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Studies of the Spherical Harmonics Method in Neutron Transport Theory:

II. Behavior of the solution of the Milne problem with anisotropic

scattering for L —> oo .

Walter Kofink

In Part I of this series it was shown that the partial solutions of the

Chandrasekhar-Wick method which contain the factor %(M) cf. Eq. (1-27), de

pendent on the direction .u = cos v, are solutions of the non-truncated Boltzmann

integro-differential equation (l-l). An error occurs only because the Gauss

quadrature method is used to evaluate approximately the integrals on the right

side of (1-1). The integrands are not polynomials but are meromorphic functions''

of /< ; hence, the integral is evaluated only approximately. This error is mani

fested in L-approximation as an error in the characteristic equation, which is

an algebraic equation instead of a transcendental. But the sequence of algebraic

characteristic equations convergesfor L -* ©o to the exact transcendental charac

teristic equation. Therefore one may expect that the solutions of the C-W method

tend to the correct Wiener-Hopf solution for L —> oo .

The solutions (l-l6) of the spherical harmonics method, however, can be used

for a correct integration of the integrals on the right side of Eq. (l-l). They

are continuous functions in the whole interval -/£/<- I and their U,-dependence

is of such a kind to satisfy a truncated system of differential equations (compare

* Fulbright and Deutsche Forschungsgemeinschaft grantee assigned to Oak Ridge
National Laboratory. Permanent address': Institute of Technology, Karlsruhe,
Germany.

1. The numeral I in the number of an equation refers, to the corresponding
equation in the author's first report, 0RNL-2334.

2. A meromorphic function is a function which is analytic except for poles.



section 1 in I) instead of equation (l-l). The approximate characteristic

equation of the S-H method coincides with that of the C-W method, but the trun

cation of the infinite system of differential equations (1-3) introduces a

further, and more serious, error. It is shown in the following section 1 that

the spherical harmonics method introduces an "error-source" in the Boltzmann

equation. It turns out that this error-source is important especially at those

places where the contribution of the transients to the solution is large. In the

Milne problem this region is near the boundary of the medium. The error-source

does not show a tendency to vanish in the limit L->oc in this case, indicating

a lack of convergence of the spherical harmonics method. In a denumerably in

finite set of directions, however, the spherical harmonics solution coincides

with the C-W solution in the limit L ~* oo and the error-source is zero there

also. Hence it is possible to devise a scheme for passing to the limit by using

only the C-W part of the S-H solution. In the sections 3^6 the limiting process

will be carried out for the case a/c =fy("'&)/(*'fa) ** Obut in away, which can

not claim complete mathematical rigour.

Although the convergence of the angular distribution j(fju) given by the

spherical harmonics method presents serious difficulties, it will be seen that

the convergence of the total flux 40a[t) shows no such difficulties. Thus for

applications to reactors — for example, in the calculation of thermal utiliza

tion -- where the spherical harmonics method is used really to compute l00(fj

not 4u,/A) subtle questions of convergence do not arises the spherical harmonics

method, used in the usual straightforward way, does converge to the proper answer

in the limit L —* oo.



1- The error-source in the Boltzmann equation caused by spherical harmonics

solutions.

If one puts the solution i(ft/Ji) (1-16) of the spherical harmonics

method in P^approximation in the Boltzmann integro-differential equation (l-l),

one obtains a remainder
¥- I

vj -1 -1

(L- l)/2

I
* = 0, 0, 1, ...

UK
ake < (ti +K)

c +akk ( ?LtiW
-a\k +

Xk +V- \ ?L+1(-AJ/
-c +aij\k\ (1) /

using the integrals (1-51,54). In (l) all terms which do not contain spherical

harmonics cancel one another. Hence, the remainder is

l>< if)

\„ (- >*)
Z«Ke- C' +aKt)

:1

/(',<>)• (3)

The last equation was found by comparison of the X with equation (l-l8)

foryU=0 . Therefore, the remainder is closely related to J (V 0j i.e., to the

difference between the spherical harmonics and Gauss quadrature method solutions

for/b^ + O. Instead of fulfilling the Boltzmann equation (l-l) exactly,
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~f (*.;"}= f: (*,*•)+ f (*/*) satisfies the equation

with a "2 + -pole-source," the strength of which depends on the part ^ (£ oj

of the directed flux perpendicular to the £ -axis in every 2 -plane.

