LY S
(/“—"0)"(“/“)/’}«) J=t é“'_/"u)["o—/j)'r(_/b)/’%)

= —2M(crad ) [as 2T0,) A:\ il
2 (+ «\o)[ c /“])ow_/ 'r[—-/«)
([H)/.z
+.2/V4 (cral, )/,&«)/A(/)Z ‘Q‘J[AQ)/"J . (4/;)

J R PD)C) A p )

The first term on the right side of the last equation is — ¥ 'L[O,  u)in
_the form of equation (41) again. Hence ‘we have extracted by the use of
the Lagrange formula the "pole-part” - }{129 /)of’ }f I(o/ /,) . The second
term is the result of the spherical harmonics method 7/(0/ » ) in the vacuum
side representation of equation (42) again. Keeping equation (46) and
(%7) together we have the reiation between the two represenﬁations of

7{'(0//4) on the medj.um side (M. S.) end on the vacuum side (V. S.):

74 d‘[Aa)/u /o(/u)
( /V A C+ 40 <
flo) s b lenedt)y v(p)



4+cior(z\a))° 74— 2 JI) 4,
+
[’\o'/‘) 7['"0)/’@%) 2 (Ao*/‘) "'/‘\0)/‘("‘0)

@-/)/z 4- ‘Q‘Gré )4\
c al”s , /7. S, »”
+~V=Z/ (A4 p) (=25 ) v ) plas) ]f ( J (#)

+ M*’k(-/)[z

0*’)/1 74+ 2 J[A . |
e + z 9Ra)
= N 24, (cral)) ) p )Z c . (V. S.) 4

8. Density and current

We may replace 4 [ C,«-QJ: ) in equation (16’)‘ with the help of chara.c-;
teristic equation (12) \
(47‘4":) 7Zw (9"}

W, (o)

and obtain another sometimes convenient formula for f [2,/4 )/ 2£0 L odd

W (crad,) =

f/"’k 2 ;1+44k1' 727«/ (’)'c)"‘ 7Zr—/("/“) o)
{(;.I/u)=):_dke f-ak + ) Y n ; ()

Because

ML (%) - 3' _/

I .
Ry ) = Ty, G4 )
' | Ay  p

/t(
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we obtain quickly from (50) the demsity (2< 0)

i 5
p(i): 27/ 7(5/4)0}1‘ = #77‘% dxe,/k

+/

72#-/()'()‘ ’/Zw('/')a//«}
L‘/L(')'t) 2 J Ay +* M :
% .

= X - ¥r oL
_4(7/',(20(,(6 = 4‘///{;0/i):—&- i{(a/o)' /.}-/)
At the boundary 2=0 the density P[O) TYr 2. L7 is related to the
k

l. part of directed flux ?/ I(O/ 0) in the direction /u = ¢ which is accord-

ing to equation (17) and equation (¥1)

z | sy plor G2)
- = 2NMN(cr+ral . ‘
f @0)—c%d‘ ( ol) o) .
° . ‘A
Hence the density at the boundary in the spherical harmonics method is 3
. Plo) =t = gTH 1+ F 4, ) 'fr[o) ‘ )
. ' k : ’

Tﬁis equation relates also the density at 2- 0 with the normalizatiop
factor N and could be used for a change in normalizetion from N to unit -
density. The normalization with N results frbin the choice in equation»
(19). | |

Also the currex;t J' [2 / for 2£€ ¢ 1s quickly obtained with the help

e ~ of equation (50):
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9. ©Special cases

(a). No absorption: Ja = O
For no absorption the quantities €= /=42 and &= 3, [4—-&) =0
whatever finite value J’t may have, The first two equations of the

system (3) show that in the limit } = ©
dolf)= A= F + Z % e
_ 5 s

%o(f.) : _dT/'g-— | ' [5";2)

This means that the asymptotic part of '7’{; o ( f ) degenerates into a

g | (56)

straight line and that ﬁo ( f ) is & constant and does not contain the
transients §$ . The %Fo [f ) for 4 2 2 contain instead only transients and

no gsymptotic part. The square of the largest root of the characteristic

equation (12) may be estimated to
‘ ’__"—'ﬂ—q—;:v

, o
. ¢ 108 - _ o, 4 108 ;
sl T b by ) oo 5 (54)
e —— T S
e o 3/;1 J't : - o 34, ,

in the general case. In the limit J/& = 0 and arbitrary /z‘_ this expres-.

sion goés to infinity, or precisely

. 2
%li%,% — /&2}
e g2 3alh) 2 AH
Mso A =/}/L goes to infinity A = ico -AO:———‘“——’{o"’)-—_'
( a‘ a A a /€ » ,/./Q /% /
q e i
1+ E.,] —> — , A development of cfﬂ\) in & power series of% shows

° Kk

R R R D e TR
X2y



- 30..

