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PREFACE

This report originated as a result of a series of nine lectures on
Project Sherwood which were presented by the author at Oak Ridge during
November and December of 1955. These lectures were intended to provide a
general introduction to the project for all local people having access to
this information.

The material contained in this report has been considerably expanded
over that presented in the lectures. In addition, since the actual write-
up- of these lectures did not begin until the summer of 1956, I have
included information which was made available at the Gatlinburg meeting
(June 1956). In some cases information presented at an even later date
(Los Alamos meeting, October, I956) has also been included.

The rapid pace of research in the field of controlled thermonuclear
reactions has already made obsolete some of the statements in this volume.
On the other hand, if one attempted to revise as fast as new developments
appeared, publication might be delayed indefinitely. As a consequence,
no attempt has been made to include most of the developments occurring
since the summer of I956. The most regrettable omission is, of course, the
large body of material on the United Kingdom project which became available
this fall. Another important omission is the investigation of the
properties of helical fields at Princeton.

It should be made clear that no attempt has been made to provide
complete coverage of the various activities in the project. Some programs
have been almost entirely omitted or covered just sketchily. The relative
weightings in coverage of the various projects reflect the personal
interests (and prejudices) of the author. They in no way are intended
to imply a judgement as to the importance of an activity to the future
success of Project Sherwood.

Many thanks are due to Dr. Lyman Spitzer, Jr., for his valuable comments
regarding parts of this manuscript. In addition, the chapter on stability
is based in part on a guest lecture on that subject at Oak Ridge presented
by Dr. Russel Kulsrud of Project Matterhorn. His careful writeup of that
lecture aided greatly in the preparation of Chapter 8. Finally, the
careful typing and proof reading by Mrs. Virginia Glidewell and the
editorial assistance of Mrs. Lorraine Abbott have been invaluable in
completing this lengthy task.
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I. NUCLEAR FUSION AND THE ENERGY RESOURCES OF THE EARTH

Project Sherwood is the official name for the American project which

has as its objective the controlled release of energy from nuclear fusion.

Major research efforts in this field are being carried out at Princeton,

Los Alamos, and Livermore. Smaller scale efforts are underway at Oak Ridge

and at New York University. The essential features of the problems involved

will be described in the lectures to follow. In its utmost simplicity,

however, it might be described as the problem of containing and controlling

a gas at temperatures comparable to those of the sun for a time long enough

to achieve sizeable nuclear reactions. The three major research centers

named above are working on specific schemes for a device. Oak Ridge and

NYU are concerned more with fundamental research and development.

Energy Resources

Before considering the possible schemes for a Sherwood device, it is

probably most sensible to look at the role which fusion (or thermonuclear)

energy would play in the over-all resources of this earth. The discussion

which follows is based upon data published by Palmer Putnam.

Putnam defines-.a convenient energy unit called the Q. The Q has a

value equal to 10 Btu. In terms of this unit, one can summarize the

energy that has already been used on this earth to the present day and can

also characterize the avaiability of the remaining energy in the usual

forms. Some interesting numbers are listed in Table 1.1.

1. P. Putnam, Energy in the Future, Van Nostrand, Princeton, N. J.
(1953).

ft w ^M



Table 1.1

Burnup to 185O 6-9 Q
1850-1950 4

Total to 2000 25
Total to 2050 100

Present rate is 10Q per century

Available Coal 32
.Oil 6

38Q

Nuclear 575

The first two numbers represent burnups of all energy resources which

have occurred in the relevant periods. The next two items are the estimated

totals to the years 2000 and 2050. These figures are based on an extrapola

tion of both the population growth of the planet and of the rise in energy

requirements per capita.

The second part of the table summarizes the major energy resources

remaining on this planet. These estimates consider only those available

reserves of coal and oil which can be economically marketed — that is to

say, marketed at a basic price that is not over twice the present average

cost. The total reserve in nuclear fuel includes uranium and thorium and

assumes complete breeding. This last number is perhaps the most uncertain

of Putnam's estimates and, in fact, there is a great deal of evidence that

it is an appreciable underestimate. Thus it is clear that there is no
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immediate and pressing urgency for the development of a fusion reactor,

while there is_ good reason for a large scale effort in the fission field.

It is also clear, however, that there is certainly something less than an

unlimited supply of energy in uranium and thorium, even assuming complete

breeding. If the power requirements of the earth should rise appreciably

above their present levels, it is conceivable that all other energy

sources - that is other than fusion and solar energy - will be exhausted

in a few hundred years.

What then is the energy reserve which is available in light element

fusion processes? To evaluate this, consider the reactions listed in

Table 1.2, which, as will be seen later, comprise the most feasible reactions

for a fusion reactor. The most promising is the D-D reaction which yields a

neutron or proton with about 50$ probability. Next most promising is the

D-T reaction which yields a neutron. The energy of the reaction products

are listed in parentheses in the table.

Table 1.2

D+D^^ ) He5(0.8 Mev) +n(2.5)
^^^T(1.0) + p(3.0)

D + T >He^(3-5) + n(l4.l)

D +He5 > Hel! (3.6) +p(l4.7)

T +T >He^(3.8) + 2n(7-6)

He5 +He5—>He^(4.3) +2p(8.5)



The energy release in the burning of deuterium may be estimated by

following a deuterium atom through all the burnings which will occur, even

in a reactor which is initially of pure deuterium. One of the reaction by

products, tritium, will be consumed in a D-T reaction. The remaining by-
3

product, He ,has a low cross section for reaction with a deuteron and may

or may not burn before escaping from the system. This will depend on the

details of the reactor. Assuming that it is consumed the energy balance is

as shown in Table 1.3,

Table 1.3

D + D * T(1.0) + p(3.0)

D +D * He5(0.8) + n(2.45)

D+T >He4(3.5) +n(l4.l)

D +He5 » He^(3.6) +P(l4.7)

6» > 2He(7.l) + 2p(l7.7) + 2n(l6.55) + (1.8)

The over-all effect is the burning of six deuterons. The products are

two protons, two neutrons, and two alpha particles. The neutrons will carry

their energy out of the gas. The energy deposited in the charged particles

is put back into the gas since charged particles will not be expected to

escape. Adding up the energy in charged particles and dividing by six shows

that the energy deposited in the gas per deuteron is 4.4 Mev. Similarly,

dividing the energy which escapes in the form of neutrons by six yields an
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additional energy contribution per deuteron of 2.76 Mev. The total energy

output per deuteron burned is approximately 7-2 Mev. If the D-He-^ re

action does not occur, the yield per deuteron is only 4.7 Mev.

It is instructive to use this figure to calculate the available energy

on the surface of the earth in the form of sea water. Deuterium occurs

in sea water in a ratio of about 1 part in 5000. The amount of energy in

a gallon of sea water is easily found to be of the order of magnitude of

k
10 kw-hr. Speaking very roughly, 1 gal of water has the energy equivalent

of 300 gal of gasoline. The cost of separating the amount of deuterium

found in a gallon of water from sea water is approximately 10 cents, which

is completely negligible. An estimate for the amount of surface water on

21
the earth is about 10 gal. Therefore, the total energy available from

sea water is readily calculated to be about 5 x 10 Q. Hence, if one

could burn deuterium cheaply in a controlled thermonuclear reactor (or

CTR), the energy problems of the earth would be solved for an essentially

infinite time.

Over and above the energy resource argument for Sherwood, there exist

at least three other reasons for working on this project. The first is the

possibility that a Sherwood device may actually supply electric power at a

cheaper rate than conventional methods. The reason for this is the pos

sibility of direct conversion of the energy output of the system into

electrical energy. As will be seen later in these lectures, the working

fluid of a Sherwood device is a completely ionized plasma at a temperature

of 100,000,000 deg. It may not be too difficult to find some means of
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separating the charges in the plasma (at least up to a potential difference

equal to kT, which is 10 ev) and actually obtaining a DC potential which

can be used directly. Alternative schemes involve use of inductive action

by expanding plasmas.

A second reason is the goad of competition. It is known that the USSR

and the UK are working on such devices. If these devices are successful,

they could prove an important economic, political, or psychological achieve

ment. Hence, it is in the national interest not to fall behind in this field

of research.

The last, but not the least, of the list of advantages is the question

of nuclear safety. A thermonuclear reactor is probably an extremely safe

device particularly since the total fuel in it at a given time is only

enough to sustain the reaction for a few seconds. Hence, an accident would

not release large amounts of radioactivity.

Tritium Conservation
————— i

It should be noted that the list of possible reactions of the light

isotopes included tritium. If one attempts to design a reactor which operates

mainly on the burning of deuterium and tritium in a D-T reaction, careful

heed must be paid to the problem of the replacement of the tritium. Since

tritium does not occur naturally, it can be obtained in large quantities

only from nuclear reactors operating on the fission principle. The coupling

of a thermonuclear economy to a uranium economy is an undesirable prospect

and hence, it is extremely desirable that the tritium be recovered in some

fashion and be put back into the proposed 0TR. A possible way to accomplish

this is to make use of the neutrons which result from the D-T reaction by



absorbing them in a lithium blanket. The n-a reaction in Li yields a

triton which can then be recovered by some chemical means and fed back into

the system. Hence, the problem is one of neutron economy and perhaps of

neutron multiplication.

The calculation below is indicative of the magnitude of the problem.

If C is defined to be the fraction of neutrons which are recovered in the

device, Eq. (l.l) then gives the situation at steady state for no net triton

gain or loss.

nDnT(6v)D.T -2j£ (ov)D.D (1)] -[2L (ov)D.D f±) +nDnT(<3V)D.T (1.1)

The terms on the left-hand side represent first the loss of tritium by D-T

reactions, and secondly the gain of tritons from the D-D reactions which

are going on. The term in the brackets on the right-hand side represents

the rate of neutron production in the device. Equation (l.l) maybe solved

for C as a function of the ratio of the concentration of tritium to that of

deuterium and also as a function of the cross sections for the D-T and D-D

process.

C =

Ita

.n-
D

(^JD-T _ 1

nrp (<3v)p-T 1

D <<*>D-D kn

(1.2)

It will be seen shortly that the D-T cross section is about 100 times the

D-D cross section in the region of interest.
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It may be seen from Table 1.4 that the percentage of neutrons which

must be recovered is extremely high, even for a reactor which has a 50%

mixture of tritium and deuterium, and only becomes a rather easily achieved

number when one goes to reactors which are almost pure deuterium.

Table 1. 4

c $> T # D

0 0.25 99.75
o.6o 1.0 99-0
0.78 2.0 98.0
0.995 50 50

Hence, in any D-T device it will be a very serious problem to conserve

neutrons so as to be able to recycle the tritium. This is an important

factor in the economics of the machine and in the design of the blankets,

coils, and shielding. Undoubtedly, use will be made of beryllium in the

blanket to take advantage of the multiplication resulting from the (n,2n)

reaction. In fact, at least one proposed working thermonuclear device has

the feature that it may actually succeed in being a tritium producer --

that is, more tritium will be produced than is burned up in the device.

This is an additional factor which is favorable to the over-all economy of

the device.

Critical Mass of Deuterium

One final calculation will be performed before the study of the

characteristic parameters of a sensible thermonuclear device begins. This

calculation is to find what the critical dimensions of a highly simple
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thermonuclear reactor — namely a critical mass of deuterium — would be.

It is implied that enough deuterium has been assembled so that the radiation

lost from the surface is less than or equal to that being produced by the

thermonuclear reactions going on inside the deuterium mass, even at room

temperature. As a result, this system will begin to heat up. As it heats

up, the cross section for the reaction increases strongly and one would

expect the device to lift itself by its own boot straps to a reasonable

operating temperature. A calculation of such a system by Heitler many

o

years ago has been reported in the Sherwood literature. Since the

original reference has not been located as yet, it may be instructive to

describe the following calculation which is highly simplified and, further

more, quite inconsistent. Nevertheless, the order of magnitude which re

sults may not be completely meaningless.

Equation (1.3) below describes the steady state balance between black

body radiation and energy production in an opaque isothermal sphere of

deuterium with a radius r and at a temperature T. (Of course, the actual

temperature will decrease radially outward.)

4*r2(5TU =| «r3 nf ^^ B (±3)
The quantity E corresponds to an energy release of about 14 Mev resulting

from the burning of two deuterons. The solution of this equation for the

radius is given in Eq. (1.4).

2. J. L. Tuck, Classified Conference on Thermo-Nuclear Reactors Held at
Denver on June 28, 1952, WASH-115 TT952T
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6<5T^r = -, {lmh)
n^(ov)D_D(l4 Mev)

Next, from the behavior of the D-D cross section with temperature (see

Chap. II), it is readily recognized that tV(<5v) has aminimum value in the

neighborhood of T=108 deg (l ev =1.16 xloSc, hence, roughly 108°K =10
kev). With this assumed temperature and an assumed maximum reasonable density

22
of 10 particles per cubic centimeter, the following result is obtained:

r =- (6)(5 x 10-5)(iq32) q
hJT 7Z— ~- - 10° cm = HK km (i *)(10^)(10-19)(2 x10-5) ^'^

The final size of the device would be of the order of the radius of the

moon! Obviously, such a system is impractical.



II. BASIC PARAMETERS OF A FUSION REACTOR

Ignition Temperature

The first basic parameter which will be derived for a feasible thermo

nuclear reactor is the temperature at which such a device must operate. This

is determined entirely by the reaction cross sections. The reaction rates,

averaged over a Maxwellian distribution, are listed in Table 2.1 for both

the D-T and D-D reactions. Note that since these are charged particle

Table 2.15

kT

(kev) ( ^ *(cmv/sec) (cm-VsecJ

0.05 7 x 10-35 2 X 10-35

0.1 3 X 10-5° 4 X 10-31

1.0 7 X 10-21 2 X 10-22

2.0 3 X 10-19 5 X 10-21

5-0 1.4 X 10-17

10 1.1 X ID"16 8.6 X 10"19

20 4.3 X 10-16 3-6 X 10-18

60 8.7 X
10-16

1.6 X lo-1?

100 8.1 X 10-16 3.0 X lo-1?

reactions, the reaction rate is extremely small at low energies and rises

rapidly as the barrier height is approached. At low energies the cross

section is essentially given by a Gamow factor of the usual form,

3. These values are from a report by J. L. Tuck, Thermonuclear Reaction
Rates, LAMS-1640 (March, 1954).
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^ , A -B/v
^ e ' (2.1)

where A and B are constants.

Two useful numbers to remember are the effective cross sections for

the D-T and the D-D reaction at 10 kev. Dividing the number in the table

by the velocity of deuterons at this temperature (=108 cm/sec), one

finds that o^_T is approximately equal to 1.0 barns and o^_D is approximately
10 millibarns. A somewhat more relevant factor in considerations of reactor

economy is the quantity cJV/T2. This factor is listed in Table 2.2 and is

seen to peak at about 10 kev. The results for cnr/T^ are similar.

Table 2.2

kT

(kev)
(<Tv/T2)D_T

(cnP/sec/kev^)
(<5v/T2)D_D

(cm3/sec/kev2)

.05 2.8 x 10-32 8 x 10"33

0.1 3 x lo'28 4 x io"28

1.0 7 x lo"21 -22
2 x 10 tUL

2.0 7-5 x lo"20 -21
1.25 x 10

5.0 5.6 x lo"19

10 1.1 X lo"18 8.6 x 10"21

20 1.1 X lo"18 9 x 10"21

6o 2.4 x lo"19 4.5 x 10"21

100 8.1 x lo"20 -21
3.0 x 10
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The first important point which follows from these cross sections is

the fact that there is virtually no energy production until the system

reaches temperatures of the order of about 10 deg ( = 10 kev). As will

be shown very shortly this is indeed the minimum temperature at which one

can hope to operate. Before performing this calculation, it is important

to note that at temperatures of this order of magnitude this system cannot

be expected to be opaque. To see this, consider the radiation pressure

Q

which would result if the system actually were opaque at 10 deg. The

calculation immediately below shows that the resulting pressure would be of

the order of 1011 atm!

Prad = <*t = (5 x10-5)(i08)^ Z- 1011 atm (2>2)
c 3 x 1010

There would be no way of holding such a system at radiative equilibrium.

Hence, one can only deal with a situation in which the radiation is permitted

to escape and in which the ensemble is highly transparent. It should be

remembered that the stars have no such limitation and use a gravitational

field to balance these terrific radiation pressures.

Now, if the radiation is allowed to escape, there is a steady loss of

energy from the system due to the radiation emitted in electron-ion

collisions. The cross section for this bremsstrahlung, or more properly

the specific energy loss per unit volume due to bremsstrahlung, is given in

Eq. (2.3).

Pbrems --^ ^ M ergs/cc/sec (2.3)
3(2n)1/2^Jfettjg«i \/ »



A rough derivation of this result is as follows. The power radiated by a

dipole is given by the well-known expression

P = 2 £1 a2
3 c3

(2.4)

where a is the acceleration of the charge. Hence, the radiation emitted in

a coulomb scattering of an electron by an ion may be estimated by obtaining

an expression for the average charge acceleration in such a collision.

Consider an electron passing an ion at an impact parameter b as sketched in

Fig. 2.1.

<& 4
•>

&

Fig. 2.1

The coulomb force between the particles is approximately ze2/b2 and this

acts for a time of the order of 2b/v where v is the velocity of the collid

ing particle. Hence, the power radiated in a single collision at impact

parameter b is

p CT 2 e£
3 c3

ze

,mb2.

Summing over all impacts per unit time,

2b

v

*:%m



-15-

P =
4 e2 z2eh
3 c- m'hr

nv 2«b db

Jmm

8* e2 z2e^
m

n

bmin

where n is the number of ions per unit volume. Now if there are n ions

per unit volume, there will be zn electrons and the total power radiated

per unit volume becomes

p = 8n e6z3n2

ty principle.

Hence

3 c3m bmin

Finally, the lower cutoff on the impact parameter is given by the uncertain

A x A? ^ <&

•'•bmin 1L
mv

mc-^ -h

which differs from the exact result, Eq. (2.3), by a numerical factor only.

With this expression for the loss due to bremsstrahlung it is possible

to calculate the minimum temperature at which the system will remain in

steady state and not cool off. The energy loss due to bremmstrahlung in

creases only as a square root of tJBffiB^rature while the ener6v deposited
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as aresult of nuclear reactions (En ~*n2 •<5v) rises sharply with tempera

ture as a consequence of the charged particle barrier. The essential

quantity is the ratio of energy released in charged particles to the energy

lost in bremsstrahlung. This ratio, defined as R, is listed in Table 2.3

for the D-D reaction assuming complete burning of the reaction products.

Table 2.3

kT(kev) T(°K) R

1.0 1.16 x 107 0.00052

2.0 2.32 x 107 0.0092

10 1.16 x 108 0.71

20 2.32 x 108 2.1

60 6.96 x 108 5-4

100 1.16 x 109 7.8

It is clear that a self-sustaining device will not be possible until a

minimum temperature of about 108 deg is achieved. This temperature is

called the ignition temperature of the system.

Randomness

It has just been demonstrated that the particles in a practical system

must collide at velocities corresponding to an energy of about 10 kev or

higher before the nuclear energy deposition is greater than or equal to the

energy loss by radiation. It would be no trick at all to obtain such
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velocities in a Van deGraaff accelerator. What makes Project Sherwood so

difficult is the fact that it is necessary to contain a gas which has

particles of this velocity distributed randomly in directions. The recogni

tion of this requirement is made clear from a comparison of the effective

cross section for the coulomb scattering of a particle through 90 deg

with the cross section for a nuclear reaction. An expression for the coulomb

scattering due to multiple small angle collisions is derived directly below.

This cross section is considerably larger than the cross section for scat

tering through this angle by a single coulomb scattering. The reason for

this is the highly forward nature of the angular distribution.

Consider a particle of charge Zne and mass m .which passes a scat

tering center of charge z2e at an impact distance b. The particle feels a

4r

Fig. 2.2

deflecting force of magnitude z^e /b for a time of the order of 2b/v.

Hence, it suffers a momentum deflection of

A, , zlz2e2 2b 2zl22e2
A(mv) = — =

"b2 v bv

and a corresponding angular deflection

A(wr) 2ziz2e2
A e =
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This deflection angle is in the plane defined by the incident and scattered

directions. If the particle passes through a gas of density n, these de

flections are in random directions and hence A9 = 0. However, (^0)2 is

not zero and there is a random walk, in angle, away from the original entry

direction. The total square deflection in a distance X, is directly pro

portional to the number of scatterings and is given by the expression

max

(A&) = nX 2«b db

bmin

The upper limit on b recognizes the fact that electrostatic shielding

screens out the effect of charged particles beyond some maximum distance.

This is usually taken to be of the order of the Debye radius (some in

vestigators would argue for the interatomic distance) and has the value*

*max = /-^ (2-5)

The lower limit is taken to be the classical distance of closest approach

-.? 2
e^ mv

bmin 2

or

2

bmin = ^2 (2-6)
mv

*This relation is derived in Chap. IX (see Eq. (9.12).

V i- -^'-*A
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Now

.2

(S)2 .Sinxf^ m/^] (2.7)
mv / ( bmin

Thus the mean free path for a random walk scattering through an angle of

magnitude n/2 is

A-1 1 / «\
x90 deg = ~f To — (2M)

zlz2e2>l /bmax
8im !—7 ln 7mv*/ I bmin

An "effective cross section" for a 90-deg deflection by means of multiple

collisions can be defined in the usual manner

x90 deg -
nc390 deg

Hence

«» ae8 -8, (^S mfb« | (2.9)
I mv2 / V bmin.

It is found that

^ pS* |~ 10 or 20 (2.10)
\bmin

for most conditions of interest.

The reader should be cautioned that this is not a cross section in the

usual sense since there is not a linear relation between deflection angle and
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number of scattering centers but rather a square root dependence. The

quantity in Eq. (2.9) is a measure of the depth of penetration required

for a multiple scattering through an angle of magnitude x/2. If a particle

passes through a thickness which is 100 times greater, it does not suffer

100 deflections through 90 deg but only about 10 of these. Nevertheless,

Eq. (2.9) is a useful quantity in comparing the effects of coulomb and

nuclear collisions.

The cross section for single coulomb scattering is readily obtained

from the usual Rutherford formula. It is

2N2
^ ~ ,zlz2e
o = %

2
mv^

Hence, the multiple scattering exceeds single scattering by the factor

8 ^max/W-
An appropriate expression can now be obtained for the coulomb cross

section at 10 kev. Equation (2.9) may be rewritten by the use of Eq. (2.10)

as

^90 deg ^ 8<* \*—\ (2.11)

At kT = 10 kev, this becomes

10>^ . 80fl -Ml£J
9(10^ • 1.6 x10"12]

or

0*" ~ 58OO barns
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The corresponding nuclear cross section as has already been seen is of the

order of 0.01 to 1.0 barns. Hence, a hot ion will be deflected through

90 deg hundreds of times before it makes a single nuclear collision. It is

this consideration which indicates why one cannot operate a thermonuclear

reactor by simply crossing beams of high energy charged particles. All

that would happen would be the loss of particles from the beam by scatter

ing. Those few reactions which occur would not compensate for the energy

put into the beams. Incidentally, there are other good reasons why such

a technique cannot work, such as low density and space charge, but the

dominance of the coulomb scattering is in itself perhaps the most important

objection.

Electron Temperature and Cold Targets

It has often been suggested that an appreciable reaction rate might

be obtained by firing a beam of hot deuterons into a solid deuterium

target. In this case the coulomb scattering in itself would not result in

loss of the incident particle since the solid is a dense material. However,

the stumbling block in this technique is the energy loss to the electrons

through elastic coulomb scattering. This maybe estimated as follows:

First, the energy which an ion may lose in a collision with a cold

electron is limited to the energy available in the center-of-mass system.

This is

EcM = \ mvion

since the reduced mass is = m and the relative velocity is that of the
m + M

ion alone (cold electron). Hence
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EcM =±1 Mvfons -1 E.on (2.12)

and thus only the fraction m/M of the ion energy may be lost. The ion will

lose an amount of energy of this order of magnitude in a single collision.

Next, the cross section for coulomb scattering by hot ions on cold

electrons is

2\2 / n2ed /M
s- = =2- i " Ih; • z (2-13)kT/ m,

Hence, the coulomb cross section is larger than that for collision with a

hot electron or ion by the factor (M/m)2. It has already been shown that

this cross section for single scattering is of the order of 58OO/8O = 73

barns at 10 kev. Hence, the effective cross section in this case is

(since M/m = 36OO)

<TQ ^ (3600)2 (73 barns)

1 ,^-J_T

cm= 1 x 10_15 —2

The cross section for a D-D reaction is of the order of 10 millibarns,

Hence

^ - IxlO11
^uc

and the particle will scatter the electrons a total of 1011 times before

I
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a nuclear reaction occurs. The coulomb energy loss per nuclear reaction is

then, by the use of Eq. (2.12)

* 1-1011 -i— E. t 3x 107 E,
3600 10ns ion

7
Hence, over 10 ions will lose all of their energy by coulomb collisions

before a nuclear reaction occurs. This energy input goes into heating of

the electron gas and no appreciable nuclear return results.

It should be noted that energy loss through multiple small-angle

scattering must be added to the above estimate. The estimate just given

will certainly be conservative since as the particles' energy decreases the

coulomb cross section increases strongly while the nuclear reaction cross

section decreases even more violently.

The required conditions for a feasible CTR have now been delimited

to the following extent. A way must be found of containing a hot gas of

random particles at a temperature of 10 deg. This gas will clearly con

sist of deuterium ions and electrons and will certainly be completely

ionized.

o

How can one hope to contain a plasma at 10 °K? It is obvious that

material walls will not succeed because (l) they will probably melt and

(2) during the melting or sputtering high z components will be added to the

gas. As a result of the enormous bremsstrahlung (^ 7?) which would result

the gas would be quickly cooled down and shut itself off. One's thoughts

turn immediately to fields, and of these the only two which seem to be

reasonable are electric and magnetic fields. It appears that electric fields



will not be successful since a field which contains particles of one charge

will not contain particles of the other type. A magnetic field seems to

be the most obvious possibility, and in fact, the remainder of these lectures

are essentially concerned with the problem of how to use a magnetic field

to create a feasible controlled thermonuclear reactor.

Magnetic Field and Particle Density

The general force equation for a plasma in a magnetic field may be

written in the following form:

£ 2lL + ^p = iXB+fE+Fext (2.14)
CLXf

Here all the properties refer to the averaged (or macroscopic) properties of

the plasma. Thus v is the average mass velocity, P the pressure, p the
—* —> ->

density, / the current, B the magnetic field, 6 the charge density, E the

electric field, and F any other external force which may be imposed. This

equation is exact except for the use of the pressure P. In the more general

case, this would be replaced by a stress tensor. In steady state, with no

electric or external fields present, Eq. (2.14) reduces to the following

form:

-> ->

^p = y xb (2.15)

Now, by Maxwell's equation,

curl B = 4it J (2.16)
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Substituting this in Eq. (2.15), there results

or V p +

-? -?

VP = — curl B x B
4*

1!

8*,

1_

4*

4*

+ (B-V )B
2

(b.\7)b

In a uniform field the term on the right-hand side vanishes and then

P + — = constant

8*

(2.17)

(2.18)

If the gas is entirely contained by the magnetic field, the pressure

drops to zero at the outside. Denoting the outside by the subscript zero

and the center of the plasma by subscript i, Eq. (2.18) becomes

pi +

or

B,

8n

8*

8jt

hi
8jt

The maximum possible value of P. which can be supported by an external

magnetic field of strength BQ is obtained by setting B^ = 0. Then

max

8*

(2.19)

(2.20)
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For the purposes of these lectures, a typical field strength of 20

kilogauss will be assumed. Some of the proposed Sherwood devices have

larger fields (50 kilogauss); however, at this point one begins to run into

unusual problems of internal stress and fabrication. Assuming B0 = 20

kilogauss,

Pi = 15 atm.

At a temperature of 10 °K, this corresponds to a particle density

n = 1015 particles/cc

Thus, one will be dealing with a gas at a particle density which would

normally be considered a good vacuum. However, the specific reaction rate

is anything but that for a vacuum. The value for a D-T system may be easily

obtained,

P=^ (dv") E

= (lO^ftlcr16) ^ (1.6 x10"13) watts/cc

= 70 watts/cc

and turns out to be the usual order of magnitude found in conventional power

plants.

Containment Time

The final basic parameter which is needed is an estimate of a reason

able time scale. So far it has been seen that it is necessary to contain
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a hot random plasma in a magnetic field of about 20 kilogauss with a particle

15 l
density of about 10 cc and with an effective pressure of about 15 atm.