This result is valid also for every partial solution contained in equation

(l-l6) with a corresponding partial remainder contained in equation (4). There

fore it is not a special feature of the Milne problem, but a common feature of

all spherical harmonics solutions. The remainders of the different partial

solutions, however, may accumulate or distroy one another. One recognizes that

the true Boltzmann equation can be satisfied for arbitrary yd (- <•? <M £4)

only for problems, in which the boundary conditions are of such a kind that

J 'fco) tends to zero in the limit L-* o© as —5- with <* >j-.

This will presumably not happen in the Milne problem, because in this case

4. (± o ) has just the task of joining smoothly the directed fluxes of medium and

vacuum side at the point of discontinuity 2-0 : hence one cannot expect that

•tuu. jTL,
L^oo ~1 /r o J= 0. On the boundary between medium and vacuum especially

j fo oJ- - ~ <*"•* f (6, °) , if the spherical harmonics series tends

to 1/2 of the discontinuity of the exact Wiener-Hopf solution. Normalized to

unit density at the boundary the exact values are j(Om =-to) =J. ^[Ou =• -o) = Q

with a discontinuity of 1/2 in the case of isotropic scattering without ab

sorption. The spherical harmonics method yields with the same normalization in
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L=3approximation ^(ato)sG,i}3^ in L=5approximation if(ot o) r o. J?J <?.2y

in L= 15 approximation -//£ 0} = O.2898. This behavior does not contradict

to the expectation above, according to which one expects , f(of cj = _

or -£- fEfo,o) *-•/.

For the special directions ju =•/*; (^= ^ 3, 'l' 'j -2 / the error in

(4) vanishes, because 7} 0*j)= 0, From equations (l-l6,17,l8) we know that

in these directions f^(},/*j) =O **"* /{*j/*j) = f'* (*//*:) which is iden-
tical with the Gauss quadrature solution for u =+A; and is zero for /a « -/*y

(this last was our boundary condition for the MiLne problem in the spherical

harmonics method). Therefore we may fulfill the boundary condition and the true

integro-differential equation in the limit L-»o© at a denumerable infinite set

of directions A = -/*) , In these directions the spherical harmonics- and Gauss

quadrature-method solutions coincide, in all other intermediate directions they

differ and the spherical harmonics method leads in general to a non-vanishing

remainder in (4). Therefore we have to select in the limit L -* 00 only the de-

numerably infinite set of directions M -A: in which both methods coincide, if

we wish to proceed to the exact limiting function of the Wiener-Hopf method.

The following consideration shows the behavior of the remainder in equation

(4) as function of M at a fixed 2 . If 4 (jtto) is finite and different from

zero, we obtain the quotient of the remainders at the end-points of the /<-interval

I owe the calculation of the P -approximation to Mr. H. S. Moran, Oak
Ridge National Laboratory.



\Ml-1 and the center M=. 0 (L + 1 even)

Ml») " ?t.J°> " "J ^' L
This quotient is 2.67 for L = 3, - 3-2 for L = 5, 5-09 for L = 15. For large

L it diverges as rL

Hence the remainder in (4) increases strongly from the center to the end-points

of the M- interval.

The divergence proportional ][L , however, occurs only in the narrowest

neighborhood of the point ju= 1 . One recognizes this fact if one considers

the quotient of the remainder at the extrema u of 7] /^a) and the remainder

at the center^ -O . The abscissae A of the extrema, for which 7*. //<*)- 0
are approximativelyft^ ~ c&s — f±- F for large L, where the numeration

/yn-i,1)~-- 2 begins with >>? = / for the largest abscissa between the zeros A

T

The extrema are ^ (^ ) ~(-t) ""f^TT^, [* ' (/"t f] * for large

L. Hence the quotient of the remainders at fixed 2- for large L is



The absolute value of this quotient is independent of L and increases slowly

with the distance from the center. The divergence proportional to fC occurs

only in the small interval between the largest zero of ^ L,) /* <& c^ ?^2
iir/i *JL /Jill )* ^w "' ~ 2 i 2L+S ' /* - ^ j this interval in the neighborhood of A=^
_p

decreases as L for large L.

Hence the spherical harmonics approximation shows two possibilities for

alack of convergence, (l) If ~£ faoj does not vanish in the limit L-^ooj
an event, which may be caused by the physical conditions of the problem; (2) If

%fejO) does not vanish strongly enough to reduce the remainder to zero also

for j/*/*-* ;this is the case, if /-'^ o) does not tend to-zero stronger than

J/ft f+* £ -* oo .