wherE(_Z+ " ([,L/)/Z M (U— Wy
M, = A N.,a = JZ“ A - J/Z y LS e
a JLA J_Lk(f
. Z,
(=), (L= - (e ( )
| VAT A, A ) Dy
A= 2Z 2 A= 2 Ad, Nyz 2 Aid 0,
' g S ) 2 e $ J 3 Y y
1<t . J'Z‘éél-c.

are the primitive symmetrical functions of the roots ,u and 45 '
For- /J/:. <o only the 1 term of the series (60) remsins; hence we have

in the special case J’a = <;*-) AO — s Ag = toa

) = '»\a) - N - A, | /6a)
("\ ) (-4 ) N _ ’/ 
AL ple e ) e pre 2(t-4,)
- _.__J'i___ | 63
V= =T | (é1)

The two extrapolated distances become equal: d=4- (/L/;'/'r)//g-; the

coefficients W’-d'- and 0«'0 diverge, but in the development of the first term

of \foo /’c)

% ;/ N oo =X
T - Ao A = ¥ —p N - _O—O
W € +oo, € :;oza+d°—~———°AO 2,‘2(“""")’:* 4 ER f
: o= - P /
only the sum oAy +t = [ el e — = - play a role,
A \y .
° M, -4, o]
In this way one gets systematically equation (56) agein
_ o , 5/
7 zZn

?/oo(f}—?4-5f-+%djesz4~ﬁ— + 2o \
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‘f/a by f/J
For %o/f)= 3j'a,{d3»3°e A‘“o)o e/"o}—u?fa.;z%)s e °

3 2 /3
=i do (45=%) = 3pu § + ;{3 (%5 = %) f+ f‘%%“s"s €
o A
only the first term remains after the limiting process

%0 (f) Ja Ao _9;?2 ,1"/"

which is equation (57) again. The asymptotic part plays no role in the
higher %0 /S s but the coefficients 0(5 of the trensients behave regu-

larly since

y — P fés)
’ (M' -/,) ds 7 l("s)

The characteristic equation (12) is now only of the degree Z"/ s because

2 roots 19, )= A, are infinite, and (12) becomes

72“(45)- JWQ(J_‘):o (rq,,r.a“\... tfu_;_,) /é‘ﬂ

(As in (12), the largest coefficient in this equation vanishes.) One
recognizes in (65) the independence of the A of d‘é- , and (64) shows
that the % are also independent of fz" . Only d= A depends on /t' °
The same is the case with directed fluxes through the boundary. The Gauss
quadrature method gives A

£ (M-_/;S/‘:(_M (mz0) (€0




[the = sign compensates one - sign in /o(-/«)' , which conteins one (— l) -

factor more than 7(— /,.) ] , and the spherical harmonics method

‘i‘ﬂ(b'/“ ) = = P(ﬂ /h) (LZH)/z ~ Iy ' (é;)
C M, "Af J=t &u‘/"J) —r(-/fl‘}k{!’@)

(b) 1Isotropic scattering, absorption: }, # °, J/{- = /. (/_ fz;m,’lf.)

In this case (= /-, 1s different from 7, bu‘b as=3fa(-4) =0

2
The root A, of (12) will remain finite Ay = _J& (see equation (58)).
— e
’)a:" t/g ‘however, is still infinite as A,-»{os . Hence one obtains
by equation (62) d‘(f\a) = I‘/' - /\, . The other quantities become

2 N—> N =

E’\o e O) v 4 y(,\o)}o(—a\o)# '(F-,\U)/_,(,\D) /

== N p=240) < M &) - 255 plis) 4
o’é ! v (- 3) / v (4) ’ S ,\:(,\;_,\;),’/[)S) ) [ )
d - 5('\0); 4 = J, taus™ dEAO). (S:— L2 %’)

The directed flux at the boundary according to the Gauss quadrature

method is
2 .
z A (r) |
f [o//,u)zzAgc 1" - _ﬁ_ﬁ_ [A?,o_) /éf/
" A pt v Gm)
and according to the spherical harmonics method
[ZH//,_

41

{02 = 2l edg prippo s (7o)

(o )(’Jo V' ) ”(/“/ )/° ["'J
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Appendix T. Calcg;_.atignéxf“johe sum over £ in equation (15)
With l«é_' =1 Q - &, we nave® |
z (e 1) [(1+a %) ,,( A )+ Alerany ) W, (4] T« )
='€Z;'2(ZCM)‘{[‘7+—Q N+ Ay (C"/*a"x)‘@o(""k)] DA ) fu

~ A (char ) QLA T (u) f

‘Z (2[+/)ZS {
-[(f+c‘A + A+ q,\k)C? (" k))(ﬂ—.?f\,(/t) + A (erad] {Q(Ax)*.;“ [\7(4 ))]
‘ \ 7 =/ / = e .r/%)
ezo(u’w)f f) =1t g A 2}@(-4 )=-4va)e,(-m-4.