How long must this system be held together? One would like to hold it

long enough for most particles to undergo a nuclear reaction. This interval

is the nuclear reaction time calculated as follows:

t _ —_ _ _ 10 sec^ D_T

n 0v 1015 10"16

1015 10"18
= 1000 sec, D-D (2.21)

However, the actual containment time need not be this long. Since the

energy release per reaction is of the order of several Mev while the thermal

energy is about 10 kev, one need burn only about one particle in a hundred

"to make money," so to speak. A reasonable time that a system must be

held together is then given by the following two numbers:

t ^ — sec, D-T
10

^ 10 sec, D-D (2.22)

To sum up, then, the following typical conditions seem to be necessary

for a controlled thermonuclear reactor.

kT = 10 kev (T = 10 °K)

(2.23)



III. SOME PROPERTIES OF A UNIFORM MAGNETIC FIELD

The previous two lectures have derived some of the basic parameters

for a controlled thermonuclear reactor and have indicated that a magnetic

field is a promising medium for use in such a gadget. In this lecture

consideration will be given to the motion of a gas of charged particles

in a uniform magnetic field. Attention will be centered on the components

of the motion in the plane perpendicular to the magnetic field. The motion

in the field direction itself is unaffected by the presence of the magnetic

field and will not be considered until the following lecture.

Particle Orbits in a Uniform Field

The equation of motion of a charged particle in a uniform magnetic

field, B, is given by Eq. (3.1)> where F is any external force which may be

applied to the particle.

m U = - vxB+Fe (3.1)
dt c e

It is clear that the motion in the field direction is the same as it would

be in the absence of the magnetic field. In the x and y directions Eq. (3-1)

takes the forms

Ait

(3.2a)

(3.2b)

where B has been assumed in the positive z-direction. These equations can

be solved quite readily for vx to yield the following result:
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dvx
m =

dt

e

c
V +Fx

dv^
m — =

dt

e

c
VXB +Fy

m •:.:&
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= (») -WvXT-i (3.3)
dt^ / m

where

In the absence of any external force Eq. (3.3) reduces to a linear

homogeneous equation. The solution is periodic in time and the motion of the

particle is in a closed circle with an angular frequency given by (A. The

corresponding radius of the circle is then

r = I = 2£I (3.5)
Oi eB

where v = Ivyf + v^ is the magnitude of the velocity in the plane

perpendicular to the field. It is useful to remember that a 20-kv deuteron

has a radius of 0.23 cm in a magnetic field of Kr gauss.

In the presence of an external force, Eq. (3.3) is now an inhomogeneous

linear differential equation. The most general solution consists of the

solutions of the homogeneous part of this equation plus any particular

solution of the entire equation. The previous discussion has shown that the

solution of the homogeneous terms is a periodic motion in a closed circle.

A particular solution is then found immediately by assuming vx to be a con

stant in time. The result is

v _ „ periodic Fy
vx ~ vx + -77

Similarly, one could have solved Eqs. (3.2) for vy rather than vx and pro-

ceded as above. The result in this case is
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vv = vPeriodic _?x_
* y m6J

In vector notation, the over-all motion can be written as a circular motion

superimposed on a uniform drift velocity Vq having the form:

~* c F x B ,_ „
= (3.6)

eB2

The resultant drift is at right angles to both the impressed force and

the magnetic field direction. Note that electrons and ions will drift in

opposite directions if the external force is independent of the charge

(e.g: gravitational or centrifugal forces). However, an electric field will

produce motion in the same direction for both particles. In this case
—? -9

F = eE and then

-? —*

c E x B , .
vD = —;— (3-7)

Figure 3-1 illustrates in a qualitative fashion the mechanism by which

a particle drifts across a field at right angles to both the field and the

applied force. Note that the particle speeds up somewhat when moving in the

direction of the applied force in region 1. This added velocity produces an

increased coasting distance in the direction of F x B (region 2) before the

particle is turned in the upward direction. In region 3> the particle is

slowed somewhat by the applied force and does not coast quite as far on the

top swing (region 4). Hence a net walk results in the direction of F x B.
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<8> H

•£ positive

Fig. 3.1

Diffusion Time Across a Magnetic Field

The results of the previous paragraph have shown that in the absence

of an external field and in the absence of collisions, a particle is com

pletely confined by a magnetic field in a circular orbit. When collisions

are taken into account, however, the particle begins to drift across the

magnetic field by virtue of random collisions with other particles which

shift Its orbit in a discontinuous fashion whenever a collision occurs.

The shift of the guiding center of a particle's orbit which results from a

collision is illustrated in Fig. 3.2. Note that the myirtinmn shift which

Old guiding
center

New guiding
center

Fig. 3*2

can occur is by a distance 2 rQ, where rQ is the Larmor radius. This

collision drift is a purely random phenomenon; however, if the ion density
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is not uniform in space, there will be a net transport of particles from

the region of high density to the regions of low density. The phenomenon is

entirely analogous to ordinary diffusion and is proportional to the density

gradient. The effective diffusion coefficient may be obtained by the fol

lowing simple argument. A rigorous derivation is available but the final

result is the same.

Consider the motion of an ion in a gas composed of equal numbers of

electrons and ions in thermal equilibrium with each other. It is assumed

that the density gradient of scattering centers is in the x-direction as

sketched in Fig. 3-3. Owing to repeated collisions, the particle

® 3

£ positive

experiences an effective resistive force in its orbit which must be pro

portional to the frequency of collisions and the average momentum loss per

collision. This effective resistive force can be written as

FD = - I • Ap ' ndv (3.8)
K V

4. S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform
Gases, Cambridge University Press (1952).
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where the average momentum loss is denoted by ,Ap and the frequency of

collisions is given by nov where n is the density of scattering centers and

o""the collision cross section.

It is clear that the net force in the x-direction averages to zero

since the densities in regions 2 and 4 of the orbit are identical. However,

the forces in the y-direction are not equal because of the difference in

density between regions 1 and 3. The net unbalanced force can be written as

Fy = -ov(Ap) n* - n-.

= dv(Ap) 3* r0 (3-9)
dx

where r0 is the ion Larmor radius. By use of Eq. (3-5)> this becomes

=• o"c ,A N / 2 \ dnFy = — (Ap) • (mv ) —
•> eB dx

P 2where M is the ion mass. In thermal equilibrium Mvc = mve where m is the

electron mass and ve the electron velocity. Hence

tT ^e2 IA N dn
Fy = — <**) -d7

where 63 is the electron Larmor frequency.

The average momentum loss in an ion-electron collision is mve while

it is Mv in an ion-ion collision. It can be shown (see Chap. LX and Ref. 50)

that like particle collisions do not produce a net diffusion in first order.

However, ion-electron collisions do contribute. Thus Ap = mve in this case.

Hence
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~ ^ve5 dn
F.

y /cW dx

(3.10)
mve2 dn
n|o3/r ^

r "1 i
since the mean free path X= [n<5] and the average collision time of the

electron X - \/ve.

In the first part of this chapter, it was demonstrated that an external

force produced a net particle drift at right angles to both the impressed

force and the magnetic field. This drift velocity is obtained by substituting

Eq. (3-10) in Eq. (3.6). The result is

v = 2- ^ 3*
X eB njo/r dx

or

^ve dn

^ = (oyrf ta (5,11)

This result may be written in a more familiar form by recalling that the

usual kinetic theory result for the diffusion coefficient in the absence of

a magnetic field has the value Xv/3. Hence

nv
x

dn

(«r)2 dx
(3.12)

where D0 (=Xv/3) is the diffusion coefficient in the absence of a magnetic

field. Finally, Eq. (3.12) can be written in a form which is valid even

when B = 0 by a simple change, as follows:



nv.
Do dn

1+(O2 ta
(3.13)

Despite the crudeness of this derivation, Eq. (3-13) is actually a valid

result. In most applications, however, in these lectures the inclusion of

2
the factor of unity in the denominator is a luxury since (gjt) is enormously

greater than one.

Equation (3-13) may now be used to estimate the diffusion time of a

particle across a magnetic field. This estimate will be based on the standard

conditions listed at the end of Chap. II. First of all

o) = eB = (4.8 x10-10)(2 xleft) = 3>5 x10H sec-l
(9.1 x 10"28)(3 x 1010)

since the standard field strength is 20 kg. Similarly

1^1 5
X = — = = = 1.7 x KT cm

ncr io15 (5.8 x 10-21)

since n = 10 5 and <f = 58OO barns for a large angle coulomb scattering.

Finally, the velocity of an electron at 10 kev is:

v = 7.4 x 109 cm/sec

Hence

T = X = 1.7 x105 = 2>5 x10-5 gec
v 7.4 x 109

and

Of = 8 x 10
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This bears out the statement made above that cot is usually very large com

pared to unity.

Assume now that a plasma is contained by a magnetic field in a cylinder

of radius J and that the density falls off linearly from the center to the

value zero at the edge. In this case dn/dx = n/J and Eq. (3-13) may be

written as

nvx
Xv n

(cJT)2 1

Hence

vx
X.v _ (1.7 x 105)(7.4 x 109)

~>

V?fX (8xl06)2J

20
cm/sec

= JL

The diffusion time across the tube is then

J ftn = ~— = <L— sec
vx 20

It is clear that a tube of radius 50 cm would contain the particles for times

of the order of 100 sec. This is entirely sufficient since the required

burnup times are of the order of 0.1 to 10 sec. In addition, the diffusion

time is proportional to B2. Hence, amoderate increase in the field strength

would rapidly improve the situation.
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Thermal Conductivity

The usual kinetic theory result for energy transfer by thermal conduction

is

E = -K — ergs/cm2/sec (3.14)

where K = l/2 nk\v. In the presence of a magnetic field this result is

modified in the same fashion as the diffusion coefficient. Equation (3.14)

remains unchanged; however, the new definition of K is:

1/2 nkXv
K = -1 ~ (3.15)

i + (uvr

The rate of loss of energy per unit volume due to thermal conduction may

be obtained by taking the space derivative of Eq. (3.14). The result is

dE d2T
—- = - K —;
dx dx'

a _ u.rj a.-x

•cond ~ J„ = " K T3 (3.16)

Assume that the temperature falls parabolically from a central value Tc to

a value T0 at the outside wall, located a distance-Z from the center. Then

x2
x = Tc ~ C^c " T0J Y2"

and

dgT = 2(TC -Tp)
dx2 J2

Inserting this expression in Eq. (3-l6), the power loss due to conduction

becomes:
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(Tc - TQ)
cond ~ Qn

nkX.v(Tc - T0)

"[i ♦ ("r)2jj2
The parameters have the values corresponding to the "standard" conditions of

the plasma and have been evaluated in the previous section. Hence

p _ (10^)(1.38 x10~l6)(l.7 x10^)(7.4 x109)(108)
cond ~ , n 2

(8x \&fJL

where it has been assumed that T - T = 10 °K. The result is

p 2.7 x108 , .Pcond = J2~ erSs/cc/sec

If a tube radius of 50 cm is assumed, the power lost by thermal conduction is

of the order of 0.01 watts/cc. This is to be compared with a nuclear energy

production of the order of 70 watts/cc, as derived in the previous chapter.

It is clear that the thermal conduction can be much smaller than the nuclear

energy generation and that the main mechanism of energy drain from the system

will be by means of gamma radiation as has been assumed earlier.

From the results of this chapter, it would appear that a magnetic field

is entirely satisfactory, both from the point of view of confinement of

particles and from the point of view of conduction of heat, as far as traverse

motion is concerned. The key problem — the effect of motion in the direction

of the field lines — has not yet been disguised. In this direction, both

the particle motion and heat transfer are unaffected by the presence of the

field. This problem will be taken up in the next lecture.



IV. THE PROBLEM OF THE ENDS

One of the most obvious ways of eliminating the ends of a magnetic

field is to wrap the field lines around into a toroidal shape. However,

even before this geometry is considered, the possibility of simply using

a long solenoid should be considered. These two geometries are considered

in the next two sections.

Solenoid Length

It is always possible to conceive of a solenoid which is so long that

leakage of particles and heat transfer to the ends becomes negligible. An

estimate of the required length is easily obtained. It has been demonstrated

that the diffusion and heat transfer coefficients in the direction of the

field lines are larger by a factor of (««/^2 than the corresponding coef

ficients at right angles to the field direction. Since the diffusion time
2

and heat transfer losses vary as JL , it is clear that a solenoid whose

length is larger than its radius by a factor of wr will have equal diffusion

and heat conduction losses in the two directions. Thus, the necessary

length L is

l > {»r)j?

^ 8x 106 J

Even if the tube radius is only 5 cm, which is only borderline as far as

containment time is concerned, the required length becomes

L ^- 400 km

Such dimensions seem outside the realm of feasible devices, especially when

it is realized that the volume must be highly evacuated and filled with a

magnetic field of 20 kilogauss or larger.
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The Torus: Particle Drift in a Inhomogeneous Field

The idea of eliminating the ends of a magnetic field by wrapping it

into a torus is a rather obvious one and was proposed back in 1945 by

Robert R. Wilson. At first glance, this trick appears to eliminate con

tainment problems. The trouble is that the magnetic field in a toroidal

geometry is necessarily nonuniform, as is illustrated in Fig. 4.1. By

Fig. 4.1

Toroidal Field Produced by Solenoidal Windings

Maxwell's equations, the integral of the curl H over the area contained in

side the dotted line can be written as

I(V xH)»dA = 0 H'dji = hnj'dA = constant

Hence

to H'dx = 2srH = constant

and

H = constant/r (4.1)

Thus the field in a torus is nonuniform and falls off as the reciprocal

power of the radius r. Unfortunately, a charged particle in a nonuniform



magnetic field experiences a drift in a direction which is at right angles

to both the field gradient and the field direction itself. Fermi called

attention to the existence of this phenomenon (which had been known to

astrophysicists for some time) immediately after Wilson's suggestion, and

showed that the resultant drift rates were enormously faster than could be

tolerated. To demonstrate this fact, it is necessary to derive an expres

sion for the drift rate in an inhomogeneous field.

It will be assumed in this derivation that the magnetic field is

entirely in the positive z-direction and varies in magnitude in the x-

direction only. The equations of motion of a charged particle in the x-y

plane take the form:

m ^L . SL VyH(x) (4.2a)
dt c J

m p. = . 2. Vxh(x) (4.2b)
dt c x

It is convenient to define a new coordinate s, defined by the relation
t

s =

mc

o

5^1 dt (4.3)

Note that x is an implicit function of t. Note further that the integral

in Eq. (4.3) cannot be evaluated, in general, since to do so would require

knowledge of the particle's orbit, which is1 as yet unknown. Nevertheless,

this change of variable makes possible a series solution for the motion.

By means of Eq. (4.3), we may rewrite Eq. (4.2) as follows:

2S. = vv (kM)
ds y

ds WgH



These equations may be solved immediately to yield:

vx * A sin s +B cos s (4.5a)

v = A cos s - B sin s (4.5b)

The constants may be immediately identified as the initial values of the

components of the velocity at t = 0. Thus, since when t = 0, s = 0, one

has

B = vxo

A = VyQ

Furthermore, by squaring and adding Eq. (4.5) it is clear that

vx2 +vy2 s. v±2 = A2 +B2 - vxo2 +vyo2 = v^2 (4.6)

Hence, the scalar velocity, or what is the same thing, the energy, is a

constant of the motion. This result is obvious since a magnetic field,

for which the force is always at right angles to the particle velocity, can

do no work on the particle.

Further progress can now be made by assuming that the magnetic field

does not vary appreciably in magnitude in a distance of the order of the

Larmor radius. In that case, it is permissible to expand the expression

for the field strength in a power series in the field gradient,

H(x) =H(o)+ffj x.+ (4.7)

and keep only the lowest terms. By use of Eq. (4.7), Eq. (4.3) may be

rewritten as



^ eH(o) e . . p
5 " "mT" *+m7 H'(°) \ xdt + •'• <*-8)

o

The superscript prime on H denotes a spatial derivative of H.

Using Eq. (4.8), Eq. (4.5b) may be rewritten as

t

v = A cos
v

>^£lt+5SlMfxdtl -Bsinf^i£lt+eHlipirxdt
mc mc \ ( | mc mc J <*-9)

Now

Ssin 0+xJ = sine +xcos0 +....

/cos 6 +xJ = cos9 -xsine +.... (4.10)
where the omitted terms are of higher order in x. Hence Eq. (4.9) may be

rewritten as:

vy^A \cos£)0t -sin(JQt (fc)0)« \xdtt -<B sin^t +cos6)0t (t)0)» xdtf (4.11)

where QQ = eH(o)/mc and (^0)' represents the same expression with H(o) re

placed by H'(o).

For the expression to be evaluated consistently, the value of x used

in the integral should be of zero order in an expansion in powers of the

field gradients. This result is easily obtained from the zero order ex

pansion of Eq. (4.5a). Thus

vx = A sin^t + B cos^0t

.'. x = | vxdt - - L. cos^t +J- sim)0t +c (4.12)
o o
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where c is the constant of integration. The origin of coordinates about

which the field expansion has been made may always be chosen so that

x = - — at t = 0

^o

In this case c = 0 and

Next,

x = _ A_ cosft\ t +1_ sin(j| t (4.13)
61o Wo

dt = - -A_ sin-iit - -2- cosd)Qt + -5- (4.14)0)2 o , 2 o 2
o o o

Substituting this expression in Eq. (4.11), one obtains

2 2
v = Acosk)0t - B sin6)0t + —^ (o)Q)' sin^t +5-~ (o)0)' cos^t

% ^o

2AB AB \ b2+T~2. too)' sin^t cos6J0t - jjfefaio)' sinJQt - J^K.)' cos^0t (4.15)
o 00

After averaging over time, the result becomes

v; = *L±it &Qy = v™ E (4.16)
2^2 2CH2 dx t

Similarly, the first order result for vx may be shown to be entirely
periodic in time, and thus

vx = 0 (4.17)

In vector terms, these two results. mayvbe*written as
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NX^c
VD • "T-^~ VH xH (4.18)

This proof may be pushed even further, although the details will not

be given here, to show that no further drifts occur even if second deriva

tives of the field magnitude in the x- and y-directions are considered.

One final drift remains. The coordinate system has been chosen so

that the z-axis is in the direction of the magnetic field. This implies

dH
that — = 0. However, the second derivative may not vanish and to be

uZ
o

consistent with the results above, the possible influence of such a term

must be considered. The effect of this term is found rather easily. The

second derivative in z corresponds to a curvature of the magnetic field

lines. A particle moving along a curved path experiences a centrifugal force

which acts in every way as an actual external force does. An external force

produces a net drift as has already been shown in Eq. (3.6). Thus,

Fcentri = ~ r ^'^

where r is a unit vector in the direction of curvature of the field. The

radius of curvature is R and vit is the particle velocity along the field

lines. Substituting this expression in Eq. (3.6), one has

2
cmv _^ _^

vn = —•— r x H (4.20)
" eH^R

Equations (4.18) and (4.20) constitute the expression for the drift velocities

of a particle in an inhomogeneous magnetic field.
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Before applying these equations to the calculation of the drift

velocities in a torus, it may be profitable to show that the drift velocities

just derived can be understood on the basis of a qualitative picture similar

to that presented in Chapter 3 for the drifts due to an external force. Con

sider a particle moving in an inhomogeneous field as sketched in Fig. 4.2.

strong field (5£) H
^H e positive

-en------
weak field -Ftfxtf

Fig. 4.2

Note that the radius of curvature is smaller in the strong field region

and larger in the weak field region. The resultant drift is obvious.

Immediate use may be made of these results to evaluate the drift

velocity in a torus. It has been demonstrated above that H = a/R where

a is a constant and R is measured from the center of curvature of the

torus. Hence

a -*VH - - % r
H -*

= - — r

R

Thus, by Eqs. (4.18) and (4.20),

_ feil^i'rxH (4.21)
VD

H2!2e^R



This result may be put in more convenient form by recalling that for an

isotropic gas kT =mvx2 =mvy2 -mvz . Hence, mv^ =2kT and mv„ =kT.
Thus

VD
2ckT

eHR

(4.22)

Note that the direction of drift is up out of the plane of the torus for

one sign of the charge and in the opposite direction for the other. The

magnitude of the drift is readily estimated using the standard conditions.

2(3 x 1010)(1.6 x 1Q-12)(10^)
° (4.8 x10-10)(2 xlO^R

Q

= 10°/R cm/sec.
The drift time across the torus tube of radius r is then

rRtr, = -g sec

Assuming a tube radius of 100 cm, the drift time is

tD = R x 10"° sec

Hence> it would require a torus having a radius of curvature of at least

1 km to obtain an average containment time of 0.1 sec. Such a device

seems impractical.

As a final blow, it should be noted that if one attempts to correct

for the VH drift by the application of an electric field in the direction

perpendicular to the plane of the torus, there is then a drift at right

angles to E and H which removes particles to the outside walls.
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As a historical note, it should be recorded that almost all of the

items presented in the lectures up to this point were considered by a group

at Los Alamos in 1945 and 1946. Soon after the torus was shown to be

impractical, however, further work on the subject ceased, apparently as a

result of the return of most of the members to the universities. Project

Sherwood was born in 1951 as a result of two different suggestions for

circumventing the containment problem which were contributed by L. Spitzer

and J. L. Tuck. The details of these two proposals, as well as those of a

third proposal made somewhat later by R. F. Post, will be presented in the

next three lectures. Before turning to these, it may be interesting to

consider some alternative proposals for achieving thermonuclear reactions

which have arisen through the years and which have been uniformly unsuc

cessful.

Alternate Schemes

a. Sparks. A frequent proposal is that a gas be heated to thermo

nuclear temperatures by means of a high current transient discharge

through it. The chief difficulties in this scheme are first, the inadequate

containment time and second, the fact that this type of heating raises

the electron temperature quickly but not the deuterons. The energy

transfer rate from the electrons to the ions is rather slow and the system

disperses long before the deuteron temperature has risen appreciably.

An interesting point in this regard is the fact that the famous (or

infamous) project of R. Richter in Argentina was an attempt to make use

of high current discharges in lithium deuteride gas. The avowed scheme

was to make use of the tail of the Maxwell distribution to obtain reactions.
m •••.^.•sf.
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The previous lectures have already shown how rapidly the reaction rate

falls with temperature and how hopeless this approach is at the tempera

tures which could be achieved in this fashion.

b. Electrically Exploded Wires. This proposal has all the dif

ficulties of the preceding one. In addition, the addition of high z com

ponents to the gas results in a rapid cooling owing to the increased

bremsstrahlung.

c. Mechanical Shock Heating. Imploding charges and other such

schemes will impart high velocities to the deuterons. However, when it

is recognized that the thermal velocities corresponding to 10 °K are

in the neighborhood of 10 cm/sec, it seems unlikely that such devices will

be successful.

'W'Sa



V. THE STELLARATOR

In 1951, Lyman Spitzer proposed5 a means of avoiding the difficulties of

the torus. The essential feature of his suggestion is that the torus be twist

ed once through an angle of 180 deg. The resultant geometry is that of a

figure eight or pretzel as shown in Fig. 5.1. The advantage of this device

(which has been given the name of "Stellarator") is that the ^H drifts are in

opposite directions in the two end loops. Hence it is conceivable that a

particle which is moving around the device rapidly will have a net drift

velocity which tends to zero. This suggestion has since blossomed into a

large research effort located at Princeton University under the general direc

tion of L. Spitzer and having the title of Project Matterhorn.

The actual devices constructed at Project Matterhorn up to this time have

been relatively small in size and would require considerable scale-up before

the theoretical nuclear energy output would begin to exceed the energy put

into the system. However, a preliminary design study of a conceivable power-

producer has been completed" and the device has been named the "Model D"

Stellarator. The performance characteristics of a highly simplified Stel

larator will be analyzed in the first parts of this chapter. In order that

numerical estimates be most meaningful, the relevant dimensions which will be

used will be approximately those of the proposed Model-D device.

Properties of an Untilted Stellarator

It will be seen in the next section that there is some incentive for

having an angle of twist of the Stellarator which is appreciably less than

5. L. Spitzer, A Proposed Stellarator, NYO-993 (PM-S-l) (July 23, 1951).
6. L. Spitzer et al, Problems of the Stellarator as a Useful Power Source,

NYO-6047 (Aug. 1, 1954).
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180 deg. For the moment, however, it will be assumed that the angle is 180

deg and that the end loops lie in parallel planes. In that case, a top view

of the device is shown in Fig. 5.1.

Fig. 5.1. Schematic of a Stellarator

and a conceivable side view is given in Fig. 5.2..

C

D

Fig. 5.2. Side View of a Stellarator
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The dimensions which will be assumed are listed as follows:

L = 50 meters

R = 8.5 meters

r = 65 cm

H = 30 Kg

kT = 10 kev (T =108 °K)

Gas Composition = 50% deuterium

50$ tritium

nsity at center
*VJ 1015 cm"5

The first point to note about the Stellarator is the fact that the particle

drifts in the opposite end loops of the device do not cancel exactly. Hence,

even if a particle does revolve around the tube rapidly enough so that it does

not drift to the top in a single transit of an end loop, there will be a net

unbalanced drift and the particle eventually escapes from the tube. The

effect is illustrated in Fig. 5.3 where the dotted line represents the path

of a particle moving along a single magnetic field line.

Fig. 5.3. Trace of a Single Magnetic Line in the Stellarator
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Note that if the particle is near the outside of one end loop it is then on the

inside edge of the other loop. Although the drift velocities are the same in

each loop, the time spent in the right hand loop is larger than in the left

hand loop. Hence, a net drift occurs which may be calculated as follows.

If a particle has a velocity v along a field line in the Stellarator,

it will spend a time t in the traversal of a single end loop given by

rt R , .
t = (5-2)

where R is the radius of curvature Of the field line in the end loop. (For

simplicity, the subtended angle of the end loop is taken to be precisely it.)

The total distance drifted in "tjhls line is then given by

4* = ^D — (5-3)
v«

where vD has the value given by Eq. (4.22). After a traversal of both end

loops, the net distance of drift is now

Ax « vD ^ (5.4)

where AR is the difference in radii of curvature of the field line in the

two end loops. The difference in radii of curvature is of the order of the

vacuum tube radius. Hence, the average value of the net drift in a single

revolution around the Stellarator is

2x - vD i£ (5.5)
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Finally, the time spent in a single revolution around the tube is

_ 2(L + itR) , '
tR = *- . (5.6)

Hence the effective drift velocity becomes

Ax _ „ itr
VD " - vd —" • (5-7)

tR 2(L + itR)

The net effect of the figure eight is to reduce the effective drift

velocity by a geometrical factor which is easily calculated using the standard

dimensions listed in Eq. (5-1). The result is

^ Vrj

*D =^ • (5-8)

The drift velocity, vD, has already been calculated in the previous chapter

|see paragraph following Eq. (4.22)J for afield strength of 20 kg. Upon
changing this to the value relevant to the "standard" field of 30 kg, this

result becomes

vD - 6-7 xlo7 cm/sec. (5.9)
R

The drift time across a torus with a radius of curvature equal to that of

the end loops of the Stellarator would then be

t - L_ - (°5?(850) - .85 xio-3 secs. (5.10)
VD 6.7 x 10?

The change to a figure eight geometry results in an additional savings of a

factor of 75, as was shown in Eg. (5-8). Hence, the average containment

time in the untilted Stellarator 3tH|||j$> the order of
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/-^

ts = 75t = .06 sees. (5.1l)

This new containment time is a considerable improvement over previous

estimates and is almost in the range required for a feasible gadget. However,

it is uncomfortably small and it is of great interest to investigate ways

of lengthening this period. A method of improving the containment is dis

cussed further below and in the next section.

There is an extremely important point which the reader should be aware

of. The time estimate above applies only to those particles which are re

volving around the tube sufficiently fast so that they do not drift to the

tube wall during a single passage through an end loop. If a particle has a

velocity v„ around the Stellarator which is below some critical value, it

will drift out of the tube at the end loops in a time of the order of one

millisecond [see Eq. (5-10)J . Of course, all those particles having a
vjl ^ v* > (where v* denotes the critical velocity) will be lost from the

tube almost immediately after startup. The resultant population in velocity

space is then depleted in those particles having a y• <. v* . This initial

loss is not serious in itself. What is serious is the fact that there then

exists a steady leak in velocity space by means of which particles may

escape from the tube. Thus, even if a particle has a v which is initially

sufficiently large for containment, it may suffer an elastic collision with

another ion which results in a new v/(«£ v* . This type of leak may be

even more rapid than the loss rate due to unbalanced drifts in the end

loop, and will be calculated immediately below.
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A convenient representation of a particle's location in velocity space is

shown in Fig. 5*4.
^L

/ \ "\/ \ 1 ' \/ \ / < \
/ U i I
\ /
\ / \ V J
\ / \ J
\. / \ y

\/

\

Fig. 5-4

The diagram should really be thought of as three-dimensional. The abscissa

represents the component of a particle's velocity in the direction of the tube

axis. The ordinate, as well as a third axis at right angles to these two,

represents the velocity components in the other two directions. Assuming all

particles to have the same energy, it is clear that the resultant velocity

vectors must lie on a spherical surface around the origin (represented by the

circle in Fig. 5.4). The region of escape is then the annular surface within

the dotted lines.

