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An Analysis of Vortex Tubes for
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Summarz

In order to achieve the high exhaust: gas temperatures, which are.
desirable if the full potential of nuclear fission as an energy source
for rocket propulsion is to be realized, it seems essential that the
fissionable materisl be meintained in a gaseous mixture with the pro-
pellant. It is then necessary to separate the fissionable material
from the propellant before discharging the latter, since. the loss of
fissionable materlal is prohibitive otherw1se.

This report presents an analytical evaluation of the characteristics
of s vortex tube which achieves the desired separation by means of a
centrifugal field. Propellant is fed into the tube tangentially, at
the periphery, and diffuses radiaslly inward through a cloud of fission-
able gas, picking up the fission heat as it goes. The fissionable gas
is held against this radial propellant flow by the centrlfugal vortex
field generated by the tangentlally entering propellant.

The analysis involves several assumptions, the most important of
which sre that the flow is laminsr and that it is inviscid. A set of
non-linear first order differential equations is obtained which is
sufficient to describe the fissiomable gas concentration, temperature,
and pressure distributions in the tube, These equations have been inte-
grated numerically for a very wide range of conditions.

The analysis predicts that the vortex tube is capable of maintain-
ing rather high concentrations of fissionsble gas, such that the density
of the fissionable gas is of the same ovrder as that of the propellant,
with negligible loss of the fissionable gas, and with ratios of propellant
exit temperature to entrance temperature up to ten. The permissible pro-
pellant mass flow is found to be dependent principally on the entering
tangential Mach number of the propellant. The permissible mass flow per
unit of tube length is independent of the tube diameter, thus a8 large -
number of small tubes, filling a given volume, have a much larger mass
flow capacity than a single tube of the ssme volume. For an inlet tangen-
tial Mach number of unity, the permissible mass flow is of the order of
0.0l pounds per second per foot of tube length.




A set of experiments, designed to verify the most important assumptions
of the analysis, is suggested. The first of these is e room tempersture
experiment intended to verify that vortex strengths approaching those implied
by the analysis can sctually be obtained with the low mass flow rates which
are permitted by the diffusion process. Contingent upon the success of this
first experiment, a second experiment using a mixture of hydrogen and some
" heavy gas such as mercury vapor or iodine is suggested Por verification of
the actual sep&ration process.

A discussion of the performance characteristice of the vortex tube as a
rocket propulsion device is also presented. Some numerical examples are given
to indicate the order of magnitude of the various interesting perameters;
however, these should not form & basis for jJudgement of the performante, since
fio attempt at optimization has been made., More critical studies of the nuclear
and performance aspects of the device are belng initiated at ORNL, and will be
the subject of a later report.
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Introduction

The performance of a rocket engine is for most purposes characterized
by ite thrust per unit mass flow rate, or specific impulse. Although it
depends somewhat on the pressure-expansion ratio and details of the rocket
motor, the specific impulse is principally dependent on the stagnation tem-
perature of the exhaust gas and its molecular weight. It is proportional
to the sguare root of the ratio of the temperature to the molecular weight.

The potential advantages of nuclesr figsion as an energy source for
rocket propulsion are thus two. First, since the propellant is not required
to react chemically, it mey be chosen to bave & low molecular weight. Second,
gince the energy release in a nuclear reaction occurs at an extremely high
energy level, the stagnation temperature of the exhaust gases may at least
in principle be very high.

The advantages of low molecular weight may be realized by choosing hydro-
gen, or some readily dissociated substance such as methane or ammonia, as the
propellant. However, in order to take advantage of the high potential stagna-
tion temperatures it seems essential that the fissioning materisl be mixed
with the propellant in the gaseous state, so that the bulk of the fission energy
is transferred directly from the fission fragments to the gaseous propellant.

It is readily demonstrated by simple order-of-magnitude calculations that
in corder to add large amounts of energy in this way it 1s necessary to have
rather high concentrations of fissionable material in the gas. If it is then
assumed that the mixture of propellant and fissionable material is exhausted,
the loss of fissionable material is so high as to be: prohibitive. It is there-
fore necessary to separate the fissionable material from the hot exhimust gas
before discharglng it.

The purpose of the present report is to describe a method of achieving the

necessary Righ concentrations of fissionable material in the gas, and the neces-

sary sepasration of the fissionable material. It consists essentislly of a
vortex tube, in which the fissionable materiel is held by the centrifugal field
while the propellant gas diffuses through it, picking up the fission heat as it
moves inward. The propellant gas, and enough fissionsble material to make up
losses, enter the tube tangentially at the peripbery, as shown in Fig. 1. The
propellant then passes spirally inward, through the fissionable material, and
leaves the tube near its center, through a convergent-divergent nozzle at one end.
The heated gas does not come in contact with the walls, except in the nozzle,

so that the process seems superior to one in which a more or less homogeneous
fissionable-material-propellant mixture is passed through a critical system, then
through & separation dev1ce. .
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The bulk of the present study consists of s theoretical analysis of
the separation-heating process, based on an idealized model which is a
first approximation to the physical situation. The principal objectives
are to discover the most important parameters governing the process, and
establish their ranges; therefore the principal results will take the form
of relationships between these parameters.