Hence, we obtain for the whole cu.rly bracket in equation (15)

1= 3f, Ap p fZ(?fw){ o g
=-'QA +[4+QAk + A (crad, )Q{,) )] 2_ (e(w)//d )/ ()
— A (chady) Z(zf,«.,)u)( A )7 pa), (4,)

Now we use the Christoffel formulae (see Erdelyi , Highér Transcendental

Functions, p. 162; equations (20) and (31)) to calculate the two sums

IA : ‘ |
S ()T (A ) B fR) = 4*’ [T () DA ) =T ) P (-4)]
z :

Oan &

L | .
5 (20r1) Q€A ,()epﬂ _ {(u,)// ) 6, )= T Yoy 6 )] =15
f=o /br+ N
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/
Putting these values in equation (Al) and replacing the Q '§ with the aid

of the W's one gets .
A~ 3(/;4 ‘JI(;,‘L" - Z (2’(/*/) {\\\1f = =& & .'* /Q,L-AA

&= »

//,/,/(rl ) / (vl ) 7":7k(C#Q/§/\ L/[-/(_'J/c)] r/z,,, 9‘)
Ll adl ) By A+ e Cere b ) W3 )1 T o)

a+A

The coefficient of 726«) in the last term vanishes because it is the
‘ 2
characteristic equation (12) for A=-J, . One may replace -/ & A

in the coefficient of 7) /u) by its value in the characteristic

equation
- - 2 U(""lc
A+ a4, :—Ak(m-a/lk)’)"'—t) )
/LH(’.A/) ]
and one obtains v A (c+a4;‘) .
A= 3L r)(—( Z(e(‘,’){ J{-“Q’\k—*' A
fa ~ AT
,a(mﬁ) T2es ( [DEa) W, W_ ¢
_ Muleral Lo [REAOMER )T )W (4)
At AL (4) ) .7

The last bracket in this expression is a constant = ’//[L *7) .
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Hence we get finally for the expression

L - T
1=t hepe + z_ (zm[/ww BCde)  d(erade) b FA)] Tp o)

/‘* LM 2 2)
< A § c- ad u - (cral, ) T2pa ;
St Ay lf—/l(_ )

For odd L is 72*-/ (‘4) = lfl @) , therefore the choice of the sign

of A is arbitrary in 72"4 () -
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Appendix IT. Calculation of the coefficients %

In the following the solution of the equations (32)
(4 e

: C+qz\;‘ L - f;
d O(/‘ Z)-—Q,\ +———}=O '(Jfl’z/“ 2
7// /?/ I(-oalz ) Ak-/‘:/'
(32/
and o{”o_+ozo = /

will be carried out in 2 ways, (a) a straightforward wey and (b) a shorter
way. Both ways show different interesting festures. -

(a) The straightforward way

We take equation (32) for (end ; end subtract ¢(0 -4 ) - ff oM )=0
) yA '
for two arbitrary L,; = 4,20 -.3:/ n ¢J ) » Then we get rid of the

term — a4, in the curly bracket of (32):

k(C+a") —
/3)/,; ) o (ixj)

%dK4K<C+éAI?)[)Xi/u£ -9 _/.] //u/%jk ()
(A3

o % s
: 2
this number is reduced by 1, however, in view of our condition of normali-

l+32 v
Originally we have . unknown coefficients: '--e"(a'-) °{o, %,

zation oy + 0?0= / « By the subtraction above one loses one linear independent

equation, which may be represented by the sum of the equations (32) over
L+

JI A, R N

Lk - C4aA |
Z {092 Sahf-ahr =)0 (A¢)
J= “) k/f/
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(Zf/)/z
With the introduction of the polynomial ) (,)) = F [ -M; ), its
/) (L)l
4 ~ /
logarithmic derivative = = Z and new variables 4, for
e F(/\) J\.ﬁl ) ‘/u\/, K
equation (A3) '
T - -
dod(crak )= 4 p () (k=804 ‘_2_’_) (As)
one may write boﬁh equations
U*'}/ZL i) | | 46
‘1) -
4 [ 7_ I /AA"'J ] )
(J;J‘ = I,ZIUH. é—;—, ) i*j )
and /,‘
d)[_ L“- & A, +(C+a/\)’b[/|'>)]=o 64?)
let us consider first the set of > Ly Lo equations (A6). They

2 2 2

- linear independent equations only; one recog-

are equivalent to =

nizes this fact again by the following process: A power development of

the product (Lri)fy

ety
e/;/, ’ (’)L"/'f)

in powers of ')K yields

(3 o e (¢-5/e
S, -2y ) 44

[ff # (4'?//1
/Z J/r/’ /l %

M’

. (L )/?- E Ly
et IR GV /At /{ {=o0 (As)

;
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A sufficient way to satisfy these equations for every choice of 4; J‘ is

to put to zero every term in the power development

Z@K/)k’m:o (01-1:0’/,2’-«0~ ;4_?-§) o (’49)

