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4 108 _
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Studies of the Spherical Harmonics Method in Neutron Transport Theory:

I. The relation between PT- and Gauss quadrature solutions of the

Milnef^. problem.

Walter Kofink

Introduction

The fact that the Gauss quadrature (denoted here as the Chandrasekhar-

Wick fc-wj -) method and the spherical harmonics method of dealing with the

monoenergetic transport equation are closely related, has been often pointed

out in the literature. However, contrary to some statements which have been

made, the two are not identical — basically the C-W method, as applied to

the Milne problem, is a non-analytic approximation, whereas all functions

used in the spherical harmonics method are continuous. It is the purpose

of this paper to examine in detail the relation between the two methods. The

Milne problem with p-wave scattering will be used as a convenient example for

the analysis. Incidental to these considerations will be derived completely

general spherical harmonics"solution to the Milne problem, and a comparison

with the Gauss quadrature solutions will be given. In a following report

it will be shown how these approximate results, in the limit, give the

rigorous results of the Wiener-Hopf method of solution of the Milne problem.

Fulbright and Deutsche Forschungsgemeinschaft grantee assigned to Oak
Ridge National Laboratory. Permanent address; Institute of Technology,
Karlsruhe, Germany.
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Previous general solutions of the Milne problem by application of

the spherical harmonics method have been given by gL C Mark, by B. Carlson,
•3

and by M. C Wang and E. Guth. The considerations which follow are more

general than those of previous authors, first, in that the scattering is

assumed anisotropic, and second, in that the relation with the Gauss quad

rature method is shown more clearly.

1. The P.-approximation

Suppose a medium which occupies the region 2^0 has s- and p-wave

scattering of neutrons and has total macroscopic cross section 2. =2La +<ZS

where ^-a and 2~s are the cross sections for absorption and scattering.

The anisotropy of the scattering is covered by a transport cross section ^.

The x,y -plane is a plane boundary between the medium and the vacuum at 2. ^o.

Transport theory yields the integro-differential equation

where^i<= Cft vand 1/ is the angle between the positive 2- axis and the direc

tion of the directed flux -ffeu,). At i =~oc there is an infinite source of

neutrons. It is convenient, to introduce dimensionless quantities f=Za

for the coordinate, Ja« £a/^ &=£./Z and later c="" fa =Z JZ
a" aft V~" Xt) • The Boltzmann equation takes then the form

/• ^W1 +fits) • i(<+>J ihr'W fi ("Alrl ifo')/ >>/>'- L*)
»t — i - /

1^ ft C Mark, The Spherical Harmonics Method I (CRT-340), II (CRT-338).
2 B. Carlson, Neutron Diffusion-Spherical Harmonics Theory (MDDC-236).
3 M. C. Wang and E. Guth, Phys. Rev. 84, 1092 (1951).
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Applying now the spherical harmonics method, by assuming first that

one finds for the partial fluxes[t7i~7oolt)= density, y 'ft0\f)=l current in

2-direction, j 0(f) , fJo(f) ••••] ^e following infinite system of differ

ential equations - ('= d/&$ ) —

l =* • J.fzo + loo +& ft0 = 0

0

£'-* ' |A. *jti + ^ = ^

= 0

The general equation £ holds for <• >-2 jthe first two equations for €=0f1 ,
however, are changed or "disturbed" if u ± / and i> ^t / . One may describe

the vacuum as far as its effect on the medium is concerned, as a perfect

absorber without scattering, i.e. ^a=. / , 1/ u. / in the vacuum. In this

case the general equation holds for all -C £O, because •/ (/) =O; its

solution in this case will be simpler than in the general case.

In the L-approximation of the spherical harmonics method one cuts the

infinite.system of differential equations after the Lth-equation and demands

&
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that only the spherical harmonics up to and including P_ shall be used in

the series (2) as an approximation. This implies that j, (f ) =0 ,

I (f)-0 , f/+3 off) =° '" ' The flrst of ^ese equations,
4. ff) = 0 , turns out to be equivalent to the characteristic equation,

which determines the various modes of partial solutions of the finite sys

tem left after the truncation of the infinite system of differential equa

tions. To put the remaining / (fj V (jJ ., ,. =fl is aprocess,

which is, properly taken, inconsistent with the infinite system of differ

ential equations, because these later harmonics are related to the non-

vanishing -f (j'J by a recursion formula which keeps them different from

zero until £.-* oo .

The supposition

in the -£th equation of (3) yields a recursion formula for the 4 ;s

which is identical with the recursion formula of the Legendre functions

of the Land 2.kind. Therefore, putting

y (f) . (U*,)[AC*) ?e (» +*(*> Qi Nl c~ "
with 2arbitrary functions A() Jand Bfij ,independent of -6 ,one is able

to fulfill the set of differential equations (3) for Z £ I ± oo ,

The parameter A is arbitrary until now and the solution / above is a
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4
partial solution only. From the Legendre function of second kind

Qt(»- %(» W)- K-, (>) -*. Q. (>) -i h£ ('*><')
one must use only the non-singular part W (A ), in order to avoid

solutions which are singular at /)=! / . H£ satisfies the same

recursion formula as Id with the index on W lowered by 1 ; this is evi

dent since 0 and t satisfy the recursion relation and 6? , being inde

pendent of^, does not disturb the recursion. Hence, one adopts simply

the pure polynomial

it0 It)- (it»)lA(*)V*) +w>H-M *"* fo
as apartial solution for £>Z . The functions Aft) and u(AJare to be
determined by acalculation of / Q)and ^ ff) as aconsequence of the

first two "disturbed" equations for -6-0 and £= 1 . Supposing

one obtains from equations (3) for

l-o : jl0(f)-- V* a ;>'*

1-1 ; ^•^•J'JAA^'"'''
€.* : &(f) - ?[-({* fA^ +iMt *'l ^*
Acomparison of these f (f) and £ mwith those of equation (6) yields

4 E. Jahnke and F. Em.de, Tables of Functions, 4th Ed. Ch. VII.
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If we characterize the vacuum by V - I and V- I,o (*•) vanishes and

we have only the Legendre polynomials of /. kind with the coefficients

A p) =. /. Hence, the vacuum is described by the simplest solutions.