In order to help give a feeling for the significance of these results,
the performance of the vortex tube as a rocket propulsion device will be
discussed, and some numerical examples given. It should be emphasized, how-
ever, that these examples are in no sense optimum, and should not serve as
a basis for Judgment of the performance of the system. This judgment can
be made only on the basis of thorough nueglear and systems studies. Thus
the present study may be regarded as a rather complete evaluation of the
fluid mechanical cheracteristics of the heating-separation device, while
the nuclesr and systems analyses are later steps 1n an overall evaluation
of its performance.

From another point of view, the study may be regarded as an investigation
of a fluid~-mechanics problem which is 1nterest1ng in itself, quite apart
from its applications to rocket propulsion.




Analysis of the Heating-Separation Process

The flaw in the vortex tube is compressible, with strong diffusion and
high rates of heat addition. It is in general s three-dimensionsl flow
process, and may be turbulent. Thus, in order to make any progress in analyz~
ing it, some assumptions_mnst be made. The following have been tsken as a
workable set. , '

1. The flow is assumed to be two-dimensionsl, with complete uniformity
along the axis of the tube. To meke this assumption compatible with
the flow of propellant through the system, the propellant is con-
sidered to be withdrawn from the tube at some radius, r , at which
the fissionable material concentration is low enough to make the losses
reasonsble. The propellant is assumed to enter uniformly at the
periphery, r_, although it would in fact have to be introduced in
Jjets, as in Fig. 1.

2. The flow is assumed laminar., This assumption is quite possibly in
error; however, it is felt to be necessary at the present time.
The validity of this assumption and its importance probasbly can be
evaluasted only experlmentally, although some arguments will be given
in its defense. :

3. The flow 1s mssumed inviscid. Again this is felt to be necessary at
present, An estimate of the validity of the assumption will be given
for Jaminar flow.

b, 1t is assumed that f1551on fragment heatlng of the gas is local, i.e.,
thet the range of fission fragments in the gas is small compared to
characteristic lengths for the system.  This assumption seems to be of
marglnal validity, but is probably not critlcal

5. It is assumed that the molecular concentration of fissionable material
is much less than that of the propellant. This is true for all systems
conaidered,
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Nomenclature:

The principal notation used in the analysis is a&s fcllowsi

o1 ® specific heat at constant pressure of light gas

cpa 2 sgpecific heat at constaﬁt pressure of heavy gas

d

12 effective hard-sphere = diameter for collisions between

light and heavy ges molecules

M

D12 2 binary diffusion coefficient

A& = adimensionless diffusion parameter, defined by Eg (23)

g = dimensionless heat generation psrameter, defined by Eq (11)

G 2 energy added per unit volume snd per unit time by fission in
gas mixture
HO # enthalpy of gas mixture

k = Boltzmann's constant
m, = mass of light gas molecule

mess of beavy gas molecule

o
B

M ﬁf tangential Mach number;, based on speed of sound in light gas

M & radial Mach number, based on speed of sound in light gas

N

mass flow of propellant per unit length of vortex tube




i

L

Mo

[

W

wm o

molecular’concentraﬁio# of light gas
molecular~concentratioq of heavy gas
total molecular concen#ration
partial'pfessure of'liéht gas

partial pressure of heavy gas

pressure of gas mixture
energy release per fission
radial coordinate

gas constant for lightigas

gas temperature

diffusion velocity of light gas
diffusienivelocity of heavy gas
mass averaged radial velocity

mass averaged tangential velocity

ratio of densities of heavy and light gases

13-
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X;E ratio of specific heats for light gas
A = coefficient of heat conduction for gas mixture

density»of light gas

o
}.J
i

density of heavy gas

R
o
it

PO & density of gas mixture
§ = neutron track length (neutrons/ares/time)

TP ﬁ relative mass flow capacity per unit vortex tube length

Subscripts:

On independent variable (r or r¥)
¢ - exit from tube
p - periphery of tube
m - point of maximum w

On dependent variables
0 - value for gas mixture
1 - value for light gas
2 - value for heavy gas

Superscripts:

* . guantity divided by its value at point of maximum w.
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Mathematical Fformulation:

With the assumption of zero visco?igy, the eguations governing a binary
gas mixture may be written as follows: ;

Conservation of specie,
dn, Ei d(uor)

1
I tT TE o tE

%-(mu) =0 , i=12 (1)
Conservation of tangential momentum,
v.r = constant . : (2)