K <

Then we have a simpler system of 4—;—' l:l.vne:_z_a_.rfindepe_nc_l_ent equations again
L~y

for the e unknown variables '6;) 4; 42‘-, 3 “if we regard the varia-

S .
bles 4, and 4 as known quantities just for a moment:

(=1t | e -
o -, m < ;oL L3
sz G4 =[G A"+ 4 A7) fmog ) B
= T '
. (1 ')/?5 o (1"//7-.
The solution of this system is with +(3)=. # (=% ) ana 7/)=/] O#r)@:-%_) :
IEL J= |

- ’T[,\— ’g— ‘ - R4 (Ac) & L) ‘ L=
) U 0 s -, 5

(A )

, . / /.
or remembering A_ = - A, and the relation (A5) between the o, sand »f;c S
(o] .

2 A _ S | | o |
O{S = ,f)o/C-l-a )o.lj }DI( ) é | ‘7(0 (Ao) - > ( f\o) ? (A /2)
45[c+a ,\J') % (’)s) ()S-e/)u)/q[,\o) (AI+4°) ,o(— ,\o).

This equation relates the coefficients o to the coefficients . and <,

Putting these values of . in equation (A7) We obtain a relation between
qfs and o(o ;- this relation together with the nQImaii-zation condition

%= +o = | determines o and « completely. To. solve equation (A7) we
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separate the two terms in the bracket ahd sum over

) - aZa ol 2)2“(‘“)/,((»3)

with the ald of the slightly extended Lagrange interpolation formula

A
g0 R L G e+ o] 2w

if f(z\} and 7?(4) are polynomials of the same degree in A . % is a con-

stant to be determined.

(1) We conmsider first, using (Al2)
by Nralad =ads az"sASZ
a%ak = ad ) A, &% o 5

2, A (c+a I\L) [["s*’\o)o’o'*(’\o)k("’o)‘/"s’)o) s 7{"\0)#(’\0)] A P(‘l:)
=% P{A ;4(). < (—);-A;')(J;+§)1/(As)

o)

If one chooses
J() = [(A+ 4 )% 7 pE) = (2= 30) <5 E) P (40)] 4 p )

and
-

RV = (- %) 7)ok T2 =AY E, h s E

both polynomials ¥ [3) and # (a are of the same degree L2 4n ) .
)

Therefore one has to find ", in the interpolation formula (Alj) by com-

parison of the coefficients of the largest power of A ; it is A

o o e Bp) - ag o) pl).
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Then a straightforward application of (Al3) at the points

) =(—,\a) I ,44_;_,)
yields |
a.ii:<% A
F( ) {(cw (e 7 () P2 )- 45 vA) p (%)

| g
+ %[{Ao"?a)do 7(’)0)/”(—'\0) +(')0+)a) s 7(—40)/4(40 )J %"_’*—%

e (s 2) % () )+ Gome) a 7EAs) o)) ””f (A1s)

(2) We consider secondly

v, o p (")k} N ﬁ%o) _ 0}
ot Ay (C+GAL) 7 ) T A )[ #(00) “z /o(_ ]
pCs) (416)

PE k(e ) g

Putting %, from equation (Al2) in the last sum one obtains

La2) P0s)
%o( (e /))P(AS

Ao(('r"a/l;) Z [(A v'-/? 0( 'r(f) )/3()) (A =) )o(— 7[) /a[) ]/Q/AS)
FOo) pAa) S | (=27 )y

(A1z)

To this expression one has to apply the same kind of interpolation




L1

formula (Al3) with

100 < [(1540) oty 7Bo) p=2e) = (=30 g 7CA) p 0] p )

and
RA)- (-3, ) ~(3)
ot the potnte 4= (o 3, -, o ,) . Both polynomials f,/%) and /)
2

are again of the same degree (l#/ )/2 in 4 « The coefficient of the largest
L=1)/2 / _
power )( / of /o A,) is (Z+/)/Z ; hence we find by comparison of the

largest powers of v//) ) and /Q/) )

Lty s
7"( = T‘F WO 71//)0)/’4’)0) - Q"‘ (- )//‘ /‘\ }) '

A straightforward application of the interpolation formula gives now
h g ’ /

Z Z{AS’L"\O) Q/a 7(/\0)/,(_,{0)_(,):-,)0) by 7("\0)/3(’\0)] /o /')S)

s [AE=33) )

l_+/

(% 7o) pol2o) = 5 7 E 30030

rotg Lo p o) =t o dp ) (Ase)

Putting the constituents together in % all terms with /ol /JD ) and /a/f-J

cancel; one obtains the simple result for the second sum

— . PN P
% oA Ag(c+ad) /“.54;‘;

L+ ’)(C"a/)) v(A - - o= T[-4, Ao
o e [y (2% ) = 5 T(-40) p(30)].

y

Aig)
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Both sums (1) and (2) together yield now )