Assume that a particle has an average probability P of ending up in the

escape annulus after a collision. Since the ion-ion collision rate in the

gas is |n2/2jo" v, the rate of loss of particles from the system by collision

becomes:

&& n —TOas - — OVP

dt 2
(5.12)

Here n is the total ion density, v the ion velocity, and o~the "cross section"

for elastic collision. The average containment time, tp, resulting from this

loss mechanism is then:
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n -^ n2

to ~ 2
ovP

or t m (5#15)
novF

The "cross section" which will be used in this estimate will be that correspond

ing to a 90 deg deflection as a result of small angle scatterings. This num

ber has already been derived in Chap. 2[see discussion following Eq. (2.11)

and has the value 58OO barns. Since n =1015 and v = 1.2 x 10 ,Eq. (5.13)

becomes

0 29 x 10
tc = —:—- sees. (5.14)

P

Only the quantity P remains to be determined. Since the small angle

collisions are in random directions, it should be possible to estimate P

crudely as the ratio of the area in the annular escape surface to the total

area of the sphere. This ratio is

P -_ SS_L|S . g (5.15)

where sin© = v*/v. Now, v* is fixed by the condition that the particle

drift a distance of the order of the tube radius in one transit through an

end loop. Hence

itR
vD — = r,

orbyEq. (4.22) & - ^ f = 2itckT (5>l6)
> v eHvr
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By Eqs. (5-9) and (5.l)> this quantity becomes

Hence, by Eq. (5.15)

and

3£ = it(6.7 x 107) ^ 1_
v (1.2 x 108)(65) 37

P = .027

tc = 0.1 sec. (5.17)

Comparison of Eqs. (5.1l) and (5.17) shows that the loss of particles due

to collision diffusion in velocity space is somewhat smaller than the loss rate

due to uncompensated drifts in the end loops. The limiting factor on contain

ment is the noncancelling drifts and it will pay to investigate methods of

improving this situation. A large improvement would clearly result if the

particle could be made to rotate gradually around the tube axis while perform

ing its revolution around the Stellarator. The terminology which is used here

is that due to L. Spitzer. Revolution will denote motion around the Stellerator

in the direction of the tube axis. Rotation will refer to a circular motion

about the tube axis. If such a rotation did occur it is clear that the uncan

celled drift in the end loops would gradually reverse its direction and tend to

move the particle in the opposite direction, (it is assumed, of course, that

the rotation rate is not so small that the particle will drift to the end

walls before the drift direction has reversed.) There is still a net over-all

drift away from the particle's original position, but it is now the result of

a series of random walks, where each random walk is of the order of magnitude

of the distance drifted before the direction reverses.
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Assume now that the rotation rate has been adjusted to be approximately

half the revolution rate, by some means as yet unspecified. This means that

the particle approximately reverses its direction after a single revolution

around the Stellarator. Hence, the individual random walks will be of the

order of the net uncancelled drift resulting from a single revolution. This

drift has already been calculated in Eq. (5.5). Denoting the individual

walk by J., one has

-^ - VD — • (5.18)
vll

The over-all drift, S, resulting from N revolutions around the Stellarator is

then

s2 = Ni2. (5.19)

Now in a time t, the number of revolutions is

\ t
* = ' (5.20)

2(L + itR)

Hence

2 ~> Y,l t f^'2
2(L +«R) \ vu J '

and the effective containment time for random walk across the tube of radius r

is

t 2(L +itR) /v„ \2 '
*» zr) (5-21)

This result is to be contrasted with the time required for drift across

the tube in the absence of any rotation. In this case, by Eq. (5.7),
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= L_ 2(L + itR)

VD ^D

(5-22)

Hence, the containment time has been lengthened as a result of rotation by

the factor

t JtV

ji

(5.23)
D

which has the numerical value, by Eq. (5.9), of

^R = (1.2 x 108)(850)
t it(6.7 x 107)

= 480. (5.24)

The containment time in a Stellarator, without rotation, has been derived

previously[Eq. (5.11)Jand shown to have the value 0.06 sec. Upon addition
of a rotation as described above, the new containment time becomes:

t = 29 sec. (5.25)

It is important to note that the actual containment time in the device

under investigation is not 29 sec but rather 0.1 sec as was shown in

Eq. (5.17). This loss rate is that due to collision diffusion in velocity

space. That is, the loss resulting when a particle acquires a low value of v(

after a collision and drifts to the wall of an end loop in one transit of that

loop. Previously, this loss rate was dominated by the uncancelled drift rate

which was 0.06 sec. The improvement by a factor of 480, due to rotation of

the plasma, resulted in a new drift rate of 29 sec. Hence, the dominant

factor is now the loss rate by collision diffusion in velocity space. A con

tainment time of 0.1 sec is barely sufficient for a D-T reactor. Any

St.; •!>
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improvement over this value would be very welcome, and in fact the section on

"Scallops" below indicates the extent to which the estimate of Eq. (5.17) may
be improved.

A second point which is of importance is the fact that the rotation rate

was chosen to be approximately half the revolution rate. It is clear that any

smaller rotation rate would result in a faster drift. This is because there

would be alonger uncancelled drift before the drift direction reversed. Hence,

each random walk is larger and the net drift larger. Similarly, an appreciably
faster rotation rate would destroy the correlation between a single transit of

the two end loops. The advantage of the near-cancellation of the individual

drifts in each end loop wouM be lost, and the random walk would now be of the

order of the drift in a single end loop. This drift has the value v^nR/v
D. ' 11

rather than the value vDitr/v as given in Eq. (5.5). The resultant contain

ment time would be reduced by the factor 2(R/r)2 which has the numerical value

of 340. Hence, the new containment time would be only slightly better than the

time in the absence of rotation, if the rotation rate is chosen too large.

To summarize, the discussion above has shown that the containment time

resulting from random drifts may be greatly increased by imparting a rotation

rate to the plasma which is approximately half the rate at which particles

revolve around the Stellarator. The derivation above has been highly simplified

and has ignored many important phenomena such as the effects of an exact integral

relation between the particle's revolution and rotation rates. L. Spitzer has

investigated these phenomena in detail7 and the reader is referred to this re
port for further details.

7. L. Spitzer, Particle Orbits in aIMUgUkt^ Stellarator, NYO-995 (PM-S-3)
\ Oct. 1, 1951). ^^"«^*^^^W*- ——
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Rotation and Tilting

Although a rotation of the plasma has been shown to be desirable, no

method of accomplishing this end has been mentioned so far. One obvious

scheme for producing a rotation is to impose a radial electric field on the

plasma. The resultant E x H drift is in the 0-direction with a velocity given

by Eq. (3.7). Thus

y H

Now, if the rotation rate is to be of the order of half the revolution rate,

ve = 1 Yn
2jt I 2 2(L + itR)

Hence

~ itr
V/3 = v,.

9 4(L + itR) "

Upon substitution of the standard dimensions, one has

^8•

Hence

or

v0 = it(65)(l.2 x 10°) ^ n o ,n6 /
N ^ —— = 0.8 x 10u cm/sec,

4[50 +«(8.5) 102

E, = (0.8 x1<)6)(3 x1Q») = 0#8 esu
3 x 1010

Ej. = 240 v/cm. (5.26)

While the necessary electric field is quite large, the magnitude itself is

not a formidable difficulty since potential differences of the order of kT

«e®*



i" 4 \(= 10 ev) can be maintained in a plasma. The more essential difficulty is

the fact that an electric field can not penetrate appreciably into the interior

of a highly ionized plasma. Most of the potential drop across a plasma occurs

in a narrow "sheath" region near the surface and no field is felt in the in

terior. The sheath thickness should normally be of the dimensions of the Larmor

radius of the ions, which is about 1 cm for the assumed conditions. Hence,

no beneficial rotation may be produced in the interior by this technique.

There is a second method which will produce an effective rotation of the

plasma. This method is to tilt the end loops relative to each other. If each

end loop has been tilted through an angle fl relative to the original plane of

the Stellarator, there will be an effective rotation of each magnetic line by

the angle ycoupon each complete revolution through the device. This effect is

demonstrated in Fig. 5«5 and 5*6.

Fig. 5.5. Top View of the Stellarator

Consider the four cross sections of the Stellarator denoted by a, &, 7,

and o. If these are viewed end on, the resulting spatial relations are as

shown in Fig. 5.6. Note that the plane of the 7-9i end loop is tilted through

an angle 0 to the horizontal and that the a-B end loop is tilted by the same



Fig. 5.6. End On View of the Stellarator

angle in the opposite direction. Consider a particle which starts out at

the point denoted by x in the a-plane. In moving around the end loop from

a to B, the particle reaches the position denoted by the x in the B-plane, and

which is found by reflecting the diagram about the axis denoted by (l) which is

perpendicular to the plane of the a-£ end loop. Next, the particle moves from

8 to 7 by means of a straight section. Its relative position must be exactly

the same in the 7-plane as it was in the B-plane and this is also shown by the

x in the 7-plane in Fig. 5.6. The transition from 7 to S occurs in the 7-0 end

loop and is found by reflection about axis (2) which is perpendicular to the

7-0 end loop. Finally, the particle returns to the a-plane by means of the other

straight section and its second intersection is denoted by the open circle in

the diagram. It is clear1 that the particle has rotated through some angle in

the process. The formal proof in the next paragraph shows that this angle

has the value &$.

Consider a vector which lies at an angle 0O from the x-axis, as illustrat

ed in Fig. 5.7. Suppose that this vector is reflected about an axis which is

itself at an angle a relative to the x-axis. The new vector which results from

this reflection is denoted by the dotted line in Fig. 5.7 and is clearly at



Fig. 5.7. Formal Proof of Rotation Angle

the angle 2a-0o from the x-axis. The entire operation may be written,

symbolically, as:

where R denotes the reflection operation. Now, if a second reflection about a

second axis which is at an angle 0 occurs, the final vector is easily-found.

Ci(2a-e0)| i(2B-2a+0o)
RB|e . r - e . (5.28)

Hence, the initial vector has been rotated through an angle given by 2(a - 0)

as aresuit of the two reflections. In the case of the Stellarator (see

Fig. 5-6),

a = 0 + -

B '-•*- d
2 '

and hence

2(a - b) = y/.

It has been shown above that the most desirable rotation rate would be

approximately half the revolution rate. This implies that it would be
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advisable to choose 40 - 180 deg and hence 0 ^ 45 deg. There are good

reasons, however, why the angle of tilt should not be chosen as a simple

integral divisor of 360 deg. Owing to inherent imperfections in the device,

and to the influence of the solenoidal currents in one section upon the magnetic

fields in another part of the Stellarator, it will not be true that a single

magnetic line maintains the same radial position in the tube after a single

revolution. However, it has just been shown that the primary motion of a mag

netic line after each revolution is rotational in nature. M. D. Kruskal has

shown, in this case, that if it takes N traversals of the Stellarator to produce

a return close to the original azimuthal angle, then the deviation in radius

after this time is

£r~ e"N.

Hence, there is a strong incentive to choose an odd angle of tilt. The tilt

chosen for Model D is stated to be about 40 deg, while that for a proposed

smaller scale device known as Model C has been listed more precisely as

48 deg 15 min. In addition, there is an experimental model under design,

Model A-2 (Etude), which will have a variable transform angle and which

should provide an experimental test of some of these considerations.

Convection Currents and "Scallops"

There is an inherent difficulty in the Stellarator which was recognized

by L. Spitzer quite early in the game. All the particles in a given end loop

have a simultaneous drift in the same direction, say the upward direction.

The great majority of these particles do not strike the walls in the end loop,

but rather proceed down both of the straight sections to the other end loop
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where they then drift in the downward direction. The result of these drifts

is a convection current in the Stellarator in which the current, in the upper

part of the straight sections is in one direction and that in the lower part

is in the opposite direction. This situation is sketched in Fig. 5.8. The

arrows denote the direction of current flow. As a result of these convection

53B

Fig. 5.8. Side View of a Straight Section

currents there will be a magnetic field produced in the straight section which

lies in the horizontal plane of the Stellarator and which points at right angles

to the axis of the straight section.

The bombined effect of this field due to the convection currents and the

magnetic field due to the solenoidal windings is a resultant field which is no

longer parallel to the axis of the straight section. Some of the magnetic

lines will now strike the wall of the straight section. To a certain extent,

this effect can be lived with. If only the outermost lines strike the wall,

the situation will not be serious, since particles which have reached these

outermost lines would have diffused to the walls in short order anyway. It

is clear that there is some reasonable limit to the magnitude of the convection
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currents which must be invoked. This in turn implies a limit on the particle

density in the Stellarator. This limit will be derived below by means of a

very crude argument.

Let J denote the magnitude of the total current in the upper part of

a straight section as well as that of the reversed current in the lower part.

The resultant magnetic field at right angles to the straight section is then

given by the approximate relation

„ ^ n ( 2S\

<~ 4j .
or Ho- " ~ (5-29)

where r is the tube radius. Now the total current moving along the upper

part of any given straight section must be equal to half the total current

drifting up in an end loop. This current, say J^Qop, is given by the

expression

JLOOP ^ (jcR)(2r)(2nevD/c) (5.30)

where R is the radius of curvature of the end loop, n the ion density, e the

electron charge and vD the drift velocity. Upon substituting the expression

for the drift velocity given in Eq. (4.22), Eq. (5.30) becomes,

~ 8itnkTr

LOOP = H *

Hence

j ~- 4itnkTr
H

, ~ l6imkT
and Hx = TSriLi-z* (5-31)fSMH



Now

P = 2nkT

since there are equal numbers of electrons and ions. Thus

E± ~> 8«P ,
H~ = JT • (5.32)

The ratio of the pressure in the center of a plasma to the magnetic

pressure at the outside, 8itP/H2, is very useful quantity in describing a

plasma and is customarily denoted by 0. With this definition, Eq. (5.32)

may be rewritten as

Hx ^
~ - B . (5.33)

The ratio of Hj_ to H represents the inclination of the resultant magnetic

field to the field in the presence of distorting convection currents. The de

pendence of this ratio on 0 is in complete agreement with this interpretation

since the distortion must vanish as the particle density, and hence the

convection current tends toward zero.

Suppose now that a given magnetic line is in the center of the tube at

the middle of a straight section. Owing to the distortion, this line will

have moved toward the tube wall in the horizontal plane after traversing 1/4

of the Stellarator, and the departure will be

Ar = r — .
2 H

This departure is the maximum which will occur, since by symmetry the distortion

will be in the opposite direction after the mid-point of the end loop. In
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order that the containment not be destroyed, it is clearly necessary that the

maximum radial departure be small compared to the tube radius. Hence,

At L + itR Hx-t- m — ^<cl
r 2r H

2r
0 <<L

L + itR

Q

L. Spitzer has performed a more elegant calculation of this quantity and obtains

the result given below:

0 <c± —£ . (5.34)
it(L + aR)

This limitation on the pressure is to be contrasted with that which fol

lows from the diamagnetic conditions alone. By Eq. (2.19)

(5-35)

On the other hand, inserting the standard values for the Stellarator from

Eq. (5.1) into Eq. (5.34), one has

P.<. -M5) -r i_.
it ("50 +it(8.5)l 102 50

Equation (5.34) represents a much more stringent condition on 0 than the

simple diamagnetic condition (note that this condition is valid only for an

uncurved magnetic field. It is possible for 0 to be somewhat larger than unity

in a curved field) given in Eq. (5-35). The effect of a condition such as

B~. L. Spitzer, Magnetic Fields and Particle Orbits in a High-Density Stel
larator, NYO-997 (PM-S-4)(Jan. 28, 1952), Eq. (35J.
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that of Eq. (5-34) upon the economics of the Stellarator is disasterous. For

example, if the inequality is satisfied by chosing 0 ~ io"3, the maximum

particle density which can be achieved for a field of 30 kg is then

n=1012 cm"3 rather than 1015 for 0 ^ 1. The specific power per unit

volume is reduced by 10° and the resultant energy production is far too small

to compensate for the resistive power put into the magnet coil windings.

This point will be seen more clearly at the end of this chapter.

If hope is to be held out for the ultimate success of the Stellarator as

an economical device, some way must be found to evade the limit on 0 set by

Eq. (5-34). L. Spitzer has proposed a means of doing this by replacing the

single end loop by a series of tube segments of alternating curvature. The

resulting arrangement is sketched in Fig. 5-9 and has a scalloped appearance.

Fig. 5.9. End Loop with Scallops

Hence, the name of "scallops" for this item. The essential point of this

geometry is the fact that the drift currents in alternate sections are in the

opposite directions. Hence, if the total drift currents in each section can

be made equal, the convective currents will tend to cancel within the end



-72-

loops and only a small remnant will flow down the straight sections. This

achievement will clearly remove the limit on 0 imposed by Eq. (5.34).

There is a second condition which must be met, however. In order that the

over-all geometry of the alternating sections be equivalent to the original

end loop, it is necessary that the entire scalloped region turn through 180

deg just as the end loop did. This can be accomplished by making the lengths

of the sections of reversed or negative curvature (that is, with the center of

curvature lying outside of the figure-eight) smaller than the length of the

sections of positve curvature. This condition can be made compatible with the

requirement of equal total drift currents in each section. To see this, con

sider the following expression for the total drift current in a curved section

having a radius of curvature R and having an included angle 0.

ne 2ckT n „„
j _ — . . 2r0R.

c eHR

It is clear that the total current is proportional to the included angle, the

pressure and the magnetic field as follows:

P e

Hence, if one wishes to keep J fixed and yet reduce the length of a section

(which implies a reduction of 0) it is only necessary to reduce H in the same

ratio. This may be accomplished by increasing the cross sectional area of the

regions of negative curvature, as shown in Fig. 5.9. Flux conservation insures

that the field strength will be reduced in these regions. For practicality,

of course, the corners between the adjacent sections will be rounded off.
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None of the present devices now in use or under construction at Princeton

contain scallops. Hence, this innovation must be considered as an unproven

item at present. It is clear that a great deal of experimental work can be

undertaken without the inclusion of scallops. However, the ultimate economic

success seems dependant upon the successful operation of this or some equiva

lent innovation.

As a final word before leaving the subject of scallops, it is worth noting

that the scallops will have an additional beneficial effect in that they tend

to increase the containment time. It was shown earlier in this chapter that

the limitation on particle containment was due to diffusion in velocity space

and the resultant containment time had the numerical value of 0.1 sec fsee

Eq. (5•17)J • The key point in this estimate was the critical velocity for

escape v*. This in turn was determined from the condition that the particle

drift to the end wall in a single transit of the end loop. With the inclusion

of alternating sections of reversed curvature, this critical velocity should be

much reduced since the particle's drift will reverse in a much shorter distance.

In fact, if there are N scallops in each end loop, then the containment time

should be increased by the factor N.

Present plans for Model D call for eight scallops in each end loop. This

would lead to a containment time of about 0.8 sec. Unfortunately, this gain

is partly offset by a more pessimistic calculation of the rate of diffusion

in velocity space which was performed by D. Judd, W. M. McDonald, and

9
M. N. Rosenbluth. These authors took account of the loss of particles by

9. D. Judd et al., End Leakage Losses from the Mirror Machine, published in
"Conference on Thermonuclear Reactions, Livermore, California," WASH-28'9
(June, 1955).
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assuming an appropriate boundary condition on the distribution in velocity

space rather than by simply estimating the loss rate by the ratio of areas

on a unit sphere, as was done earlier in this chapter. Although their cal

culations apply to diffusion loss in a mirror machine (see the next chapter)

rather than in a Stellarator and hence cannot be used directly, the results

did indicate that the more accurate assumption resulted in an enhanced dif

fusion rate. The increase in loss rate was by a factor of 4 or more. It

is not clear to what extent this may affect the estimates of containment time

for a Stellarator which were made above. In any event, it should be

remembered that there are also some beneficial factors which have been ignored,

especially the effect of sheath electric fields at the boundary of the plasma.

Injection and Removal of Fuel

The problem of injecting fresh fuel into the Stellarator is not a trivial

one. Individual charged particles cannot penetrate into the interior of the

plasma because of the presence of the confining magnetic fields. It is clear

that no pipe can be used to introduce the fresh material into the interior.

Instead, thinking has been along the lines of injecting a high velocity jet of

liquid or gaseous fuel.

Calculations of the behavior of such schemes are quite preliminary as

yet. However, it seems that any liquid jet is vaporized almost immediately

as a result of the bombardment by the plasma. Furthermore, it will be

ionized almost as quickly (microseconds) and would fail to penetrate into the

plasma were it not for the possible action of cooperative electric fields in

the plasma.

Stff'iS
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It appears that a blob of highly conducting ionized gas which is moving

with a velocity v across a magnetic field will have an internal electric field

E which is produced by charge separation and which has just the proper mag

nitude so that the ExHdrift [see Eq. (3»7)J is equal to the velocity v.
The situation is sketched in Fig. 5.10. Another way of seeing this is to note

® *

®

Fig. 5.10. Internal Polarization of a Moving Blob of Plasma

that the local electric field in a perfect conductor must be zero. In a

moving frame, this field is given by the expression,

~Z X v x H
Eloc = E + = 0.

c

As a consequence of this internal electric field, the plasma blob is enabled to

move across the magnetic field quite easily. W. H. Bostic"k10has performed a

series of experiments involving the production and projection of plasma blobs

across magnetic fields.

Owing to the finite conductivity of the plasma, there will be a drag on

the plasma blob and it may be expected to eventually slow down and stop. The

10. W. H. Bostick, Experimental Study of Ionized Matter Projected Across a
Magnetic Field, UCRL-4695 (May 10, 195671
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exact mechanisms of this action have not been investigated yet and deserve

further theoretical study. It is clear that the ultimate problem will be one

of getting the blob into the interior of the plasma and yet not overshooting

the mark. It is highly likely that the ultimate design will be based on

thorough experimental tests.

A problem which has received more attention than the injection difficulty

is the question of the removal of the hot gases and charged fission products

which reach the walls. These ions must not be permitted to reach the wall for

at least three reasons,

1. the heat liberated would be many times too great to be conducted

through the metal to the heat transfer fluid behind it,

2. the cooled ions would diffuse back into the discharge, tending

to lower its temperature and stop the reaction,

3. sputtering of heavy metal ions or neutrals would result in

increased bremsstrahlung with subsequent cooling of the discharge.

To avoid having ions actually reach the wall,- a device known as a

diverter has been proposed. The essential feature is that a thin shell of

magnetic flux just inside the walls is brought out locally and spread out

radially so as to provide a region in which the heat transfer can be safely

accomplished. A sketch of the magnetic line configurations is shown in

Fig. 5.11. Note that in the enlarged region, the flux density and hence the

particle density can be greatly decreased. In addition sputtered and cooled

particles can be pumped off more readily before finding their way back into

the system.
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tube

wall;

Fig. 5.11. Magnetic Field in the Diverter

A great deal of numerical work on the problem of the design of coil systems

for possible diverters has been performed at Princeton. Recently a resistance

analogue has been built which is capable of solving a variety of magnetic field

problems in which there is axial symmetry. To the present time, only one

diverter has been put into use. This item is on a device at Princeton called

Model B-64. Preliminary evidence indicates that the diverter has a beneficial

effect in that the electron temperatures are maintained for longer periods and;

that the ion temperature may be considerably increased over its value in the

absence of diverters.

Heating of a Plasma

So far, nothing has been said about the method by which an initially

neutral, or slightly ionized, gas will be heated up to thermonuclear tempera

tures. There are at least three methods which have been suggested and partially

tested. Some or all of these will undoubtedly be incorporated in the proposed

devices. Of course, it may be possible to begin by injecting a hot plasma

since an organized energy of 20 kev is not at all difficult to obtain. This

possibility will be discussed in the later chapters.
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All of the presently attractive methods of raising the temperature of a

plasma involve inductive techniques, using either electric or magnetic fields.

Methods Involving the bombardment of a cold plasma with high energy particles

or x-rays appear to be quite Inefficient. It Is convenient to consider three

stages of development In the heating of the gas. The first stage is the Initial

breakdown of the gas which provides a sufficient number of electrons for

further ionization. The second stage is the attainment of complete ionization.

The final stage would then be the heating of a fully ionized plasma to thermo

nuclear temperatures. It will be seen that different schemes are more useful

in each region.

The Inductive methods which have been proposed fall Into two general

classes. In the first class, the electric field is applied parallel to the

confining magnetic field. In the second class, the electric field is at right

angles to the magnetic field. Two of the three schemes which are in use at

Princeton fall into the first class. These are R. F. heating and D. C. (or

Ohmic) heating. The third method is known as Magnetic Pumping and is a member

of the second class. These methods will be discussed below.

R. F. Heating. The application of a radio frequency electric field

parallel to the magnetic field results in a very effective partial ionization

of a neutral gas. Furthermore, an experimental setup of this sort is relative

ly easy to construct and install. However, effective heating depends upon the

establishment of very high currents in the plasma. Such currents will be

limited by the self inductance of the plasma. Hence, after the initial

breakdown of the gas, it will be more efficient to shift to a low frequency

(i.e., D. C.) heating scheme.
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It should be noted that the energy is fed to the electrons by the R. F.

field and is then transferred to the gas by means of collisions between

electrons and neutral atoms. It should also be noted that the magnetic field

has no direct influence on this type of heating since the particle motion

in the direction of the field lines is unaffected by the field.

D. C. or Ohmic Heating. A low frequency heating pulse can be applied

parallel to the magnetic field of the Stellarator by making the Stellarator

act as the secondary winding of a transformer. The primary winding is laid

along the Stellarator tube and is energized by the discharge of a condenser

bank through it. As in the case of R. F. heating, the energy is mainly de

livered to the electrons directly. This may be understood quite readily by

recognizing that the rate of energy input to a charged particle moving with a

velocity v and under a force eE is

pin - eEv- (5.36)

Since the electrons have a much larger thermal velocity than the ions to be

gin with, they gain energy from the field much more rapidly, further increasing

the discrepancy.

The electrons are continuously accellerated by the electric field until

they make a collision either with an ion or a neutral atom, at which time

they transfer part of their energy to the target particle. If the rate of

energy input from the field is slow compared to the rate of loss of energy by

collisions, the process is entirely analogous to ohmic heating. Furthermore,

the distribution of electron velocities may be expected to be very close to a

Maxwellian form corresponding to the temperature of the electrons. On the
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other hand, if the electric fields are large enough so that the electron

gains more energy from the field between collisions than it loses in an average

collision, a situation known as Electron Runaway will occur. The Maxwell dis

tribution of velocities will no longer be even approximately valid and the

electron energy will increase sharply until the balance of energy gain and

loss is restored by some other loss mechanism (such as the electron striking

the wall of the Stellarator).

A crude calculation of the threshold value of the electric field which

might cause this condition can be made by equating the energy loss and gain

rates. Thus,

eEv = ni&vE/ (5o37)

where the left side represents the rate of gain of energy by the particle

having a velocity v from the electric field E. The right side represent? the

loss rate with n^ the target particle density, o~ the cross section for col

lision and 2/the energy of the electron. Now in an ionized plasma, the cross

section 6* Is for coulomb scattering of an electron on an ion and is proportional

to the Inverse square power of the electron energy. Hence, it is clear that

runaway can occur since the loss rate due to this mechanism decreases with

energy while the energy gain rate increases. Solving for E, Eq. (5.37)

may be written as

E^!~ ' (5-38)
kT

kTcrit^7 • (5-39)



-81-

Thus there is a critical energy at which electron runaway can occur. This

energy is directly proportional to the ion density and varies inversely as

the electric field strength. High energy gamma rays which are believed to

be due to runaway electrons striking the wall of the tube, have been observed

on the Model B-l device.

11,12
J. M. Berger and coworkers ' have made a careful theoretical analysis

of the time behavior of an initially cold plasma under the action of a con

stant electric field. It was found that an electric field of 0.045 v/cm'.

applied for two milliseconds in a device of the size of Model B-2 could produce

a completely ionized plasma with an electron temperature of the order of 100 ev

and an ion temperature of the order of 30 ev. Experimental observations have

partially supported these theoretical predictions.

The numerical example cited above illustrates one of the major dif

ficulties associated with class 1 type of heating. The trouble is that the

energy is delivered mainly to the electrons. The transfer of energy to the

ions by coulomb collisions is a very slow process. Hence, the ion temperature

lays behind that of the electrons. Furthermore, the equipartition rate falls

off as the temperature rises. Thus

Part. Rate ~* noV ^ -±__ . (5-40)
ip3/2

It appears from numerical calculations that D. C. heating will never succeed in

raising the electron temperature much above 10 deg.

"3.1. J. M. Berger and E. A. Frieman, On toe Pulse Method of Ionization and
Heating of a Plasma, NYO-6043 (PM-S~10)(0ct,y7-,-495577

12. J. M. Berger et al., On the Ohmic Heating of a HeliumfPlaima^:lIQ-Jfgll
V (PM-S-2l)(June 20, 195S*). ~
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There is a second difficulty in the class 1 schemes. The ohmic heating

is inversely proportional to the conductivity. This last quantity increases

as t3'2 and hence decreases the efficiency of heating as the temperature is

raised. Thus one must look for a new method for raising the ion temperature

to thermonuclear values.

Magnetic Pumping. In magnetic pumping, heating is caused by a radio

frequency oscillation of the confining magnetic field in a short section of

the Stellarator. These short sections are called bulges since they are regions

of larger cross section than the Stellarator tube itself. Of course, the flux

remains constant so that the magnetic field is proportionately smaller.