-0

Conservation of radial momentum,

2 ,
oo Yo 1 P | (3)
| 0 dr r FQ) dr | : |
Conservation of energy;
aH - dp ; ;
; 0 0 , 4a ;
Pt T " YT & < ¢ - g (ra) ; (%)

where

| am
q ® -Ag + Tme p1Mly * Oplppliyty) + KKpnp(uy - up )

Here KE is the thermal:diffusion ratio. This term is negligible and will be
dropped. : ‘ : 1
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Diffusion equation,

2 |
n. n n,0,(m, ~ m,) dp
Yp m ¥ F o non Dyp {éi (n}) + lni e % d;)+ K % g:} (5)
| 12 0 ofo 0o ¢ i

Again the term invelving KT is negligible and will be dropped.
Equation of state, ‘

Py

= kT i = 0,1,2 | (6)
The momentum, energy, continuity, and diffusion eguations will now be
considered in turn and put in & form suiteble for integration.

Momentum equatioms:

A reference radius, r_, will be defined for future convenience as that at
which w, the density ratio, has its maximum value. Then using the subscript m
to denote values at this radius, Eq (2) wmay be written, v.r = v.r , and

, : ) Om™ m
Eq {3) becomes, :

du (v ‘)2

S 0,m'm ! ggg (D
0 dr rj ‘ PO dr ;

Multiplying Bg (1) by m, and adding the equations for 1 = 1 and i = 2, we get
by using the fact that i, 1,0 + MLnU, = 0, the continuity eguation for the

, 171 er 2
mixture, namely ‘

d,

Po 8
Yoar troar () = 0
or
du.. ap
2 r==2+ & 20, - (8)
o Po ~ |
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which has the solution,

pouork = QomlonTn = constant ; (8a)

Using Eq (8) to eliminate duo/dr from Eq (7N, we:get after some manipulation,

- (| B0k

Now

¢

8
B

P
- . 1 O Y
Jmy Fym, = Pl(l + v:r) = 5 (1 +w) 7 % (1 +w)

Po

Hence,
2

s e e b Bt o)

where M - and Mt are the radial and tangential Mach numbers at rm, baged on
Uom ant v an% the speed of sound in the light gas; ¥ is the ratlo of specific
heats for the light gas. Fipally, the equation may be written as,

| L2 ' | |
5-1—"-3-1-1;@ = r M (l+w)(-—1-j'-'i) %‘3 {1 +[1 +%5 iio](io‘;)e(ﬁi)e} (9)

It will appear later that M /M < ;10—5, and the last term in the braces is
therefore quite small. ~ ‘ ' ~,
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Denote by an asterisk any quantity divided by its value at r_ , eg,
¥ = r/rm. Neglecting the small term, Eq (9) then becomes,

¥ dpg X’MQ L+w (10)
p"o“ dr¥ em r¥2m* :

Energy eguation:

The factor G in Eq (k) represents the fission heat source. It may be
written as ~

G = neofm;

where o, is the fission cross section for the heavy gas, @ is the neutron (flux)
track léngth, and @ is the energy release per fission. It will be assumed
that these gquantities are independent of r. The enthalpy, Hb, may be written
as’ . : : .

1
g - o +w cp2/cpl
0 pl 1+ w

but since the molar specific heats of the two gaées are of the same order of
magnitude; ‘

woep/ohn A Pp/og K1,
hence,

» c .7
B PR
07T 14w
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If ¢_. i5 assumed constant, Bq (4) may then be written in terms of the tem-
peragure as follows:

—

d[T ]221 dpo nz"‘fsziQ

Potpr & Pc

a ar Y }
g 1 A m U, +'m.c u,. ) R
ar { Polotor :dr Po o1 3 e T R e -1 A

the term in Kp being neglected. Again referring all quentities to r = rm,‘
this becomes, ‘ ' ‘

a [T*]n y-1Tx 1 px Y
ey
Y ¢ 1 + W po g

% gmngr* —

Om Om m pl PCm Om

P P
- di* g} P ontontn® r* gfi + A o 2n 28 ngul ( ‘)}

where¥* , ¢Q
g = --—-—-—--—~— ' (11)
plpbm Om m ,

*The negative sign in the definition of is due to the definition of
velocities as positive if directed outward. Thus, Yom is inherently
negative,
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Now according to Euchen's formula,(a)

A= Hor - 5)ug,

hence

A -5
W”%ﬁ"‘—)&

Om m pl Om Om m

This quantity is of the order of 10“lt for the systems of interest, while
other guantities in the equation are of order unity, hence conduction is
negligible. Omitting the conduction (third) term, and using Bg (10), we
get, ,

cpe) P ez

a [ o= | | 4
a“r**[m}“ (- 23 - e s (- pns o () (2)

This is the final form of the energy equation as it applies to the
pregent problem. It may be put in a more convenlent form by eliminating
the derivative of w from the lefi side and collecting the derivatives of
T# from left and right sides. Thus, the density ratio, w, may be written,