A + A,
Z‘YK’\ _l-_*_/ kf(cmi /b[ j _ (ZI)Q .
K ey, 4 o) poAg) (3 /"/ 2)

o 3[(e-a)% 7))+ (Bon 0 ) g -de) p (4] 7 (A pl-a)

+[(//}0*Aq‘)°( ( f,(..A) (/\-))o(_ 7(,\)/4(/\0)] (= a)/,@Q/;:
(Az0)

For @ # 0 the curly bracket { S }: o givés now thé required relation

between &z and o(o In the case of & =/ , @=o¢ we have to split a

in two factors [a, because Liwa Aa — 1+ 2
# !
and different from zero, and to multiply the curly bracket with a factor

/ + '+ remeins finife

/@ also for compensation of the denominator in )Q= l\// EE . Correct in all

cases 1s the quotient

of

o4

v (W) perd (4= da) i )M- da) + (A4 A0 7(-30) p(Aa )
do A )PPl (ot ) TR b ¢ (Ao da) ) b

alaph) PaEa) o B (e (4 21)
ST RPN PPRACY

with the notation T, (3) = v(A) pld) £ ~[=2) pl3 ) (A 22 )
Finally we use the normalization condition o + o« = ‘/ or ;’— v A :l&‘-

. ’ i 4 bl

to obtain

(=3, ) p(3s) (4 23 )
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and

Ao Z(da)= 4 B (o)
Yo T (Ae) £ (Aa) = A L () % (Aa)
The introduction of the function
() pA) e FpB) 7 ()
() plA) =) pB) T E ()

K
of
1
<
~
. 9
o
)
==
™
)
o
=
~
I

d( =

has the advantage of a simple behaviour for /)[—» oo , as was shown in

equation (60). It leads to a finite limit
(z*,)/t A

Low L) = M-/, = /A 22 A

A1+ =2

or

Lo Jla) = Z“‘"J(//-) H -4, abos.

a0 ao

Finally this way of calculation of the coefficients «k shows by equation

(A9) that
c.uz,& M+ 4~
4N LA SR AT we gy T
or for any arbitrary polynomial 7/ 4) of degree & -%? in 4
1
c+ a4 A )
> o A (c+ade) A = 0, - [Azr}
K f("x}

r4 // .
Examples for such %/A) S are r p// "r%/ ete.
A further result is contained in equation (Al5), if one considers that the

sum of the 2. and 3. term of (Al5) vanish in consequence of equation (A20),



=il

namely the simple value for the sum
st ek 2 ) (et T(A0) /v(f\o)—o«—”f(i)/v(f‘ )
K % Q p/flo)/a[ o

I

< 2l (1 2 J(A@) (42¢)

L . . L
after introduction of o (equation 37) end o (equation 38). {- o, Ay

is related to the second moment of the direcpéa_fluk'.;gt' the boundary.

(b) The shorter way

A short calculation of the coefficients o(,< uses- the Lagrange inter-

polation formula as a generslization of a m_etp_o_d{ which was used first by
Wick.8 To this end we try to reconstruct fom:.la(ﬁ'j;;)/ by a convenient

interpolation, which allows one to read off. 'bhe coei-"f;l:;"cients directly by
comparison of the constructed .equation with,equatipﬁ (?ﬁy). To do that,

we represent the polynomial (A )< (C+DA)p(A)of the degrée Lt
/ POt :

in 3 twice -- first by its values at the L_'Z""_: points AJ. =(—)Q} Aq ’\o/ A

using the polynomial ®,(3) =(3-32)(-7,) 7(3)of the degree %: in A

in the Lagrange interpolation formula

. - fA)
%[’)/ P/)Z (’) f))?'(,))

i)
2

where A rms over the series of points mentiéned above and with PP) v P,A) /'

J

secondly we repeat this process repla.cing the.poin'p t\, 5y— )owithout a change

of the other points. This means, we use this time Q/J): )?zﬁ\)t(h - ’\:) (’)’LAO) 7(‘\)

in the Lagrange formula.

8 @. C. Wick, 2S. f. Physik 120, 202 (1943)..
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1) RKP)= R ) yielas (c,D are constants)

(C+DA)p()
(= )(A-2) )
(CDiadplra) (€D
()2 (Yt ) 7(-2a) - (Amda) 2ha(da o) T (Aa)

T RI R E--2F TR VI NI

+()—A0)('A;~ Q‘v—(,? ’ ..' (A by )(A - )y _)) /('\:)

(2) RO)=R,(3) yielas
(C+ DA} p ()

EENIEENET VA |
(C D)a /”(“"A) " - {/C’"’ ~D/’\1.1)/7(Aa)

(Af ) ZA,".\[/\Q_ (—-r) ) | (’)°“)q> 2’\a ("\a+ Ao) T('\CL>

(C-D), )/o(—lo) o %// (C+ Do )ple)
(,)+ )o )(./\z' /\;) 'T(-f\o) ' J= (’)"’)S)('&f”q‘) [.’)‘y'*’)o) */[’\:>