Auxiliary colls around the bulge will be connected to an R, F. oscillator and

will produce a time variation in the field whose magnitude is an appreciable

percentage of the magnitude of the time independant field. The varying mag

netic fields produce circular electric fields in the plasma which are at right

angles to the confining magnetic field. Hence the reason for this method

being identified as of class 2.

There are several different ways of seeing the mechanism involved in

the heating process. They all are equivalent, of course, For example, from

the individual particle point of view, an oscillatory field produces a cor

responding oscillation in the radius of gyration of the charged particle in

the magnetic field. A corresponding, although reversed cycle, is exhibited

by the particle's component of velocity in the plane perpendicular to the

field. To see this, it should be recognized that the particle's angular momentum

will be an adiabatic invariant in time if the magnetic field frequency is
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small compared to the Larmor frequency U)= eH/mc. This is almost always so

and hence one can write

mvA r = constant (5.4l)

where r is the radius of the orbit, mthe particle mass, and vA the velocity

in the plane perpendicular to the magnetic field. The Larmor radius is related

to the magnetic field strength, B, bys

(5.42)
mVj^ c

r •

eB

Hence, by Eqs. (5-41) and (5-42)

mv2

= constant. (5.43)
B

Thus the transverse energy of the particle oscillates with the field. Sub

stituting for v^ from Eq. (5-43) in Eq. (5.42) yields

r ^ -£- • (5-44)

This verifies the statement that the radius shrinks as the field expands.

An alternative way of seeing this result is to explicitly introduce the

effect of the electric fields. By Maxwell's equations, the electric field

induced around the particle's orbit is given by the relation

**x - - f ft • <'•*»
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The combined action of the crossed electric and magnetic fields is a drift

velocity in the radial direction as follows from Eq. (3.7). Hence, by use of

Eqs. (3-7) and (5-45),

^ cEx r dB
v _ — -

r dt B 2B dt

This may be rewritten as

dr •_ 63
r ~ ~ 2B '

which integrates to

>4ir - - jlnjB + constant
1

or r s*-' — •

A

Yet another point of view is the magneto-hydrodynamic or fluid approach.

The plasma is a highly conducting fluid which tends to stick to the lines of

magnetic flux. As the field oscillates, the magnetic lines alternately crowd

in and then spread out. The plasma, since it sticks to the flux lines, is

then alternately squeezed and expanded in the transverse direction. By flux

conservation it is clear that the product of the radius of the plasma squared

times the field strength must remain constant.

If there were no collisions in the plasma, or loss of particles from the

bulge regions, there would be no net energy transferred to the plasma. However,

owing to collisions, some energy will be fed into the longitudinal velocities

of the particles. Furthermore, particles with altered transverse velocities

will be escaping from the bulge regite. Sl&ggLe thermodynamic arguments assure

(5.46]
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us that these processes result in a net heating of the gas. The following

simple illustration, due to L. Spitzer, indicates the rate at which the heating

occurs.

Consider a square wave variation of the magnetic field in time as shown

in Fig. 5.12. The field has a value B„ at t•0. It then rises to the value Bx

at t • tj_. The ratio of B± to BQ will be denoted by a. Thus

Bi QB0.

3

B

S

3
•°o

1

1 '

^O <L 1
• 1 K **

(5.47)

Fig. 5.12. Field Variation in the Bulge

Assume that the frequency of the variation is slow enough so that equipartition

of kinetic energy occurs among the three kinetic modes of the particle. The

resultant distribution of energies is indicated in Table 5.1 where E denotes

the initial total kinetic energy of the particle. The kinetic energy in the

two modes tranverse to the magnetic field is denoted by E, and that in the

longitudinal mode by E|( . At t =tx the field rises to Bx and the transverse

energy increases by the factor a as follows from Eqs. (5.17) and (5-43).

During the interval between t]_ and t2, this energy is distributed equally

again among the three modes. Finallj|^^y^=: t2 the field decreases and

energy is lost from the transverse modes again.
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Table 5.1. Energy Distribution in Kinetic Modes

Time B

t0 ^ t ^t]_ B„

t = ti Bo-^B!

t-i <C t ^ to Bl

t = tc Bi-*B0

t2 < t c t* Bf

2

3

E,

3 Eq

r Eo

23 x U

2 /2a 1 \

Ifl +la +SrlEo**i

B,

t*

-Br

1 /2a 1

3 I 3 + 3) E°

1

3 ?♦?*

39 + 9 +5b «o

^otal

E„

2a 1\
— + - E0
3 3/ °

imk

:rfa+§; )*

l +fa +ys,,

The over-all gain in energy per particle per cycle of the field is seen

to be

/\E -
I ?a 2__\
9 + 9 + 9aJ *° " E°

|j (1 - 2a -ho2) Eq

2£dL _
9a Eo"

Hence, the fractional energy gain is

Ae 2 , x0
io" = 5 (a "X) (5.48)
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Now by Eq. (5*47),

AB = BX - B0 = (a - 1) B0.

Hence, Eq. (5-48) may be rewritten as,

As 2 £b£
E0 9 BiB0 ' {>'*9)

and if the field variation is small compared to the field itself

4l * 2 (M2 . (5.50)
Eo 9 ^B/

Finally since this is the energy change per cycle, one can write a derivative

relation

1 dE ~ 2 /4B\2
E dt = 9IB J

where f is the frequency of field oscillation. Upon integration, this

becomes

E^Eoe*/1 (5.52)

where the e-folding time T is,

P =

9^B ;

It is possible to obtain a crude estimate of the time required for heating

a plasma by magnetic pumping to thermonuclear temperatures by use of Eq. (5.52).

For example, if the plasma must be raised from 100 v (which temperature has

been attained by D. C. and R. F. heating) to 20 kev, the time required is:

(5-51)

T = 2/*Bf r' (5.53)
7
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t = t! 2*10^
102

.111

Wff
For a 10 kc frequency, with the field varying by l/2 of the average value,

the time for heating of the gas in the bulge is of the order of 10 milliseconds.

The time for heating the entire gas in a Stellarator might be expected to be

much longer, in the ratio of the Stellarator length to the total length of

the bulges.

It should be recognized that the estimates made above are exceedingly

crude. In the actual situation, the field variation will be sinusoidal

rather than as a square wave. More importantly, it will not be true in most

cases that the equipartition time is short compared to the oscillation time

of the field. Furthermore, the additional heating due to gain or loss of

particles from the bulge region during the oscillation cycle must be included.

These effects have been analyzed in detail by J. M. Berger and W. A. Newcombi3

and the reader is referred to this report for further information.

Before leaving the subject of heating, it should be pointed out that

magnetic pumping possesses a great advantage over the R. F. and D. C. methods

in that the ions are heated directly and need not depend on interactions with

the electrons to reach a working temperature. A possible peril of this

technique is the introduction of plasma instabilities upon the squeezing of

*£ J- M. Berger and W. A. Newcomb, Heating of a Plasma by Magnetic Pumping,
NY0-6046 (PM-S-13)(May, 1954). *~^ !S£±£S>
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the plasma by curved magnetic fields. This point will be mentioned in

Chap. 8. Finally, magnetic pumping is not efficient for a weakly ionized

and cold gas; hence, the initial heating in the proposed devices will be by

R. F. and then Ohmic methods.

Survey of Experimental Stellarator Models

A summary of some of the characteristics of present and proposed devices

at Princeton (some very recent -October, 1956) is given in Table 5.2.

Additional remarks on each device follows below.

Model A. Constructed of pyrex glass tubing, about 350 cm in length.

R. F. voltage varied up to 200 v at 250 kc. Comparison with "racetrack"

shape indicated that breakdown occurred at substantially lower magnetic

field values for a figure-8. Confinement poor. Now in "museum'.

M^i 5li« Constructed of stainless steel. Length is 450 cm. Con

fining magnetic field is obtained by discharge of two series banks of l/lO

farad condensers. Each bank may be charged to 4000 v. Stored energy is

10 joules. B rises to 30 milliseconds and decays with time constant of

about 40 milliseconds.

Ohmic heating is by capacitor discharge through primary of transformer.

Plasma is secondary of the transformer. Pulse voltage of about 100 v yields

plasma currents of 1000 amps for a millisecond. Helium gas used at pressures

of about 5 microns. Helium was chosen because of its convenient spectro

scopic properties.

Results indicated that the plasma was nearly completely ionized and

that the electrons reached a temperature of greater than 10 ev. The confinement
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Table 5-2. Model Characteristics

Model

Diameter

(in.) gauss
Heating

Electron

Density T°
e.v.

Remarks

A 2 1,000 R. F. 3 x 1012 —

B-l 2 15,000 H. F. + Ohmic 10* >10

B-l' 2 25,000 R. F. + Ohmic 10* U -30
I*'5

B-l" 2 50,000 R. F. + Ohmic 10* Alpert type vacuum system

B-2 2 50,000 R. F., Ohmic +
Mag. Pumping

10* (e > 100
I 1 > 10

gpB-64 4 28,000 "Ohmic" 10* e y 100 Has diverters

•""Etude"

2 10,000 Ohmic ,10* ' 1 D. C. Magnetic Field
Variable Transform

B-3 2 50,000 R. F., Ohmic +
Mag. Pumping

Alpert type vacuum system.
Diverters

C 9 50,000 R. F., Ohmic +
Mag. Punping

5 x 10* 20 kev Scallops, diverters

D 36 50,000
to 100,000

R. F., Ohmic +
Mag. Pumping

ID1* 20 kev Scallops, diverters
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time was of the order of 3-5 milliseconds. The temperature achieved was ap

preciably smaller than expected. It is believed that influx of impurities due

to energetic bombardment of the walls is responsible for the low value of the

temperature.

X-rays of about 300 kilovolts were seen. These are believed due to

"runaway" electrons during the ohmic heating pulse. Since an energy of this

magnitude could only be achieved by the electron revolving around the device

at least 3000 times, there is indication of good magnetic confinement.

Model B-l'. Constructed of pyrex tubing with an inner conducting coating.

Angle of twist of end loops is 49 deg each. Improved coils allow operation at

25 Kg. Otherwise similar to B-l device. Experimental results are similar to

those on B-l. A maximum electron temperature of 30 ev is indicated. Spectros

copic observations indicated an ion temperature of about 3 ev. X-rays of

energies up to 1.4 Mev were observed. This would indicate confinement of runa

way electrons for 20,000 revolutions. A kink type of instability which can

develop during the heating pulse and which was predicted by M. D. Kruskal was

observed. Again plasma temperatures seem to be limited by the influx of

impurities from the walls of the vacuum chambers.

Model B-l". This is a proposed machine which will have a greatly improved

vacuum system. The device will be of stainless steel, will have no 0-rings and

use gold gaskets. It is hoped that a pulsed confining field of 50,000 gauss

can be reached.

Model B-2. Constructed of coated glass. However, one of the U-bends of

the tube is of stainless steel. Has only been in operation for a few months.

Length of the device is 600 cm. It has two "bulge" regions for magnetic pumping.

%mn
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The bulge sections are 20 in. long with a tube diameter of 5.75 in. The con

fining field drops to l/6 its nominal value in this region. The magnetic field

is oscillated at a frequency of 240 kc in the bulges.

The initial ohmic heating performs as in B-l. Impurities limit the ion

temperature to a few volts. The introduction of the magnetic pumping produces

unusual effects. A very rapid heating and ionization of the plasma occurs.

However, it terminates abruptly because of quenching of the oscillator. Spec

troscopic observations indicate that an electron temperature greater than 100 ev

is achieved. The positive ion temperature, far from the magnetic pumping sec

tion, is apparently about 20 ev. The modulation,AB/B, is 0.7 in the bulge.

Model B-64. This device is so named because it squares all the corners of

a figure eight. It is constructed of stainless steel with a 4 in. O.D. Its

chief advantage is that it is of modular construction, entirely of straight sec

tions and 90 deg elbows. Hence, modifications can be made with ease. The

heating pulse is produced by a 10 kw 900 cps generator. Hence, the heating

is quasi-D.C.

The diverter has been installed on this device and it appears to have a

beneficial effect on the impurity problem. Both the positive ion and electron

temperatures seem to rise tc about 50 volts.

Model A-2 ("Etude"). This device is in the planning stage. Its particular

advantages are first that the confining magnetic field will be a D. C. one, and

second that the transform angle (i.e., the twist angle of the end loops) will be

variable. Heating will be of the ohmic type but will have a square wave form

in time.

Model B-3. Again this is a device which is in the planning stage. It

will have all the features of Model^a^g^; diverters and an Alpert type
vacuum system.



•-95-

Model C. Model C is the proposed intermediate scale model between B-2

and the full scale power device known as Model D. It would have an over-all

length of 150 ft and has a twist angle of 29 deg. The tube diameter is 9 in.

The confining field has a value of 28,500 gauss. The confinement time would

be at least 0.02 sec and the plasma would reach a temperature of 20 kev.

The device would have a 1* duty cycle. Costs might be in the neighborhood

of $16,000,000. An interesting feature is that the magnet coils would be

cooled with water refrigerated to a temperature of 4°C. This feature saves

an appreciable amount of the initial cost of the power supply. It is not

advantageous from the point of view of over-all energy production in the

device.

Model D. Many of the approximate dimensions of Ifodel D have been used

in the numerical illustrations in this chapter. These will be given more

accurately now. It should be remembered that Kxlei D is the proposed full

scale power producer.

Length Is 540 ft. Tube radius Is 65 cm. The gas composition is a50#

D-T mixture. Calculations have been performed for three possible values of

the maximum magnetic field strength 50,000 gauss, 75,000, and 100,000 (the

numerical illustrations have pertained to the 50,000 case). Continuous

operation only has been considered. Confinement for amlnumum period ranging

from 0.16 to 0.6 sec is required. The vacuum tube is surrounded by amantle of

water and lithium 2-ft-thick. The water and molten lithium flow in separate

steel pipes and carry the heat out of the system. Surrounding the mantle are

copper coils with an Inner diameter of about 8 ft and an outer diameter of

about 16 ft. These coils generate the confining magnetic field.



Construction costs might be about $200,000,000 not including electrical

generating equipment. If this equipment is Included, the following invest

ment costs result:

Table 5.3. Model-D Estimates

B

Electricity Commercially
Available

Investment Cost

Per Kilowatt

50,000 0.48 x 106 kw $850

75,000 4.4 x 106 280

100,000 16.2 x 106 200

Initial tritium inventories of the order of a few hundred kg might be re

quired. There may be practical limits on the stockpile of tritium that can

be spared for the operation of the first Stellarator. Ultimately, the

Stellarator as envisioned would be a supplier of tritium since it would

produce more recoverable tritium in the blanket than is required for continued

operation of the device.

Some Economic Considerations

The numerical estimates given above for the electrical output of the

various Model D designs is very revealing. These are very huge blocks of

power, indeed. For example, the entire TVA system produces only 7.5 x 10 kw.

Such a huge block of power produced in a single locality is generally not a

desirable thing. It is hard to sell all of it locally, and the necessity of

piping it to distant locations brings in large additional costs for the trans

mission equipment. The essential reason for the magnitude of the designed

outputs is that It is very difficult to build a small Stellarator. Any

attempt to reduce the size of the device leads to a situation in which



-95-

more power is used in energizing the magnetic field coils than is produced

by nuclear reactions. The condition that the second outstrip the first re

sults in a minimum condition on the cross sectional area of the tube, as

will be derived below.

First the magnet power expended per unit length of the Stellarator

tube will be derived. The magnetic field in a solenoid is given by the

relation

B -Sg (5.54)

where J is the number of ampere turns per unit length. If the inside and

outside radii of the coils are denoted by r^ and r2 respectively, and s is

defined as a space factor equal to the fraction of the gross coil cross

section occupied by solid conductor, one has

J

(*2 " rl)s

where I is the current density in the conductor. Hence,

(5-55)

! » 10 B .
4«s(r2 - r^)

The ohmic power in the coils per unit length is then

% = i2ev (5.57)
where ^ is the resistivity of the conductor and V the volume of the conductor

per unit length. Now
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V - »(r| - rf). (5.58)

Hence, by Eqs. (5«58) and (5«5^), the magnet power per unit length may be

written as

S SLii 4 . (5.59)
M 4s r2 - rx s

On the other hand, the nuclear power generated per unit length goes as

PN *" nDnruOsvJD.rp jtrf E (5-60)

where nD is the deuteron density, n^ the triton density, and E the useful

energy produced by this reaction. It is convenient to write these densities in

terms of the magnetic field and the parameter p. Thus, if

3 - ~- (5.61)
BV8*

one also has (for a 50-50 D-T mixture)

P = nekT + njjkT + rupkT

= kT • 2(nD + nrp)

= 4 njjkT = 4 ntpkT.

Hence

13 B2njj « nT ~ • —

T 4kT 8s



Thus Eq. (5.60) may be written as:

~ (6v)DT B^r? E
Pw - —-p • — . (5.62)

(kT) 1024«

Note that the nuclear power release is proportional to the fourth power of

the magnetic field strength, and that the factor oV/T2 has a maximum in the

neighborhood of 20 kev as has been shown in Table 2.2. The ratio of the

nuclear power to magnetic power follows from Eqs. (5.59) and (5.62). It is
— 2 2 2

PN (^Jdt P b sE ri(r2 - ri)
7" " ~T~£ • • (5.63)PM (kT)2 (25)(256)o (r2 +rx)

A crude estimate of a minimum tube radius can be obtained from Eq. (5.63)

by inserting some reasonable values for the parameters. From Table 2.2, it

may be seen that the optimum value for (<3v)rj_m/3T is

(dv^/T2 ' 10~18 cm5/sec kev2.

In addition, the specific resistivity for copper at 20°C is about

2 x 10" ohm-cm. Assume further that ^/r^ = 2, B = 30 kg, s =0.5,

B = 0.5 and the energy release per reaction is 10 Mev. Then

% ^ 10~18 (0.25)(9 x108)(0.5)(10'Q(1.6 xlO-^Jr!
PM (1.6 x10"12 103^)2 (25)(256)(2 x10"6)(3)

1.8 x 10"22 2
r-,

9.8 x 10-20

= 1.84 x10"5 r^

Finally, if the nuclear energy yield goes through a conventional heat cycle,

a factor of at least three will be lost in converting this to useful work.

Hence, the minimum ratio required iPwpflist three. Hence
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2 ^ •> 2r£ -5 cm
1.84 x 10"5

or

rx <r 40 cm (5.64)

It is clear that the estimate given above is extremely crude. In an

actual device, the pressure will not be uniform and there is great uncertainty

regarding the possible ratio of r2 to r-^ and the value of s. More importantly,

there will be losses other than in the magnet coils to account for. In

particular, the energy required to heat up the injected fuel is not a negligible

fraction of the nuclear yield. However, it does seem that radii of the order of

many tens of centimeters will be required. When it is required that a tube of

this dimension, with associated blanket and magnetic field coils be wrapped into

a figure eight, it is clear why the various Stellarator models are as large as

they are. It is also clear that a 3 very close to unity must be achieved if this

device is not to become even more gigantic. For example, the limit on

8 of about 10 -% which would result in the absence of scallops, is clearly

disastrous.

There is one cheering note which is far from trivial. Owing to the

fact that the reactor will be operating close to the peak of the curve of

(c^)])_t/t^ vs temperature, it should be clear that the device will have an

inherent negative temperature coefficient. Thus a controlled thermonuclear

reactor should be an inherently safe device. In addition, rapid control

should always be possible through changes in the magnetic field strength.

¥ ii '-^VSyfji'V;



VI. MIRROR MACHINES AND HIGH ENERGY INJECTION

As was pointed out in Chap. IV, the essential starting problem of

the Sherwood program is the question of what to do with the ends of the

magnetic field lines. The Princeton approach is to wrap the field into a

figure-eight geometry. An alternative solution was proposed by R. F. Post

late in 1951. His suggestion was to maintain the linear uniform field

produced by a solenoidal winding, but to cap off the ends by use of the

magnetic mirror principle. A major part of the Sherwood research at Livermore

is devoted to an investigation of the feasibility of this method.

The features of the proposed Livermore devices will be discussed in

this chapter. One of the most interesting suggestions was that the starting

point of the machine be the injection of a hot plasma from an ion source

rather than starting with a cold gas and then heating this to thermonuclear

temperatures. A substantial part of the Sherwood project at the Oak Ridge

National Laboratory is devoted to research and development relating to high

current, high energy ion sources. An interesting alternative is to use

these ion sources with basic plasma experiments, rather than gadgets, in

mind. There is always the possibility of growing a hot plasma (which has

not yet been done), even though it be for a short time, and studying its

behavior. These considerations will be discussed in the section entitled

"High Energy Injection."

ffe*



Magnetic Mirrors

The magnetic mirror principle is an old and well known phenomenon. It

refers to the fact that charged particles which are moving in a magnetic

field tend to be reflected from regions of higher-than-average field. It

was shown in Chapter V Eq. (5.43)
L

so as to keep its magnetic moment u a constant. Thus

2

= constant.
Z1

my^
B

that a particle moves in a magnetic field

(6.1)

The magnetic moment may be expected to be a constant under adiabatic condi

tions. That is, when the magnetic field varies slowly in time compared to

the Larmor frequency and varies slowly in space over a distance of the order

of the Larmor radius. Hence, the name of "adiabatic invariant" for the magnetic

moment.

Equation (6.1) may be used to illustrate the means by which a mirror

reflects a particle. Consider the situation shown in Fig. 6.1. In the

Fig. 6.1. Reflection by a Magnetic Mirror

®^g|
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region to the left, the magnetic field is uniform and has the magnitude B .

The field increases on the right hand side to a maximum value denoted by Bi.

Consider a charged particle in the left hand region whose velocity vector is

at an angle 60 to the field axis. Thus its velocity toward the mirror re

gion is

v = v cos0„,

and its perpendicular velocity is

Vj_ = v sin0o.

Since the force upon a moving charged particle in a magnetic field is

at right angles to the particle motion, no work can be done. Hence the total

kinetic energy of the particle must be conserved. Thus

1 2 1 p 1 o~ mvii + ~ mvj_ = - mv^ = constant. (6.2)

Furthermore, by Eq. (6.1), the magnetic moment will be invariant. Hence

2 o2 2
mVj_ my^ mv

T~ = IT = i7sin29° (6-3)

Divide Eq. (6.2) by the quantity B and substitute from Eq. (6.3). The fol

lowing result is obtained:

v;/2 v2 v2 sin290
B ~ B B„

o



Hence

"II " ' -" B

f
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v/ - v* (1 " I" siA>)- (6-*)
o

It is clear from this result that the component of velocity along the field

lines will decrease as the particle approaches the mirror region of higher

field strength. In fact, the parallel velocity will go to zero, and hence the

particle will be reflected, if the initial angle is large enough. Since

the maximum field value in the mirror region is B]_, one can immediately write

a critical equation for reflection;

sin20c . ?2 . (6.5)
Bl

Any particle with an initial velocity vector which is at an angle to the

field direction which is smaller than 6 will escape through the mirror.

Those with initial velocity angles which are greater than $c will be re

flected from the mirror. Finally, if the morror ratio R is defined as the

ratio of the field in the mirror to that in the uniform region, this result

becomes

sin9c = /- (6.6)

A conceivable Mirror Machine will, of course, have mirrors at both ends

as shown in Fig. 6.2.
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Fig. 6.2. The Mirror Machine

Diffusion Loss Through a Mirror

The most important quantity which is required for a discussion of the

mirror machine is an estimate of the loss rate by diffusion through the mir

rors. Upon the introduction of a hot plasma into a mirror machine, there will

be the almost immediate loss of those particles whose velocity vectors lie

in the two escape cones defined by the angle 9C to the field axis. The

resulting population in velocity space will be entirely depleted of velocities

lying in this escape cone. The remaining particles will not remain trapped

in the machine indefinitely. Owing to coulomb collisions, particles will

sometimes acquire a new velocity, after a collisionwhich lies in the escape

cone. As a result the particle will be lost, (it is assumed here that the

mean free path is very long compared to the dimensions of the machine. This

will almost certainly be so.) This diffusion in velocity space represents

the most serious drain of particles and energy from the system and will be

calculated in the next paragraph.
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Assuming no spatial dependance of the particle density, the loss rate

becomes:

dn <*-' n2 —-
— = cv P (6.7)
dt 2 K u

where dv is the coulomb collision rate for 90 deg scattering by multiple

collisions and P is the probability of scattering into the escape cone. Just

as in Chapt. V, the escape probability may be crudely estimated as the ratio

of the surface area subtended by the escape cone on a unit sphere to the area

of the entire sphere. The only difference between the two cases is that the

escape area is a polar cap on each end of the sphere, while it was an annular

region (see Fig. 5.4) in the case of the Stellarator. The probability P is

now:

ec

or by Eq. (6.6),

^2* ^ sin0 d0
o

p = = 1 - cose ,
2* c

P = 1- /l -i. (6.8)
R

For a large mirror ratio, this becomes

* - - • (6-9)
2R

Numerical estimates of the containment time are easily obtained.

Eq. (6.7) may be written, Ife' •. 4:|i



-105-

n ^ n2 ,—.
t = 2" (dV) P'

where t is the mean containment time. Hence

t = (6.10)
n ovP

Assume that n=lo15 and kT =10 kev. The corresponding coulomb cross

section for scattering through 90 deg by small angle collisions was shown to

be 58OO barns, in Chapter II. Hence

t =

(1015)(5.8 x 10"21)(1.2 x 108)

" 350 P (10 kev) (6.11)

Now, by Eq. (6.8), the following values of P correspond to mirror ratios of

2 and 5, respectively.

P = 0.3 R = 2

r->

= o-1 R = 5 (6.12)

Hence, the corresponding containment times becomes:

r^/

t = .01 sec R = 2

= -03 sec R ^ 5 (6.13)
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The containment time for both mirror ratios is inadequate. Furthermore,

mirror ratios larger than 5 are probably unrealistic in an actual gadget.

The trouble is that the mirror is quite leaky compared to a Stellarator, for

example. This may be seen by comparing the escape probabilities of Eq. (6.12)

with the corresponding value for aModel DStellerator /see Eq. (5.17) |.

Recent calculations by D. Judd et al, to be described in the next paragraph,

have yielded even more pessimistic estimates for the containment time. Hence,

thinking on the mirror project has been confined to plasma energies in the

region of 100 kev rather than 10 kev. In this region, the coulomb cross

section is reduced by a factor of 100 although the particle velocities are

increased by ylO. Furthermore, the particle density is reduced to 10*

for fixed value of the magnetic pressure Isee Eq. (2.20) and following

discussion . Hence the new containment time estimate becomes

Thus,

(10*)(5.8 x 10"23)(3.8 x 108)P

0.9
T" (100 kev) (6.14)

t = 3 sec R = 2

= 9 sec R = 5 (6.15)

It should be noted that the nuclear reaction time for the D-T reaction is

only slightly changed from its value at 10 kev. Although the D-T reaction

rate is increased by a factor of eight over its value at 10 kev (see Table 2.1),
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the particle density is reduced by a factor of 10. Hence, the nuclear time

is only slightly changed and the mirror containment is now entirely adequate.

The containment times for a pure D-D reactor are the same as in the

D-T case. It is clear that the containment at 10 kev is entirely inadequate

for the D-D reaction £see Eq. (2.22) . However, at 100 kev, the D-D re
action cross section has increased over its value at 10 kev by a factor of

35 (see Table 2.1). Hence the maximum desired containment time is now about

3 sec rather than 10 sec. Thus, from Eq. (6.15), it is conceivable that a

mirror machine could operate on the D-D reaction at 100 kev.

Previous reference has already been made to the improved calculation of

mirror losses by Judd, MacDonald, and Rosenbluth? The starting point for

this calculation is the spatially independent Boltzmann equation

ar, -
(fX -Vx' T E^ <6-l6>

where f is the distribution function in velocity space and where do*/df2 is the

Rutherford differential cross section. The velocity vector is denoted by

cQ and v is the relative velocity of collision. Since the coulomb scattering

is predominantly small angle scattering, the integrand may be expanded in a

Taylor series in the vector increments of velocity ocq = ^, "°o and

oci = 6]_ - c^. Mirror losses are incorporated into the equation by assuming

that particles whose velocity angles fall within the escape cone are im

mediately lost from the system. This leads to the boundary condition

f(c2,e) =0 e^ec (6.17)

r-: J
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where 9C is the critical angle. It is also assumed in the derivation that

the distribution function is factorable, as follows,

f(c2,e,t) = h(c2,t) g(cose),

and that g(cose) is nearly isotropic outside of the escape cone. The re

sulting expression for the particle loss rate is:

dn ^^ 2 4n ~
dt = "n 3 m'? (iPj ^fe) <«•»>

where em is the minimum scattering angle in the laboratory system, m is the

ion mass and

*o = : (6.19)
loglO R

Here R is the mirror ratio. The bars over the expressions in Eq. (6.18)

denote the averages over the ion velocity distribution.