In our case of the Milne problem one observes a quick decrease of the

remainder (3) from the boundary to the interior of the medium f4 o . To recog

nize this fact we separate the <*- and <* -terms from the sum in the remainder
O o

(L + 1 even.)

(i-//l far *'*' v ?j (A) )

?u,(\)
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\ lies at least outside of the real interval (-/ /)and is usually large; in
this region we have for large L

^however lies in the interior of the real interval (-/,/) and here

for Large L and *-£ <Au < /i f t (£ small). Therefore the quotient

tends to zero for L-* oo in this^-interval. This remains valid at ,m - ,

because fL+, (±i)*<t (L +1 even). Hence the first term in fr) plays no

role in the limit L-* <*> ; the remainder contains in the limit L-» oo only the

contributions of the transients (with o^^s^1 )

*Ui (AsJ

The meaning of this fact is that the spherical harmonics method produces a re-

mainder in the angular distribution just in those points, in which one wants
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better information than diffusion theory can give.

Introduction of the values (1-39) of of in (9) leads to

Because the sign of T /X) alternates with S , the sum in (11) is the dif

ference of two infinite series with alternating terms. This renders a general

statement of the behavior of (ll) difficult.

One may use equation (4) to form the moments J M ~f (1./* ) 0hu>

Because the remainder is proportional to l+A (a) and J A 1, 0*) g/m =•

for 0±;< £ L the relations between the moments of ~r(F /*) \ which one could

derive on the basis of the correct integro-differential equation (l-l), are the

same in the spherical harmonics PT-approximation up to •&= L. One of those

relations is equation (1-25), it is the case £>- 0. In general, if we denote

the moments by /VH if) = I u y(/ >t) *(/<• the correct integral equation

(l-l) and equation (4) for PT-approximation in spherical harmonics method give

equally the following relations connecting the moments

for linearly anisotropic scattering and O £ £ 4: 1— ,
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2. The functions, which tend for positive and negative u in the limit £ -> Qo

to the exact directed flux.

We put in this section an index L on the approximate PT-spherical harmonics
L

7

which satisfies the Boltzmann equation (4) with the error source term

solutions for the directed flux J. (f,/*) = y. // u) + p' (f A) (X-/<£ )

d f'j (f M) — < /

where

41

1>.

,u,f0) M
The exact directed flux, which satisfies the Boltzmann equation (l-l), may

be denoted in this section by 4\f M) without index:

where

-i -t

If one considers u for the moment as a fixed parameter and solves equations (13)
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and (15) as inhomogeneous linear differential equations, one obtains

for functions with or without index L, differing only by different "constants"

Cm*) . The constants Ch*} are determined by the boundary conditions. For large

negative f we have the asymptotic behavior -f(fM)'^' & and -j (f m\ ~*>
/ L-l

e respectively, with *0<^ and 4 > / for positive u; hence one may use,

for positive u, the boundary conditions 6 rM/W ~* ° and ^ ]j ^/* )

—f O f<* J ~~* —00 1 these conditions determine the constants w^<;

and L.(A) because U6 / . This yields in the first case

cf" 'if? 6> ; «• ' '^' (o v */) fa.

In the second case (P.-approximation) the source boundary condition leads to

* rt-r ti
' - OO

f*o
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If we take the difference of the exact and the approximate directed fluxes

in the limit L—^-OO we obtain for positive u

c

We now assume that the approximate density and current tend to the exact

value for Z.-* ooy hence the corresponding terms cancel in the integrand on the

right side of (22) and the error source term in Tfi/uJ— compare equations

:%a~ z. ****(<**& tf(i*i) &>>=. e

" ~^oo ^ ^^ r^v-j; ^
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Evidently one may include the direction u * 0 for f^ o in formula (23).

Therefore one finds again that the Gauss quadrature part j-L V/f*) tends

for positive u to the exact directed flux

(o ±s 6 //
For negative u we have different boundary conditions for the exact and the

approximate functions, which determine the constants Cfb? and C. ^A) ,

In the first case we may use the condition of no flux from the vacuum to the

medium at the boundary ^:fl i.e. "x^AJ-O for negative u. Equation (17)
yields in this case

i (0,/<) '- tyfO ("I *A *o) (if)
and we have simply

For the approximate directed flux, however, this boundary condition holds

only for the discrete set of points U=—A; (j ~/f l/ ^*. -~/J where

ii.(°t "/'j)'0* In &eneral we have adirected flux rf.fe/*) backward from the
vacuum to the medium at the boundary f ~C. Hence equation (17) .gives
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and the directed flux in L-approximation is

