




UNCLASSIFIED

Contract No. W-7^05-eng-26

Applied Nuclear Physics Division

SOME ANALYTICAL SOLUTIONS OF THE SLOWING DOWN

PROBLEM IN HYDROGEN

L. Dresner A. Simon

Date Issued

APR 9 1957

OAK RIDGE NATIONAL LABORATORY

Operated by
UNION CARBIDE NUCLEAR COMPANY

A Division of Union Carbide and Carbon Corporation
Post Office Box X

Oak Ridge, Tennessee

ORNL-2276

Copy No.

UNCLASSIFIED JZZ^T"*ENE''GYSVSTEM^<>'«™Es

3 445b 03514b"} 5



UNCLAISSI]?IHD -ii- ORNL-2276
Physics

TID-4500 (12th ed.)

INTERNAL DISTRIBUTION

1. c. E. Center 50. C. S. Harrill

2. Biology Library 51. C. E. Winters

^ 3. Health Physics Library 52. D. S. Billington

P*-#. Central Research Library 53. D. W. Cardwell

6. Reactor Experimental 54. E. M. King

Engineering Library 55- A. J. Miller

7-26. Laboratory Records Department 56. E. P. Blizard

27. Laboratory Records, ORNL R.C. 57. D. D. Coven

28. A. M. Weinberg 58. M. J. Skinner

29- L. B. Emlet (K-25) 59- R. B. Murray

30. J. P. Murray (Y-12) 6o. R. R. Dickison

31. J. A. Swartout 61. J. A. Harvey

32. E. H. Taylor 62. A. Simon

33. E. D. Shipley 63. F. C. Maienschein

3*. A. H. Snell 64. R. R. Coveyou

35. M. L. Nelson 65-67. L. Dresner

36. W, H. Jordan 68. W. K. Ergen

37. s. J. Cromer 69. E. Guth

38. G. E. Boyd 70. D. K. Holmes

39. R. A. Charpie 71. W. E. Kinney

40. s. C. Lind 72. M. E. LaVerne

in. F. L. Culler 73. J. H. Marable

42. A. Hollaender 74. R. V. Meghreblian

43. J. H. Frye, Jr. 75. R. K. Osborn

44. M. T. Kelley 76. A. M. Perry

45. R. s. Livingston 77. E. G. Silver

46. K. Z. Morgan 78. T. A. Welton

47. T. A. Lincoln 79- C. D. Zerby

48. A. S. Householder 80. ORNL - Y-12 Technical Library,

49. C. P. Keim Document Reference Section

EXTERNAL DSITRIBUTION

81. R. F. Bacher, California Institute of Technology
82. Division of Research and Development, AEC, ORO

83-678. Given distribution as shown in TID-4500 (12th ed.) under Physics category
(200 copies - OTS)

UNCLASSIFIED



SOME ANALYTICAL SOLUTIONS OF THE SLOWING DOWN

PROBLEM IN HYDROGEN

L. Dresner A. Simon

Abstract

Two situations are presented for which the slowing down

problem in an infinite, hydrogenous medium can be solved explicitly

in the P^, B]_, and Selengut-Goertzel approximations. One case is

for all cross sections constant, the other for a nonabsorbing

3
hydrogen whose scattering cross section varies as v . The results

are discussed in detail.

iii



SOME ANALYTICAL SOLUTIONS OF THE SLOWING DOWN
PROBLEM IN HYDROGEN

L. Dresner A. Simon

Introduction

Because the continuous slowing down model is inapplicable to moderation

by hydrogen, Selengut and Goertzel introduced an approximate method which

correctly accounts for the neutron energy distribution after scattering-.

Their method, however, computes neutron leakage by the usual age-diffusion

theory. This approximation has the well-known consequence that the age in

water is overestimated. The most elementary approximation to the Boltzmsmr

equation in which the age is given correctly is the Px approximation.^ For

large reactors, in which only the second moment of the slowing down distri

bution is significant, the Px approximation ought to represent an improvement

over the Selengut-Goertzel method. In small reactors, in which several

moments of the slowing down distribution are important, this may not

necessarily be true. In particular, the slowing down density in the Px

approximation becomes negative for large bucklings for certain assumed varia

tions of the cross sections with energy.^ This pathologic behavior is due to

the attempt to represent the highly anisotropic angular distribution of the

flux in a small reactor with only the first two Legendre polynomials.^ There

is another approximation to the Boltzmann equation, called the Blf2 in which

terms of order Px or PQ in the angular distribution of scattered neutrons

1. G. Goertzel, Criticality of Hydrogen Moderated Reactors, TAB-53 (July, 1950),
2. H. Hurwitz and P. F. Zweifel, Jour. App. Phys. 26, 923 (.1955).
3. R. E. Marshak, Rev. Mod. Phys. 19 201 (1947).
4. A. Simon, Neutron Slowing Down by Hydrogen in the Consistent Pi