Both formulae differ only in the sign of "o . ( Az2g )

+

Now we choose the following special values in both equations: )?/3‘ 5
for which /,/,\) is /’ﬁ"j) = 0 and the left sides of both equations vanish;
further we put C = ¢c and D = ayﬁj. Then we multiply the first equation by

a constant A, the second by a constant B andxgdd both together. We obtain
\ .
N\,



B /a {- r\c } C~ & )\G/«J‘ _ A , / ‘o} 3 C + Q’AU/MJ‘
LS L N _ T
(o A ) rl=20)  Ary (A5~ Az ) fe)  aem
L- )/ . ' ‘

. é—“ /2 / - A __ | ) /’[A,},‘ ) . C+ a /.5 /(J‘
' - £ - 2 / ' .
L= "5 ’10 ’) 7 (Q ’}a,)'r(’\.s) /\j /4;1/

(c—adam) pl-2z) {’)A,) + B >
+

(/‘—'j + ’)CL) 2 ’\(A. T(‘AQ’) Aﬁ—ﬁ)o

+ + ,
C,LD.-.«\Q_I) ZAR '((Aa) ,)..,) L4 + )0‘

(ctalg, //’(\a) | B)}' (A2?>

We compare this equation with equation (32), which after separation of

the terms with the indices © and © may be w‘ri'bten‘ in the following form

C A p) (Z_I)/l | aAs
—aA u c+a :
oz AO —— % 4 °/¢)Ao _Er A0S + _S_ o A c+ g = 0, (32)
A Vah O/f/ S=1 J'/‘J '
/ : e J
AREANE

and we recognize that they would be comparable, if the right side of (A29)
could be put to zero. This, however, is possible, béca‘.use the constants
A and B are still arbitrary constants and because it turns out that A and

B can be chosen independent of J' « This will be shown i;_ow: 'the right si{ie



E ' of (A29) may be written

g . R (cochops) i), (earer;) pOa)

(/" "')Q)(A * A )7( Y ) [/"j"\a.)("\a“'\o) 7“(’\'0\")

_ B.{ (c-adefy) pEAa) . ciadap) pla) ¢
23 ["" '*Azi{)(’\ ’) ) T(A Q T a)(\ ‘)) "(Aa)

S )avo ik N A

’ .

—B[( or4a) 7l ) (=) o N 2

That /a is only contained in the ‘eurly bracket on the left side of the

equation above as a factor C+ QA s / A= ):Ln this formula one owes to
3
. the fact that C+al, = e a[w : ): 0, by reason of which the origina_'l.ly oc-

- 1 . .
curring terms(c-fc? AQ//JJ' vanish. Hence A and B do not depend on the sﬁ%.cial

i /l(/ chosen on the left side of (A29), and the right side of equation (Azg) will

‘vanish_for o - -
equation (A30)  should read: | o - |
L s A= G (g + XX D0A) + (g = A )rl-d o )] BRI
equation (A31) shoulyd read: . . ‘ . - (/\ g )
B=G ‘[(/\0 - )\a)'(’\a)l’("’\a) + (Ao + '\a)'(—’\a)p('\a)z (A31) ‘\

et ST &Y

with an arbitrary constent G, which has to be determined later from our

supposition of normalization St e, = /,
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After that the equations (32) and (A29) are in form suitable for

comparison, which shows

o ﬂJ"‘o : “" i’)/’lc\’
N ) = 'b/( ) ’4/ { /

(7 - ; O(D AO -
0 ' ) (A;“ ’};':L) T(“f\()) / ) | (/)DZ.” ’\a'l ) - [‘\o) )
LA B ] k()
¥4 = -] . - . i
S R SRy

One may use the first two equations to remove A and «Bb_‘from the last, where-

43:)

upon one obtains a sometimes useful short :repres‘\e‘ntati-on of the coefficients

¥ of the transients in terms of o end o(o.f'

. A (c+a ,\0 \, y: [4‘3‘) o, 7('40) S " 7(: .
S

) o s f (4 12)
Ac(ceadl) ') Ca,) p () ) pl-A) |

(=15 - &),
From the nomé.lizatibn condition , .
(o) p20) = A 7(=16) p(A0) |
] : B 7 | )[3(1 OZ ( o)/. - (433)
A (/\o“ A ) "'["v)."(‘io)

one may find now the constant G, using the abb_i?evie;fiohjs (A22)

G Yo ('A;'- An ) v (As) T(L"‘* )

[

0 F ()= 2 B EOy)

(A 3¢ )
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We put this expression for G in the equations for the constants A, B

Ao [‘42' ’)&) 7("0) "’/")o) ["Jo ;; (‘4&,) + g v /M)] (A $9 )
')u ;:. (_"’\ al ') ;C-f- (\ (.1) - Aﬁ. 7::)‘- (}0) ;“ (’JQ ) ‘

A =

Ao (A9 a ) 72, ) (A )0 L Yo )~ Ao @ )] (4 3¢ )

!