It is instructive to compare the result of Eq. (6.18) with the crude

calculation illustrated by Eqs. (6.7) and (6.8). If Eq. (2.9) is substituted

for the coulomb cross section, this result becomes:

** . -£ fc 4 OAj5|.p (6.20)dt 2 m2 [J*/ \hmin '

Comparing this with Eq. (6.18), one sees that the scattering probability P

has been replaced by

P~-*5 X° =JI^l <6'21>



The arguments of the log terms have been assumed comparable and the product of

the averages has been taken equal to the average of the product. By

Eq. (6.12), it is seen that the loss rate is increased by the following
factors

PJUDD
= 3-8 R = 2

r

= k-Q R = 5 (6.22)

These factors are very likely over-estimates of the actual effect. For one

thing, the assumption of near isotropy of the angular distribution of velocity

vectors can be expected to give an overly large loss rate, since the population

would be depleted near the escape cone in the actual situation.

There is an additional loss mechanism which may be of importance. This

is the possibility of ambipolar effects since the electrons, owing to their

higher velocity, diffuse more rapidly through the mirrors. The resulting

space charge would result in an electric field which could conceivably enhance

the loss rate of ions from the system. This effect, if important, can be

minimized by decreasing the electron temperature. It will be seen in the

next section that a lag in electron temperature may be expected in normal

operation. Calculations of ambipolar effects are now in progress at Livermore.

Description of the Proposed Device

The following sequence of operations are proposed for a possible mirror

machine:
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1. High energy injection and trapping.

2. Radial compression and heating.

3. Axial compression and heating.

4. Reaction and Randomizing.

5. Decompression.

These features will be discussed individually.

The original plans for the mirror machine called for a beam of high

energy deuterons (or tritons) to be injected through the mirrors as the first

stage of its cyclic operation. It is clear that a directed beam of particles

whose velocity vector is at an angle to the field direction which is less

than the critical angle will pass right through the mirror. These particles

will continue right on out of the other mirror unless something is done in

the interim which results in their being trapped in the device. Several

schemes for this trapping exist.

One possibility is a uniform increase of the entire magnetic field during

the injection process. As a consequence of the adiabatic invariance of the

magnetic moment Isee Eq. (6.1)J ,an increase in field strength increases

the energy in the perpendicular motion and effectively increases the angle

between the velocity vector and the field axis. If the field rises rapidly

enough, trapping will result. An alternative scheme is one. in which the

mirror field grows in time, but the main field remains constant. Yet another

possibility is to apply an RF field in resonance with the injected particles

so as to increase the energy in the perpendicular motion. This last scheme

would be severely limited by the problem of^penetration of RF into a plasma.



The main difficulty with these original schemes is the inability of

presently achievable ion sources to inject a sufficient quantity of plasma

into the device during the time available. As a result, thinking has turned

to the use of radial injection by either high energy neutral beams or molecular

beams into the device. These features will be discussed in the section on

high energy injection.

The second stage in the operation would be an increase in the magnetic

field of the system throughout the length of the device. As was shown in

Eq.. (5.44), the square of the radius of the plasma varies inversely as the

magnetic field. Hence, the plasma is radially squeezed and heated. The

third step is a similar squeezing and heating but in the axial direction.

This is accomplished by moving the magnetic mirrors toward each other. This

mirror motion may be achieved either by mechanical or electrical means.

During and after the injection and compression, the plasma will become

randomized through the mechanism of the coulomb collisions. At the same

time nuclear reactions will occur. As the final stage of operation, the

plasma is allowed to expand "back out against the fields and as a result

work is done on the field coils. This scheme constitutes a form of direct

conversion of thermal energy into electrical power.

Let us consider some of the advantages and disadvantages of a mirror

machine. One of the first advantages is the absence of drift effects, such

as are found in the Stellarator, which tend to lead particles out of the

device. Hence, it is unnecessary to devise such unproven features as scallops

and figure-eights. This has an immediate consequence that it is not necessary
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to build a device which must produce enormous blocks of power in order to

be economically successful. This could be a very important advantage. A

third feature is that hot ion injection eliminates the problems associated

with heating of an initially cold plasma. A fourth advantage is the natural

way in which the sequence of operations lends itself to direct conversion of

thermal energy to electrical energy.

Among the disadvantages, perhaps the most minor is the cyclic operation

of the device compared to the steady state operation at Princeton. This

usually results in poorer efficiency of operation. More serious is the

problem of injecting sufficient plasma into the device. Present sources will

not work for injection through the mirrors and, as will be shown in a later

section, they even look marginal for radial injection. In addition, the

economics are somewhat poorer. The fact that a particle energy of 100 kev

is being used means that the particle density must be reduced to 10 . As a

result the specific energy yield in the plasma is reduced. The economic

factors will be further discussed in the next section.

Before turning to this subject, it would be quite useful to point out

the main reason for having an axial and radial compression of the plasma.

The ions are injected with over 100 kev energy and therefore would end up

near this temperature after thermalizing were it not for the presence of cold

electrons. These electrons will come with the beam, somehow, in order that

enormous space charges do not develop . The cross section for energy

loss to these cold electrons is enormous, as was pointed out in Chapt. II.

If the initial electron density is 10* and the temperature is taken to be
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100 volts, R. F. Post has calculated* that the deuterons would begin to
lose energy exponentially with a half life t =5x 10'^ sec. This would

represent a disastrous rate of loss from the ions were it not for the fact

that the electron, sink is a finite one. As energy is drained from the deuterons

it goes into the electrons with a subsequent rise in electron temperature.

The purpose of the axial and radial compression is to feed energy into the

deuterons so as to compensate for the electron drain.

As the electron temperature rises, the energy transfer rate drops off
3/2

as T Thus at Te = 1 kev, the e-folding time is now t = 1.5 x 10"2 sec,

while the ion energy is now 99.9 kev. The e-folding time for energy input

from the compression is of the order of the rise time of the magnetic field.

Since this will be of the order of 10" sec or less, the compression will

control the deuteron energy almost immediately.

The final electron temperature will not be equal to 100 kev. Owing to

the greater bremsstrahlung of the electrons, /P~m"3/2, see Eq. (2.3)/
the final electron temperature will sit considerably below that of the ions,

and in the neighborhood of 20-50 kev.

Some Economic Considerations

Many of the economic considerations are entirely similar to those already

discussed in connection with the Stellarator. An expression for the magnet

power is given by Eq. (5-59). Assuming B = 30 kg, s « 0.5 and the outer

radius of the copper coil as twice the inner radius, v2/r1 = 2 and

14. R. F. Post, Sixteen Lectures on Controlled Thermonuclear Reactions,
UCRL-4231 (Feb., 1954T
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PM = 11 kw/cm. (6.23)

Similarly, the nuclear yield is given by Eq. (5.62). At kT = 100 kev,

(dV)DT = 8x10"16,

and

PN C 0.04 B2R2 kw/cm, (6.24)

where R is the radius of the reaction tube and an electron temperature of

50 kev has been assumed. Assume that 30$ of the nuclear power is recoverable

and that 50$ of this amount will be used to operate the magnet. Thus it is

necessary that

(0.3)(0.5)PN = PM

and hence

B2R2 = 1800 (6.25)

If P is equal to its maximum possible value of unity, the minimum working

radius is

R "2 43 cm. (6.26)

The thermal power generated per unit length is 72 kw/cm and the salable power

15$ of this which is 11 kw/cm or about 1 megawatt/meter. This is a factor of

3 less than the salable power per unit length of the Stellarator.
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There may be a strong incentive to work with as small a value of B as

possible. A maximum reasonable value of Rmay be determined by considering

capital costs. The total weight of Cu per cm is

W = *(r22 .r2) sd

where d is the density of copper. Assuming as before that the space factor

s = 0.5, that r2/v1 = 2 and that d = 8.9, this becomes

W = 42 R2 gm/cm.

If it is assumed that the cost of the copper is $1 per pound installed, the

capital investment in copper becomes:

C ^ 0.1 R2 dollars/cm. (6.27)

A reasonable capital investment cost is $200 per kilowatt of salable electric

power. Hence, it is desired that

0.1 R2
~ir~ - 200

or

R £ 150 cm. (6.28)

Upon substituting this value in Eq. (6.25), it is seen that the minimum

possible value of p is about 0.3. Hence, it will not be possible to operate

with values of B appreciably smaller than unity.
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Actually the economic situation is somewhat worse than sketched above.

It has been assumed that the only losses are in the field windings. As has

already been mentioned, the thermal investment in 100 kev particles is not

negligible and should be included in the accounting. Assuming that particles

must be supplied at a rate equal to their loss through the mirrors, the input

power may be written as

PFUEL = f- ^ «R2 EP, (6.29)

where n is the number of ions (including both tritons and deuterons), ov is

the coulomb scattering rate, E the input thermal energy, and P the probability

of loss through a mirror after a 90 deg deflection. Now, taking the electron

temperature as 50 kev,

2 B_ B_£
3 kT 8*

and hence Eq. (6.29) may be written as

900 (kTT

As before, choose B = 30 kg and kT = 100 kev. Now, E = 3/2 kT and at 100 kev,
o

o""= 58 barns and v = 3.8 x 10 cm/sec. Hence

^ 2 2,PFUEL = .019 P BR kw/cm.

Now, using the most pessimistic values of the escape probability, which are

given in Eq. (6.21) one finds that
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PFUEL = -021 P2R2kw/cm R = 2

^ .009 B2R2 R = 5

Hence, the thermal fuel investment is nearly as large as the nuclear energy

yield for a mirror ratio of 2 and is disturbingly close even for R = 5. These

results were first noticed by Bing, Judd, McDonald, and Rosenbluth15 who

performed a more careful calculation. It should be remembered that the end

loss calculations of Judd et al. maybe overly pessimistic. However, it

seems clear that the economic balance is tighter for the mirror machine than

it appears to be for the Stellerator. Since the ratio of nuclear yield to

power input in fuel varies as /kT (ov")^, improvement may be obtained by

going to high temperatures. In this case, larger radii will be necessary to

keep the magnet power ratio favorable.

High Energy Injection

Consider the problem of injection through the mirrors. Suppose that a

battery of ion sources are lined up, shoulder to shoulder, filling the cross

sectional area of the machine just outside of the mirror and pointed into the

device. Now there have been ion sources developed at Oak Ridge which yield

currents of the order of 2 amps per square inch. Assume then, that as a

result of the stacking, an average overall input current of about 1/2 amp

per square inch can be achieved. Assume further, for the moment, that

every ion which is injected is trapped and that the injection time T is of the

15. G. Bing, et al., Some Calculations of End Losses in Mirror Machines,
published in "Conference on Controlled Thermonuclear Reactions,"
Princeton University, TID-7503 (Feb., 1956).
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order of 1 millisecond. Then, if L is the distance between mirrors, the final

ion density n becomes,

n - ^ , (6.31)
Li

where I is the source current, Nov

I - i amps/in.2 = .08 amps/cm2
2

- 5 x 10 ' ions/cm2 sec

Assuming L = 5 meters, one finds

n <- 5x IP1? 10-3 12 3
n = = 10 cm .

5 x 102

The final density is still a factor of 100 smaller than required for the

operating state. However, magnetic compression will raise this value and

improvement could also be achieved by pushing the injection time up somewhat.

Although the final density is uncomfortably small, this is not the real dif

ficulty with injection through the mirrors. The more essential difficulty

is the total field rise which must be achieved if trapping is to occur. This

will be calculated in the next paragraph.

Consider trapping by means of a uniform rise of field strength over the

entire length of the mirror machine. Suppose that the ions are injected at

an angle eo which differs by only a small amount 8 from the critical angle

ec. This is illustrated in Fig. 6.3- Here the dotted lines represent the
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WfoV

Fig. 6.3. Injection and Trapping

regions of maximum field strength in the two mirrors. Suppose that the

field strength at 1and 2 at the time of injection is denoted by BQ and

that this quantity has risen to the value B by the time that the ion reaches

the region of 2. Since

sine = 2k
v

it is clear from Eq. (6.3) that the new angle is

sine =
B
— sine„.
B„ °
o

(6.32)

(6.33)

In order that trapping occur, it is necessary that this final angle be

equal to or larger than the critical angle. Hence

or

sin6c

sine,.

siner

sin(ec - S)

= 1 + 6 cotec + (6.34)



-120-

Now the time interval for traversal of the device from region 1 to region 2

is

T = = . (6.35)
v cose0 v cosec

Hence the final field B is,

B - B0 = B (6.36)
u v cosec

where B is the rate of change of magnetic field. Eq. (6.34) may be rewritten

as

— = 1 + 2% cotec, (6.34)
Bo

and Eq. (6.36) as

B B L .. oN
b7 " 1+io" v~c^e7 • (6-58)

Combining Eqs. (6.37) and (6.38) yields the condition

S . (6.39)
jj j 2v cos^Sc

Bo L sinec

Finally, by use of Eq. (6.6) this condition may be written as

I r gv r^j, g {6k0)
A"

The beam from an ion source has an inherent angular spread which one'

finds very difficult to reduce below a few degrees. Hence the quantity o



can probably be made no smaller than about 0.1 radians. Assuming a mirror

ratio of 4 and a length of 5 meters, one obtains

.8.B ^ 3(3.3 x 10°) . ,. c- a _\ ^L (0#1) = 2x 105
5 x 102

Integrating, this yields

B(t) - B(o) e<2 X10^ {6,hl)

Equation (6.4l) indicates that after a millisecond, the field must have in

creased over its initial value by the enormous factor exp(200). Since the

initial field value can hardly be less than about 2 kg (the Larmor radius of

a 100 kev deuteron in a field of 2 kg is 30 cm) it is clear that this rise is

Impossible. In fact, since final fields of the order of 40 kg are about a

reasonable limit it is clear that the total increase must be a factor of

20 (=e5) or less> rj^g wouM limit ^B tQ avalue Qf 5x 1Q3 Qr lesg> glnce

this limit is a factor of 70 less than required for complete trapping, one

would expect only about 1/70 of the ions to be trapped by the maximum field

rise which can be maintained. Hence, injection through the mirrors has been

discarded.

One possible scheme for injection is to use the method of molecular ion

breakup suggested independently by John Luce at ORNL, and H. York at Berkeley.

This technique is illustrated in Fig. 6.4. Abeam of high energy D2+ ions

are projected across a magnetic field. The molecule is then dissociated

into an atomic ion and a neutral atom near the extremity of the orbit. The
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Fig. 6.4. Molecular Ion Breakup

resulting ion has about half the momentum of the molecule, half the Larmor

radius and hence is trapped inside the field. The actual breakup in a Sherwood

device would be caused by the plasma. The present experimental investigations

16
of this method achieve breakup by means of a carbon arc which is in the

direction of the magnetic field and which intersects the molecular beam at

a localized point.

The advantages of molecular injection are first that injection may be

accomplished radially around the mirror machine rather than through the

mirror. This allows more area for the ion sources. More importantly, little

or no field rise is required for trapping. Perhaps the main objection to

this method is the fact that the ions are deposited only 1 Larmor radius from

the walls. This could lead to serious diffusion losses and sputtering,

and hence some magnetic compression will be necessary. Plans are now under

way at Oak Ridge to combine the features of molecular injection, arc

ARC

MOLECULAR BEAM

ATOMIC BEAM

16. J. S. Luce, Ionization and Dissociation of Energetic Ions by a Carbon
Discharge, ORNL-2219 (Nov., 1956).
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breakup and magnetic mirrors into a small device which might enable one to

grow a low density but high temperature plasma. The proposed device is called

the DCX and would be used to investigate the physics of hot plasmas.

Two alternative radial injection schemes involve energetic neutral

injection 'and trapping of energetic particles by time-rising fields.18

The first scheme is one in which D+ ions would be accelerated to about 100 kev

in a conventional accelerator, then are sent through a gas target from which

about half the ions emerge neutral with very little scattering or energy

loss. The neutral beam would then cross into the magnetic field and would be

ionized and trapped by colliding with the plasma ions. In the second scheme,

field rise times are still a problem, although not as bad as in the case of

mirror injection since particles can be injected with a very small component

of velocity in the field direction. Both methods are being investigated at

Livermore.

Survey of Experimental Program

A listing of the experimental devices at Livermore is given below.

A very brief description of the apparatus and some of the reported results

are included. This table is based on Sherwood Conference -reports, which are

particularly sketchy on these points.

Table Top I. This device is a mirror machine utilizing pulsed magnetic

fields. The peak mirror field is near 30 kg with a mirror ratio R adjustable

17, E. J. Lauer, Energetic Neutral Injection Into Thermonuclear Machines,
UCRL-4554 (Aug., 1955).

18. W. I. Linlor, High Energy Peripheral Injection Into Mirror Machines,
UCRL-4569 (Sept., 195577"
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from 2:1 to 4:1. The field rises in 600 us and decays in 10 milliseconds.

The device has a 6 in. ID and a length of 44 in.

Injection is by means of a deuterium loaded titanium spark source. This

"hydride" source is of about 10 ^us duration and delivers a plasma with energies

in the range of 5 to 10 ev. These energies have been determined by time of

flight and probe techniques.

The purpose of this experiment is to observe trapping and compression

by time hieing fields. Containment times of 300-400 us have been reported.

These times are comparable to the theoretical mirror containment times de

termined by Judd et al.9

Table Top II. This device has a somewhat larger peak mirror field than

Table Top I and in addition, has a DC field for initial trapping of the

plasma. The peak mirror field is 30 kg with a mirror ratio of 2:1. The

DC field has a mirror value of 600 gauss and also has a mirror ratio of 2:1.

The field rises in 650 us and decays in 30 milliseconds. The device has a

6 in. ID and a length of 50 in.

Injection is from a "hydride" source. Abase pressure of 10"^ mm Hg

has been used. Probe measurements indicate that a plasma having an electron

density of 10 has been contained for a time of 200-300 us. There is evidence

that the plasma is compressed by the rising magnetic field. Soft x-rays

having energies up to 20 kev appear for the duration of the containment.

In addition, hard x-rays having energies up to 100 kev persist for much

•longer times. The hard x-rays are believed due to high energy electrons

striking the walls after the containment is over.
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Toy_ To£. Top Top has a peak mirror field of 250 kg with an R = 2:1.

There is also trapping by a small DC field which may vary from 50-500 gauss

with an R = 3:1. The field rises in 200 us and decayse in 3 milliseconds.

The device is quite small, 2 in. ID and a 12 in. length. The base pressure

is about 10"? mm Hg.

Observations have been made for field compressions ranging from a factor

of 500 to 1300. In theory, this could lead to final energies of 2.5 to

6.5 kev for the plasma, which is provided by a hydride source. There is no

good evidence for this temperature. Containment times of 3 milliseconds

have been observed. Fast electrons are seen, as well as x-rays in the range

from 10 to 200 kev.

Q-Cumber I. This is a DC machine having a central field of from 50-200

gauss. The mirrors have a maximum field of 3 kg and are individually variable,

The diameter of the glass envelope is 6 in. The glass is coated with silver

paint. The plasma source is of the usual hydride type.

Since there is no compression of an initially cold source, this device

is intended only to study the behavior of a cold plasma. The very low initial

fields make possible the attainment of a high B with relatively low ion

energy and density. In addition, the variable mirror ratios allow a study

of the efficiency of mirror trapping. Another interest is in the diffusion

rate of charged particles across the magnetic field.

Results so far indicate quite clearly that mirrors are effective in the

containment of a plasma. In addition, the diffusion rate is much lower than

predicted by the Bohm formula (see Chapt. IX).

Wmm
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Q-Cumber II. In order to take full advantage of lower initial fields, it

is advisable to use as large a tube radius as possible. Q-Cumber II has an

18 in. ID which narrows to 4 in. at the ends. The central field is 25 gauss.

Containment times of 1.5 to 2 milliseconds have been observed. A B = 0.1

has been obtained. However, the neutral gas background was so large as to

obscure interpretation of the containment. (The motivation in seeking a high

value of B is to look for the instabilities which are expected to be present

for 8 close to unity.)

Squash I. So named after its size which, in length at least, is as big

as a squash court. The device is to have a 12 in. ID and a length of 18 ft

and is to stand with its axis vertical. In a sense this device plays the same

role for Livermore that Model C does for the Princeton group. That is, it is

intermediate in size between the table top models and a power producer. As

such, work has been temporarily shelved on this device until questions of

stability, as well as adequate injection sources, are resolved.

The peak mirror field is to be about 80 kg with an R of 2:1. The rise

time is to be from 5 to 10 milliseconds with a 200 millisecond decay rate.

The total energy in the condenser bank is to be 10' joules. There is to be

both axial and radial compression.

Saturn. This device has an equatorial ring source located on the median

plane between two solenoid coils whose length is small compared to the coil

radius. The source is located such that 0, the flux enclosed, is given

by 0 •< 2% r H. The quantity r, in this betatron condition, is the source

radius and H is the field at the source. If this condition is satisfied,

the emitted particles will be accelerated toward the center.
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The device has two solenoid coils of 12 in. ID located 12 in. apart.

The center field is 6000 gauss with an R = 1.5. The source is a usual

hydride one, and the field rises in 70 us and decays in 900 us. An electron

density of 10l3 is contained for about 700 us. Compression of the plasma

is observed and there is some indication of a final temperature of 50 ev.
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VII. PINCH DEVICES

The devices described in the previous two -chapters have at least one

element in common in that they attempt to confine a plasma by use of externally

generated magnetic fields. A third method for the confinement of a plasma

differs from those described above in that an internal magnetic field, pro

duced by currents induced in the plasma, is used. Owing to the magnetic

attraction of parallel currents, there will be a tendency for the discharge

in the plasma to contract under the action of its self-magnetic fields. This

phenomenon is called the pinch effect.

The pihch effect was first suggested in a paper by W. H. Bennett19 in

1934. The effect was rediscovered and treated in detail by L. Tonks20 j.n

1939- In 1951 J. Tuck at Los Alamos proposed that the pinch effect be uti

lized for the achievement of a controlled thermonuclear reactor. The result

of this suggestion was the establishment of a Sherwood project at Los Alamos

under the direction of J. Tuck and which is concerned with the development of

pinch devices. Pinch studies have also been underway at Berkeley since 1955.

Recent classified discussions with the British have revealed that their

thermonuclear effort is based upon exploitation of the pinch effect. Finally,

the information released by the Russians to date is concerned entirely with

experimental studies on the pinch effect. The Russians did imply however

that they are investigating other schemes.

19' V(' H.\BennEtt> Magnetically Self-Focussing Streams, Phys. Rev. 4_5, 890
20. L. Tonks, Theory of Magnetic Effects in the Plasma of an Arc, Phys. Rev.

56, 360 (1939)•
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The Steady State Pinch

It is instructive to derive the relations between the pressure, magnetic

field, and current in a steady state pinch. In the absence of electric or

external fields, the steady state force equation for a plasma takes the

form given in Eq. (2.15).

-A

\7P ^xH (7.1)

Combining this expression with the steady state Maxwell equation,

-» 7
curl H = kit/, (1.2)

one obtains the expression given in Eq. (2.17). This is

^p+87> - h <=•*£ (7.3)

This expression may now be applied to the specific geometry of an infinite

linear pinch. Consider an infinite cylindrical column of plasma as shown in

Fig. 7.1. The plasma is entirely confined within a cylindrical surface of

Fig. 7.1. The Linear Pinch

j^^H^
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radius R. Hence the plasma is zero outside of this radius. The current

flows entirely in the axial, or z, direction. The self magnetic field H is

entirely in the £-direction. By symmetry, all three quantities can be

functions of the radial distance only. Assuming this geometry, Eq. (7»3)

takes the form

* H2 H2
or" <p +£> " "te> <?.*)

since

d -^ -* ,

M 6 ' "r <7'5>

where e and r are unit vectors in the indicated directions. Equation (7-4)

may be rewritten as

dr "r2 dr \QnJ '

which may be integrated immediately. The result is

r

H2(r) 1 f 2 dP . .
~X-L = ~ — r — • dr (7-7)8« r2 J dr

o

since H and dP/dr must vanish at the origin. Similarly, Eq. (7«2) takes

the form

I (r) --i- - (rH) (7.8)
<7 4jtr dr

(7.6)
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In the framework of these equations, we are free to choose P(r) as any

even function of the radius which vanishes for r >R. The corresponding

magnetic field and current are then determined by Eqs. (7.7) and (7.8). In

practice, of course, the actual pressure distribution would be determined by

a balance between diffusion losses and sources of fresh plasma. This com

plication will be ignored, and some simple distributions assumed, in order

to illustrate the nature of the results.

First, consider a simple parabolic pressure variation which vanishes

smoothly at the boundary,

P(r) - *, (R2.r2) (?>9)

where P is the pressure at the axis of the pinch. By Eqs. (7.7) and (7.8)

one finds

and

H = /kit? -
R

r £ R

r
r 2 R,

/ Aid?
* = 2*R

r £ R

J - ° r s- 0.

(7.10)

The constant value of the current density is not a general property but

instead is a peculiarity of the specific pressure distribution which was

assumed.
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Another possible distribution is a constant pressure P which falls

discontinuously to zero at the boundary. In this case, H vanishes in the

interior of the plasma and has the value

/ R

H = /8idP - r Z R (7.11)

in the exterior region. The current is entirely a surface current in this

case and has the magnitude per unit length as follows:

1 surface ~ ~o~tt ' (7*12)

The results obtained above may be used to obtain an estimate of the

pinch currents which are required to confine a plasma having the typical

thermonuclear properties, i.e., a temperature of about 10 kev and a particle

density of about 1015. The resulting pressure is about l6 atmospheres, or
6 o

16 x 10 dynes/cm . By Eq. (7-10), the corresponding magnetic field at the

plasma surface is

H ~ 14 kg,

and the current density in the plasma is

l ~> 4 103 , 2 ,
</ = 7f ~ emu/cm ' (7#15)

The total current through the plasma is then,

J = k/7 RKT amps (7-l4)
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The minimum radius of a pinch should certainly be large compared to the Larmor

radius of an ion in the magnetic field near the plasma surface. A 10 kev deu

teron has a radius of 1.8 cm in a 14 kg field. Hence R * 1.8 cm and

J^ 1.3 x lO5 amp. It is clear that currents in the neighborhood of K>5

amp or larger will be needed for a pinch device. Needless to say, a practical

pinch would be set up in a toroidal geometry so as to avoid the end losses of

a linear system.

Dynamics of the Pinch

The previous discussion is highly academic in that it deals only with

the static relations within a steady state pinch under the assumption of

constant current. It is even more academic when one realizes that no steady

state pinch has yet been accomplished and that all observations so far have

been on the transient behavior of a pinch for times of the order of 1 milli

second or less. A much more interesting (and difficult) problem is the

behavior of a pinch in time from the initial application of a driving electric

potential. M. Rosenbluth has investigated this problem in detail2! and his

results are summarized in the next section.

Consider a finite conducting cylinder of radius R and length J~ filled

with a fully ionized plasma. If a potential difference V is applied across

the tube in the axial direction, a current will begin to flow in this direc

tion. Rosenbluth assumes that the plasma is infinitely conducting and hence

that this current flows only on the outer surface of the plasma. As a

21. M. Rosenbluth, Infinite Conductivity Theory of the Pinch, LA-I85O
(Sept., 1954).
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result of this current, a magnetic field is formed outside the plasma in the

e-direction. The combined effect of the crossed electric and magnetic fields

at the surface of the plasma results in each particle being forced to move in

the inward radial direction. Ths situation is shown in Fig. 7.2. Here RQ

Fig. 7-2. Dynamics of the Pinch

is the radius of the instantaneous plasma surface indicated by the dotted

line.

Since the plasma is infinitely conducting, the electric field in the

moving frame of the plasma must vanish. This implies the following relation

between the surface electric field in the plasma, E and the radial velocity
S '

Ro of the plasma:

Ji„ + ———— = Ji + a (J,

Hence

B,

RQH

Rc£
c

(7.15)
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Next, it should be noted that the surface electric field is not simply

given by -V/J due to the fact that the moving surface and changing magnetic

field in the exterior of the plasma produces a magnetic induction with

associated electric fields. This induced field may be obtained by taking a

line integral of E around the path indicated by the arrows in Fig. 7.2. The

path legs in the conducting wall give no contribution since the tangential

field must vanish. The total integral".is ;

E.di = /&, + V.

Now by Maxwell's equation

curl E = -I §2
c Bt

Hence

(7.16)

(7.17)

where the integral on the right is over the area enclosed by the path of

integration. The magnetic field in the region outside the plasma has the

usual value

H = ^ r ^ RQ (7.!8)
r

where I is the total current through the plasma. Substituting Eqs. (7.18)

and (7.16) in Eq. (7.17), one obtains
R

iEs +V - A f 2i §£ (7.19)



-136-

Hence, the surface electric field at the plasma is

-^ c VR

Substitute for Es by using Eq. (7.15). The result is

.1 . _M +zijn(«-) .
Z c c [R0j

Finally, by use of Eq. (7.18), this may be written as

Eo (7-21)

where EQ =- v/J is the applied electric field. Equation (7.2l) is a purely

inductive relation between the current, plasma radius R0 and applied voltage.