%
. - men.2 . ngT
X 2
mlnl m 7
whence
* X *
e e B3 pm a8
dr* ~ m p¥ | n¥ ar¥ ™ dr¥ ~ p¥ ¥ ’
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and using Eq (10) to eliminate the pg tern,

XT% - dnx
d ) r% 905w gpw l4+w :
r*gex (L+w) = v 53 ”ﬁgdr**”‘f*”ar*‘ymimr*ew]t (13)

The left side of Bq (12) may now be expanded as follows,

.g___[T*]m T* 1 aTx AR U B
% = e IO C oF aF
e S (1 + w)2 T d? (1 + w)e ng dr

e, W, o

m
r*3 1 +w pg

(14)

The derivative of T* may be separated from the rlght hand side of Bq (12), as
follows:

a g OTF ' '
gox (r*T¥n¥uX) = r¥olud o5+ T ¢ (rénku %) . . ~(15)
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Substltutlng Bgs {(14) and (15) in Eq (1.2) and collecting coefficients of the
derivatives we get,

A { % (1 L)Pem om
N (Pt pl Pomom

S

(16)

d : c ). 1
1 93 2\ Peme d |
&2 e o) - () e g g

i e, T 0
Y .

1+ w p‘g %7 = Byt

Finally, it is desirable to eliminate u in favor of guantities
which have more readily understandable physic l 51gn1f1cance. Let M7, and

WE be the mass flows of light gas and heavy gas per foot of tube 1eng%h Then

7771 = - Eﬁrmpm(uam + U‘lm)
Mo = = 2mr Polug, + vy
u
f im :
and leulm = = Poplon’ ’or E;; = =¥y ’
hence
; u
Wg La 1
— oz Y ‘12111
M m .
1 » Yo
. — Wm
' “em
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Thus,
w {1 +%-—)
Jom _.._._._.._m( L
Yo W
Tom
i
Now by assumption 1, 7772/?)71 = Vo where L is the density ratio at the

"exit" radius, T Thiis

1+ wc | (17)

Using this relation, and noting that Pem/pﬁm = wm/(l-wm) Eq {16) becomes,

£l

E 1w /w :
aT* T* cp& Vi ¢’ 'm .
dr*{ +(l" )(l+me 1+Wc)r*n§u§‘1’*}

(1 + w)?2 cp,l

an% ; ¢ W 1 -w_ /fw |
1 9 W T - Tp2 m ¢’ m d ok
oy dr¥ § 2 } * (l e 1)( T w )( T+w ) T* gow (r¥ofug)= (18
2 (1 +w) pl m c/ ,

2
- Y- 1 ¥ anI‘* Y th "
Y T ¥ w ¥ XD T oCyt D

One expression relating the derivatives of T*,n¥, and r*n*ug has thus been
obtained from the energy equation., Two additio%al expres%ions relating
these derivatives will be obtained from the diffusion equation and the con-
servation equation for the heavy gas.
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Conservation equation for the heavy gas:

From Eq (1), for i = 2,
ar \Thel 0oar ~ % & .

From Bg (8), since Po = mby + Wyl

. d(uor) ) 4 86 1 (m +m,2
u T dr Po dr | m, D, o+ m2n2 1 ar dr
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Referring all quantities to r , and using the equation of etate to eliminate
o, in terms of temperature and pressure

 Ap¥
Vom By MEmRE) 3 o dn? 1 [r* S a@*]
% == n¥ * dy¥® " Tx Fr¥
Uom ug ngug | dr* L+ w nX dr* l v pS dr T dr¥

Finally, using Eqs (10) and (17) to eliminate dpg/dr* and ugm/u

a(r*ngux,) l*””’c ignim 1 [r* ax o dng} (20)

dr¥ R T 77' o 5 2 1 ¥ w | TF g +:E§ ar® |

This expression may be used to ellmznate the derivative of r*n2 X from
Bg (18).

A simple relatlon exigts between u ug, and w, since Eg (19) may be
written as ; :

(rnzu ) + (rnguc) = 0

or

rne(u0 + ue) = const.
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Referring all quantities to their values at Tt and using Eq (17), we get

1+w W l+w |
W = lh . C ug L 5 m 1 -
2 - wc7wh Wﬁ - wc/wE r¥nX

Using the expressions for w andf)o, this then becomes

ut 1. wc/w
Eg = l-—wc7wm *

Diffusion equation:

Dropping the term involving KT, and using the fact that n2<< nys

Eq (5) may be written,

Uy - ¥y = ”Dle{ﬁ}“ %“% %nf‘*(%.’l,)(

b

Noting that Py = nlkT and U, & = 2,:this becones,

(21)
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Referring all quantities to r , and using Egs (10) and (17),

D

: 2
. N ha: )(%{(.@Lﬁ_il)}ia )
C Talom i~ wc/wﬁ r¥ i A+ w | r*ET*

1 r* qpe  px 903 | ~
TRV T EEtE e | (22)

This is the third relation between the derivatives of T, n;, and r*ngug.