The usual Milne problem has vacuum on one side; but one may see that the

solutions above are adapted to two or even more media with arbitrary dif-

ferent ^ fc V
This method of connecting the solutions / (f) with a supposed

to \

partial solution •/ (f) was already used by B. Carlson in the case of

isotropic scattering.

2. Scattering involving higher atomic angular momenta

Let us interrupt briefly the course of further calculations to show

that this method of determination of A(3 )and B(/IJ may be extended to

d,f,g,.......wave scattering. Then we shall have more "disturbed" equa

tions in the system (3). We deal with d-wave scattering by putting a

factor Y^ before %Qin equation £.= 2 ,with j-wave scattering by

putting afactor K before 4^ in equation -£- 3 ,and so on.

If -C is the first "undisturbed" equation with a factor / before J—
'to

namely I- £ :

£+1 J1 . * j' J-—=—- i- + —— 4- •*• /? = o2£+2 /-et^o 2£., '1-1,0 '-to

then A[)) and DfA ) have to be determined from the equations

(*e+3)-fco {" e



After the application of the relation

the solution of these equations acquires the simple form

ioo l 21+1 t0 e+'L J zt+3 ™+,o e[ 11
In astraightforward calculation one has to find /t- /fQO and J- ^̂ JJ
from the "disturbed" system •£ =• 0 until £-t"i and the two subse

quent "undisturbed" equations t*JL and •£-£+-1 . Putting the result in

equations (8) one finds Aft) and- ^P) in i:iie extended case.
In the special case £,- 3 with ^ as a factor before fi6 in the

equation -lz z of the system (3) one obtains

A{>)- i+<kt*t[-3AL +3("-c-7)^

where the additional terms with the factor

to

* - U-r*) (lo)
show the influence of the d-wave scattering. One recognizes that every

further "disturbed" equation increases the degree in A of Aft )and B()) by

2. The degree of the characteristic equation in PL-approximation, however,

always remains L-hl in /) ,because it is independent of the constant

factors >0 > y •-• • • Consequently, some relations exist between the
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coefficients of all powers of A in A(/IJ and -oft}//I with the excep

tion of the power /) . If one writes in OUT special case 6g 3 Afi) and

&{*} as polynomials of ^

one obtains in this way the relations

and the characteristic equation for the S- 3 case (the analog of the fol

lowing equation (12)) contains

as coefficient of its highest power /) •

Presumably this coefficient will be simply the product of all ft S

in the general case of arbitrary £ 4 /-/ also.

3. The characteristic equation

We return to the case -t- 2, i.e. to our main course. The partial

solutions f (fjt *f)0[f) and ^ jf ) for 4^Z , when put in equation (2),
give apartial solution flju^jot the infinite system (3) of differential

equations, characterized by an arbitrary parameter /) . A general solution

could be constructed by superposition of a dense distribution of such so

lutions
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where o((y) should be chqsen so $s to satisfy the boundary conditions.

This process of satisfying the boundary conditions is reduced to an alge

braic problem by cutting the ^i'hfcfe; system (3) after a finite L in the

spherical harmonics method. -Then L+l equations remain, the last one be

ing

It/- at , I jt j .
2Lt3 tu, o f U^~ h-,,0 * ho = ° H

In the PL-approximation> however> fi+i 0 is not allowed to appear; this

is only the case if one selects the V's of the partial solutions (5) in

such amanner, that "f-^,, QAt] with these special \'S vanishes.
Therefore, the characteristic equation in L-approxlmation is

1u,oto)- W>)\,(K)*WVl(U*
X 0 Q •

(< +**:) %, (K)- \ ft** *l) WL fa) =0, (")
This is ah algebraic equation of degree 1+I , because the coefficients

of the higher powers cancel. If L is odd, L+ I is even and the equation

—— in \ : hence, one has ——.
2 k i

In case L is even L-h / is qdd, a root X~0. appears. This event is un

comfortable and the following treatment is for odd L only.

is of degree —- in ^k ; hence, One has ——.' pairs of roots ^K -\

4. The solutions,,oh,,the; .vacuum and the medium side

Having obtained the j£Q['f)-$> we put them In equation (2) and ob

tain the solutions for -f-(tx).

(a) On the vacuum side f has a different meaning in comparison with
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the medium side; it is f = — 2 with an arbitrarily chosen cross section

for absorption —c = — ; —^ =• o . After the calculation one may put

H.ft =oo , but this is not essential. The solution on this side, 3- £ o ,

is in PT-approximation

ikn - r" ^a «"^ /^; $M$M
J- / ^- o

J~' A /j.

with arbitrary constants A , which are found later from the boundary

conditions at 2- = 0. The characteristic equation is

from which we keep the positive roots M: (J ~ / 2. • -~^- J » One has

to take positive roots only because -dh m) should tend to zero for £ -• -t '•"*? i

hence the solution satisfies the boundary condition of the Milne problem

at 2-= oo . From the second expression for d($ /<} in equation (13) one

sees immediately that it has zeros in the directions A - -/*• for all

2-^0 „ Hence we fulfill the condition of no backward flux into the medium

only in £_£.' discrete backward cones in the PT-approximation. This result
-2 L

is valid for £= 0 also and is essential for establishing the boundary

conditions on the medium side. f(f'/t) has no poles in the forward direc
tions M - +M\ , because the denominator ju -m , cancels against an equal

factor in '/?.., (/* ) -- (2.{* 2) /// *L+ <[(^,) f]*j JT (/*-/>:)(/,< re .)
In the directions of the cones A = + >; we have a finite flux for ? > o

/ / J
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ffayjj~(L+i)/3j Unfa) Ufa) &fn<L+*)ft — e .

(b) The solution on the medium side, which must satisfy the

boundary conditions at ?- =o later, is in PL-approximation, £ £ Of f =Z. £y
(t-<J/i fa

(tr)

with arbitrary constants ^ . Instead of counting the roots from 4, 2, -• —/

in the sum (15), the largest root AQ is distinguished from the others J

/> Ji >../)/-/ > because it, being essentially the diffusion length, plays

a somewhat different role in the Milne problem, which contains an infinite

source at 2-- - 0£> , than the other roots. To represent this fact, the

sum contains one term with the coefficient «•- and the root J- = —10 .