Approximation, ORNL-2098 (July, 1956). Note that there is a misprint in
Eq. (23) of this paper. The denominator of the last term in this equation
should be (2A + Xs)^ rather than (Xp + -£g)2.



in the lab system are retained. Terms of all orders, Fn, in the angular

expansion of the neutron flux are retained, however, so that even quite

anisotropic fluxes can be represented. This improves the accuracy of the

approximation and results in a positive slowing down density for all values

of the buckling.

4
In a previous note one of us considered several problems in which

analytic solutions for the Fourier transform of the slowing down density

exist in both the Px and Selengut-Goertzel approximations. From a study at

these solutions some insight into the behavior of the two approximations was

obtained. It is the purpose of this note to study two problems in which

analytic solutions in the Px, Bx, and Selengut-Goertzel approximations exist.

Summary of Previous Results

The one-dimensional energy dependent Boltzmann equation with an isotropic,

monoenergetic neutron source whose spatial dependence is of the form e"ikx is

-ik^iN(uku) •+ Ht(u)$(uku)

u

du'ZsJ(u')Kj(uSU,yu0)N(u«ku') +ml (l)= z
J

where

u-e,

u = cosine of the angle between the neutron velocity and the

x-axis,

N = neutron flux in the lethargy interval du, solid angle

d£ = d0duj all1-fluxes^ however.,^ are... independent of 0,

the azimuthal angle,



H+. = total cross section,

^ . = scattering cross section of the j species,

K1(u,U,uQ) = probability of scattering from lethargy u to lethargy

u + U through an angle arccos uQ,

6. = maximum lethargy loss per collision with the j"1

species.

The Boltzmann equation can be expressed as a coupled set of equations in

lethargy by expanding the flux and scattering kernels in Legendre polynomials,

viz.:

oo

zl + iNfyiku) = 51 ZL±± Nj(ku)P^(u) (2a)

oo

22 +K^uU^) = £ ^"^ Kji2(uU)P^0) (2b)
-^=o

The coupled equations which result from multiplying Eq. (l) by Pa(u) and

integrating are

H,.(u)Nj(ku) -ik —— No-Ltku) -ik +1 No+1(ku)
2i + 1 ^ 2M + 1

u

=XI £sj(u')K^(u'U)Nj,(ku')du> +£(u)§p0 (3)

where U = u - u'. The F£ approximation results from setting No+1_ and higher

equal to zero.

Another procedure is to substitute the expansions (2) into Eq. (l),

divide by Xt -iku and then multiply by Pj?(ji) and- integrate. This



procedure leads to the coupled equations

•OO

At(u)Nj)(ku) = H (2m +l)A£
m

where

Aim

m=o

+1

1
2

u

L [ du'r_1(ul)KlTn(u'U)Nm(ku«) +S(u)Smo
u-e<

1 **_
-i " xt z1

(4)

and U = u - u'.

The AD satisfy the recurrence relation

where

v> = ik/ilt,

Aq0 =(X.j./kJarctanfk/ilJ, and from this value and Eq. (5) all the A^m
can be obtained.

The Bj approximation results from setting K^+1aiad higher equal to zero. It is

noteworthy that for a scattering kernel for which K^ and higher are pre

cisely zero the BJ approximation is exact, whereas no Pp approximation for

any_J- is exact.

If we specialize the nuclear species to hydrogen and some infinitely

heavy absorbing and scattering (but non-moderating) material and require

hydrogen to have isotropic scattering in the center-of-mass system, then for

hydrogen



Kj(u»,U) - e-UPi(e"U/2) (6a)

and for the heavy scatterer

Kg(u',U) = S(U) <9p(p)> (6b)

where the average in (6b) is with respect to the angular distribution of the

heavy scatterer. With these kernels the Px equations become

£a(u) +ZSH(u) NQ(ku) -ikN1(ku)

u

ZaM')eU^U N (ku')du' +S(u) (7a)
SH o

u

3

StCu^xCta) -^No(ku) = SrSH(u')e?" "'Hidm'Jdu* (7b)

where Z>.a is the absorption cross section, and 2*t =XSH +ASM(l^i) +.Xa
and the subscripts H and M refer to hydrogen and to the heavy scatterer,

respectively.