(-1 £/• * t>)

Taking again the difference between the exact and the approximate directed

fluxes in the limit A"* OO we find

PS>' t £fr) --e"*£Ufa)*/fwfa- *(&)]*%'J
= — e

The last integral is

f

# -V
r" a+»< ?u,(-i>) -y-

fa)
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By introducing this in equation (29) we get

<~~ *-«.*>;** z "M"*j ^ ffA- i']f
"• A+>* W-W

l-lL()» ^- iffa) - if(*,r, *' ^ /
-flu

--irJif^* +ifbs)h (-"/<-)
T ^

remembering equation (l-l8) and %L (o.A) z ^j C6/*4*) * fj fy**)'
Hence, we see that the exact directed flux iff A) will be, in the limit Z.-»>©0

the sum of two terms, both containing only the first part •£, (the Gauss quad

rature part) of the spherical harmonics solution j.

lfa--*f?Jlffa)-ifv>^l> (-+*') (*
The second term removes the poles of J. (f/* ) atyk s-A. ;this can be seen

quickly by remembering the expression (l-17) of fi ff/*)> We therefore have the
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following representation of equation (30) for negative u

^=s"o/-. *"!A
' / /

In equation (31) both f and uare negative, their quotient ///< is always

positive. In the interior of the medium -- excluding the boundary f= O --
-Va

the term e vanishes with J*.-* o . Hence, we have a continuous transition

to the expression (24) for positive u. On the boundary f-o however, we have

to exclude the direction to e o perpendicular to the g -axis from equation (31)

and we obtain jfo^/i^O for all A* 6, In this way the well-known discontinuity
arises between the expressions (31) and (24) for /t-z.0 on the boundary of the

medium f =- o.
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3. The function MA) Iv(a) in the limit L-» QO .

To show how the extrapolation lengths 0 and A and the first part of the

directed flux at the boundary ^ fy/*• jbehave in the limit of infinite high de

gree of approximation L-»oo ., one has to investigate the behavior of the

function />_ )/

r(- A) T 5»/ )+ *s

in the limit L-* <*> . If one keeps /I out of the real interval - A^_t > A >-2/^-a ^

or 0 > A> - / where the poles of the product in equation (32,) lie, one may

find a convenient representation of the limiting function by application of Euler's

sum formula to

The validity of the development for /)•-/ is somewhat dubious for the present

in the general case of an arbitrary c and a, because one should prove

generally that l»* -IA, *A, > - I . in the case of c= 1, a=0and

L = 15, one obtains -*/*,+>, = -0.9984 5942. We develop in the last sum every

term in powers of (As-As )/ f/*j +A)

A. ±2l , - jL. lib. . _ JU(< - ^± )

- A*-** ^ J./As-**)*• fa)
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which is convergent in the exterior of the circle

An estimate of A- A$ shows that this development is tantamount to a develop

ment in powers of j- . Hence in the limit L-> oo only the first term of the

series (3V-) will be essential.

To find the difference of the roots /*s - A$ we remember that As and Xs

are the zeros of the characteristic equations corresponding to the vacuum- and

the medium-case:

a) fl*&s>' ° > fa)
<0 (<*»£) \, (•>,) - \ (c* **l) W, ft) = o•

Because the ^s are those zeros of(b) which lie between 0 and 1, we may

choose 00 f>) * Wlfi)^?l+I ft) Q0 ())- Qi+1 (X) as Qt fa _. i(K%jr> ^
and we may write (b) also in the following fashion

According to E. Jahnke and F. Emde, Tables of Functions, p. 117^ the asymptotic

behavior of the Legendre functions l^f and Q. for large Land angles i^

between I <4 t W-t (0* I&J ) ±s

n ,/ {n)
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whereywr Os'vP' and f° s- ft +J )£+ jf ,

(a) This yields in first approximation (upper index 1 is related to

the zeros A. ):

-oi. S»A;= *~, //A i; ^*V |; „o M)

We remark for later use

"As = ; ^ —— *k = /^J1 ^ /**/ )

As long as L is finite, however, U belongs to an angle v^ c > O

-» Cvtf ~ = o

for which presumably the asymptotic expression (3^) is valid, because its

violation becomes sensible only in the narrowest neighborhood of lA= o in the

interval t> ± 4 ± ^"'.