The diffusion coefficient:

The simple theoreticel result for D,,, based on hard-sphere collisious,
will be used, partly for the sake of sim%%icity and partly for lack of infore
mation about thg(%ﬁteraction potentials for the molecules of interest. One
such formula is, ‘ :

1
[%T(m + m,) 2
D = 3 1L "2
12 2 2, m
, 8n0d12 L 12

where dl is the effective hard-sphere diameter for collision. Since no =
pD/kT’ Zhis becomes, ; :

1
| Sy Com\2 g3/2

12
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Now the dimensionless group pla/rmu()m becomes

1
D | 5 p 2/
7 3;2 = g k:’:/Q 1 1+ ?13_.)2 Ty px3/2
%
m Om (277,)1/2 ml/éde M) T U Do P¥
1 A2
We write this as,
1o *3/2
ru. - T*m T p%
m Om 0
where 1
L 3 ( 15/ ) m 2
" - v 1+ == m : (23)
n 75| "I E ( )
| 8(2”'), my gy, "2 TuonPon |
Now ,
| - 1k
T in%omP Om/ e T+~ my
and
4%’1 +7712 = - QW'pOmuOmrm‘ » hence
cu o = L 1 o x MWLt ok
m Om™Om’ “m | 27 1+'wm m EW‘l+wm my
Thus,
1 ? |
, =, 1/2 1/e ~ 1 /2
5, - AT B F (e R )
m 3 d?g om, 1+ w, ;
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Solution for the derivatives of ng and T¥*:

Equations (18), (19), and (20) give three linear algebraic equations
relating the derivatives of T%, n¥, and r*n%u%. These may be solved for
the derivatives of T* and n¥X, and the resultiiig two expressions, together
with Bq (10), give three fifst-order noun-linear differential equations,
which may be integrated numerically. Thus, substituting Eg (20) in Eq (18),
and collecting the coefficients of the derivatives, )

c W , 1-w_/w u¥ :
e B I B L N |
dr (l+w)2 c-l+wm Z 2 1 4+ w u¥ 1 + w

E dn¥ e w_ o r¥pfu¥’
_opx 993 { w A (1 i pe) w TR o'} ) (25)

‘ *
:n"é dr (1 + w)2 Cpl 1+ W 1+ w
WRpx ; ‘ ‘ ,
- gm f........n.g. + { £-1 . + (l fﬁg) wm u*n*r*} YMim
= e 5 - — - — :
| T ‘ Y l + W c:]?:L 1+ L 02 ¥

Equations (22) and (25) may now be written in the follewing form,

a r¥  4aT* +b ;_f_ d“fﬁ
1T® &% T L nf ar% €1
.
r¥ g r¥ dﬂé.’
At oo + e =z C
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where,
? c W 1w /v ou¥
1 ( pi)( m ) [- /'m0 1 ]
8., = + (1 - Pk o TR0 WO
¥
1 (1 + w)e c 1+ Vo 3“2 1+ v, uf 1+w
* ; :
1 €51 1+w L+w e W)Q : 2
o orT ok ¢ W Y
2 - - 2 , t
€1 7 7 &y T**{Yyl ‘1jw+(l'"é£')1+mw ugngr*} 5
, , ; pl m r¥eq
1 PEERE 1~ wc/wm | T ' X'Mim
CpE - ET s py, - (LA W)+ o= ] e
dﬁma T c ; 1 r 7T
The derivatives may then be written,.
r* arx 1 " %Y (27)
™™ dr¥ 8y ‘,bl ;
¥ - A ;
r* <:1132 ) Coflq = Cq ’ (28)
ng,dr* al - bl

Equations (10), (27) and (28) may be integrated numerically. For convenience,
Eq (10) will be repeated here. '

p¥ dr* tm w2 ‘
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The relations needed to complete the’above set of equations are,

' 1+ ‘
PS = T :ﬁ T* ‘ ‘(29)
wg = 1/p (30)
u 1-w /v

¢/ :
-u-g' S ;wm :(51)

(32)

wo= W
: *
m Pp 5

The parameters which must be specified, and which govern the process, are

*5&’Mt »W_, and w_. All of the quentities with asterisks are by definition
equal t6 unity at the radius r = r_{or r* = 1) where w is a meximm. The
initial conditions for Eqs (10), (27) and {28) are therefore specified, and
the integration can proceed pumerically from r¥ = 1l; however, the parameiers
%ﬂ,g?,mi s and W, are not all independent, if w is to have & maximum at r¥ = 1,

o, . .
15 wiT? be shoWn in the next section.