Interestingly, the Bi equations can be manipulated into precisely the

form given by Eqs. (7a) and (7b). All the quantities except At have the
same meaning as in Eqs. (7a) and (7b). In the Bx approximation

7 _ kf_ . arctan(k/£) -£ (8)
* " 3H (k/H) - arctan(k/Z) " SM

(u'-u)



where £ =I&+ISH +2gM.
If Eq. (7b) is differentiated it can be reduced to a first order,

linear differential equation in N]_. It is therefore possible to solve for

N^ explicitly in terms of NQ and substitute in Eq. (7a). The resulting

equation for N0 in both Px and B^ approximations is

fy(n) £(u) k2 A
^

U '3_^H(U,,)
k2 oWu} H,VM ;v J

+ j—r N0(ku') e du'
32W Jst(..)

"t u t^x o

u

- \ du'^SH(u')eU'"U No(ku'Mu' = S(u) (9)

The relation of the Selengut-Goertzel approximation to the P]_ (or B-|_)

equations is as follows: If in the integral on the right-hand side of Eq. (7b)

we approximate AgH(u')Ni(ku') by ^gjj(u)Nx(ku), i.e., if we assume

-IaSH(u')Ni(ku) changes slowly with lethargy, then Eq. (7b)

reduces to

ik

NlOM = ? , x NQ(ku)
3Atr(u)

where ^tr(u) =2La(u) +̂ XSH(u) +(l -u) ^SM(u). Equation (10) is
the usual diffusion theoretic relation between flux and current. Equation

(7a) then becomes



..J* . \ M**) +(^a(u) +^SH(U) HO0«032-*tr(,uj u J

u

ZSH(u')eU'"U N0(ku')<iu' +<b(u) (ll)

which is the Selengut-Goertzel approximation. A modified Selengut-Goertzel

approximation has been suggested by Hurwitz and Zweifel2 in which

2-tr "^t "2/5 ^SH "f ^SM and At is given by Eq. (8).
Constant Cross Sections

The solutions of the P^ and Selengut-Goertzel equations in the case of

constant cross sections has been given by Simon* and is written below for the

sake of completeness. The Fourier transformed slowing down density in the

Pq_ approximation is:

q(k,u) = •— (rx -r2)-1

kSH + 5£t

^+rl^e^.(l.^+r2)e^(12a)

where



8

1,2 2U
^SH + k2
zt ^l

-1

(12b)

The same quantity in the Selengut-Goertzel approximation is

q(ku) «
I SH

^a +^SH + ?£
tr

£a
k<

3X
tr

^a +̂ SH +̂ £
tr

(13)

Equations (12a) and (12b) also give the correct solution for q(ku) in the

Bj approximation except that H^ must be reinterpreted according to

Eq. (8).

Plotted in Fig. 1is q(ku) vs k2/XatT for aparticular choice of
SH

constant cross sections. The curves must all intersect in one point whose

ordinate is the resonance escape probability when k = 0; their slopes at

the origin are numerically equal to -JL_ t where r is the age to u. In
SH

this drawing it appears that the Selengut-Goertzel age is smaller than the

true age and computation verifies that it is smaller by about 2#. On the

other hand, if J! = l^e,*. - 0 iften the true age is always smaller than the
a on
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Selengut-Goertzel age, the latter becoming asymptotically correct for large

u.5

In the limit of large buckling and for the case i? =ASM =0 the

three curves have the following asymptotic behavior

72
SH -11

q(ku) ^ -735- e" (Selengut Goertzel) (l4a)

'„ 5XI. -u

n ^SH e-u
2 k

(Px) (14b)

(Bi) (14c)

It is possible to show that the asymptotic behavior of the B-, approximation

is actually the correct asymptotic behavior of the true solution of the

Boltzmann equation. This can be done, e.g.,, directly from Eq. (l). A more

physical method is as follows: q(ku) can be interpreted as the fast leakage

probability to lethargy u from a slab of thickness it/k of an isotropic,

monoenergetic neutron source whose spatial dependence is given by cos/(foe)

where x is measured from the center line of the slab. If the buckling k is

sufficiently large, the reactor will be so thin that only those neutrons will

not leak out which are thrown below lethargy u in their first collision. The

leakage is given by the current normal to the faces of the slab, and for a

thin reactor is essentially due to the uncollided flux. Specifically, the

leakage per unit surface from an isotropic unit plane source placed at x in the

slab is

5. L. C. Biedenharn and T. A. Welton, Some Remarks on the Slowing Down of
Neutrons in Hydrogen, 0RNL-2107 (Aug., 1956).

6. S. Glasstone and M. C. Edlund, Elements of Nuclear Reactor Theory,
D. Van Nostrand Co., New York, p. 349 ff"Tl952).
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WSet-*) +E32k L.
^H(1E+X

+ o (15)

Hence to the lowest order the non-leakage probability is independent of x and

equal to ^^/^k. Of the neutrons which collide, the fraction thrown below

u on the first (and in this approximation, only) collision is ^(u) »e .