(b) In the same order of approximation we obtain an equation for the
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zeros A^ (upper index 2 is related to the zeros \ ):

[<,+ a\:- \,(e+aAls) io^A" \] su, P/^ +jisfc+a^) c<k %'*> =, c (if3)

with </»/a\- (Lfi)J*}+ I n .

We introduce the angular difference £=-^'* --z/j"" of the zeros. Then

we have ^ ,-,. ,v _
As = Coo oP ' - o^(')i *Zs) = C#>*f Cto fj. - Jiv 4' J^ ^ » *s ~fj /''~*jA

neglecting higher powers of B^ than the first, and we get

(*) f) fa) /"s - A

Jr-
r - J ?'"' ^"S--S .//r

/ s

Using equations (¥¥, ¥S", 38) one obtains for sin **'* and cos ^^asymptotically
for large L

sin «§" = (-/; ***(l +{)

cob f' -(-// cos(l*^)€s

Putting these expressions in the characteristic equation (A3; one finds an

approximate equation for £s

t'i+*Asy*s(c +Q/<;)^~'A]A^(U{)€s +?AS (c+asf) c<h(0{) c; »0
and its solution

J. - it = -—— {cu, / ^ <- : ___. . i~ 0( -L \
L+i "+«a;-as(c< *xj ^^'/<s - ^ •'

m.
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Because our earlier exemption of ^0 from the sequence of the roots of the

characteristic equation (36b), S runs from 1to —-' ,and the last root/^,

of the other characteristic equation frtfa) is left without a A-partner.

Hence, in the limit c-> Q Q-> o the A, go to A because 'L-» A
/ S / * + t ° / ' i

VA; '' iz.' ~> Ath and we have to take that branchof tan" inLh

2

formula (ty), which is -«, for zero-argument. This situation remains unchanged

in the case of isotropic scattering without absorption C-1 Q - o where

the differences of the roots \y**s are always negative. For illustration^
we give a short table of these differences in the L = 15 approximation, cal

culated exactly and with the asymptotic formula (¥}) for

s ^s A

0 oo
*- —

1 0,9803 4244 0.9894 0093

2 0.9164 7056 0.9445 7502

3 O.8119 9386 0.8656 3120

4 O.6717 7145 O.7554 0441

5 0.5020 5099 0.6178 7624

6 O.3103 1156 O.4580 1678

7 0.1049 7050 0.2816 0355

8 — O.0950 1251

•*s "A (**zd)

0.0090 5849

0.0281 0446

O.0536 3734

0.0836 3296

0.1158 2525

0.1477 0522

O.1766 3305

TAs•feu^
*4-As /*W^j

- 0.7741 217

- 1.1408 972

- 1.4691 894

- 1.7829 688

- 2.0895 982

- 2.3922 868

- 2.6927 734

A.-\s~At (e>A)

O.0066 691

0.0227 001

0.0445 816

0.0708 064

0.0995 757

0.1288 853

O.1565 939

The table shows that in L=15 approximation the \ -As of equation (H-f) are

/ Iowe the calculation of the table to Mr. H. S. Moran, Oak Ridge National
Laboratory; the//s are taken from A. N. Lowan, N. Davids, and A. Levenson,
Tables for Gauss mechanical quadrature formula, 1941.
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still far from the exact values, but it shows also the branchof tan , which we

use. This is in accord with

W, -u. / -» L, _ u -/-*-> y z' _ /-*.
\ . I lilt - J t,
', -A/ -» /*«, A « *» •4Z^- - <=»

#=0

a^i

. (*S-{)V 27T
~* - Su< :——- /*«*- A- <W /.

zl+2 2L+2 ' * •

With the asymptotic expression {kf) for A^-A and neglecting higher

powers of Cl _ in (3V-) than the first, because they are small of higher

order in -if. , one obtains for large L and A^tt on the real axis between

- 1 and 0

(y-i)k ^__ j r^AMx)

/i *) *+c!Af-/'s (c+yf) s«^~/'s

faj

/*ljj in the first term tends to zero for L-» o© . For the evaluation of the
z

sum over S we use the first term of the Euler sum formula, — the other terms

are smaller of higher order in — —, to represent the sum in the limit Z-* «o

as an integral a ,>
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ceo *m ' / S / si — y*
21+3

.Ua-i fAy u~->[ i^^> ;, ty

In (A^) equations (V7> V-2) were used to change the variables of integration

from S toA = u. in the limit L -* oo.