Maxima apnd Minims of ws

Because of the fact that the absolute value of w enters BEg (26), rather
than Jjust the ratioc of w to its value at some point in the tube, it is neces-
sary to specify the magnitude of w at some value of r¥. This specified value
of w is an important parameter, since it effectively determines the fissionable
material concentration in the tube. In order that the specified value of w:
should be as accurate a measire of the average magnitude of w as possible, it
has been defined to be the meaximum value of w which occurs in the tube. However,



‘since the variation of w with r¥ can be found only by numerical integration
‘of Egs (10), {27) and (28), it is possible to specify the meximum of

w only if it occurs at r¥* = 1, the initial point. In this section, conditions
will be obtained which are necessary and sufficient for the occurrence of a
maximm of w at r¥ = 1.

The condition that dw/dr = 0 is, from Eg (13},

* .
dn:?_'__rﬁd'l'*__x 1+w
dr¥ T* dr¥

tm AR

o5 %

Using Egs (27) and (28) to eliminate the derivatives, this becomes,

. ) ; ;
1 pér*uE 1 Wc/wm o xmim 1+ w
c. = - (1 +w) + — o M S (33)
1 r T r =T :

e ﬁm T‘”‘B/2 1+ Wg
Thus, the condition for zero slope of w at r¥ = 1 is,

(2 - w_ )1 +w) ;
By = | ; (34)

2 [T ‘
XMW(EZ‘ 9(l+wc)

Equation'(3h) gives the value ofx9ﬁ such that w shall bave zero slope at r¥ = 1.
With this value, ¢y becomes, ‘ ‘

oy roT

Pl (mz/ml'l) me 1
CESXMim [~W(1+W)W +i(—-—-+'w) *2*] ¥ (55)

and this expression replaces the corresponding one of Egs {26).
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It is interesting to inguire whether there are points other than r%* = 1
at which Eg (33) is satisfied. Substituting Eq (34) in Eq (33), we get,

*
1w 2T 1 | | (332)
1+ v ®1/2 ~ p¥e
Now from Eg (31),
Eé . 1 - wefw
ug 1 - Wé?Wm
1+ Wm ; ,
Also, pé‘ p YT* P 3‘1‘ :, andpgugr* 1,

1+w

hence, Eq{33a) reduces to

1w /w = :
W—WCWWT#/E = ‘I““‘;é' ) , (36)

which is the condition to be satisfied if there is to be a pomnt of zero slope
of w other than at r* = 1. Since T* and w are not known as functions of r¥
before the equations are integrated, it is not possible to give the points of
zero slope of w exactly; however, it is clear that if Eq (3%6) is to have a root
for r#< 1, then the derlvative of the left side with respect to r¥*, evaluated
at r¥ = 1, must be less than that of the right 51de, while the reverse is true
if there is to be a root for r¥>l,



It was found by integrating the equations that if there is & root for
r¥*>1, then w is a maximm at r¥* = 1, while if there is a root for r¥ 1,
w is a minimm gt r¥ = 1. The behavior of w is shown qualitatively for
these two cases in Fig. 2. Clearly, the minimum slope of T* versus r#
which is permisgible if w is to have a meximum at r* = 1 is such that the
curve of the left side of Eg (36) versus r* is tangent to that of the right
side at r* = 1, From Bq (36), this condition is

m ﬁ—]—f‘
dr* % o= 1
From Eq (27), ‘
ar» rErw) s (o v
ar¥ | = 31 1+ (l - ;2%)'w 1~ wc/wm ’
pl L e
¢
Seolving for gm,
i e 1-w /w |
_ ' e ¢’ m 1 LD t
g (max) = h[ 1+ (1 - Cpl) L W ] TFw + (¥ - l)th (37)

The value of g given by Eg (37) is to be interpreted as the maximum value,
for given w_ and s which allows w to have a meximum at r* = 1. If is
iess than this value, w/w_ will behsve as in Fig. 2b, if Eg (36) has a root
for r*>1. However, if Bg (36) does not have & root for r¥*>1, w/wﬁ will decrease
continuously for r¥>1, ’

This rather complicated behavior of the density retio can perhaps be better
understood by re-writing the diffusion equation in terms of w. Since w/wm =
ngT*/pg, we have

* *
rtgw % DB opxgme px 98
w o dr¥ ng dr¥* = T% dr* py dr¥
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Now using Egs {21) and (23), the diffusion equation | Eq (22)] may be written:

IR S VAL Y (e
Ww m1+wm K my r*eT* w dr¥ -

The first term in brackets on the right represents the vortex field, or rather
its effect on the diffusion process, while the second represents the combined
effects of the heavy and light gms concentrations. The influence of the radial
mass flow is contained in/S , which is inversely proportional to the mass flow
rate per unit of tube length, M, {see Bq eu))

The physical s:.gniflcance of Bq (22a) may be most easily seen by studying
its form for three physical situations: the first with constant T* and no
radial mass flow, the second with constant T% and redial mass flow, and the
third with‘both strong temperature variation and radial mass flow.