The exponential factor exp (^/^g) =exp (- f/^ J in this case tends to

infinity for /—> —o© . It is the slowest decreasing solution with neg

ative A S, if one follows the positive 2-direction from the source at

t- - 00 , because AQ is the largest root of (12). Therefore, (15) al

ready satisfies the boundary condition of the Milne problem at z - - a©

and the extra term K= o is chosen to give the asymptotic behavior of

By applying Christoffels' sum formulae — see Appendix I — on the

'7

sum over -6 in equation (15) and by using the characteristic equation (12)
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one may give the equation (15) asimpler form ($-^o )

One recognizes immediately from equation (15) that -ffh /*) is apolynomial

in >t of at most the degree L in./< . The equivalent expression (l6) has

no poles in the directions u -—<*,, ', the denominators ^ f/*. are remova

ble again by developing 7. faJ _9 f-^J in apower series of/*-*"** •

In the following we always denote by 21 a sum over ^C= 0* 0 I •.. -L'
* ' ' ' "*

and we take an index S for summing only over S= /2 ..., LzJ after

removing the 2 summands with K =• Of Q ,

If we separate f(*/+) r^ (*,/*) +?{*/<) into tw0 Parfcs

9'/

k K+.

we have in f ^/t) the result, which would be found by applying the Gauss
quadrature method to the problem according to C-W for positive u . f(iu)

has poles, however, in the -~ negative directions u=- Ak and must be

replaced in the C-W method by another expression using the original integral

equation. ^ ^ u) is zero for^ r/y ;therefore the fluxes according to
both methods coincide in the itl positive directions ia *m. for all * * O,
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The addition of j R/*) removes the poles of y (&/*•)a-fc A - -^ again; the

spherical harmonics method unlike the Gauss quadrature method yields in y^yUj

a continuous expression for all u *$ but at the cost of a poorer approxima

tion compared with the Gauss quadrature method.

Considering now the boundary at 2- =O we remark that ^(Ou) from

equation (16) for t-^Q contains the 4d-l unknown constants °<^. and

from equation (13) for 2-£. o the iztJ unknown constants /3 •. Therefore

one of the o' s is still available for the normalization of the asymptotic

behavior of j-fa/4) a* 2--°° » We inrpose on the first 2coefficients the

condition a'-. +. q/ a /. This means that we choose the solution for the den
ts 0

sity *y £Jf) in the following manner (j ± o)

or •) ?/\ ,

0 o 5

with the linear extrapolation distance o~ "0/(°t% ~°kJ• The distance of

the extrapolated endpoint ^ is related to & by the equation

M^alter^e^presentation of /flJf; is therefore
equation (21) should read: "

sinh(A - CV\ uk fe . )
'"(0' .inhA/A. +£»'' " (C=<0) : (21) f ^

0 s

S and ^ are dimensionless quantities which are to be multiplied by Jl ~

in order to obtain the extrapolation distances in centimeters. The 2l

is the transient part, which does not contribute to the asymptotic behavior
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<-L ,at £ =- oo , because the As are much smaller than <^0

5» A short comparison with the Gauss quadrature method^

The characteristic equation in the spherical harmonics method was

shown to be (*+ a<£ )^HM -̂ ('W«^J ^(\) =0 l^Jmay be
represented by

UJ^)=l/ t^N-I.,^) du C»)
\-u.

The integrand is a polynomial of degree L in U; hence the integral is

given correctly by the Gauss quadrature method, which is here used only as

amathematical aid to give another correct expression for W. (A^) ,'

-because lL+t f^j)' O—, where

Putting the last value of Q. in equation (23) one obtains the formula

1 '-*• (WiLfrr'

<v-
5 A similar comparison has been made by % C. Mark I,
6 A. Erde'lyi, etc., Higher Transcendental Functions, Vol. I, p. 15*j-, Eq. (31).
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which could be found by an application of the Lagrange interpolation

formula also. With equation (23) the characteristic equation may be written

in the form

where the factor L, ftk ) is different from zero as long as C± 0j # i= o,
Hence, the characteristic equation of the spherical harmonics method is

also

to^Oh „. (2V)
2. i ' *-

0
d = o •

J*±t \ -A

The same equation will now be derived with the C-W-method. The original

Boltzmann equation was

9f -t - i

Integrating this equation over A from -1 to +1 one gets

•ft t-t

i\^f(flAi-+ji(fl/')i>*

=iH^J iO/WSjA ^Ht)J/i^'J"A'J^^-
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The last integral overu, vanishes and one finds the relation

+ i +1.

between the two integrals on the right side of the Boltzmann eqiaation.

This is an essential equation for solving the anisotropic case with the

C-W-method. If one assumes now a partial solution with an arbitrary

constant AT e,

one has tj

and from equation (25)

Hence, the Boltzmann equation yields * '

(- t+') 3h '• [ <{"~^)' rVa to*) "^ I ;/v **•
= j(c-f air/Aj C

+/

^^ C =" J 3(/*) rf/« * C*W,

and one obtains the solution

1cj(m) =• Ji r_ (Cf*^A) (2?)
-A2 A

•Y

(U)
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as aA -dependent amplitude of the partial solution f(fL./M-) above. The expres
sion (27) for ff/») shows apole ay=/)Y . In conformity with the physical

conditions of the Milne problem one supposes therefore Qfa/ = 0 for positive

jU and equal to (27) for negative /* at f ? 0 . Equations (26) and (27) are

consistent only for certain -* S , which one gets by carrying out the inte

gral + / 0

n f r j C ir KfC-f &KA) ,C*Jfh<S * fj r\ rJ*A>

Hence, it follows a transcendental characteristic equation for the ^r S .'

Selecting the ^ s as roots of this equation> C in (27) may be considered

as an arbitrary constant. For fj=0 , however, the backward scattering has

to be considered and the divergence of the integral would become manifest.