Application of partial integration to the integral yields

+5j&fp*u) 'J*!' '-± ^ (so)

with

i =l(c a; u) =c+fc -c*a^J-C,)/ n* y- a/A *-Vc-/y'7 6, " (Si
and

3 S §{ca<tt) ~ : (£.
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From our consideration of the dependence of -^ ->c on u we may recognize

that the values of our tan" •̂••j are always negative; therefore tan"1 j-.. I
- O for U = i and -re for U = o . Therefore the second term cancels

just the first in (SO) and one obtains finally

L->°o <f i rf-A/J •? 7 /' ^. ^,«
0

Presumably it is not forbidden to put A= o in this formula, because the

upper end - A^, of the excluded •)-interval is lower than 0 for every
2

finite L. Then we would have

(r £[-tyj.id. ^yyyy^iy ^ c»)

For later use one wants to reverse the sign of A in (55). We write

/„«, ••' -rev' " • iJ0 <*-«'

I ( / / it x 4f C &• •-'• j J: C «'< ; -•' ; _,* J / toQ ('1+ - / ( / / —£—---: du
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The first integral on the right side is

. ^ =| / / f*»" - ?*C"^ 7̂

= i. TT r 2,
T

and we may join this term with the left side

A- AfJf^L . if^f^l) «Wf«W^ (ss

Now we reverse the sign of A and we obtain, with the restriction A not on

the real axis between 0 and 1,

4~ a.A^L , i j'-UO-&\ *(<>*;«!$(<>«;*) a. (s6)

and finally with the restriction ^ outside of the real interval -1 to + 1

A~ &f-2p>//±fyj . _< I'JL./^T ) <£ ,

(57)



In the limit L->oo the radii A- As of the circles of non-convergence

(35) vanish and only the real interval -1 ^ ^ < +1 will be excluded

from an application of the last formula.

V- Behavior of A0 and /afcz/Vfe/ in the limit L-» °o .

(a) /)0 lies outside the real interval -1 to +1. Therefore we have

to use asymptotic formula, which are adapted to this case. We follow a pro

cedure of B. Carlson > according to whom (see Szego } Orthogonal polynomials,

p. 188, 219).

4 ,'J >

for large L and A outside the cut -16 A£• 1. y/^) is a regular function,

independent of L and different from zero outside the cut. Hence the quotient

®u, (\) fcF ^.jW"/; '/*

7> /a r •> tix 1^71*+ % 4

3 B. Carlson, Neutron Diffusion Spherical Harmonics Theory, MDDC 236, p. 21.
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If we write the characteristic equation (l-12) in the case of AQ in the

form (i+«AQ ) iUi (Ao) - (C +*A*J A0 W£ (A,)

4 TV fA.\ J
75 . . . . . . ... .............. _. .

O

using outside the cut the formula

^ (•».> * ?u, N «*»>**" •>. - fl<„ &J

we recognize that the characteristic equation in the limit L->oo will be

j m a \ - r ^ ( c+ <x \ ) A&q
r "• ooo 2 Ooo i too J **^J

*U*' _ o fS8
<L- - /

= o

Ooo

with

A ~ s&l*sl* A * i

An estimate of A is given by formula (I-58).
000

(b) We know ' for finite L: If we write the two polynomials ( C. h c
f(o) Li~' J ' a> °j

%/• are some numbers) ,

?. (A),c [AU>- (L^L A1'' +f^M^llL /"-f... ,, /7 * Co

and

z' ^/i "(j ^,„y *rr 3 t(UH) >-*-{u.,)(u-,)'

+— *%J7,
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7>we see that '^ ^i and -iwJAj have the same coefficient of the highest

power of A and that AW.(A) has no constant term. As was pointed out

by S. Chandrasekhar, Radiative Transfer, this fact enables us to find a

relation between the roots f*j of f^/ /AjJ~ 0 and the AM $ of the more

complicated characteristic equation

{H*X j 7^ /A} -(C +dA'J Ay,!A)

In the first case ^ 6*-,,'-0 the product of the squares of the roots

is

A A /^> -(-<) -^

and in the second case

^j

is"*-

•U •••• v, = (->/ —'-. . (t*)

AA •"' /*aj

e-'-r)^.

Hence the quotient is

i

•¥*-*-§ • i/rr. ^/;

Now we have from equations (l-33)

u* .
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By the way we see here that the left side as a product of real numbers

is always real and that for a negative ^ (multiplication) Aq must be

pure imaginary, if ^ is positive.