)
A _{ (AO)E(A[1.> - ;)Q "/';, L';)G ) "/‘;‘(/"'\c, ),

B -

(=]

and in the equations for the coefficients ™z <, <

/
(/-)u ; ‘:::;,, - ,)7’ @ /] 0)/7(”-
JQ,+ﬁb>%m(4ﬂ)_ AOf;(Jo)++@h)

Fidu)# Ao % (o )] 70-30) p(30) (A 3y
’)a f,t.(r)};:,/ o i"" ’") +jf". :‘7,;;('){2.,)

~ o

: . , 2
[V T (s A F Q)] oA ) vf A et 24, ol As)
X, T — —— - ' — _w"\ A” V2 by T /
* Aa *%/Qo) (S CPS A %;/Ad) ‘4('ﬂ’l C"“”& (qs'go)Js T /As)

and finally in the equation for the linear extrapolaﬁion distance

&

12) s R . —_— e .
) 0 ';)O 71-# {r]o) /; (dyl‘, ) - }G .f,-n- '/F) ) } t/ :',"’ }

After that the solution is complete; the corresponding quantities are

equal to those of the equations (37), (38), (39), if one remembers the

abbreviations (34), (35), and (36).
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I,
Appendix III. Summstion of the C-W part % /0 )

(1) The sum, which has to be carried out is

e 2 '

_ ‘ {¢ 13w C+ a/\k (4;)
At ) = :; oy, Ay 2‘“ ad, + }
7 ( FV Ak 1‘/64.

>
f

e
51

The first part of this sum was found already -- see equation (A26) --

—al o A = AO,A(C)”_‘A;) [tz 7f3) plAa) = o #(Ae) pl-4s )J (A 39)
K plAs }9(“‘ Ac )

The second part is

he) 2 T (Z“I)/Z )7,
g, saA, - ¢4 Q \
Cocid Csoad C+ A _ S
Y 4 i A=. o(‘.)f___.._e_ + ":e’\o —_ % 4 O(SJS Sy , @5‘0}
S + A %) ~ At A + AL T
K Ai( At o T o7, S=

By introduction of the wvalues of og from equation (Al2) in the last

sum one obtains

(["/’1 L | -

ZE °% AS 'C:f “ A‘
5., .r)Sf/(A.
1, "2-“//‘/“2. ; i} .
A (crady ) D)o v 1, pl) = (A=A ) ot 3 ) ()] ()
fO(AO/)PI—\ Iy (457«)[4;__4:) i)



Numerator and denominator in the sum are both of degree ZT’L.'? im ’)5 '

An aspplication of the extended La.gra.ngeuinterpolation formula. (A13) with
F0) = [(1470) % 7(30) p (- 20) = (1=3,) a5 7(-4s ) p ()] # (3
and
< (-3) ()
at the éf_g points A =(=2 A 4 r)m) requires a comparison of
2 / P -

+3)/2
the largest powers )(L )

Tyw oy ) plA) = ¥p 740 p(%)

Then & straightforward application of the interpolation formula with A= "/L(

on both sides of the equation to find

yields

< [(35133)% 7 () pl=40) = (4% ) %5 7(~%) 2 (a)] k(%)

= ():t/'“)(As"Ao) YI(AS)

= do 7(;\‘0}!'(”\0)’“5 7("’\0‘/\/400) + /7('\ )/”( Ao) /_‘ ’) /uigo)

L= ) o 7(2e) pl=20) = (4 %) &5 7(=35) p(20)] fE)
G“i“ ’\Z ) ’Y(m/,u)

Hence, one obtains by addition of all parts of the suni (17) the Gauss

guadrature part of the directed flux on the boundary:

2o (ctars) (orp) v(-0,)plo) s #p)o(A) pl-2) % P (-4
% (’/4 JIENVILEN »),,2—/(1 ()

(A %/)
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Introduction of o/o- and %, from equations (A23,2ll-) _cbmpletes the expres-

sion
\%l{-, ) 2/\1(6+a,‘2)4(/\ 4'y(,/\ ) r) ‘f" //ia//a ["*g/' ﬁu/../.a/)
D.,u/* = -
f Yoty () ~ Aot @ 17 (o) ’)o “,/'L( r (-4)
\/A Ko

Finally the use of d/ ﬂ ) equation (37), A, equation (38) and A equation

(39) leads to the form of Yﬂ‘(O u)in equation (41), because Aa - [’)a_) /4( (’*a]

=) £ =z A
= r)at(’)a) [ 1+ Z /‘ (J\/ Q,)] and /V may be represented al'so in the following

manner

O’ )—/- /) I a \
A/ = 7( [A ) ¢ 64 913)