Therefore, one replaces the integral equation (26) by a system of

linear equations, evaluating the integral in L-approximation by Gauss quadra

ture method and using instead the exact ^r of equation (27a) another ^

(- x i- 0 f fa) =i (c'a v*y> £. aj 2^J) ^s)
** " ' j**/

The M• sare also in the Gauss quadrature method the roots of 7^ ///•) - o

and we have here Ltf linear equations for the determination of the J?//5*- )

which depend on AK by equation (27). Therefore, one obtains by introduc

tion of 0j^)from equation (27) the characteristic equation of the C-W

method for those possible A^ , for which the system of linear equations
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(28) has a solution. This gives , .,

j = 11 -*
J =

because £ *• = J? , we get finally the characteristic equation in

the C-W method

+ (L + i )/>
4,

/?+ ft^-^^f4l)r2 ^— =o (*1)
>* 'AJ**'

which is identical with equation (24).

7
In the C-W method' one has now to assume a superposition of partial

solutions — for the negative 2 of our medium with the opposite sign of

the ^ 5 —

««

2.f/»K c+ a -A

=z.ja* 7-*^ ^7 ^
*c *K+A

where the o( Sreplace the different constants ~ C. .fof equation (27)

for the set of -A $ ; as before they must be determined from the boundary

condition at 2r= 0 . One recognizes the identity of the C-W expression

(30) and the first part -^ fe/«) of the spherical harmonics method equation

7 S. Chandrasekhar, Radiative Transfer, Oxford 1950.
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(17).

6« CompXeffipn of the solution

For the fluxes at the "boundary 2-~ o we have two expressions:

equation (l6) on the medium side and equation (13) on the vacuum side

Ho m) = Z o/ Ay /- <M* + * L1- ^-7 J (

'M'^P-'Z ft
j-i /"/"J

They must be equal for ever^r /* between - t & M £ I ; it can be shown

by a suitable application of the Lagrange interpolation formula to the

/medium side of this equation, that the A. s can always be chosen in
f J

such a way to fit this condition* To determine the remaining £tl °^ S
AD .

(this means for instance °^-~°(n =-=-.<* <* •»>.>(, &/-, ) it is

sufficient to remark that the vacuum side expression vanishes at a* •= -/,.,

Hence the medium side expression has to vanish at the same points; this

yields ~1I inhomogeneous linear equations for the remaining —• °/,, £ ,'

Because '^y.^ i/*j) ~ 0 in equation (31) the C-W method and spherical

harmonics method lead to the same equations (32) for the coefficients 0/

The appearance•of the A s in both methods f& a special feature of the

Milne problem and other problems with a vacuum on one side. In these

cases the replacement of the vacuum by a perfect absorber leads in PT
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approximation to the use of the pure Legendre polynomials of the 1. kind

on the vacuum side, whereas they are introduced as a mathematical substi

tute in the C-W method on the medium side.

The calculation of the coefficients oi' is carried out in the Appen

dix II. In solving the system (32) of linear equations one is led to the

introduction of "half Legendre polynomials" which have only the positive

roots a- of {Ik) and ^ {$- ', * '^< ~>') of (12), namely

J'i

excluding the largest root ^0 of (12) from Y(<*J, Intimately connected

with the extrapolation distances o and A is the following function of A

One may use this function for a shorter representation of the coefficients of .

After introducing two further abbreviations

k - tig fa.
and for a common factor of the &k,(S independent of X



.21-

the solution o^. of equation (32) may be written

The extrapolation distances are -•- see equations (19) and (20) —

Aq

Introducing the coefficients ^ in equation (l6) one obtains the solution

for the directed flux ffef*} in every direction Ascos© and on every

plane ?•- /VjE of the medium in P -approximation for the Milne problem

with anisotropic scattering and absorption. The case of fission, with -

production of neutrons having the same energy as the neutrons which induced

the fission, is covered by the formalism by putting fa <*- c >

At the boundary £~o the 1. part of /^/-j namely /""^/•J i«e« the

C-W part for positive /t -- equation (17) with the coefficients (37)-(39) ~

can be summed up to a closed expression by a calculation carried out in

r(Ao)
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the Appendix III:
x

This expression has poles at /< =-Jj .Remembering that faf/t) is a

polynomial of degree L in u, coinciding with "f fo.jk) at the points ju *M•

and having zeros at the points u ~ -Aa> one is able to apply the Lagrange

interpolation formula to construct this polynomial, which represents the

directed flux at the "boundary according to the spherical harmonics method

and which is regular for all u (- I £u £ /) /

the second line of equation (42) should read: "*

(L+D/2 ' 1+{a/c)8(A W. /^a)
=2N\20(c +aklM-dp (?) I 1 (42) L }

j«l ^-/i;.)(Aj-^)r(-^;.)p'<M.)

By comparison of equation (k2) with the second expression of equation (13)

for f= O finally the coefficients /3: of the vacuum side representation

are obtained
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S. Chandrasckhar introduced in his book "Radiative Transfer," p. 127,

a function nU*), to which the functions hff) and <r fa) here are related

by the equation

/fr,.'-''•-*"*• ^f-

7. Investigation of f^f^A)

The representation of "f(°//t) given in equation (42) has the form

of equation (13) for 2-= o , or of the second term on the right side of

equation (3l)> both of which were derived from a consideration of the

vacuum side. Therefore it was possible also to deduce from formula

(42) the coefficients /ij (equation 43) of the vacuum side representa

tion of 'j.fou'j . We obtain the medium side representation if we put

vthe ofK s of equations (37)-(39) in the first term on the right side of

equation (31) or in equation (l6) for B^o . Then we get the medium

side representation, which is rather lengthy.

The connection between medium side and vacuum side representation

is quickly obtained by an application of the Lagrange interpolation

formula to the medium side representation of y^/&/,y . To this end we

construct the function -f(A)~<t~.hA with the use of Its values at the
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L+2 points )j =(- >0) A0) A/, ••••, izi , 7*,, t*2}>•-'j-y^Ut Jat which
the polynomial Tift)-(f-)Q )fft) p(-\) has its zeros. Then the
Lagrange interpolation formula

V

gives for •) =• -ju.