If the mass flow rate is zero,,& is infinite Eaee Eq (24)], and Eq (22a)
reduces to. _ ;

¥ dw (?g_gb/tm
r*ep®

Now if T* is constant, this immediately integrates to:
W/‘W = ex 22‘ % 1 .-.:.L-...
m P m " T =)

‘I‘husr, for this case w decreases very rapldly, and monotonically as r¥ decreases
from r¥* = 1, as shown in Fig. 3, case 1. ‘
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Next, suppose T¥* is still constant, butﬁ” is not zero. Then unless w is
very small, i.e. about egual to We, the quantlty in braces in Eq {22a) must
be equal to a positive coustant, say C, which incresses as) increases. Now
at r¥ = 1, dw/dr* has been set equal to zero, hence the first term is just
equal to C for r* = 1, As r¥ decreases from unity, the first term increases,
hence dw/dr* must become positive, while Bs r¥* increases, the first term
decreases, and dw/dr* must become negative in order that the sum of the two
terms may remain equal to C. Thus, the radial mass flow produces a simple
maximum in w as shown in Fig. %, case 2.

Finally, consider the case in which there is both radial mass flow and sub-
stantial heat sddition, which results in a decrease of T* as r¥ incresses.
The sum of the two terms in braces in Eg (22a) may still be considered roughly
a constant, since T *1/2 varies rather slowly compared to the first term in the
braces., This first term depen&s on both r¥ and T%, If T¥ varies slowly
enough so that the product r*27* increases monotonically as r* increases, the
behavior of w is substantially the same as that of case 2. However, if T¥
decreases more rapidly than r¥2 incresses, the first term increasee with r*
instead of decreasing, and dw/dr must increase as r%* increases. If r¥ is
increased enough, dw/dr becomes positive, and very large, because as T* de-
creases, the propellant density, and therefore the fissionable material density
{since w=l) increase. The latter increase leads to a high rate of heat addition,
which accelerates the decrease of T¥ with r¥*, and the effect multiplies. Thus
w Pirst decreases, then increases very rapidly as shown by Fig 3, case 3.

Whether the system behaves as in case 2 or as in case 3 depends on whether
T* varies more rapidly than r*2 Por some r* greater than unity. Now the
variation of T¥ with r¥* is proportional o gns at least for r¥ near unity, thus
as gy is increased from zero, the behav10r of w will change from that of the
second case to that of the third. The value of g, at which this change in
behavior tekes place w1ll be denoted gy(crit).

In summary, the conditions which must be satlsfled in order that w have a
maximum point at r¥ = 1 are that cp be given by BEg (%5) and that gm be less
 than the value g (max) given by Bq (37). If g, is between gp{mex) and g (crit)
-~ w will behave as shown in Fig 3 for case 3. If gy is less than gm(crlt), W
will behave as shown for case 2,
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Method of Integration:

Equations (10), (27), (28), (29), (30), (31), and (32), with Eq (35) for
¢y, are in such a form that they may be integrated guite readily by & high-
speed digital computor. Since only the first derdvatives of T* and nd are
easily available, a simple forwasrd-difference scheme was used, and the desired
precision obtained by means of a small interval.

Beginning at the initial point, r¥ = 1 where u¥ = T* = p¥ =P¥ = uf = uf =1,
and w = w,, the quantities : S

(x*/ng)ang/dar* (rx/Tx)aT*/ar* ,  (r*/p¥)dpy/dr*

were computed., Values of nﬁ, T% and pg were then estimated at the next value
of r¥ by the relation,

T teyy Hac-T ' |

where y = n¥, T¥, pX. With these values,; P¥, ug,f ¥, and w were then estimated.

The derivatives at %he end of the interval were thel computed from these values,

and final values for each of the above derivatives were obtained by averaging

the estimated values with the corresponding values at the beginning of the interval.
The final values of n¥, T* and p% were then computed by Eg (38), using these
aversge derivatives. This procegure was repeated for each increment in r¥*,

An interval of Ar¥ = 0.005 was used for all the calculations. In order to
estimate the errors, one case was run with an interval of 0.0l. 8ince the
results for the quantities of interest agreed to within one percent, it was con-
cluded that the accuracy was sufflcient for engineering purposes,

Parameters‘of the heating—separation»process:

For each integration of the differential equatlons, M, W 8mo and w_ were
specified. The integration then proceeded from r¥* = 1 toward smafl T¥,
integration was stopped when w equalled w_, and the value of r¥ at which this
occurred was called r¥, For all of the calculations L = 0,0001 was selected.
Thig figure implies & loss of 0.0001 pounds of flssionable material for each
pound of propellant expended. It could be reduced to 0.00001 wlthout quelita«
tively altering the results.