Qﬁ(,)w[q )= b 'f[A)-f[A

(2) A shorter way to find f J‘(O/ «)1is connected again with the superposi-
tion of A4 times equation (A27) + B times equation (A28) and the choice

/ .
of C-c and Z7:-—Qﬁ(in the resulting expression. One gets by this pro-

cedure the formula

bl ~ ) Alcadp) ple) g (erade) pCdo]
e w (4 (= )r) Poze)(33- A7) 7(-4,)

[C-QAS/.()#(JJ.) | A | B
+Z ’(A (

<2
s Qo372 A-d A S



where A and B have the values of equations (A30,31). In consequence

of (A32)
A pM
o -B #[_/\o) 0/0/\0: fb D) ‘
57 T 7 2 ‘ ) 2 TN Ly S /
T ) (=) (15 =) (%)
) Z A B ] I (A5 )
o = - i :
Ny ¢ . Y 2 / N }
SRR dorasd (A7, ) (¢ )
we have on the right side just
(¢=1)/2 )
> ol 4, c-ate
_ . Ayt
K= 0, 0,1 -
/
which is v/ l@ «) » Hence, again
I ] a B a A /q(/_."fl.cy)
If o) :/ - ] :
o Ao st v (om)
2 . - _— .
2 (cia k) el (-a) Rl E ) P g,

f, (’.)a ) - ’).:2 -E (’)0 ) :’-i (;;),:x ) /)oj 7,& ks ‘r(-/u,)



Appendix IV. Calculation of the current at the boundary

To calculate
2‘ 3
(L-1)/2 (~if
S A=ty F A, v 2 e = (o m ) + 2 % (Avy)
. K’E/O/A)“ J=y
ve use equation (Al2), which gives the < 'S in terms of = and %, .

Then we have
% % A

_ Aofcrad;) [(6+ ) % ¥(h V(=) #(Ao=As ) otz (=) pLa)] p(%s5) . v
@ pflo) =) s (AE=23 )(45 = Aa ) (%) |

We apply the Lagrange interpolation formula in the simple form (4k4) to

a function
L+3

{/,\) :[\/””)0)&0 ~r/:\,;)/7(?4°) +(rj‘,-3) ’*(“ ’\o)/’(’\o)] /’[") of He 546//»”65;- e

in A with an aid function 7\>/;3)= [,)-;)0)[,&:-'-9:) ’T[’\) of degree [__;_:

in A at its é_ﬁ_f zeros 4 x(-4a da, % 4, ,Ag-, ) o Then we obtain
- - >

[(34 2) oy 7001 p-20) #(A=3) o5 *(-2) p(26)] p )
CEERIRIEENVEREY
[[/\o- A Yy T[o) pl-Aa) 4 (Ap4 Aa) o5 "'{"*o}ﬁ/“o)]/’(' i)
(h+aa) 2 Aa (Yo+Aa) 7fAa)
_ [er2a) oy (301 pE) # (A=) 25 7(A) PO p ()
(3= 20) 23 ( A= a) v (3 )

-
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2%, {2 [o) pl-Ao) 5 [(ot 35) oy 7(3) p(-0) # (A=A ) o5 7(=20) pl20)] polis)
(-20) (22 5 (=3) (N=2) (A5~ 4a) +'(A)

Putting A= ~), we find the sum %; , required above:
Z [("o*"s)do 7("0) P("\O) +("°"\3) %z 7[‘)0)/’('\°] ﬁ['\f)
s (-4 ) (A5-2) '[s)
_ plo) p(-30) [t 2), T(R0)p(-20) # (=2a ) 5 *(- 40 ) p(0)] plAe)
YN A (45=3a ) 7 (a)
fve)

)
The last term on the right side is found by an application of the rela-

(0(5- - o) *

tion (A21) between oz and o, .
Putting (A45) with (A46) in equation (Akk), the first two terms cancel.

We obtain for the sum considered in (Ahh) -

g-/)/zdk N (,)O 3 ) 7[)0) pldo) &y * (JO-JQ) vf-Ao)/,/AD) Y pla)
« = = ,
Ic:o'/a/y,“ “a /”(’\o)/"("’"o) ’Y(Ja')

After introducing ¢, and 5 (see equations A23,84) we get

g‘/%o« ) = 235 100) 7C2) p0a) [ F(a) + F ()]
K=§c$/jn ‘r(r\a)[’)a ?:,«. (f)o)"T_{"!a)‘ Ao E(’)O);L; [’la)]
L 2 NVpBa) B LD EOD py o e ags)
"”(’la) ’)&;:(A&)
_ WA ey pEa) . (As2)

o [7(3a) (= 2a)= (=220 p00)]



In the last equation the abbreviations f} (57 used in Appendix II were
repleced by their definitions, see equation (A22). The last form of
equation (AW7) was applied to the evaluation of the formula (55) for the

current at the boundary z-o0 .
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