The relation must necessarily be inductive since no dissipative forces have

been introduced. Equation (7.21) may be rewritten as

t

I Jn — = - E_dt. (7-22)
Ro 2 '

Further progress in detailing the transient behavior of the pinch may

be made only by assuming some model for the hydrodynaiai<rff of the plasma under

compression. The link between the inside and outside is the requirement that

the magnetic pressure balance the surface gas pressure. Thus,

it 2 2

ps - — - -^a (7-23)
8it 2*Ro

FwmS?
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Several hydrodynamic models have been considered by Rosenbluth. The simplest

one is the snow-plow model which assumes that all material which is swept up

by the magnetic piston is piled up in a very thin layer at the boundary and

moves with it. In this case, the momentum equation for the surface becomes

— (MR0) = -2*1^ (7.2)4)

where M is the mass per unit length swept up by the snow-plow. Now

,2 „ 2
M = *(R -R. y>0 (7.25)

where p0 is the initial gas density. A final relation may be obtained by

substituting Eqs. (7.15), (7-23), and (7.22) in Eq. (7-24). The result is

t

°2 l"[E°dt]2jHOt2 - R02)R0j = p (7.26)
4foRo(in y 2

This equation may be reduced to dimensionless form by the following sub

stitutions (for the case of EQ a constant in time):

R
o

7 - - r - I *PP (7.27)
V R RR R

and the resultant equation may be solved numerically.

The results show a current and radius which tend smoothly to zero in

time. This is to be expected since the snow-plot model makes no provision

for the effects of such things as finite conductivity and back-shocks from
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the center. More complex hydrodynamic models show a behavior in which an

initial compression is followed by an outward bounce followed by another

compression etc. The specific results depend, of course, upon the time

behavior of the applied voltage and the model assumed. A more general

relation is expressed, however, by the results of Eq. (7.27). This scaling

law shows that the velocity of compression of the plasma surface is of the

order of magnitude as follows:

k/c\2
vr = IT— (7-28)/ kitpQ

It should be noted before leaving this subject that the Rosenbluth theory

above is often referred to as the M-theory (M standing for motor), and that

the same results have been obtained by the Russians. It should also be pointed

out that Rosenbluth has studied the structure of the surface layer by con

sidering individual particle orbits. He shows that the magnetic and electric

fields drop to zero in a distance Aof the order of

2
. r~ , mc

~ = l~T~ <7-29)8icne

Here n is the particle density and m is the electron mass. This thickness

is quite small, of the order of magnitude 1 mm thick, in cases of interest.

The Kink Instability

As has already been indicated, it has been found experimentally that

all pinch discharges up to the present time are extremely unstable. In

typical cases, the pinch may be formed for a few microseconds but then the
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discharge breaks up and fills the tube in a comparable time. The observation

of this instability was no surprise since a theoretical prediction22 of the

effect was available quite early in the game. A physical picture of the

effect is shown in Fig. 7.3.

Fig. 7.3. The Kink Instability

What is shown here is the effect of a lateral perturbation or "kinking"

on a cylinder of plasma. The dotted lines represent the lines of force

of the self-magnetic field due to the pinch current. As a result of the

kinking, the lines of force are brought closer together on the inside of the

bend and are farther apart on the outside of the bend. The resultant

magnetic pressure is greater on the inside and a net force acts in such a

direction as to increase the bend. Thus, once a slight kink develops, it

will grow in size until the discharge breaks up and the plasma fills the

tube.

22. M. Kruskal and M. Schwartzschild, Some Instabilities of a Fully
Ionized Plasma, Proc. Roy. Soe. A253-* 548 (1954).
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The amplitude of the kink increases exponentially, with an efolding

time approximately equal to the time required for a sound wave to travel a

distance equal to the wave-length of the perturbation or equal to the geometric

mean of the wave-length and the pinch radius, whichever is the larger.

The result is an extremely fast breakup. For example, at a temperature of

10 ev the speed of sound in deuterium is about 3 x 10° cm/sec. Hence, a

wavelength of 1 cm will e-fold in less than a microsecond. A discussion of

some of the observed behaviors of unstable pinches will be found in the last

section of this chapter.

There is a second instability of the pinch which is of interest. This

is the so-called "Sausage" instability. The unstable deformation in this

case corresponds to a necking-down or constriction of the plasma as shown

in Fig. 7-4. This instability tends to grow even more rapidly than the

kink instability. Although there is no direct experimental proof of this

instability, there is some indirect evidence of its existence.

Fig. 7.4. Sausage Instability

fv^^|
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Stabilization of the Pinch

It may be possible to live with an unstable pinch. A discussion of this

possibility will be found in the next section. However, it is clearly de

sirable to attempt to find ways to stabilize the system. Attempts to achieve

this end have been uniformly unsuccessful until very recently when a com

bination of theoretical and experimental observations have led to a sharp

upsurge of optimism.

It has been known for some time23 that the long wave-length kink

instabilities could be eliminated by encasing the pinch within a conducting

shell. Furthermore, the beneficial action of a longitudinal magnetic field

(in the axial direction) upon the short wave length instabilities has been
24pointed out by Kruskal and Tuck. * However, low power experiments at Los

Alamos gave no indication of improvement resulting from longitudinal field.

Recently Rosenbluth25 has investigated the combined action of longitudinal

fields and a conducting shell in detail and has found a region of complete

stability. It appears that comparatively modest longitudinal fields will

suffice. However, it is important that the net compression of the plasma be

small and that little or no longitudinal field remain outside of the plasma

after pinching. This last feature may make achievement of the stabilized

pinch quite difficult since the internal longitudinal field tends to leak

out of the plasma quite rapidly at low temperatures.

23. J. L. Tuck, Conference on Thermonuclear Reactions, WASH-146, p. 51
(April 1953)^ ~

24. M. Kruskal and J. L. Tuck, Instability of a Pinched Fluid with a
Longitudinal Magnetic Field, LA-1716 (Nov. 1953).

25. M. Rosenbluth, Stability of the ftlBShk3JlA-20^0 (April 1956).
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Recent experiments on linear pinches at Los Alamos and Berkeley have

indicated that longitudinal fields seem to suppress the short wave length

instabilities, as predicted. It should be emphasized that the theoretical

calculations so far are valid only for a linear pinch and have not yet been

extended to a toroidal configuration.

Suppose, for the moment, that the theoretical prediction may be trusted

and that there is indeed a region of complete stability of the pinch. There

are still several major problems which would have to be overcome before a

successful device could be operated. One of these is the tendency for the

magnetic field to leak out of the plasma and into the vacuum. The rate at

which this occurs may be estimated quite easily. By Maxwell's equations and

Ohm's law,

—9 1 9H
V x E

"c 9t

->

—> 4jtl
V x H

—

c

—>

V- H = 0

-» _,

I = CTE ,

tfe :.:,*

(7-31)

(7-32)

(7-33)

(7-34)

where the displacement current has been neglected and where 07 the conductivity

of the plasma, is in esu. Take the curl of Eq. (7-32) and substitute from

Eqs. (7.34) and (7-3l). The result is

. -* 4jkT BH
V x (V x H) - - — — ,

c* ot
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which may be rewritten, by use of Eq. (7.33) as,

^ -k-f f (7.55)
c ot

If the magnetic field falls off spatially in the conductor with a character

istic length L, its e-folding time f, may be written as,

4*0" L2r . —_ (7#56)

c*

The conductivity of a fully ionized plasma is readily estimated. Under

the action of an electric field E, an electron has an acceleration eE/m for

a time of the order of X/v, where X is the mean free path. Hence the

average acquired velocity is

v = SlA
mv

and the current, in esu, is:

= nev

n^X E
mv

where n is the electron density. The resultant conductivity, in esu, is

A .2jy. ~ ne^X = _^_
mv mvc^

where o^ is the electron-ion coulomb cross sections. By Eqs. (2.9) and (2.10),

this expression may be written as



3
^ mv

80*e<

(3^)V2
"e280* Jmt

which has the numerical value

cr = 6 x 1012 (kT)5/2 (7.38)

with kT in ev. Hence, by Eq. (7-36)

T - 0.84 x 10"7 (kT)3/2 L2 sec (7-39)

At a working temperature of 10 kev, with a pinch which is a few centi

meters in radius, it seems clear that the leak time can be of the order of

seconds, which should be adequate. However, the same pinch at a temperature of

1 ev would have a leak time of the order of microseconds. Hence, in order

to avoid instabilities, it will be necessary to heat the plasma very rapidly

so as to bring it up to a temperature at which the stabilizing longitudinal

field can be held for a reasonable period.

The second major problem is the heating of the pinch. It has just been

demonstrated that this process must be accomplished very quickly at first.

One of the most natural ways to heat a plasma is by compression. Compres

sion in turn, is an automatic consequence of the method used to establish

the pinch. As was shown in the section on dynamics of the pinch, the

application of an electric field across the plasma results in a compression

(7-37)
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of the pinch with a velocity given by Eq. (7-28). Since the surface acts

as a magnetic piston, every particle which strikes it is reflected with an

increase in velocity equal to twice the surface velocity. The resultant

increase in energy is then proportional to the mass of the particle which

is reflected. Hence, this method is most efficient for heating of the ions,

which is a desirable property. Furthermore, it may not be too difficult

to apply electric fields which result in surface compression velocities of
Q

the order of 10 cm/sec. This would imply that every ion struck by the

magnetic piston is accelerated up to thermonuclear energies.

Unfortunately, Rosenbluth's stability studies have also shown that

there is a maximum, compression of the pinch which can be tolerated before

instability sets in again. The criterion may be expressed in terms of the

ratio of the radius of the external conductor to the radius of the pinch.

This ratio may not be larger than 5 for the case of a pinch having negligible

gas pressure, (i.e., where the internal pressure is mainly due to the

magnetic pressure of the longitudinal field). For a more reasonable case,

in which the gas pressure is comparable to that of the longitudinal field,

the maximum ratio is more like 2 or 3. This restriction implies that any

large scale heating by means of plasma compression must be so programmed

that the radius of the pinch is not below the critical limit for times which

are of the order of instability time or longer. This is very likely a serious

constraint on this type of heating.

Of course, there is always the ohmic heating resulting from the finite

conductivity of the plasma. As jias already been discussed in Chap. 5, this
N?i*>;
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type of heating is not very effective above 100 ev because of the decreased

resistivity of the plasma. The most likely prospect is some kind of shock

heating. One possible scheme is to create a shock by the sudden applica

tion of a large pinch field. Another possibility, suggested by S. Colgate,

is to produce shock heating by the use of "collapse" techniques. In this

case, the shock is again produced by a magnetic piston; but the magnetic

field is an external longitudinal field produced by a solenoidal winding.

The main difficulty with these shock schemes is the necessity for the

magnetic pressure to rise in a time which is shorter than the sound speed

across the diameter of the tube. For a tube of a few centimeters in radius,

this implies rise times of the order of 10~° sec. This transit time is too

rapid for presently known condensers with large energy storages.

An additional difficulty of the "collapse" scheme is the necessity for

programming the external longitudinal "collapse" field to zero intensity

within the e-folding time for instabilities to grow. As was pointed out

earlier, Rosenbluth has shown that any appreciable external longitudinal

field sharply reduces the region of stability of the pinch. Hence the

"collapse" field must be reduced sharply within the time required for a sound

wave to travel around the circumference of the torus (instability to long

wave lengths).

One final factor should be mentioned in this discussion of pinch

instability. Recent experimental observations both in Britain and in this

country indicate that the pinch tends to break into a corkscrew type of
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instability shortly after it is formed. It is believed that this behavior

is in agreement with theory, since the compressions in these experiments were

well beyond the Rosenbluth limit. In that case, long wave length instabili

ties of a helical type are predicted. The observed direction of the helix is

also in agreement with theory. The formation of a helical instability may

possibly have a partially stabilizing tendency inherent in it. As a result

of the helical shape, the pinch current itself now tends to produce a

longitudinal magnetic field in the plasma, as well as the original BQ field.

This field is in such a direction as to reinforce the original longitudinal

field. Hence, a substantial increase in containment time may result from

this mechanism.

Economies of the Pinch

As will be shown below, the economies of the stabilized pinch are very

favorable compared to those of the Stellarator or Mirror machine. The

chief reason for this is the highly efficient way in which the magnetic

field is produced. Not only is the plasma a much better conductor than copper,

at a temperature of 10 kev, but the peak magnetic field occurs at the plasma

surface, where it is needed, rather than in the coils. These factors permit

larger particle densities, smaller physical dimensions and smaller input

energies for the system. If the pinch cannot be stabilized, the situation

is much less favorable. This possibility is considered at the end of this

section.

The pinch device is necessarily a pulsed gadget. This follows from the

fact that the geometry is necessarily toroidal in order to eliminate end

^1
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losses. In this case, the applied voltage must be obtained by inductive

action, which implies pulse operation. Furthermore, as has been mentioned,

stability will only persist until a fraction of the internal longitudinal

field of the plasma has leaked out into the vacuum. This places a practical

upper limit on the duration of a pulse. Assume now that a toroidal stabilized

pinch has been established. By some sort of shock heating, the temperature

has been raised very quickly at the beginning of operation to thermonuclear

temperatures. The pinch is now in a steady state which will persist for a

time<Vlimited by field diffusion.

The input energy per unit length to the system during the pulse con

sists of four parts. One is the energy in the pinch field. If the external

field at the plasma surface is denoted by Be, this contribution is

R

f B2
Ee = — 2«r'dr",

1 8*

where r is the pinch radius and R the radius of the external conductor. Now

B = BQ r— (7.41)

and thus

E0 » *r2 5§- . 2in &. (7.42)
8* r

The second contribution is the energy required initially to heat the

gas up to working temperature.
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This contribution is

EG = jtr2 NkT (7.43)

= jrx* P

where N is the: particle density and P the final gas pressure. The third

contribution is the energy in the longitudinal, or Bz, field. This is

P Bz2
8«

But, by the pressure balance condition,

— + P - — (7.45)
8it 8k

at the plasma surface. Hence the three energy contributions above can be

written as

Ee +EG +\ = ^ ~ (1 +2Jn 5. . (7.^6)
oit \ rl

The final energy contribution is from the ohmic heating of the plasma

during the duration of the pulse. If a uniform current densitji J is assumed

in the plasma, this energy input is

% = *r2 cL t (7^?)

where o"is the plasma conductivity and t is the duration of the pulse. Now

the pulse duration is limited by the time required for the B„ field to

E**'Ifi
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diffuse a distance of the order of the pinch radius. By Eq. (7-36) this time

is

t c- ^£. _ (7<J+8)
c2

Hence, substituting in Eq. (7-47),

Er = *r2 W2r2
2

c

But the pinch field is related to the current density by the relation:

B £ . 2^ {ltk9)
cr c

Substituting this above,

Er m«r2 5®. . (7.5O)

Combining Eqs. (7.46) and (7-50), the net energy input per unit length to the

pinch becomes:

B2
2 °J_ 9+2j„« (7.51)EIN - *r

It should be noted that the energy input in the form of ohmic heating is about

8 times larger than the thermal energy content of the gas.

The energy production per unit length of the pinch during the duration

of the heating pulse is given by the usual relation,

E0UT " VT (^)D-TE«r2^ <7'52)



-151-

where E is the energy produced in a D-T reaction. Now by the usual definition

of the quantity B,

2

and

P = B
B£
8«

P = (ne + nj) + nrp) kT.

If a 50-50 D-T mixture is assumed,

nD = n,
T

B Be" 1
4 8n kT

Combining Eqs. (7-53), (7-52), (7-51), and (7-48),

E,
OUT ^ B02(ov)DrT E <5r2

EIN 32 c2(kT)2 9 + 2in ^
r

(7.53)

(7.54)

If it is assumed that this ratio must be of the order of 3 or larger in order

to have excess energy to sell, one obtains a minimum condition on the pinch

radius.

96 c2(kT)2 [9 +2 In |]
r2 ^

B2B02(ov)d_tE cr
(7.55)

Since cTis given by Eq. (7-38) it is clear that

r2^

<<*>D-T V
(7.56)
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The temperature dependant term varies slowly with temperature and has a

minimum in the neighborhood of 100 Kev. It is clear that the minimum pinch

radius varies inversely as the pinch field for fixed temperature.

Rosenbluth has shown that the pinch will be unstable to the "sausage"

type instability if 0 => 0.5. Hence let us choose this limiting value as the

operating condition. In addition, a compression of greater than 2.5 is also

unstable for this value of B. Hence, R/r will be assumed to be equal to 2.5.

Numerical values can now be inserted in Eq. (7*55), where it will be assumed

that the reaction energy is 10 Mev and the value of cTis given by Eq. (7.38).

Thus

r2 , io-7 . _^M (757)
<ot>d-t *<?

where kT is in ev. If attention is focused on the D-T reaction at kT = 10 kev,

then (0V) =10"16 by Table 2.1 and

p iollrd - —— . (7.58)
* 2
Be

If comparison is to be made with the previous economic considerations for the

Stellarator and Mirror device, the surface pinch field should be chosen to be

30 kg. In this case, the minimum pinch radius is 10.5 cm which is considerably

smaller than the results given in Eq. (5-64) and Eq. (6.26). The two principle

reasons for this advantage over the other devices are the larger conductivity

of a plasma at 10 Kev compared to the conductivity of copper and the more

efficient geometrical usage of the magnetic field.
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The situation is even more favorable than indicated by this comparison.

A plasma surface field of about 30 kg implies a maximum field strength in the

coil windings of about 50 kg for the case of the Stellarator and Mirror de

vice. This limiting value, in turn, is set by considerations of coil strength

and fabrication difficulties. In the case of the pinch, the maximum field

occurs at the pinch itself and falls off to R/r (= 2.5) of its value at the

coils which make up the conducting wall. Hence, if the same strength limit,

50 kg, is chosen at the conducting wall, the maximum pinch surface field

becomes 125 kg. Inserting this value in Eq. (7.58) yields

r e 2.5 cm. (7-59)

This radius, and corresponding field strength, will be used to illustrate the

properties of a pinch device.

The total input energy per unit length is obtained by inserting the

proper numerical values in Eq. (7.51). This is

EIN = 1.3 x10^ joules/cm. (7.60)

The duration of the pinch is found by use of Eqs. (7.48) and (7.38). This re

sult is

T= 0.52 sec. (7.61)

Hence, the input power per unit length during the pulse is

P - 1-3 X 10^" OC 1 / I S KP = —=i = 25 kw/cm (7.62)
O.52

= 2.5 Mw/meter.



The thermal power developed is 3 times this value. However, the salable

power should be of the order of the input power.

So far nothing has been said about the total length of the torus. A

large value of the ratio of the major axis of the torus to the minor radius

is desirable in one way since problems concerned with centering of the pinch

are reduced in this case. On the other hand, a large ratio of major to minor

radius would require a larger total input energy and would mean a larger

value of the inductance for the system. A low inductance is desirable in

order that the steep initial current rise necessary for shock heating be

possible. Assume that this ratio is chosen to be 10. In this case, the total

energy input required of the condenser bank is

Bjjj ? 2x106 joules,

and the input power is

P - 4Mw,

which is also the order of magnitude of the salable power.

It is interesting to note that the total input energy is inversely

proportional to the magnitude of the pinch field. This may be recognized by

the fact that the input energy is

E ~> r3 h«2
IN e

where a fixed ratio of major to minor radius has been assumed. By Eq. (7.56),

it is clear that
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siN~r- (7.63)

On the other hand, since the pulse duration is proportional to r2, by

Eq. (7-48), the power delivered during the pulse is

p^ He- (7-64)

If the pinch cannot be stabilized, there is still a small but finite

possibility of extracting useful energy from such a device. The energy

production would occur only during the first compression of the pinch under

an impressed voltage. After this first compression, kink instabilities would

break it up very rapidly. Since only a short time exists for the reaction,

very little nuclear burnup would occur unless the particle density becomes

very large in the compression. This in turn implies very large driving fields.

If the plasma drives in with a constant velocity R, the energy given

each particle upon being swept up by the field is MR2 which becomes the effec

tive temperature of the gas. Hence the input energy on compression is

0

ein ~ mr2 n,tR2 = ft1*2 /°T

where o is the Initial density and T the effective temperature. The energy

output is

_, . s2 itR2
EQUT~(?r ~ (^)D-Tr

where C is the plasma compression and rthe e-folding time for instabilities.

Now r is proportional to the pinch radius divided by the speed of sound or

^mm
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.RACT)1/2. Hence

Equt 1/2 nR i2ll
E

-^ CX/ C X>R

IN r #k (7-65)

and if p, R, and T can be made large enough, it may be possible to .produce

more energy than is put in. Estimates by Tuck give results of the following

order of magnitude:

I = 5x 108 amp

R « 5 to 10 meter

kT ~ 100 kev

Ejjj = 109 joules.

These are very large numbers, indeed, and it seems clear that this approach is

a last-ditch affair. Incidentally, one advantage of this method is the fact

that a torus is unnecessary. Since the time scale is so short, the ends of

the tube do not affect the interior. Hence a linear pinch may be used which

makes unnecessary an inductive discharge.

Other Geometries

From time to time, many geometries other than those described in this and

the previous two chapters have been proposed. Most of these have perished

because of some obvious flaw. However, there are at least two general classes

of alternative geometries which still persist and in which some research (mainly

theoretical) still continues. These two general classes are the Picket Fence

(or Cusp) device and devices based on ion or electron streams.
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The chief, and perhaps only, advantage of these two schemes is their

apparent inherent stability. It has already been shown in this chapter that

the pinch, up to the time of Rosenbluth, was a very unstable system. In

addition, general considerations of stability, to be described in the next

chapter, had made it seem plausable that both the Stellarator and Mirror

device were also inherently unstable. It was in answer to this depressing

situation that the Picket Fence was invented by J. Tuck. The ion stream

proposed is quite ancient 9but was revived for the same reason by W. Bennett

and others. A brief description of these proposals follows.

Picket Fence- Intuitive arguments by E. Teller suggested that a situa

tion in which plasmas were confined by magnetic fields wrapped around them

were unstable. The inherent tendency seemed to be one in which the plasma

slipped out between the field lines and the field lines snapped in like

rubber bands. On the other hand, the same intuitive arguments suggested

that a situation in which escape of plasma tended to stretch the magnetic

lines would be stable. A geometry which has this property is the Picket Fence.2^

A sketch of the geometry is shown in Fig. 7.5.

/<9/0VOr*>l°Ai*? t t .*il° ? ° ° °u» » • • • I <» « O O O ,

Fig. 7.5. The Picket Fence

26. J. L. Tuck, Picket Fence, Conference on Thermonuclear Reactions,
WASH-184, p. 77 (January, 1955).
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The open circles represent windings with current out of the paper, while the

dark circles carry current in the opposite direction. The resultant mag

netic field is shown, along with a dotted line which is an axis of revolution

for the entire figure. In practice, of course, the entire figure would be

wrapped around Into a torus so as to seal off the ends. Note that the plasma

fills the inside volume (around the dotted line) and would tend to stretch

magnetic lines if it starts to leak through these lines.

The major flaw in this device is the very large particle leaks occuring

at the juncture between opposite windings. These leaks look like mirrors

but are even worse in that the leak zone is a line extending all the way around

the tube rather than a single point as in the Mirror device itself. A simple

calculation by H. Snyder has shown that the resultant leak rate is very much

larger than that of the mirror. Hence, the device would seem to be economical

ly unattractive.

A possible way out of this difficulty is to reduce the losses by moving

the Picket Fence rapidly in the axial direction. This device is known as

the "Moving Picket Fence." One way of achieving this effect is to interchange

the directions of the currents in the windings at high frequency. The main

drawback is the very large amounts of RF power which would be needed for this

purpose. The same effect may possibly be achieved more economically by super

imposing an RF field of relatively low power on- the DC field. The result

would be a rapid vibration of the magnetic field at the points of leakage.

Cusp. The cusp device, which is being investigated by the New York

University group, is basically similar to the Picket Fence. A sketch is

.**••"••%»£



-159-

shown in Fig. 7.6. Oppositely directed currents in the end coils produce a

magnetic field which has the proper curvature for stability. Note that mirror

leaks, as well as cusp leaks, exist in this device

Fig. .7.6. A Cusp Device

The geometry shown in Fig. 7.6 results from a rotation of a two-dimen

sional hypocycloid about an axis. Other interesting cusp geometries result

from other rotations of this basic two-dimensional figure.27 It is probable

that all of these devices will remain economically unattractive because of the

large particle leak rates.

Ion and Electron Streams. A proposal by w. H. Bennett28 envisions the

use of sustained deuterium ion streams at currents exceeding the minimum

value for magnetic self-focusing. The ions are accelerated in a Thomas-type

cyclotron and are built up in a circulating orbit near the outer edge of the

27. H. Grad, Conference on Controlled Thermonuclear Reactions. TID-7520
P. 99 (Sept., 1956). • " '

28. W. H. Bennett, Proposed Thermonuclear Investigation, NRL Report 4479.
RD 466 (Dec. 1, 1954)o
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device. Since the loss rate is presumably small, only low density- streams

need be considered. Bennett states that these low density streams of high

velocity particles are not subject to "kink" instability.

29
The Russians have recently proposed the use of relativistic stabilized

electron beams in the design of high energy accelerators. Although their

proposals all refer to high-energy particle accelerators, it seems likely

that these considerations were originally motivated by research in the field of

controlled thermonuclear reactions.

Summary of Experimental Program

Experiments concerned with the pinch effect fall into two general

catagories. One is the class of toroidal pinches. The pinch currents are

produced by inductive action, and the experimental emphasis is on the study of

confinement and stabilization. The second type is the linear pinch. Inductive

techniques are not necessary here and the pinch current may be obtained by

direct discharge through the tube. Linear pinches may only be used to study

the short term (10 sec) behavior of pinches since the electrodes will

seriously contaminate and perturb the plasma after a longer interval.

Emphasis in the linear pinch experiments is on the study of the predictions

of the Rosenbluth M-theory and the associated heating by rapid compression.

The Perhapsatron. This is the general name for a series Of toroidal

pinch devices which have been investigated at Los Alamos. The present

device consists of a laminated transformer core linked by a toroidal tube.

The pyrex tube is 7 cm in diameter and has a major diameter of 70 cm. The

overall length is about 2 meters. The power supply was originally provided

29. G.J. Budker, Relativistic Stabilized Electron Beam, CERN Symposium,
Geneva, 1956.
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by energy stored in RG-19/U cables. However, the present source is a bank of

38 capacitors each having a 1microfarad capacity and charged to about 15 Kev.

The capacitors are individually linked by a spark gap to a single turn laid

along the tube and which serves as the primary of the transformer. The torus

is the secondary.

Pre-ionization of the gas in the toroidal tube is accomplished by means

of an RF oscillator operating at 500 watts. Initial gas pressures range from

4 to 500 microns. Upon discharge of the condensers, the current rises In

about 10 us. to a maximum value of about 40,000 amp. During this period

bright pinches are seen in xenon and other heavy gases. Fainter pinches

occur in hydrogen and deuterium. Smear camera observations show that several

compressions occur; however, instabilities break up the discharge after a few

microseconds. The observed times are in general agreement with the Kruskal-

Schwarzchild theory.

Observations indicate that a maximum compression of about 30 occurs in the

pinch. Spectroscopic observations yield a resulting temperature of about 50 ev.

High energy gamma rays up to 200 kev have also been observed. Since the induced

voltage is about 15 kev/turn, these must arise from runaway electrons which

perform more than 10 complete circuits of the tube and then collide with

the walls.

Columbus I. Columbus is the general name for the linear pinch devices

at Los Alamos. Columbus I is itself a machine which has gone through a series

of changes, with the particular model being distinguished by the addition of

one or more superscript primes to the Roman numeral. The present device
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consists Of a quartz cylinder with a diameter of 6.5 cm and 33 cm in length.

The energy source is a capacitor bank having a 36 uf capacity and charged to

17 Kev. The inductance of the system before pinching is 0.12 uh. The

capacitors are discharged through a spark gap to an electrode at the top of

the tube.

An important distinguishing feature of the Columbus devices is the high

electric fields obtained. The average field is about 1 Kv/cm as compared

with an average value of 100 volts/cm in the Perhapsatron. The Rosenbluth

M-theory has shown that the velocity of contraction of the pinch, which is also

1/2 the velocity increment of the ions per collision with the wall is propor

tional to the square root of the applied electric field. Hence, large electric

fields are desirable. If a velocity corresponding to that of a deuteron at

10 kev is required (^10° cm/sec) the necessary field is easily obtained from

Eq. (7.28). It is

v2Jk*p0
Jin -

ill P>
Assume final density of about 10 . Then if v = 10 ,

do16) [4* .
, 1 l/2

, 101* • 3.4 x 10"2H
EQ = esu

3 x 1010

= 6.5 Kv/cm.

Hence, electric fields of the order of several kilovolts per centimeter are

clearly desirable.



Upon discharge of the capacitor bank through Columbus I, peak currents

of the order of 150,000 amp have "been obtained. Good pinches of about 1 cm

diameter are observed in deuterium and neutrons are emitted. The average

number of neutrons per pulse is about 107. The neutrons are emitted about

1.3 us after breakdown and persist for 0.3^us. The onset of neutron emission

seems to be closely correlated with the onset of instabilities in the pinch.