4+/S/* j <t +fiA0 + yf~/3A0

Now / l0//*) in medium side representation (See equation (18))

i (V)- 2."A V/A ?^K;- ft-"* V/. ^^

with the coefficients °^ from equations (37) - (39)

A/ I/ ,•"- ^ ,•/ (^| <fycL.)\ 4- T ^ftJ A°•'-NA0(c+a\0)hfaL,-M){- £—L^ + £
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is simply proportional to the first 3 terms on the right side of equation

(45) with the constant A - ~r 0 (AqJ, Hence by comparison with equation

(45) we may write / 'fa/1) of equation (46) also in the following form

j ^#Jfrt)/t +Ph <+i^)A ?

(Ih)/x ,

-i\The first term on the right side of the last equation is — 5 10 MjiXk

the form of equation (4l) again. Hence we have extracted by the use of

the Lagrange formula the "pole-part" — ^ fo m) of ^ fo m) « The second

term is the result of the spherical harmonics method -f(c> /*) in the vacuum

side representation of equation (42) again. Keeping equation (46) and

(47) together we have the relation between the two representations of

<\ffo m) on the medium side (M. S.) and on the vacuum side (V. S.);



-26-

+ hfrKsiL + ;

8. Density and current

We may replace -^ (Cftf^) in equation (l6) with the help of charac

teristic equation (12)

Ut**£)n ^^:)?u,to)

and obtain another sometimes convenient formula for f(%/') 2- £ & L oefel /

Because
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we ohtain quickly from (50) the density ( 2? 4 0)

r ft

-I * -' +/

=**£*,£ *s *Tf„(f) , ?? f(io), (n)

At the boundary t-o the density p>(o) r<(/7Jv is related to the

1. part of directed flux J (0 0) in the direction i(r£) which is accord

ing to equation (17) and equation (kl)

T {/ I K *• yfo)

Hence the density at the boundary in the spherical harmonics method is
t

f*(°) =M"La* \= $vW(4+ |^J H°> fa)
v fo)

This equation relates also the density at ?.= 0 with the normalization

factor N and could he used for a change in normalization from N to unit

density. The normalization,with W results from the choice in equation

(19).

Also the current Jfe) for ?- £ o is quickly obtained with the help

of equation (50);
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9« Special cases

(a) Mb absorption: L> = o.

For no absorption the quantities c~ '"&-* I and 6 =: 3^ h~#t)- °

whatever finite value ^. may have. The first two equations of the

system (3) show that in the limit ^ = o

•/..ft)**-}**"'*"1 C"}
u»-t • &>

This means that the asymptotic part of ~f0c(f) degenerates into a

straight line and that / (f) is aconstant and does not contain the

transients S . The 4p (f) for J? $2 contain instead only transients and

no asymptotic part. The square of the largest root of the characteristic

equation (12) may "be estimated to
. " — -r— -

*• 40S p h\- \ 1 1 108 2 V

in the general case. In the limit k = 0 and arbitrary ^ this expres

sion goes to infinity, or precisely

Also H =/A(£ goes to infinity W -*> /c*> • £" o~ , , — Ao ~* 7 /

^^.Ij2"—?-i., Adevelopment of cfjU] in apower series of y^ shows
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J-/ J^ ^ /c
j<A j<*'<

are the primitive symmetrical functions of the roots it' and /L ,

For /J/~ «» only the 1 term of the series (6o) remains; hence we have

in the special case j,ft =r Q A^ ~* «o ^^ -* ,'^

——— ^ ""• — : :

N-> - /* A>> ^
The two extrapolated distances become equal: <f= 21 -> ('("A//</£.; the

coefficients ^-and ^o diverge, but in the development of the first term

of foo fo

*? e •+oit e % *-*-„ - -^_<L-f +j-4fo- ^j f♦ •• -> -/- —— /

only the sum *- +<*0 *. / &W ."fr "" ^° —?• -"*" s ~ play arole.

In this way one gets systematically equation (56) again

(&,)



-31-

*

*IWo (<**-<*)-tyt *#fe -*;A-. i-u^£*
only the first term remains after the limiting process

which is equation (57) again. The asymptotic part plays no role in the

higher 4 5,but the coefficients ^ of the transients behave regu

larly since

^ ^ (it)
'* (M,-A,)*,v%)

The characteristic equation (12) is now only of the degree <—l } because

2 roots \} - ^o are infinite, and (12) becomes

?„ to) - *j VL 9s) «° (a. ,£\r- t \>) to?)
(As in (12), the largest coefficient In this equation vanishes.) One

recognizes in (65) the independence of the As of U , and (64) shows

that the °^ are also independent of I?, . Only cT=. A depends on K .

•The same is the case with directed fluxes through the boundary. The Gauss

quadrature method gives

(M,-K)y(-r)

<*.



[the -sign compensates one -sign in jo(-/«) , which contains one (- >) -

factor more than y(-/M)]> and the spherical harmonics method

*A*. J=< ^A^(Aj)^fa) T

(b) Isotropic scattering, absorption: k ^ o y - /, (L -fi~-ik ) .

In this case C= /-j^ is different from -* ,but a=3fa ("'&) - °
The root ^0 of (12) will remain finite A ss £&• (see equation (58)).

_ *fa
JR =<l/~ however, is still infinite as A^-* l&s . Hence one obtains

by equation (62) <f{^a) - H -At . The other quantities become

ZA° ' •<(\))<(-K)+-<(->.)Hi°)

J-3(A.) 4-•>„ *u^-' ^ . fi -4» •- T^

The directed flux at the boundary according to the Gauss quadrature

method is

?%«.) = 2 ty C
•l.

Jo

\~A

M-a)
r(-AJ

and according to the spherical harmonics method

/W/i •

fr*0) n

i(°fAr 2Kc\ K/^^ 7—, * v, —7777-""
' . /=' (/*A)^~A)r(-A)l*h')

(?*)
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Appendix I. Calculation of the sum over € in equation (15)

With 1/ -?PQ-Qt.ve have^

Z (**+*)[(*+**X)\(t*k.) +ak(c+zaI) We Hol ?e ^)
•£=2.