Equation (&2) is an exact equation, which relates fr(o)/YfbJ with

A for every finite L and remains valid in the limit L-» oo , when A ->• J
o o ooo

is the solution of (5g). Hence we have

This formula may be used for a completion of the expression for h(- A)/v(~A\,

Taking the difference of the equations (S3) and (5*£) we obtain for A outside

of -i ^ A < Q

L^oo « L -r(-A)!{ r/o'J *Jq (f (<<• J l-U*

or with equation (&3)

- = - A . />. k £
^-»oo ^(-A)

3"- Application of the limit-function to the extrapolation-distances.

We shall indicate how the previous results can be used to compute

rigorously the extrapolation distances in the case of linearly anisotropic

scattering. The limiting process for isotropic scattering has been considered
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by Carlson; these considerations therefore represent an extension of

Carlson's work. The quotient (5*7) occurs in

A - * ) L v(-A)/{ r(*)'J >

where o(X) is the function (1-34) introduced as an abbreviation; hence one

obtains in the limit and fork's outside - /< A. < + I

L.~$ oo W (J

and

^ i(x) -. J)«~A[if(^-'%) ±1^ Uu] . (W
L-+oo

Formulae (1-40) show the connection of the linear extrapolation distance o

and of the distance of the extrapolated endpoint A with this function. We

consider

(1) the distance of the extrapolated endpoint A .

For c/ft >o X^s ij/SL >we have j - -<-/£ <^j

a.

if. B. Carlson, Neutron Diffusion-Spherical Harmonics Theory, MDDC 236.
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Using this in equation (48), one gets

i^oo a Jo c j-ux J <• yy

The distance A of the extrapolated endpoint becomes with equations (6f and

(So) in the limit

Z-» Od ^~* ©0 ^6

''ooo is tne limit of ^0 in the case L-?©a , it is the corresponding

positive root of (5"#).

For the special case of isotropic scattering with absorption (V, =4

d =• 0 ) we have the following simplifications

•i -> &(c,°; uj = C -hfc^c)^

/v- c* y°^r'uf +fyfcu]* {
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,because d/c = O^ 4o^~' fl^u) = °/and

This result agrees with the result which K. M. Case, F. de Hoffmann, and

G. Placzek have found by the Wiener-Hopf method, if one remembers that

their /r0= f/A000 J lt0(c) = <f~* A/ .
/-*oo <a*o

(2) The linear extrapolation distance 0 is represented by a more

lengthy formula than <d in the general case c £ °, # *t ° •

i*x - i->°* 4 + z s(\)i(^)

^{if(^->± )& ^]*^ff^{±f)^>(lVu)±.,,]
naco

Ooo

It is related to A by the formula (l~20) or

-&-. «r , ^ /w// *~ a), fa)

5 K. M. Case, F. de Hoffmann, G. Placzek, Introduction to the Theory of
Neutron Diffusion, p. 134, Eq. (21).
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For the special case of isotropic scattering the second terms in numerator

and denominator are zero and the formula agrees with Case, de Hoffmann, and

Placzek's equation (21a), p. 137.

0. Application of the limit-function on the directed flux, at the boundary.

To find the directed flux at the boundary in the limit L -»<*? ,

one may normalize it first to unit total current (1-55)

•f /

' A-
a. h(V)io(-^)-y(-^)^a)]

without integration over the azimuthal angle. To find the limit-function

for the directed flux at the boundary, we choose according to the considera-

tions of section 1 the Gauss quadrature part d, (& At) -see equation (I-4J) -,

which coincides with the spherical harmonics solution -ifo u) in the limit

L -» 00 in a denumerable infinite number of points u *A> • Hence with the

normalization above we seek the limit function

aA**« i^fo/*)
L->oo

J A /'/A ^A
-t

/ '

Z-* 00

*(-**) 7

i~A - r(~A)

(?s
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Using the equations (SS, 56) we get

^ ^«"^«j '^J.-hti+Tj^'t*
L*oo (>(-**)

fa)

and

with Ja =;/f, ^;£r£;.^f,*//f«;

equation (ffi) becomes

/£* AJ -^ - Y{-^ 1L->oo Lfi(\) tf-AA)J
-% f€cSf^§^)^L cU

Gen

0
nfan«)&*>]-

(78)