A great deal of careful research has gone into determining the origin of

these neutrons. It is firmly established the sources of neutrons are con

centrated along the axis of the tube and that the neutrons do not originate

from bombardment of deuterons in the wall by accelerated deuterons in the gas.

Recently, nuclear plate observations have indicated that the neutrons are

emitted preferentially in the axial direction and that the center of mass of

the colliding deuterons is not at rest but is moving toward the cathode. The

corresponding deuteron energy, assuming the target at rest, is 34 Kev.

Deuteron energies up to 200 Kev have been observed.

It is believed that these neutrons are not thermonuclear in origin but

originate as a result of accelerations in the gas due to the large electric

fields associated with instabilities. One explanation, due to S. Colgate,50

makes use of the electric fields produced in the neck of the pinch when the

"sausage" instabilities set in. This is illustrated in Fig. 7.7. Deuterons

are accelerated across the neck as shown. Note that the electric field must

be in the direction shown in order that the crossed electric and magnetic

30. S. A. Colgate, Neutron Production in the Pinch Due to Instability Breakup,
UCRL-4702 (May 12, 195671
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Fig. 7.7. Origin of Pinch Neutrons

field give the proper direction for the instability force. Hence, the center

of mass motion of the deuterons is towards the cathode. An alternative

31
explanation is due to J. Tuck. In this explanation, the electric field in

the neck becomes large enough to impart the observed energy to the deuterons

by the radial motion given in the M-theory. When the neck becomes as wide

as the sheath is thick, the deuterons that hit the opposite side of the neck

are then diverted in the direction of the cathode by the combined action of

the radial sheath electric field and the magnetic field. This trajectory

is illustrated in Fig. 7.7 by the dotted lines. The analysis of Rosenbluth,

which will not be given here, indicates this direction uniquely. Finally,

the duration of the observed neutron bursts is much longer than would be

calculated from a single "sausage" necking-off process. This difficulty is

circumvented by proposing that the instabilities occur randomly throughout

the length of the pinch during the emission period.

31. J. L. Tuck, Conference on Controlled Thermonuclear Reactions, TID-7520,
p. 23 (Sept., 1956).



-165-

Columbus II. This is an enlarged and improved linear pinch machine which

is under construction at Los Alamos. The device is designed to operate at

100 Kev with an energy storage of 105 joules. The intended implosion times

are short, 1-2^us, and hence very fast rise times are required. This in turn

implies a low inductance system. A special low inductance capacitor has been

designed for this purpose. This capacitor has 0.8 uf capacity a* a maximum

voltage of 100 Kv and an internal inductance less than 0.12 uh. The total

number of these capacitors in Columbus II will be 25. The final device will

have a short-circuit current of 2x 106 amp with an initial rate of rise of

current of 1012 amp/sec.

Berkeley Linear Pinch. The work on linear pinches at Berkeley has closely

paralleled that at Los Alamos. Neutrons have also been observed, and investiga

tions are continuing on the stabilizing effects of a longitudinal field.

Particular interest at Berkeley is centered on possible uses of collapse heating.

Magnetic Induction Machine. A toroidal device is being designed at Los

Alamos which will produce potential gradients similar to those in Columbus,

i.e., 1 to 2 Kv per cm. An energy source of about 105 joules will be used,

and the voltage will be induced in the same fashion as the Perhapsatron. A

discharge current of 10° amp is anticipated.

Russian Pinch Work. Recent revelations52 of Russian work on controlled

thermonuclear reactions have been confined to pinch investigations. It is

32. L. V. Kurehatov, report of Harwell talk presented in Nucleonics 14.
36 (1956). —'
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apparent that the Russian results are strikingly similar to ours. They

observe neutrons and assign the origin to instabilities just as we do. They

have also developed a theory identical to the Rosenbluth M-theory, and observe

the several radial oscillations before instability breakup. Further, it seems

that the Russians55 are aware of the importance of a longitudinal magnetic

field for the stabilization of a plasma.

33. L« A. Artsimovich, Lecture at Symposium on Electromagnetic Phenomena
in Cosmical Physics, Stockholm (Aug. 195&7 to be published in the Soviet
Journal of Atomic Energy.



VIII. STABILITY

For the past two years, the central question in the Sherwood business

has been the stability of the various proposals which are under development.

It is not enough to demonstrate that a specific proposal has a sufficiently

long single particle containment, and that a steady state configuration

(omitting diffusion and inherent geometrical leaks) exists in which the

plasma pressure drops to zero on some fixed surface in the magnetic region.

There will always be small fluctuations about this steady state, or

equilibrium, solution. It is also necessary that the time behavior of the

system be such that these perturbations die away in time or oscillate

around the equilibrium solution. In such a case, the equilibrium is said to

be stable. If the perturbations grow in time, the equilibrium is unstable.

It is generally found that if instabilities exist in a plasma the

amplitude of the perturbations e-fold in a time comparable with the time it

takes a sound wave to cross some dimension of the plasma. At thermonuclear

temperatures this is of the order of microseconds^ Consequently, if

instabilities exist they are much more serious than normal loss or diffusion

rates. It is imperative that the instabilities be predicted, if they exist,

and that methods of overcoming them be devised.

The problem of stability of fluid motions in ordinary hydrodynamics

is an exceedingly complicated subject. The situation is perhaps even more

difficult when attention is focused on the behavior of an ionized gas in

magnetic and electric fields. The interaction of a hydrodynamic fluid with

electromagnetic fields forms the new and interesting subject of hydromagnetics.

-I67-
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A fluid of this sort has some interesting and simplifying properties. In all

cases of interest the conductivity of the plasma is very large and the time

during which the system is to hold together is relatively short. Hence,

it is often sufficient to assume that the conductivity is infinite.

Equilibrium Solutions

Before turning to the question of the stability of this hydromagnetic

fluid, it is necessary to have an equilibrium state which is to be perturbed.

Perhaps the simplest steady-state equations which this fluid must satisfy

are the following:

-* -»

VP =£y/xB (8.1)

7* B = k*J. (8-2)
V-B = 0 (8.3)

—9 —»

where P is the gas pressure, / the current density and B the magnetic field.

These equations already represent a serious compromise with reality. In

the first equation, a non-linear term involving the mass velocity of the fluid

has been omitted as well as a term representing a force due to a possible

charge density in an electric field. However, if attention is confined to

equilibria in which there are no mass velocities or electric fields, these

equations are almost correct. The most Important remaining discrepancy is

the use of an isotropic scalar pressure in Eq. (8.1). In actuality, this

term should be the divergence of a stress tensor, denoted by T. If there

are enough collisions during an instability to keep the velocity distribution

of the particles isotropic, this is a valid approximation. In practice,
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this situation is far from true. A later section in this chapter will dis

cuss some rough attempts at theories with a tensor pressure.

Equations (8.1) to (8.3) do not yield a unique solution, even in a

given magnetic geometry. This has already been pointed up in Chap. VII,

where the study of the steady-state pinch proceeded from a consideration of

Just these three equations. It was necessary there to choose a specific

pressure distribution in order to obtain a solution. In an actual situa

tion, one must include particle sources, diffusion losses, and finite plasma

conductivity in order to obtain a unique solution. Kruskal5^ has shown that

the complete set of steady-state equations may be expected to yield aunique

solution. Nevertheless, it is customary to use only Eqs. (8.1) to (8.3) and

assume as simple a pressure distribution as possible in order to study the

stability of the resulting equilibrium.

Normal Mode Analysis

The earliest hydromagnetic problems treated in the Sherwood Program

were first, an analogy to the Rayleigh instability problem of hydrodynamics

and second, the stability of the pinch. These situations were analyzed

by Kruskal and Schwarzschild22 using the normal mode analysis. The starting
point of this method is the time-dependant equations of motion of the plasma.

These are:

34. M. D. Kruskal, The Steady State Plasma Equations for the Stellarator
Under Diffusion, NYO-7307, PMS-17, (May, 1955).
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dv

/ dt J-
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V- B - 0

V x E - 1 ^

'+/>S (8.4)

(B.5)

(8.6)

(8.7)

(8.8)

(8.9)

c at (8'10)

V^ E = kiti (8.11)

The first equation represents the force equation. Note that a scalar

pressure has been assumed and that a possible gravitational term has been

added. Herep is the plasma density, g the gravitational acceleration, 6 the

charge density, and v the mass velocity of the plasma. The electromagnetic

quantities are in mixed Gaussian units and the conductivity 6"""is in esu. The

Eulerian derivative is denoted by d/dt, and

k " ft +"-v ^
The second equation is the mass conservation relation, while the third is

the generalized Ohm's law. In most applications o*"will be taken to be infinite
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and the right hand side of this equation set equal to zero. It should be

noted that some additional terms, which are usually small, have been omitted

in Eq. (8.6). These terms may be found in Spitzer's book.55 The fourth

equation states that the motion is adiabatic. Here 7 is the ratio of specific

heats of the plasma. This equation implies that heat transfer within the

plasma is negligible. If this is not true some more complicated relation

must be used. Finally, the last four equations are the familiar Maxwell

equations. Note that no distinction need be made between ?and 7, and D*and

E, since all currents and charge densities in the medium are treated explicitly.

It is assumed in these equations that there are no particle or heat losses

from the plasma and no particle or energy sources within it. Otherwise, one

must include the appropriate equations.

Equations (8.4) to (8.11) represent aformidable set of relations,

particularly since they are non-linear in character. Hence, the first step

in treating them is to linearize the equations. This is accomplished by

writing each physical variable as the sum of the unperturbed equilibrium value

(denoted by asubscript zero) and asmall perturbed part, thus for example:

B = Bo + Bl> (8.13)

and then neglecting all terms of second order or higher in the perturbed

variables in the resulting equations.

35- L. Spitzer, Jr., Physics of Fully Ionized Gases, p..21, Interscience
Publishers, Inc.,'New York (1956). '



Further progress ia made by taking a Fourier transform of the perturbed

quantities in time and in as many spatial variables as possible. Thus, for

example, in the case of the pinch the unperturbed solutions are functions of

the radial distance r, only. Hence, one can write, for example,

Z* Z9 , v Ot i(me+kz)
Bl - Bl(r) e e (8.l4)

where m must be an integer in order that the solutions be single-valued and

k may have any real value. The final step consists in solving the set of

coupled, homogeneous ordinary differential equations resulting from the

substitution of Eq. (8.14) in the linearized relations subject to the proper

boundary conditions. The final result is in the form of a single "characteris

tic" equation which is a function of G), k, m, and the unperturbed variables.

The system is unstable or stable depending on whether or not there exist

solutions of this "characteristic" equation with CO having a real positive

part.

The results of Kruskal and Schwarzschild22 for the case of the ordinary

pinch have already been described in Chap. VII. The m = 1 mode, which corresponds

to the "kink" perturbation, was found to be unstable for all wavelengths k.

The m = 0 mode, which is the "sausage" instability, is also unstable for all
24wavelengths while the higher modes m > 2 are unstable only for sufficiently

small wavelengths. The first problem treated in Ref. 22 was the case of an

infinitely conducting fluid supported against gravity by a magnetic field.

This equilibrium, in complete analogy to the Rayleigh instability problem,

was also found to be unstable.
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,24Kruskal and Tuck24 then added a magnetic field to the pinch in the

longitudinal direction both inside the plasma and out. It was found that

this stabilized the short wavelength instabilities. Finally, the recent work

by Rosenbluth 5 (using aform of the variational technique to be described

in the next section) considered the combined effect of an internal longitudinal

field and an external conducting shell. The results indicated that there

were indeed regions of complete stability of the pinch but with some strong

restrictions on the maximum compression of the pinch and on the maximum

value of the external longitudinal field.

A diagram of some of the results given by Rosenbluth is shown in Fig. 8.1.

Fig. 8.1. Stability Zone for No External B„
Zt

This result is for the case of no longitudinal field external to the pinch.

The quantity p is the ratio of the constant material pressure in the pinch to

the external magnetic pressure at the boundary. Hence,
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8 = -M— = 1- -?5 (8.15)
B02(r) B/(r)

The external conductor radius is denoted by R and the pinch radius by r. It

was found that the m = 0 mode was unstable for any compression if 8 -^0.5.

In addition, the m = 1 mode is unstable at a given value of 8 for any compres

sion greater than a number varying between 1 and 5- No stability at all

exists for R/r ^ 5. The region of complete stability is indicated by the

shaded zone in Fig. 8.1. A similar diagram may be drawn for any other given

value of the external Bz field. The general nature of these results is that

the zone of stability shrinks to the left of the diagram as the external Bz

o 12field increases in value. For example, when B^ external is equal to — Bg (r),

there is no stability at all for R/r greater than about 1.85 and the maximum

compression for 8 of 0.5 is about 1.2.

It is of interest to note that the stabilizing tendency of the Bz field

is entirely dependant upon its being embedded in the plasma. A recent calcula

tion by R. J. Mackin and A. Simon (unpublished) considered the case of a

linear coaxial cylinder of plasma with longitudinal fields existant in the

hollow center of the cylinder, in the plasma itself and external to the

cylinder. It was found that the trapped magnetic field in the hollow center

of the pinch did not contribute to stability (in fact, it had no effect at

all on the m = 0 instabilities) and that this function is entirely performed

by the longitudinal field in the plasma itself.
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The Variational Method

The method of normal mode analysis was historically the first to be

applied to Sherwood stability problems. In particular, it was and is agood

method for analyzing simple geometries, such as the pinch, in which one can

solve the resulting differential equations to obtain the eigenmodes. The

method is considerably less flexible when more complicated geometries are

considered.

Interest in more complicated geometries was aroused by Edward Teller at

the 1954 Princeton meeting when he expressed doubts that any of the systems

we were dealing with were stable. He likened containment of the plasma by

magnetic fields to containment of a gas by a large number of rubber bands,

which would be highly unstable, and illustrated his remarks by the following

example. Let the magnetic field be excluded from the plasma and let the system

be cylindrically symmetric with a bulge as shown in Fig. 8.2. The dotted

//?:__

Fig. 8.2. Magnetically Confined Bulge
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line is the axis of symmetry of the system and the trace of the surface in

the plane of the paper is a line of magnetic flux. Assume that a small

ripple occurs on the surface, and that this ripple occurs all along its

included flux lines. Thus a cross section of the plasma at any axial point

has the form shown in Fig. 8.3.

3

Fig. 8.3. Surface Ripple.

Assume that the ripple preserves the volume of the plasma. In that case

the plasma pressure and hence the plasma energy is unchanged. Assume further

that the flux lines which were in the shaded region above the dotted line are

now moved into the newly available volume in the trough of the ripple and

under the dotted line, and that the remainder of the magnetic field is un

disturbed. Owing to the curvature of the bulge, the area in the shaded

region above the dotted line must be somewhat smaller than the area in the

trough below the dotted line if the total volumes are to be equal. Hence, the

magnetic field strength is reduced somewhat in the trough and the total

magnetic field energy is reduced. The total potential energy of the system

has decreased as a result of this ripple and so the system is unstable to

this perturbation.
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It was shown almost immediately that Teller's-particular argument was

wrong, but that his intuitive idea was correct. The only error in his

argument is the extension of the ripple all along the included lines of

magnetic flux. The regions of reverse curvature at the left and right of the

bulge in Fig. 8.2 have a reverse effect on the potential energy change and

actually overcome the instability produced by the central section of positive

curvature. The system is unstable to little "flutes" or ripples which do not

extend the whole length along a line of force but terminate before the

curvature changes sign.

Perhaps another way to see the instability of the plasma is by an argument

due to Conrad Longmire. If the flutes are very thin they leave the rest of

the magnetic field undisturbed moving only a little flux and keeping the

plasma pressure constant. Since the field decreases outward because of its

curvature the same gas pressure meets a lower magnetic pressure at the top of

the very thin flute and the flute continues to grow.

Since the instability problem was serious for almost all geometries of

interest a general theory seemed desirable. A very powerful technique is

available by use of variational methods and this is known as the oW formalism.

Consider a displacement perturbation 2(r) of the material of the plasma.

Imagine pincers from outside displacing every element of plasma through a

distance f(r). Since the matter is nearly infinitely conducting the lines of

force are frozen in the plasma. From their varying density one can calculate

the new field strength at the end of the displacement. In addition, knowing
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the varying density of the plasma and assuming adiabatic compression allows

one to calculate the change in gas pressure. These two results allow a cal

culation of the change in total potential energy of the system.

Let the total potential energy be denoted by W. Then,

(8.16)

where the integration is over all space. It can be shown that the change in

W due to a displacement f(r) is

oW t JfrX (?X^ +J' ?* f7x (^ *}j
+ 4«rP(v-^r + 4n(f -vp)(v-?)r ar (8.17)

where B and P are equilibrium values. If oW is positive external work must be

done to carry out the displacement and the system is stable to this 2(r).

If oW is negative the system is unstable.

It may be shown that the ratio

? oW
X2 = - — — , (8.18)

1

2

where p is the equilibrium density, is stationary (i.e., maximum, minimum, or

saddle point) with regard to the possible displacement functions ?(r) when

ever ^(r) corresponds to an eigenmode of the system. In such cases, the
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time behavior of the displacement is

f(r%) = fir) J* (8.19)

and

x2 = a2

Hence, if a displacement is found which makes oW negative, one is assured

that there exists at least one unstable eigenmode of the system with an eigen

value 6)2 which is

^2 S £> (8.20)

where X2 is the ratio given by Eq. (8.18) for this displacement. Hence, a
minimum value can be found for the blowup rate. The precise value can only

be found by actually determining the stationary displacements for the system.

It is important to note that the existence of an instability can be detected

simply by finding any £(r) which makes oW negative and that is not necessary

to obtain the stationary values unless information on A2 and the shape of

the eigenmodes is required.

36
Using this variational method the following results were found. Con

sider any cylindrieally symmetric equilibrium system in which BQ is zero so

that the lines of force lie in planes which include the axis. One of these

planes is shown in Fig. 8.4 and illustrates the case of a bulge in the field

lines. To each line of flux in this diagram there corresponds a magnetic

36. E. Frieman et al., Stability Criteria, Conference on Controlled Thermo-
Nuclear Reactions, TID-7503 (Feb., 1956).
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Fig. 8.4. Magnetic Surfaces

surface which is generated by rotating the line of flux about the axis. Denote

the flux contained between this surface and the axis by V". The quantity /"is

a natural coordinate of the problem. Let P be the value of the pressure on

the magnetic surface, V the volume contained inside this surface and let P' and

V* be the derivatives of these quantities with respect to i\ Then for systems

in which the gas pressure is low (small 8) and also for a number of large 6

cases the system is stable or unstable as M"V"/M'V is positive or negative,

where

M"V"

M'V

M'

Istability
0 < neutral

/ unstable ,

yll

V* 7P

(8.21)

(8.22)

It may be shown that a system in which the magnetic lines are concave

toward the axis (which is the case illustrated in Fig. 8.4) have a negative

value of V"/V. Hence, stability is possible only if M"/M' is positive.

*-*^ 4
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By Eq. (8.22) this implies that the gas pressure increases outward and this is

compatable with a confined plasma only if there is a finite pressure drop at

the boundary. However, any such system with a finite jump in pressure at its

boundary is unstable to surface perturbations, e.g., the "flute" instabilities.

Thus it may be expected that the "bulge" regions of the Stellarator as well

as the central regions of the Mirror Machine will be unstable and some

stabilizing mechanism must be sought. It also seems clear that the devices

with reverse curvature of the magnetic lines, such as the Picket Fence and

Cusp devices, should be inherently stable.

Stabilization of the Stellarator

L. Spitzer has suggested that an external magnetic field transverse to

the main Bz field of the Stellarator would tend to bind the lines of force

and thus stabilize the system. This suggestion has resulted in the investiga-
37

tion by variational techniques of a number of problems involving transverse

fields superimposed on the main Bz field. In most of these problems, trans

verse fields with helical symmetry have been used. It has been found that

the stabilizing effect of the transverse field is due to a non-uniform twist

of the field lines. Thus if F' represents the twist or rotational transform

angle of the flux on a magnetic surface, the beneficial effect is due to the

existence of a non-zero F". The result of these calculations leads to the

speculation that the general form for oW in such systems is

37- E. Frieman, Recent Results on Stability, Conference on Controlled
Thermonuclear Reactions, TID-7520 (Sept., 1956).
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..\2oW ~ M"(V" -P'L») +(f")

where L' is the weighted average of B"2 over a flux "tube. Thus one can

achieve greater stability with systems whose F" is large.

This stabilizing action may be viewed in another way. At the interface

the external lines of force make an angle with the internal lines of force.

If a flute tried to follow the external lines of force it would wrinkle the

internal lines. In the same way a flute following the internal lines would

wrinkle the external ones. If the change in angle (F") is large enough the

situation becomes stable to flute instabilities.

Research is continuing on methods of stabilizing the Stellarator. It

appears that modest transverse fields will stabilize systems with small 0,

but not those with 0=1. Some consideration is being given to eliminating

the figure-eight entirely and using a helical torus in its place.

Similar considerations may also apply to the Mirror Machine. In addition,

attention is being paid to possible beneficial effects resulting from terminat

ing the magnetic lines beyond the mirror on a metal plate (thus tying down

the lines) and to the possible effect of conduction along the field lines

smearing out the electric fields which accompany instabilities.

Some Miscellaneous Results

There has been a great deal of research on the problem of stability in

the Sherwood Project. It would not be possible to describe all the work in

detail in a set of survey lectures, such as these. Instead a few selected

topics will be briefly described in the remainder of this chapter.
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Heating Instability in the Stellarator. The confining field of the

Stellarator is a longitudinal Bz field which undergoes a rotational transform

in a single revolution around the device. If a heating current is passed

through the Stellarator, this current produces a B0 field which tends to alter

the twist, or rotational transform, of the Stellarator field. M. Kruskal58

has shown that there is a limiting value of this current above which in-

stability sets in.

Actually, there are two limits depending on which direction the current

is going. One may attribute the instability to the removal of the rotational

transform by the 6-field of the current. In one direction the rotational

twist is removed. In the other direction It is pushed up to 360 deg. The

critical limits are proportional to Bz/L where L is the Stellarator length.

These differing critical currents have actually been observed.

Rayleigh's Principle and Rotation. The success of the variational method

described earlier depends upon the existance of a Rayleigh Principle for the

equilibrium system. One way of stating this is that the Hamiltonian of the

system shall be separable into a kinetic energy term and a potential energy

term with no cross term. Another way of stating this is to require that

there be no velocity dependant forces in the perturbed equations. If a Ray

leigh principle exists for the system, one is assured that the square of the

eigenvalues, 6i , is real and hence that each eigenmode is pure oscillatory

38. M. Kruskal, Large Scale Plasma Instability in the Stellarator, PM-S-12.
NYO-6045 (April, 195417
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or purely exponential in its time behavior. If a Rayleigh principle does

not exist, the eigenvalues are complex and the simple variational methods of

Eqs. (8.17) to (8.20) are not useful.

Kruskal has shown that a Rayleigh Principle exists for a hydro-magnetic

fluid which has no electric fields or mass velocity in its equilibrium state.

This requirement has been true for all cases considered by the Princeton

group. There is, however, at least one case of Interest in which mass velocity

does exist in the steady state. H. Snyder39 has suggested that the kink

instability of the pinch might be overcome by imparting a mechanical rotation

to the pinched fluid about its axis of symmetry. This suggestion is being

investigated at Oak Ridge.

Owing to the fact that variational techniques cannot be used, the problem

has been attacked by a numerical scheme. The method is to make use of a high

speed digital computer (the ORACLE) to actually integrate the perturbed

equations in time. The initial equilibrium is perturbed and the subsequent

behavior is watched. If unstable modes exist they should become dominant in

time. The results which have been obtained so far are somewhat obscured

because of the effects of inherent numerical instabilities produced by the use

of a finite difference scheme and by roundoff errors. However, there is

39. H. Snyder, Effect of Rotational Motion on Plasma Stability, Conference
on Thermonuclear Reactions, WASH-289, p. 351 (June, 1955).

40. F. M. Rankin and A. Simon, ORACLE Calculations of Stability, Conference
on Controlled Thermonuclear Reactions, TID-7503~TFeb., 1956).
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indication that rotation does not produce stability, it does appear to have
a stabilizing influence on the low k (or long wavelength) modes.

Tensor Pressure. Perhaps the most serious assumption in the variational
method is the assumption that there are enough collisions during an instability
to keep the velocity distribution of the particles isotropic and the pressure
ascalar. Rosenbluth has considered one aspect of this problem in his paper
on stability of the pinch.25 He assumes anon-isotropic distribution of
particle velocities in the equilibrium state. One then uses the adiabatic

invariants of the motion to calculate the effect of aperturbation on the orbit
of asingle particle, and then sums over all orbits to obtain the result.

The result reduces to that obtained in the magnetohydrodynamic approximation
when the velocity distribution is isotropic. In the more general case, the
results depend on (P, -^) where P± is the pregsure ±n ^ ^^^ ^

field lines and Pj the pressure at right angles to the field lines. If

P3 -*!, the pinch is less stable than in the isotropic case. More general
considerations along these lines have been given by Brueckner, Chew, Goldberger,
Longmire, Low, and Watson.

41. Series of lectures on Physics of Ionized Gases, LA-2055 (Oct. 1956).



IX. DIFFUSION ACROSS A MAGNETIC FIELD

At one time in the development of the Sherwood Project, the question of

what the effective diffusion coefficient in a fully ionized gas would be was

a vital issue. This question is far from settled, particularly since it has

not yet been possible to measure this coefficient in a fully ionized plasma.

However, uncertainty on this score has been far overshadowed by questions of

plasma instabilities. In part, this is due to the more disastrous effect of

such instabilities if they should occur. A second reason is that a series of

investigations at Oak Ridge have shown that the observed diffusion coefficient

in a weakly ionized plasma is in agreement with the classical collision-

diffusion picture and that some early observations at Berkeley, which indicated

an anomalously high rate, were improperly interpreted.

The first part of this chapter will discuss the theory and experiments

relating to diffusion in a weakly ionized plasma. The last part of the

chapter will discuss the predictions of the classical collision-diffusion theory

for diffusion in a fully ionized plasma.

Weakly Ionized Plasma

Diffusion Coefficient

The diffusion coefficient may be estimated by the use of simple kinetic

theory considerations. The result is not as accurate as that obtained by use

of the Boltzmann equation but3as is usual, it will differ from that exact

result by a factor of 2 or less. First, consider a one-dimensional problem

with no magnetic field present. A gas of particles, whose diffusion rate

we wish to calculate, is continually colliding with a matrix of fixed

-186-
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collision centers. It is assumed that the particles are monoenergetic, that

their distribution of velocities after collision is isotropic, and that the

particle density, n(x), varies only in the x-direction. The situation is

sketched in Fig. 9.1. The flux of particles passing through a small area,

1/-

«M

Fig. 9.1. Ordinary Diffusion

dA, normal to the x-direction and at x =0 is obtained by integrating over

all particles which collide somewhere and then pass through dA. For example,

the collision rate per unit volume at point P is

C.R. = n(P) I (9.!)

where v is the particle velocity and Xis the mean free path for collision

with the target centers. Of those colliding, only 1/3 then move in the

direction of the x-axis (this allows for the other two dimensions) and only

1/2 of these move toward dA rather than away. Finally, the probability of

these particles reaching dA without another collision is expressed by the

usual exponential exp j-|x|/xj. Hence the flux due to collisions at point
P is

dF nv .

dA 6X ' (9-2)
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and the total flux is obtained by integrating over all space. Thus:

F =
6x

n(x) e ' dx -

r

n(x)e ' dx (9.3)

,-oO

Expand n(x) in a Taylor series about the origin. The leading terms cancel,

while the next term yields the following result:

F = - _ =iiV

3X

dn

dx
•

Xv

3

*
dn

dx

-x/x
x e dx

(9.4)

The diffusion coefficient is, by definition, the coefficient of the density

gradient. Hence

\v
(9.5)

The situation in the presence of a magnetic field is considerably more

complicated. The particles no longer travel in a straight line between

collisions but rather move on a circular path. Nevertheless a simple answer

may be obtained by using a "curved one-dimensional" geometry. Fig. 9.2 il

lustrates the geometry. Particles passing in the normal direction through

the area dA from the left arise from collisions which have occurred some

where on the lower circle of Larmor radius rQ. Similarly, those passing

through dA from the right have originated from collisions at some earlier
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Fig. 9.2. Diffusion in a Magnetic Field

time on the upper circle. If the distance from dA back along either path is

denoted by s, the particle flux from the left by the same argument as before

is:

and that from the right is

r

r

j

n(sL) — e"SL/X dsj
6X

^(stj) — e
6X

-StjA
ds

U

where sL and Stj measure the path lengths back along the lower and upper loop

respectively.

Assume as before that n varies only in the x-direction and that a Taylor

series expansion is performed in the x-direction. The leading term vanishes

as before. The next term yields:



f = ;-v dn

6X dx

-190-

oo

-slA ,,*lfi u dsL

0°

x.je dsrj

Now in terms of the angles in Fig. 9.2,

Hence

SL « r,o »L

SU = ro eU

Xl - - r0 sineL

Xy * r0 sinOtj

vr02 dn
3X dx

- r° 9
5Tsine e * d0

The integral may be done exactly (see Pierce 4l4) and the result is

F -
vr.