-\(c**\Z) Q€(-K)\to\

Hence, we obtain for the whole ciirly bracket in equation (15)

^-aAl^[^^A^AHCc,aAi)Oj^J] f(^to)%f'Ak)?€^j
L *''*

- \(t4*£) Z(z^,)OAAK)llf^u (At)

Now we use the Christoffel formulae (see Erdelyi, Higher Transcendental

Functions, p. 162; equations (20) and (31)) to calculate the two sums

e-o /*+K
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Putting these values in equation (Al) and replacing the 0 S with the aid

of the WS one gets
, L s r ,*• Ak(CfdAK)

4- \k A«/u • £ £^wj f- - / = - aam * ^ —

*tu it(^^l)VA) +jk(c+*Ai)Wj-i*)pZHto

The coefficient of 7? £<< jin the last term vanishes because it is the

characteristic equation (12) for As-A^ . One may replace sl-h G«L

in the coefficient of 7£ (/U) by its value in the characteristic
equation

z.

sf+ aAk = - Ak ( c + a ^ J
7)A, (A)

and one obtains^ ^ ^ (c^ ^ )

ALAr ^A)[^xA(-^AAK-^)l

The last bracket in this expression is aconstant = 1/(Li-i)
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Hence we get finally for the expression

4

•c- 2

For odd Z. is /. (— A) - 'i+/ ' / >therefore the choice of the sign

of A is arbitrary in I, (A) .
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Appendix II. Calculation of the coefficients a*

In the following the solution of the equations (32)

and <*'_ •+ « = /
o o

(Bz)

will be carried out in 2 ways, (a) a straightforward way and (b) a shorter

way. Both ways show different interesting features.

(a) The straightforward way

We take equation (3,2) for i and j and subtract '•f(0/ y<t) - •^fo/ ~/<j) =o
Lf ifor two arbitrary ij = i)z> —~j (Aj) .. Then we get rid of the

term —Q.Ar in the curly bracket of (32):

^Ax7L'A'toAjLA.^_AJ-» ^

Originally we have —— unknown coefficients^ •<*-. v or ••,, ex ,. .
2 o > Oj i > 4: ' '

2.

this number is reduced by 1, however, in view of our condition of normali

zation <*_ + «o= /. By the subtraction above one loses one linear independent

equation, which may be represented by the sum of the equations (32) over

2L<*
k

J'".»
it!

j--> * J A*~A
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LA/z

With the introduction of the polynomial jo (A) & II (A-/4j ) ,its

A(A) T ' /
logarithmic derivative —j-r- = /_ "1 and new variables fy for

pi*) j,«, '•-/'y

equation (A3)

one may write both equations

and f /

Let us consider first the set of j ^tl .il.' equations (A6). They
-< 2 2

are equivalent to ~ linear independent equations only; one recog

nizes this fact again by the following process: A power development of

the product A<J/i

c* A)e~,

in powers of AK yields

-•h-f •tot,kfrAki=° <*>>
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A sufficient way to satisfy these equations for every choice of I j is

to put to zero every term in the power development

Then we have a simpler system of —-' linear independent equations again

for the -y unknown variables ^ ^ ••>• -^_y • if we regard the varia

bles £- and -C as known quantities Just for a moment:

Ui .•'••..'••

)•• OA . (HZ*
The solution of this system is with t ft )=ITft-J•) and rfis)*// J*^ft -J. )'

>:'. y*, f ^;'

^z-|z^! V-^7 • ^.(J £;

or remembering ^)_ _-^ and the relation (A5J between the W. 'sand / '.c

This equation relates the coefficients ote to the coefficients <*_ and <*

Putting these values of o<s in equation (A7) we obtain a relation between

<*_ and o^ j. this relation together with the normalization condition

<*- +*0~ / determines <•_ and -V completely. To solve equation (A7) we
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separate the two terms in the bracket and sum over

with the aid of the slightly extended Lagrange interpolation formula

W'W'lfT^W)* */ (Ato
if "£(AJ and K[A) are polynomials of the same degree in A. y is a con

stant to be determined.

(l) We consider first, using (A12)

(Ait)

a
k

If one chooses

j ft) =/j^HK ^WK'^j-^-y^- -^o)A^)] ahft)
and

both polynomials ^(A) and #/vty are of the same degree -~~ in A,

Therefore one has to find rQ in the interpolation formula (A13) by com

parison of the coefficients of the largest power of A ; it is
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Then a straightforward application of (A13) at the points

yields

a Z. otK xK

A0

~ ffto)H'A)
{(c+aAl)(«oy(\)}>(-*0)- «s *>(-*o)/>N)

+f/7v*n *(><,)!<-*.)* &-**)* <-^)tto)] A j A)
(2) We consider secondly

,** t>'fa) w ,' ,/• t'to) />t-A°) 7

Putting °^ from equation (A12) in the last sum one obtains

To this expression one has to apply the same kind of interpolation

z«K
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formula (A13) with

ift) -[(a fa0) «0 --ft.) A-A -(A'^) a vftA jpfto)] f> '(A)
and

at the points Jj:(J0^ ••••, ^l-j ) . Both polynomials A±) and R/Aj
are again of the same degree (Lti)/Z in A. The coefficient of the largest

power ) of h (A) is (If/)/1 ; hence we find by comparison of the

largest powers of A\) and K(A )

lH (% AA^ftA) -«s r(~A0)t[Aol) t
' 2

A straightforward application of the interpolation formula gives now

+«> f(x*)/(-**) -%f(-*>)p'fto)< (Ai$)
Putting the constituents together in Z. all terras with la f^0) and hft^o)

cancel; one obtains the simple result for the second sum
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Both sums (l) and (2) together yield now

r L+t / ^ k'fa) ? (Lfi)aA0

V^K ^AJ/f^j'YV^H «h*)t*(±*)] y(A)^(^A

For ft £0 the curly bracket ^ • £=0 gives now the required relation

between <*j and <* . In the case of L> s. I , <?;ci we have to split a

in two factors ]fa~, because ••&-"** ^©^T —* 1 + - .[, t •• • remains finite

and different from zero, and to multiply the curly bracket with a factor

\/~& also for compensation of the denominator in A =/u£ . Correct in all

cases is the quotient

"'o
fto)f(-A (V^)^X)/^-Vj +(Xc +*A)r(-K)t,(AtL)