Multiplying this quantity with the non-leakage probability gives Eq. (l4c).

The physical reason for the correctness of the asymptotic behavior of

the Bi approximation lies in the fact, obvious from the previous paragraph,

that all solutions of the slowing down problem with an isotropic, mono

energetic source and the same Kq have the same asymptotic solution. The ^

approximation to hydrogen moderation is the exact,solution of the slowing down

problem with K(u'tji0) =(4*)"1 (e"U +3e"5U/2 /iQ) **<* has ^e same ^ aS
the complete slowing down problem in hydrogen. The Px approximation, on the

other hand, is not the exact solution to any slowing down problem because it

lacks terms in P2 and higher in the flux. A similar conclusion applies to

the Selengut-Goertzel approximation.

The fact that the B± approximation must be a good solution of the slow

ing down problem in the limit of both small and large buckling implies that

it should be quite a good approximation for all buckling. Hurwitz and

Zweifel2 have calculated some integrated fluxes, j N0(ku)du, in the case of

constant cross sections (JZa =Zm =0) for k=S^ and k=5^ffl. In the
first case the B± is only 10* smaller than the exact result; the Px is smaller
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by nearly a factor of 2. In the second case the P-^ is smaller than the exact'

result by nearly a factor of 10,- the B± is still only 10* smaller.

For large k one expects the Selengut-Goertzel approximation to give a

larger q(ku) than the P-^ approximation. One can see this as follows: If in

Eq. (9) one sets N0(i&i») = NQ(ku) on the left-hand side one obtains the

Selengut-Goertzel approximation. For a small slab, with high leakage> however,

N0(ku) <N0(ku') if u'< u; hence, the Selengut-Goertzel approximation has

a smaller leakage than the Pi, other things being equal. This gives the

stated conclusion.

From the closer agreement of the Selengut -Goertzel with the B^ than the

Pi and the Bi approximation one may conjecture that for small reactors

(^ 5 to 10 mean free paths in diameter) the Selengut-Goertzel is better than

the Pj_.

y£ Cross Section

Another problem in which the Pi, Bi, and Selengut-Goertzel approximations

may all be solved analytically is K mH mo J7 <# v5, the cube of the
a SM * SH

neutron velocity. We proceed as follows in the Pi and Bi approximations:

We substitute Ni from Eq. (7a) directly into Eq. (7b). The double integrals

which arise can be reduced to single integrals by first interchanging the order

of integration and then performing one of the integrations. The restating inte

gral equation can be reduced to a first-order linear, inhomogeneous, differential

equation by the process of differentiation if Z fjCv5. In the P, approxima

tion this differential equation can also be obtained by Laplace transformation.

The differential equation can be solved straight-forwardly and results in the

following expression for q(k,u):



q.(k,u)

13

u x

ce^x f'r 1-ce-^ . ,_ ._,.— exp } — dy/ dx (16)
A(x) + ce"^ vj A(y) + ce-5y

2where c=k /3-2Lgjr(u) and A(x) =1 for the Pi approximation and A(x) =

ce"5xarctan//3c e"^^2) 'JSc e"5x^a"- arctan/yST e~5x/2/J for the
Bi approximation. If the source energy is made high enough then q(ku) be

comes independent of the source energy. The physical reason is that the cross

section is sufficiently large at source energy so that the neutrons slow down

for a while without migrating at all. q(ku) then depends on u only through c.

In the case that; the source energy is very high the limit of the outer inte

gral in Eq. (l6) can be replaced by <& which is the formal manner in which the

explicit dependence of q(ku) on u disappears. In this limit it is possible to

express the right-hand side of Eq. (l6) as a convergent series for all values

of c in the Pi approximation, which greatly facilitates numerical evaluation,

viz.,

The Selengut-Goertzel approximation can also be solved by reduction to a

firstj-order linear differential equation. The result is

2u 3u r2/3 ,_ _ ,-l/3
q(ku) = e (e -*• 3c) (1 + 3c)

>(1 +3cf1/3 as u *<*> <18)

Plotted in Fig. 2 is the q(ku) in the P,, Bi# and Selengut-Goertzel approxima

tions in the case that q is independent of the source energy. In this case it is
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seen that both the P, and Selengut-Goertzel underestimate the B value of

q(ku), the underestimate being larger for the Selengut-Goertzel approximation.

The age in the Selengut-Goertzel approximation is greater than the exact age,

calculation shows it to be l/3^ (u), which is twice the exact age.
IJ SH
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