3X
1 + (?)

to

r«\2 ax

Xv 1 dn

j 1+(^f *

The new diffusion coefficient is now

D - H

5 -fc)'

(9.6)

(9-7)
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Note that this reduces properly to the field-free value given in Eq. (9.5)

when B vanishes, since the Larmor radius r0 becomes infinite in that limit.

The denominator may also be written in an alternative form by noting that the

Larmor radius is connected to the angular frequency by the relation

rQW = v (9.8)

and that the mean free time between collisions, X", is

T= $ • (9-9)

Thus,

0, = ~2 (9.io)
1 + (Qtr

where the subscript o denotes the field free diffusion coefficient of

Eq. (9.5) and the subscript _L indicates the corresponding coefficient across

a magnetic field.

The diffusion coefficient in the direction of the magnetic field will be

the same as in the absence of a magnetic field since a particle moving in this

direction will experience no magnetic force. Denoting the diffusion coefficient

in the field direction as D , one has

D„ - Do - ~ (9.11)

Ambipolar Diffusion

A realistic plasma has two types of charged particles, electrons and

ions, and will have almost precise charge neutrality except in a thin sheath
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region close to a material wall. The requirement of near-neutrality is

easily shown. Suppose that the electron density in a plasma is denoted by

n and that the ions are entirely absent over a thin slab-like region of the

plasma of half-thickness x. The resultant potential difference from the

center to the outside of the slab region is readily calculated

32V ,
= 4itne

3x2

and AV = 2*ne-x2.

The change in potential energy of an electron across this slab is then

AE = 2jme2x2.

It is convenient to define a characteristic length in a plasma, denoted by

h, which is the value of x for which the change in potential energy equals

the mean kinetic energy, l/2 kT, in one direction. Thus

This quantity h is called the "Debye shielding length" since it is clearly

a measure of the distance over which the electron charge density can differ

appreciably from the ion charge density. For example, over a region whose

thickness is ten times h, the electron charge density must equal the ion

charge density within one percent if the electrical potential energy is not

to exceed the mean kinetic energy. Of course, the electrical potential energy

cannot be larger than the mean thermal energy since the charged particles

will then move so as to restore nei
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It is assumed that h is small compared to other lengths of interest in

the plasma. In fact, this is the definition of a plasma. If kT is in

electron volts, Eq. (9-12) may be rewritten as

h =7 v if cm* (9'13)

A typical arc plasma may have an electron density of about 1012 and a tempera

ture in the neighborhood of an electron volt or so. Hence, the Debye shield-

ine length is less than 10"5 cm. It should be noted that the Debye shielding

length is a measure of the thickness of the sheath region which develops

wherever the plasma is in contact with a solid surface.

A weakly ionized plasma will be defined as a plasma in which the mean

free path for electron-neutral atom collisions and for ion-neutral atom col

lisions is small compared to the mean free path for appreciable deflections

by coulomb collisions between the charged particles. A plasma of this type

is particularly susceptible to analysis since the charged particle conserva

tion conditions will be linear in the particle densities. As a result, the

intrinsic diffusion coefficient for electrons in the absence of a magnetic

field is

X" v"
Do - —T~ (9-14)3

and that of the ions is

+ X+ v+
»o = —T- (9-15)
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where X is the mean free path for collisions with a neutral target and v is

the charged particle velocity. The superscripts - and + denote electrons

and ions respectively. In general, the mean free paths will be comparable,

while the electron velocity will be very much larger than that of the ion at

comparable temperatures. Since the electron density gradient must be the same

as the ion density gradient, owing to the requirement of space charge

neutrality, it is clear that the electrons would tend to stream out of the

plasma much more rapidly than the ions.

A situation of this sort is incompatible with the requirement of plasma

neutrality and hence electric fields will immediately develop so as to retard

the electrons and produce equal streaming losses of electrons and ions from

the plasma. The resultant diffusion rate may be calculated by including the

added "mobility" of a charged particle due to an applied electric field.

Once again, a one-dimensional argument will be used. Consider a particle

which has suffered a collision at the point which is a distance s to the

left of a unit area dA located at the origin of Fig. 9.3. Assume that the

< * >
v V

<*A

Fig. 9.3. Mobility of a Charged Particle
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particle acquires the average thermal velocity v, as a result of this col

lision, with equal probability to the left and right. It subsequently is

accelerated to the right at the constant rate eE/m. It is assumed that the

net increment of velocity between collisions is small compared to the thermal

velocity. As a result, those particles moving to the left after the collision

will not pass through dA, while those moving to the right reach dA with an

increased velocity v' given by

v2 + 2as

where a =eE/m is the acceleration. To see this result, note that

dv dv

dt dx

Hence the flux through dA from the left is

FL = \ S- /v2 +2as e"sA ds
o

Note that n/2 is used rather than n/6. The reason for this is the fact that

particles moving in all three dimensions are accelerated to the right by the

electric field. The desired result may be obtained by expanding the square

root term in powers of as/v and subtracting the flux from the right. The

first non-vanishing term is



-196-

The mobility u is defined to be the coefficient of nE in the expression for

the flux. Hence

F

and

Z1

Rewriting this,

P = Xv

wr

Erax.

eX

mv

Xv e

3 kT

eD

kT

(9-16)

(9-17)

(9.18)

where D is the usual diffusion coefficient.

An expression may now be obtained for the common rate of streaming of

electrons and ions out of the plasma. The electron flux has the form

F'
arf

8x n>oEx (9.19)

with a similar expression for the ions. Both the density gradient and the

electric field are assumed to exist in the x-direction only. The resultant

particle conservation equation is

3n"

8t
= _ VF~ =

3F

" 3x

3n"

at
- D" 3V
" D° ax2 To dx

[n'Exj,

while the corresponding expression for the ions is

>- i° ax 1 ^
3n+ _ D+ oV
at © Sx2

(9.20)
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By the basic assumption of near neutrality of the plasma, n+ = n"s n.

Thus the electric field term may be eliminated by multiplying Eq. (9.20) by

^o> Eq. (9-21) byyu" and subtracting. The result is

8n _ ^qDq -^qDq o2n
at = ,+ - 5^ (°-22>

f-o ro

It is clear that there is an effective diffusion coefficient common to both

the electrons and ions. This "ambipolar" quantity is

DAMB _ /4Do -^qDqD0 - / (9>25)

/£ -ro

Substitution from Eq. (9-18) yields an alternative form

»«" - D°D° (h+gj
o

5a. 2<L
kT+ kT

It was pointed out above that for comparable electron and ion temperatures,

one has D" >> dJ. Hence Eq. (9-23) reduces in this case to

»r - 2Dj (9.2U)

Equation (9.24) shows that the effective diffusion coefficient is approxi

mately twice that of the slower component.

The situatioxi .,iien a magnetic field is present is apparently more com

plicated. However, it is not difficult to carry through a "curved one-

dimensional" argument just as in the case of the diffusion coefficient.
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The result is completely similar. The mobility^ across a magnetic field

is

^o

1 l + (<yr)2

where yUQ is the magnetic field-free result given in Eq. (9-17).

In most cases of experimental interest, the plasma density is suf

ficiently low and the field sufficiently large so that the quantities (Qv)2

for both electrons and ions are very much larger than unity. Since

^ = x/r0 this means that the particles execute very many gyrations in the

magnetic field before a collision occurs. It is clear that if the opposite

situation is true, (<Jt)2 <c 1, the effect of the magnetic field is small and

the field-free results of Eqs. (9.14) to (9.24) will apply.

By Eq. (9-10), the effective diffusion coefficients are:

°l
^s-» Do"

(o)V)2

D~ —

Do
i.

fcV)a

Note that these diffusion coefficients vary as the inverse square of the

magnetic field strength and depend on the other variables as follows

n m2v3 /T (kT)5/2 .,.
~ ^ ~~ ~xy~ (9-26)

Hence, for comparable temperatures and mean free paths, the ion diffusion

coefficient is very much larger than that of the electrons. Thus
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Bl^ Dl- (9.27)

The ions tend to diffuse across a magnetic field faster than the electrons

which is the reverse of the behavior in the direction of the field lines.

Another way to see this is to recognize that diffusion across the field is

by means of the random changes of the location of the center of the Larmor

circle of the particle after each collision. This deflection is of the order

of the Larmor radius. Hence the heavier particle diffuses faster since it

has a larger Larmor radius. The same conclusions hold for the mobility of

the particles.

Suppose that the magnetic field lines are infinitely long so that

there is no diffusion of electrons or ions in this direction. In this

hypothetical case, all diffusion is across the magnetic field, and once

again an electric field must develop in this direction so as to equate the

electron and ion fluxes and maintain charge neutrality. The argument given

in Eqs. (9-19) to (9-23) goes through exactly in this case, except that the

subscript o is replaced by j_ everywhere. Thus

By use of Eq. (9.27),

/4 "J»J

DAMB = /ipi -ppl

Dj?L Ut+ +kT.

—1 5l_
kT+ +kT_

tmmrn^

(9.28)
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Df®
2D" (9.29)

for equal temperatures. Note that the "ambipolar" rate is again twice that

of the slower component.

Diffusion in a Finite Plasma

The argument just given for "ambipolar" diffusion across a magnetic

field can be very misleading when the plasma is of finite extent in the

direction of the field lines. In fact, just such an effect accounts for the

resolution of a large discrepancy between theory and experiment. This will

be described in the next three sections.

Let us now center our attention on a two-dimensional plasma as sketched

in Fig. 9.4. The magnetic field lines are in the direction of the x-axis.

>t
•>

Fig. 9.4. Diffusion in a Finite Plasma

The plasma is bounded on all sides by a conducting wall of height R and

length JL. It will be assumed that the mean free path is small compared to

the length U, so that particles diffuse along the field lines as well as

across the field lines. The electron conservation condition is now



an"

3t
= D,

dx2
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a h <»>«> ♦»; g
ax

u" <L (n-™ ) (9.30)
7 ay ^

and that of the ions is

an+

at

+ a2nl
ax2

= D,
+ '*- (n\) +D+ ^|

ox ^ -1 by2
+ a

3y
(n+Ey) (9.31)

Now the electric fields in the two directions may be expected to be

of the same order of magnitude if R and J. are not too different. Since both

are spatial derivatives of the same scalar potential V, one might expect

^ -0[|

Ey - 0

where 0 denotes "of the order of." On the other hand, the coefficients of

the mobility terms in Eqs. (9-30) and (9-31) are u± and u0 and

/ul
((JT)2

^<r/V

Hence one may neglect the mobility terms in the y-direction in Eqs. (9.30)

and (9.31). The remaining term in the electric field, E^, may be eliminated

by assuming near-neutrality of the plasma, n+ = n" = n, and multiplying

Eq. (9.30) by^uj, Eq. (9-31) by ^u~ and subtracting. The result is

§2. = r&o "^o"Do A P&l "/*oD* 92n
ro 'S zy2K -/% ox2

(9.32)



-202-

The effective net diffusion coefficient in the x-direction is

o o

^o-^o

which is just the usual ambipolar diffusion coefficient in the field

direction f"see Eq. (9.23)1 . The effective coefficient across the field is

. ^^LiZi^. (9.33)
•1 .,+

/*6 -/>o

Now u~ p- > uj and D^" ^ DJ_. Hence

D^ = D^ (9-34)

In other words, the effective diffusion coefficient across the field is that

of the ions and not twice the electron coefficient as would be indicated by

a one-dimensional argument such as given in Eq. (9-29) and above. This

point will be discussed further below. Equation (9«32) may now be written

as:

3n = DAMB A +d+ ^ (g55)
-at ° ax2 "X -oy2

nnother situation of experimental Interest is the case of the mean free

path being large compared to the length-^. In this case, electrons and ions

stream rather than diffuse to the end walls. The streaming current in the

x-direction consists of two parts. One is the direct thermal streaming to

the end walls which is equal to nvx per unit area, where vx is the average
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of |v ) in the plasma. The other component is the increment in velocity-

caused by acceleration in an electric field. As shown in the previous

section, the final velocity v' is related to the initial velocity v by

2 2
v' = v + 2as,

where a is the acceleration and s the distance over which it acts. Assuming

this increment to be small compared to the thermal velocity

S*~* DO

y' sz V +

— V

,'. Av - +5li
— m 2v

since the average distance traveled is J./2. Hence the net particle current

per unit area streaming out of the plasma is

9
F = nvx + n -£=- E (9-36)

2mvx

Assume that the net loss of particles arises uniformly from all regions

of the plasma. In that case, the conservation equations become

£-»; ^ -nl (-»-

at -1 ay2 i1 ©y ^

n~vx , n-|e|Ex
2m"v"

n+v*

1

n+je/Ex

2m+v+

(9-37)
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It is not difficult to show that the mobility term in the y-direction is

smaller than the streaming term due to Ejj by the approximate factor

f - rJL i-
L OJT

where rQ is the Larmor radius and L is a characteristic length in the gas in

the y-direction. Now L can hardly be smaller than the ion Larmor radius.

Hence, once again, one may neglect the mobility term in the y-direction.

Eliminating ^ as before, one has:

6n m~vPl +m**Pl o^n n m"(vx)2 +m+(vj)2
ot m+v+ +m-vx dy2 i m+v+

Now, at equal temperatures, m+v+ >> m"v". Hence

m Vv + m vx

(9.38)

I " « 6 - ?
Once again the effective diffusion coefficient across the plasma is that of

the ions, while the effective streaming velocity out of the plasma is twice

that of the slower ions.

The Short Circuit

The significance of the previous results is that diffusion across a

magnetic field is not ambipolar In the presence of end walls.^2 The essential

reason is that space is no longer isotropic in the presence of a magnetic

42. A. Simon, "Ambipolar Diffusion in a Magnetic Field," Phys. Rev. 9_8, 317
(1955).
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field. It is no longer necessary that the individual currents balance out to

zero in each direction in order to maintain space charge neutrality. Instead:

all that is necessary is that the total current in all directions balance to

zero.

Thus, if ions move out more rapidly in the y-direction, as is their

tendency, the small electric fields which develop affect the currents moving

in the direction of the magnetic field lines long before they have an

appreciable effect on the currents in the y-direction. This is because the

mobility is so much larger in the x-direction. Thus, small readjustments in

the currents flowing to the end walls maintain neutrality and allow the ions

to move across the field at their intrinsic rate. It is as if there were

an electron short circuit along the field lines and through the end walls to

counteract any tendency to build up space charge.

Experimental Results

A series of experiments have been performed at Oak Ridge to test these

45considerations. J A plasma was formed by use of an arc discharge in a

cylindrical chamber. The experimental setup is shown in Fig. 9.5. The

magnetic field is along the axis of the cylinder. The plasma ion densities

are measured inside the cylinder by means of a carbon probe. The ion source

is a heated filament biased about 100 volts negative. Electrons are

43. A. Simon and R. V. Neidigh, Diffusion of Ions in a Plasma Across a
Magnetic Field, ORNL-I89O (Nov., 1955).
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accelerated along magnetic field lines into the field-free region within the

cylinder. Ions are formed along the axis of the cylinder and diffuse out

into the plasma region.

The experiment was performed using nitrogen gas at pressures of about

10"5 mm of Hg. The arc current measured at the anode varied from 0.2 to 1.0

ampere depending on the combination of pressure and arc voltage used. The

probe is biased 20 volts negative and this is on the flat portion of its

characteristic curve. It is assumed that ion density is proportional to

probe current.

The measured ion density decreased exponentially outward from the arc

column. This is to be expected. Consider Eq. (9-35) for steady state

conditions. Then

0 nAMB „
82n = _Do_ A
3y2 D+ dx2

Assume separability of the flux,

n(x,y) = n(y) N(x),

and require the ion density to vanish at the end walls. Then

N(x) = N0 sin (&

and

92n «2 Do3®
2 n+3y* i2 D

n (9-40)
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with

(9.41)
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. -y/yo B +y/yo
n=Ae + B e

it ynAMB

Finally, since the sources are entirely at the axis, the coefficient B must

vanish. In cylindrical coordinates, this result becomes

» • k*°(k
where Kq is the usual Bessel function. When r >^rQ,

n ^ J^- e"r/r° (9.42)

and 1 hi
r, '
° « /-.AMB

^o

(9.43)

The basic experiment consists in measuring the characteristic e-folding

length, rQ, as a function of magnetic field strength and gas pressure. Note

that by Eqs. (9-10) and (9.23) that rQ is inversely proportional to the field

strength. This result is true even in the case of free streaming to the end

walls. In the steady state, Eq. (9«39) becomes

3^ 2vt , , .

ay2 JdJ

The corresponding solution in cylindrical geometry is
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rn"A«° IZ) -k e"r/r° (9-*5)
with

ro (9-46)

Again r0 ~ l/B.

The first series of experiments were intended to verify that D, -~ l/B2

and hence rQ ^ l/B. A typical set of measurements are shown in Fig. 9.6.

Note that at each field strength, the ion density is an exponential function

of the radial distance. The reciprocal of the e-foldlng length (l/r0) is

plotted as a function of B in Fig. 9.7. The data clearly favors the linear

variation of slope with magnetic field strength, and hence, B± varies as

l/B . It seems clear that a l/B dependance of D,., which would imply a Jb
dependance of l/r0 is excluded.

A second series of measurements^1' investigated the pressure dependance

of r0 for fixed magnetic field. In the case of diffusion to the end walls,

Eqs. (9.10), (9-24), and (9-43) show that r0 ^ l/X ^ P. Where there is free

streaming to the end walls, Eqs. (9-10), (9-ll), and (9.46) show that

ro ~/lA ^/P* Both of these variations have been observed by using a

shortened arc chamber (X -7/ )and a lengthened arc chamber (X<J.).

44. R. V. Neidigh, Some Experiments Relating Ion Diffusion in a Plasma to
the Neutral Gas Density in the Presence of a Magnetic Field, 0RNL-2024
T*fey, 1956).
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A third measurement considered the effect of placing magnetic mirrors

at the ends of the arc chamber. It can be shown *that rQ becomes in-

dependant of pressure in this case, and this too was verified experimentally.

The final item is the question of the magnitude of the diffusion

coefficient. This may be determined from the observed values of the e-folding

length. The neutral density at a pressure of 1.5 mm Hg and room temperature

is about 5 x 10 ^ cm"-^. The electron-neutral atom and ion-neutral atom

cross sections are very poorly known. A rough estimate, judging from some

of the assembled cross section data, ° is as follows:

C = 3 x 10"15- cm2

cr ^ 7 x 10-15 cm2.

These estimates assume an ion and electron temperature in the plasma of about

2 volts. The temperature estimate is itself quite uncertain and is based on

the variation of the probe characteristic with applied voltage, (it should

be noted that particles with larger collision cross sections are more likely

to be found out in the plasma since they diffuse more rapidly away from the

arc.) The mean free paths corresponding to these numbers are

X = 3 cm

X" = 6.5 cm. (9.47)

45. A. Simon, The Influence of End Mirrors, High Density, and Long Tube
Length on Radial Diffusion, ORNL-I96O (Sept., 1955).

46. S. C. Brown and W. P. Allis, Basic Data of Electrical Discharges, Tech.
Report 283, Research Lab. of Electronics, MIT (June, 1954).
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The coulomb mean free path is about 14 cm for an ionization of 10. The

percentage ionization is unknown but is believed to be considerably less

than 100. It is clear that the effects of electron-ion collisions are not

entirely negligible. Nevertheless, these effects will be ignored. It may

be that some of the remaining numerical discrepancies are due to this factor.

A typical value of r0 is 0.7 cm at B -4000 gauss. Inserting this value

in Eq. (9.43) (diffusion to end walls) yields:

Dj. = 1.54 x10"2 D^*®
Now

DT - 2D+ - § x+v+
3

At a temperature of about 2 volts,

v = 3x \<y c-BLl&ec.. (9.48)

Hence

Dx = 9.2 x105 cm2/sec. (9-49)

This is the experimental value of the effective diffusion coefficient across

a magnetic field. This is to be compared with D+, which the short-circuit

theory predicts. Now, at 4000 gauss

^ = SH = 1#3 x 106 gec-i
mTc

+ X _c;
T = — = 10 -^ sec

v
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and

(uTl)+ = 13

Hence,

,+ X+v+
D-J- = r V 4-T o = 1'75 x lo3 cm2/sec (9.50)

3[M ]*

This is in fair agreement with the experimental result in Eq. (9.49). The

factor of 5maybe due to uncertainties in the cross sections, ion temperature,

and the effects of coulomb collisions. The importance of this result is the

fact that there is an order of magnitude agreement with experiment. This

point is discussed in the next section.

Diffusion by "Plasma Oscillations"

Early experiments at Berkeley1'-''' by Bohm, Burhop, Massey, and Williams

had seemed to indicate an anomalously large ion diffusion rate across a

magnetic field. The experimental method was completely similar to that

described above. An e-folding length of about 0.3 cm was measured at a fixed

field value of 3700 gauss. This yielded an effective diffusion coefficient

across amagnetic field of about 3x 105 cm2/sec, which is in good agreement

with the experimental results at Oak Ridge. Unfortunately, the theoretical

analysis omitted the "short circuit" effect by not including the effects of

electric fields in the direction of the magnetic field lines. As a result,

the predicted coefficient was believed to be only 20 cm2/sec, in sharp disagree

ment with the experimental result.

k1' 2*5. Characteristics of Electrical Discharges in Magnetic Fields, ed. by
A. Guthrie and R. K. Wakerling, p. 201, McGraw~Hill(1949^
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m order to resolve this apparent discrepancy, Bohm^ postulated that
the observed diffusion was caused by the action of anew mechanism. He
stated that plasma oscillations were producing diffusion and that the cor
responding diffusion coefficient is,

BOHM ^ D0 _ 1Q8kT
*SF " H7 cm /sec (9.5D

where kT is in electron-volts and Bin gauss. No theoretical derivation of
this result is available. The result is particularly suspicious because
it is independent of the mean free path. One would normally expect a
dependence on Xsince diffusion is an irreversible process.

The magnitude of the coefficient at kT =2volts and B-4000 gauss is
about 3x103 in agreement with the experimental value. Unfortunately, owing
to the press of wartime conditions, there was no attempt made to verify the
l/B dependence predicted in Eq. (9.51). The experiments at Oak Ridge seem to
rule out any such dependence and what's more, the inclusion of the short-
circuit effect resolves any large numerical discrepancy. It goes without
saying that al/B dependence of the diffusion rate would be disastrous to
the economics of the proposed Sherwood devices. Incidentally, this result
should not be construed as indicating the absence of plasma oscillations.
However, it does imply that they would have little or no effect on diffusion.

Further experiments in this field are under way at Oak Ridge and Los Alamos,
The proposed experiment at Los Alamos will involve avery long tube so as to
attempt to eliminate the short-circuit effect. The decay of the plasma of an
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afterglow will be observed. At Oak Ridge, recent observations of the

48
cylindrical arc at low pressure have produced an unusual oscillatory state.

A complete understanding of this so-called "Mode II" state has not yet been

achieved.

Summary

The observed diffusion rates of ions In a weakly ionized plasma across

a magnetic field may be understood on the basis of classical collision-

diffusion theory. However, the diffusion rate is not ambipolar owing to the

short-circuit effect of currents flowing in the direction of the field lines

to the end walls. It is not necessary to Invoke any additional diffusion

mechanisms, such as plasma oscillations.

Fully Ionized Plasma

The treatment of a fully ionized plasma is In some ways easier than

that of a weakly ionized plasma since there are only two kinds of particles,

electrons and ions, whose interaction law (coulomb scattering) is well known.

On the other hand, the basic conservation equations are non-linear which is

always a difficulty. A great deal of Information may be obtained by use of

the two-fluid or hydro-magnetic equations of motion of the system. This is

the method used by Spitzer^? to obtain so many useful results. The diffusion

rate will be obtained below by this scheme. Kinetic considerations will be

appealed to only to explain some apparent paradoxes which arise.

48. R. V. Neidigh and A. Simon, Extension of Ion Diffusion Experiments,
Conference on Controlled Thermonuclear Reactions, TID-7520 (Sept., 1956).
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First Order Diffusion

The force equation for a plasma has already been given in Eq. (8.4).

In steady state, neglecting electric fields, gravity and a non-linear term

in the mass velocity, this equation becomes

AP = / x B (9-52)

Similarly, Ohm's law, Eq. (8.6) becomes

J - ^ ^x* (9.53)

where the plasma is assumed to have zero charge density and where o"is the

conductivity. Substituting Eq. (9.53) in Eq. (9-52) yields

VP =%[(v.B)B -B2v] . (9.54)

This shows that there is a component of the mass velocity at right angles to

the direction of the magnetic field and that this velocity is proportional to

the pressure gradient. Thus

^ = "oi2 71P ^.55)

Note that the diffusion rate is inversely proportional to the square of the

magnetic field. At constant temperature

ny, = — vn
X <5B2

where n is the particle density. Hence, the effective diffusion coefficient

is
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_. nkTc2 , ,.
Dx = --r (9.56)

The conductivity has already been estimated from simple kinetic con

siderations in Chap. VII Jsee discussion immediately after Eq. (7.36)].
It was shown that

„^ /~ ne X , .
<r « — (9.57)

mv

where X is the mean free path for electron-ion collisions. Substituting in

Eq. (9-56), we have

o

mvcc kT
D, -
1 e2XB2

Now

o)2 =

nrv*e2

3e2XB2

e2B2

and

T = x/v

Hence

which is entirely similar to the previous result for a weakly Ionized plasma.

The similarity ceases at this point, however. The particle flux must

be the same for both electrons and ions. To see this note that by Eq. (9.52)
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there can be no component of the current in the direction of the density

gradient. Thus

\7P = 0

and the electrons and ions diffuse at the same rate. It can easily be shown

that the net current divergence also vanishes.

The explanation of this effect can be found in a simple kinetic picture.

The center of gyration of a charged particle in a magnetic field is at a

point rc which is determined by the instantaneous position and velocity of

the particle. Thus

-* —*• mc "^
rc " r = ~— v x B (9-59)

where r is the particle position and v its velocity. Now, when two particles

collide elastically, the net momentum change must be zero.

A(m1v1) = -A(m2V2)

Hence, it is clear from Eq. (9-59) that the centers of gyration will shift

equally in the same direction for a.collision between an electron and an ion

(e-i = - e2) and equally in opposite directions for an ion-ion or electron-

electron (e^ = e2) collision. Since the resistivity and hence the diffusion

is due to electron-ion collisions it is clear that the electron and ion

diffusion rates must be equal, at least to first order in an expansion in

powers of the Larmor radius. A similar conclusion holds for the diffusion

rates produced by an electric field.
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Like Particle Diffusion

The results derived above are correct to first order in an expansion in

powers of r0/L where r0 is the Larmor radius and L a characteristic length

in the gas. Since these first order results arose directly from the fluid

equations, Eqs. (9.52) and (9»53)j it is clear that this first order ap

proximation has been built-in to start with. The obvious approximation

which has been made is the replacement of the stress tensor by an isotropic

pressure. It can be shown that the off-diagonal elements of the stress

tensor are smaller than the diagonal elements by the factor rQ/L.

There is an obvious way to demonstrate that the scalar pressure neglects

higher order effects. Consider the case of diffusion in a gas of like charged

particles. In this one-fluid situation, there is nc Ohm's law but there is

still a force equation.

—> ->

7P - / x B (9-60)

However, the current and the mass velocity are uniquely related. Thus

—*

nec v (9-61)

Substituting this in the force equation yields

-» ~9
ne , - .

7P „ — v x B (9.62)
c

Thus Eqs. (9.62) and (9«6o) indicate that there can be no mass velocity or

current in the direction of a density gradient in a simple gas (i.e., a gas

of like particles).
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On physical grounds, this result cannot be correct to all orders. The

apparent paradox has been resolved by including the off-diagonal elements in

the stress tensor.^"9 -jhe resulting diffusion rate was found to be dependent

on the third derivative of the particle density and on the inverse fourth

power of the magnetic field. This is to be.expected for a result which

should be of higher order than ordinary diffusion by the factor (r /L)2.

The result is

k r
v s L l£ L i A-L- 32 r dx /n dx^J (9.63)

where rQ is the Larmor radius. This rate is usually smaller than that due

to electron-ion collisions but could conceivably be as large under some

conditions. Longmire and Rosenbluth^ have recently derived this result

by starting from the Fokker-Planck equation and have shown that the rate

vanishes identically in first order. Their final result differs from that of

Eq. (9.63) by the numerical factor 4/3- It may be that this discrepancy is

inherent in the different approximations which are used.

A similar higher order result (~ ^ME )holds for diffusion of like
dxd

particles produced by an electric field.

49. A. Simon, "Diffusion of Like Particles Across a Magnetic Field,"
Phys. Rev. 100, 1557 (1955).

50. C. L. Longmire and M. N. Rosenbluth, "Diffusion of Charged Particles
across a Magnetic Field," Phys. Rev. 103, 507 (1956).
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