«o ^-K)Kxo) (\^.)^(A^-xcC)^(AA)AA }>(A

yfto)H~A ^T- (*«) "̂ J+ ^a) (/i 2

with the notation T+ (A) = rf AJ {,(- A) ± ~fftA) pft ). (^ 2* )
Finally we use the normalization condition °<- •+ a - / or —*-/•'._£

to obtain

0 ^tair.ft)-^ftj^v ' ^
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and

^ -

The introduction of the function

f(X) •> rfrrf-i)-*^, " 7JT) '
has the advantage of a simple behaviour for tAJ-* oo , as was shown in

equation (60). It leads to a finite limit

M*~ eTft/ = ft-A, - z* -Ik

or

ti

•^ *to) • ft: s(,f£) - h'~A< ***•6-f 0
«-* o

Finally this way of calculation of the coefficients o^ shows by equation

(A9) that

iJ«** "i^~A> * -° /-"">'<- -;
or for any arbitrary polynomial Aa) of degree ^ —— in A

* * i=(K)
("••£)W'l EOi (Alr

Examples for such ^(A) Sare Jo (JJ^ r (A) etc.
A further result is contained in equation (A15), if one considers that the

sum of the 2. and 3. term of (A15) vanish in consequence of equation (A20)j
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namely the simple value for the sum

2_«k** = — —— —
k a p(A0)j*(-Ao)

after introduction of &- (equation 37) and o£ (equation 38). ^-^k ^
is related to the second moment of the directed flux at the boundary.

(b) The shorter way

A short calculation of the coefficients o^ uses the Lagrange inter

polation formula as a generalization of a method, which was used first by

8 -•'.'.'•* ^-^
Wick. To this end we try to reconstruct formula (^) by a convenient

interpolation, which allows one to read off the coefficients directly by

comparison of the constructed equation with equation (^5). To do that,

we represent the polynomial -fft) ' (C+J)/() j3[A) of the degree itJ
in A twice — first by its values at the itS points A< -(-A^ Aa)AQ \ -., A^„, j
using the polynomial %(A ) =(A^ Afi)(A-A0) rfA) of the degree i±S in A

in the Lagrange interpolation formula

r(/ ' j MJz'to)
where A- runs over the series of points mentioned above and with KjAI rHjA) >

J /

secondly we repeat this process replacing the point /Lty—A without a change

of the other points. This means, we use this time %fA)-= R/a)*(A'Aa)(A^A0) rft)
in the Lagrange formula.

S G. C. Wick, IS. f. Physik 120, 202 (1943).
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(l) R(A)= ftt(A) yields (C,D are constants)

(C+$A)tft)

(C-Dio )/>(-**)' .+' JC^^AjAA_
(^^)2Aa(AafA0)r(-.A^ '.'.- :fA~Aa)^Acl(A^A) A K)

ft--K)K~ ^A(A) & (^-\)'(A>^)(As~A-'(A
(2) Rft)^ 7?2fii) yields. .. ' ' '
(CiDA)^(x) :
{f-^)(A.A»)yft)

(CAAa)P(-U) ^ ' fOP^UKV)

+ ^-D-U^-V) •• +t'yA (CAPas )/>fts) _

Both formulae differ only in the sign of ^ . (A 2$)
Now we choose the following special values in both equations: A^- ,

for which ^ft) is hlh:) =Oand the left sides of both equations vanish;
further we put C = c and D = b-U•. Then we multiply the first equation by

a constant A, the second by a constant B and-.add both together. We obtain
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K- >l) -(-^) a a " * K-*k) ^KT a-,o' / J \"o "& J I ° I "oVj

(L-,)k. v- lf -A -3 | fifa) c+aAsA

=_ S (c'aXAj) ttxA f A + B

We compare this equation with equation (32), which after separation of

the terms with the indices o and o may be written in the following form

A°Aj AA *- V/y

and we recognize that they would be comparable, if the right side of (A29)

could be put to zero. This, however, is possible, because the constants

A and B are still arbitrary constants and because it turns out that A and

B can be chosen independent of j . This will be shown now: the right side
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of (A29) may be written

z r^<y^^f^iA^

That a. is only contained in the ctirly bracket on the left side of the

equation above as a factor Cf «/»• •= a /A ~-V )in this formula one owes to

the fact that c*«A^ s cv- fl/~|J -#, by reason of which the originally oc

curring terms^C-h^A^JMj vanish. Hence Aand Bdo not depend on the special

jUj chosen on the left side of (A29), and the right side of equation (A2q) will

:vanish_for ^
equation (A30) should read: "" ~" ~—

, " i' . [A so)• ) • A=Gi(xo+ \,M*>K> +ft. -AaW-AaWAa)| l .•' . ;
equation (A31) should read:

B =G K "^xJp(-xJ +(xo +K>l-KMkJ\ (A31)

with an arbitrary constant G, which has to be determined later from our

supposition of normalization °/~ f «' •= / ,

(An)
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After that the equations (32) and (A29) are in form suitable for

comparison, which shows

•-. j £f>(-K) ( -A 'p(^) ^

One may use the first two equations to remove A and: B from the last, where

upon one obtains a sometimes useful short representation of the coefficients

<, of the transients in terms of "V- and <*•'•'

From the normalization condition

C 0

one may find now the constant G, using the abbreviations (A22)

(A 33)
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We put this expression for G in the equations for the constants A, B

K t 6U K (K) - xa h (-W ?.. (A;

and in the equations for the coefficients ^/ ^o cVs

/\ LftaJ-AoUftj] ~>-fto)A~X°)
o/_ -

o( -
0

**.

K tfa)+.fa)- ^tfto)tA)

i, •).,

X

\ Tfftj +-(Aa): k YfA~jT~~A) c<a a; (a;-A)As r 'fAs)
and finally in the equation for the linear extrapolation distance

' rfo -«o lo+tN^fa)- ->«. l. (A} i. A j

After that the solution is complete; the corresponding quantities are

equal to those of the equations (37), (38), (39), if one remembers the

abbreviations (34), (35), and (36).
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Appendix III. Summation of the C-W part y JO, /*•'