Using equation (6o) for ^^ <f(Aa), and equation (6s) for ^* -tlA}
00 L-*oo r(-/t)

we obtain the directed flux at the boundary for 0 £ m ± 1

^ f(p,y >o..(c-n>L)lfe *AV^,4^
= __ * p

(79)
with CO dependent only on a/c

co^l'^-lf-J^ (SO)
under the supposition that £ = <£(""&) ls positive. If multiplication

prevails, fa will be negative and for positive <*-^ the quantity a/c will

be negative. Then AA is real and AQ pure imaginary. In some respect, the

roles of >0 and A^ are exchanged by going through ^ ~0 . In the special
case of isotropic scattering (ft* t Qs 0} we have asimpler expression
again for O 6/4 £ /

•Com. f(w

c
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This expression is identical with the result of Case, de Hoffmann, Placzek

equation (13), p. 133, if one remembers that their fifo-/*) - £••• ~' -

corresponds to our expression above and that their A0 = 1/ A00o > Jo ~ *~ Cj

according to which their 7/_A • corresponds to ^°° '

here.

7- The density in the limit L-» c*? .

For the density p(f) =(t»~J6oif)the expression (1-21) holds

Ay* >/ , , a/a
_. If ) - ? ft/ P ,---,- , ^> ot P
JOC

under the normalization condition ofc'tc(a=/ • 'Fhe first term on the right

side is the asymptotic part and its limit for L-> 00 is quickly found by

taking the corresponding values (70) for <&+< A and A instead of A
£-*co

To calculate the transient part of the density

(<'»'* fa
J=,

we define a function

M\A 1 ,^ A" H^J/^
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which is by application of the Lagrange interpolation formula

r [eta/* A/{ A) vfA

«t. • -—

(83)
We now use a method for the calculation of the transient part of the current

similar to the method which was applied first by Kourganoff and Busbridge in

their calculation of the density in the case of isotropic scattering without

absorption. Equation (l-54) shows that the transient part of the current is

proportional to 2.^^ ^ . This sum may be represented as a contour

integral along apath C in the complex (i-plane enclosing all poles /* = As
but excluding the points ju =. t A^ ju = ± A0

S 277 t J S A~\ ' kTTi J ' '
c c

By calculating this sum instead of ^~ ^ &- one avoids jamming the path

A.
into the region O-cf*. < izl . this region vanishes in the limit L-* o© and may in-

t ____

V. Kourganoff, I. W. Busbridge, Basic Methods in Transfer Problems, Oxford 1952,
27-3.
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clude the point^ =o in the interior of the area enclosed by the path C.

-X
C

€3 I 1 r 11M 1ill')

A

+ -Aa.

To calculate the density we remember equation (1-25), which represents the den

sity as a differential quotient of the current.

Only the first term in equation (83) for XU-) contributes to the contour

integral, because the poles of the other four terms lie outside of C. Hence

we obtain

(c+y )(a - K) rf°;3=/
27T<

C

Normalizing to unit density at the boundary, i.e. multiplying with the normali-

zation factor (see equation (1-53) and (63))

C r f-o >

(A)/* 2^(C^\1)^(0} 2V^CMOlj^
*=o,o ,
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we obtain two different representations of

(*-*. ' ° >'i J ('-if )(%•/) "(<*>t(°> '
Z «* c c/

° _L d> — e "V •

C

Or ^ »' J ^- S/M.VJ *"" ^

In the limit /.-» oo we may use formula (64) for the first representation and

formula (56) for the second representation; this yields

A~ £ ***** Clr <-&&#<) .
Z.-*oo A,^ "" 2wi jL a,+ V)AJ.j

y ^ i cr A 000 j
/r= o o /

^AAv<A;SAA
CKr

±±&A*A

This procedure is allowed because the integration path C does not contain

points of the real interval between 0 and /. The corresponding expressions for
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the transient part of the density are

<*«

2W if J fatf)(4-/A,„)

Hi /4ts.s)f4-j»y£.) r ° r¥i \»fcgVl (<* %f)(*-A A-J

lim dfAajin these formulas is given by equation (69).
L±oo

The transformation of the contour integrals into real integrals, which are

more convenient for calculations, is left here for later study. Also, no at

tempt has been made until now to compare these results with those obtained by

B. Davison in his report CTR-358 by the Wiener-Hopf method.
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ERRATA FOR ORNL-2334, "Studies of the Spherical Harmonics Method in Neutron
Transport Theory," by Walter Kofink.

On page 2, ref. 1, and on page 14, ref. 5, change "T. C. Mark" to read

"J. C. Mark."

On page 27, equation (53), change "4nZ c^" to read "4*2- a "

On page 47, change last word in line 7 from bottom of page to read "special".in

stead of "spacial."

On page 51, after word "with" in 8th line from bottom of page, add "A= - u".
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