(l) The sum, which has to be carried out is

/: = d 0 ••; ,. % * -'
' t i

The first part of this sum was found already — see equation (A26) —

-al „,; . *c("*t) [«_ r(-*0)/>(\) - *„ -r(Ae) ).(->. )] .(A 3?J
k J-HAo'H~A

The second part is

z<AA^=«AAt>^A^A^^'(A^k Ak4M A0-M A^+A s=( s /

By introduction of the values of o( from equation (A12) in the last

sum one obtains

Ma
c-r a A,

fi. ,-»,

Z *A
J=» "j

4 fit

*Uc*«Ao) p//l[fAA«0 ^iAH^o)-(As-A0)^ v(-K)rtAo)]fifr)
Hx*)H-xo) TT, AA)As~^ ) •* '(A
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L+* ; A

.«. —_ 0 D .-^ inula (A13) with

(A )-[(* +*<>) «0 r(Ao) fi (' A0) - (A -JeJ *- nf 4d J/, ft ;J /. ft

Numerator and denominator in the sum are both of degree .

An application of the extended Lagrange interpolation formula

^(X)^[(AfA0) c/0 r(AQ) [>(-A0)-(A~ )Q) «,- nf A6 )f,
and

. Tinin+.R A< si — H_. dat the points >•)' =(- Atf Aq ( ^ ,,, Ai~j \ requires a comparison of
2. ' 2..

\k+3)/2.
the largest powers « on both sides of the equation to find

To= <*c f(At(-xo)- *0- ^(-AKA
Then a straightforward application of the interpolation formula with A-- ~/~

yields

/Yv-\)«o -rMK-xo)-(^-^)^ *•(-*<>)r(*•>)] I'M
f AAAA)

[(/*- J. )<*. ^)/=^- J. ) - <> **o)«s r(->0)t,(x0)] j,(-A)
**» —* "-""-"'•"• •" .••••. i.i.i i. ••-. i

(/*"-£) A,M)

Hence, one obtains by addition of all parts of the sum (17) the Gauss

quadrature part of the directed flux on the boundary:

'At/
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Introduction of d- and ^0 from equations (A23,24) completes the expres

sion

•y-J4h^ ^A^o)<xo)<'A _ xAJA)^ft(A) joA

(A a
Finally the use of &(a )equation (37), Xa equation (38) and A/ equation
(39) leads to the form of V^cy/in equation (4l), because Aa /_ ftj -/< ^(Aaj

AejL\)o,)['t'h cf 'a^/and N may be represented also in the following

manner

^%{Al(A->ot(K)+jAa)

(2) Ashorter way to find /^/^is connected again with the superposi
tion of A times equation (A27) + B times equation (A28) and the choice

of C- c and D - ~o.jul in the resulting expression. One gets by this pro

cedure the formula

^ (c+aA&*)f>(-A0)^AAjA_+^_) =_AA*AAA_
AyAoT ao-aj (V/OftT-^AO (AAA-Ac)AA)

(c-*.As/<)fi(As) ( A B
S (XS A As- &)-r '(\) U -As Ao +As J >
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where A and B have the values of equations (A30,3l). In consequence

of (A32)

. -b><->.) *„, ,_aA^L- ,

°C A,
A B i I'M

s !~ <>.->s A A (^A)-'A)

we have on the right side just

(l-,)U

2_ °vt ^

which is -jf /ft) • Hence, again

*K V*

J {f I Aoyu AC4A - ^y.;
?, \

Kt (to,) ^ft)"- -JT^ft ft 'ft) a;~a* A A) '
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Appendix IV. Calculation of the current at the boundary

To calculate

A)h fA';AJ_ otK A, =-A0<*~ f A0«0 +Z «s \ ~-ft -«JA0 +Z*, j, ^^J
^o;^Jn J--i

we use equation (A12), which gives the ^ ^ in terms of <*- and «*0 ,

Then we have

Acr-a^o) p ftVjK Ao)}>(-A+(a0-asAo AAMA] AA ^ ^ Vj.j

We apply the Lagrange interpolation formula in the simple form (44) to

a function

/ft =[fttA0)40-r(\0)t>(-i.) +fte-A)AAi>(Al/>ft) 0/^ deA^ ~r

in A with an aid function R(A)= (A~Z0)(A^-2a) tft} Qf degree —^

in /) at its itf zeros A/r/-A Aa A **, ,• -A^., \ . Then we obtain

[(\>*»«o v(*o)ftho)+fa-A) «g AAA°)]fifA)
(A-h)(f-A)~AA)

fft-AaW0 r(A0)},(-A&)+(A04AA)c/s r(--\o)j[ift0)]l4-\a)
(A-f Aa_) zAet(\(>fAa) nrfta)

_ HAA** '<(xo<jAc) A*o-A«o AAA*o)'k(to>)
ft-\) ±Aa C>o-A*) Tfc )
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Putting A-- -A0 we find the sum X. , required above:

* K-Xo)(^-X*) r%)

HAH-xo)r , [(AA^^Art-A+tAA^i- A^)AAlHA«)
Ao-^a A^ fA^"-AR j^(Aa)

The last term on the right side is found by an application of the rela

tion (A21) between of— and otQ .

Putting (A45) with (A46) in equation (A44), the first two terms cancel.

We obtain for the sum considered in (A44)

M/ft . a0 ft *\; rfi0) frA0) *0 t{AA,) AAAfA «? /, A)
k tc ~ — ~ —

H--o,oy,.. **. f>fto)t>(-*0) nrfaj
Z "k"t

0,0/1
I I I

After introducing <=• and «f- (see equations A23,24) we get

k*AA " -*(**)[!* \(A0AA>A~^ tft0)7+(Aa)]
- ^>/»ft») ++(>«)+?-(**) AWo/ch,fA,j)]

A(x«) AT ft*.)

Av *t ;>ft)ft-M fi j
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In the last equation the abbreviations ^V ft used in Appendix II were

replaced by their definitions, see equation (A22). The last form of

equation (A47) was applied to the evaluation of the formula (55) for the

current at the boundary ?•= o •
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