The parameters which remain are then M, , v , and g . For any particular
set of these, the integration gave the veriation of n¥, T¥, P*, ‘and w with
r¥, for r¥* in the range where w was less than or equal to Vo

In order to interpret the results in terms of real systems it is necessary
first to select the value of r¥ which is to represent the periphery of the tube,
i.,e. r%. Bach solution for a given set of  Mipys Wy and gy, allows & range of
values  of r¥, and the overall characteristics of the system depend strongly
on r§. The Falues of have been chosen for the cases where gp> g%(crlt) 80
as to include the entire range of r*¥ for which v< v, . By refergnce to Fig. 3
it may be seen that r¥ is the value of r* at whlch W /i becomes unity again as
r¥ is increased from gnlty. For the cases where g < g {(crit), r¥ has been
selected as the value of r* at which w = 0.1 wy. It Will be sebn later that
this choice gives approximately the meximum everall temperature ratio, from
tube exit to perlphery.

For a given value of r¥*, the tangentlal Mach number, M_ _, and the heating

parameter,,g%, both refer?ed to the fluid conditions at tﬁg tube periphery,
may be computed. From the definition of the Mach number, ;

v

. Op
M = 3 gl
tp {XRTP)172 |

Using Eq (2), this becomes,

' 1 :
T ©9)
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S8imilarly, from the definition of g,

. 2
g, = - "e#ny Ty = evnzp.cfmrl’ o (10)
%p1op Yo Tp M e Ty |
and,
n T : :
e T ' (81)

The phyéical significance of Mt is of course clear. It is simply the
velocity of the entering fluid divided by its sonic velocity. Other things
being equal, the strength of the vortex field increases as Mtpyincreases.

From Eq (40), it is clear that g_ measures the ratio of the heat generation
rate by fission per unit of tube leggth to the heat capacity of the fluid
flowing through the tube, per unit length and per unit time. It is therefore
s direct measure of the temperature ratio across the tube, from periphery to
core, In the process of integration, gm was fixed, and for each r* a value
of was computed, from Eq (41). This value of g_ determines the“relationship
neceSsary between the parameters of Bg (40) in ordBr that the hest generation
rate be that which is implied by the resultant.temperature ratio, T;/Tpo
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A relatmonship between the mass flow rate per unit of tube length, 7%4
and the other parameters is implied by Egs (24) and (34). Bquating theSe
and solving for?ﬂ/ » We get

Tl/ek
1

12

| 1/2 | 12 1/e , 2, y | |
%1 = 5(2871') de 1 (1+m2)2(;1—— :L) m%cmr@ (h2)

where

Since T 1/E/T*l/2 Tml/e, the mass flow rate depends on T ,,th, and con-
stﬁyts Betermined by the light-heavy gas combination. It is proportional to
m th‘ : ‘ ‘

It is important to note that%” is the mass flow capacity per unit of tube
length, and that it is independen% of" the tube size. Thus, a large number of
small diameter tubes filling a given ‘volume have a much higher mass flow capacity
than one large tube of the same volume. This is felt to be one of the most im-
portant results of the analysis. : ,

In order to estimate the critical size of a system composed of vortex tubes,
it is necessary to know the average densities of the light and fissionable gases
in the vortex tube. These may be obtained by averaging over the density distri-
butions given by the integration.
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It rg is the exit dimensionless radius and r* is the peripheral dimensionless
radius, and it is assumed f, is constant for red rZ. and has the value Pic - then
the ratio of average light Fas demnsity to that et fhe periphery is, ' i

*
P
Pf___ p*cr*e +2 f 'Olr*dr*
ip
PIpy
or
pE TXr ‘ T* ¥ : :
Pl Z ._9.9...__.__ + 2 P f ..T.gr*dr* (43)
fa ip gp‘l‘*r*z | pgpr;Q X '

If it i1s assumed that w 1s very small for r#< rc » the average density
ratio W, defined as w = PQ P'l s is glven by, ‘

_ oy E_]__E % rg, ;
v o=~ b (%) f nfr¥ire (L)
o Tp PaiMow xE | L

The average density of the fissionable gas in the tube is then given by

pe ui;;(Pl)Plp : (55)

Pip
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In summary, the following parameters are significant in specifying the
overall performance of the heating-separation process: the overall tem- ‘
perature ratio, TC/TP, the overall pressure ratio, POC/P » the peripheral
tangential Mach number, Mtp, the outlet-to-peripheral radius ratio, rc/rp,
and the relative mass flow capacity per unit of tube length, W . The coupllng
between the fluid-mechanical and nuclear characteristics of the system is
expressed by the average fissionable-species-to-propellant-density ratio, W,
the average-to-peripheral propellant density ratio, Ff 1/@1 s &nd the heating
parameter, gp, which is. essentlally a statement on the requxred neutron track
length.

Results:

The principal results of the analysis take the form of relationships
between the overall-performance and nuclear-coupling parameters and the
gspecified parameters, Wiy M¢,», and &’ however, it is difficult to under-
stand these relationships without a prior understanding of the physical aspects
of the heating separation process. Accordingly, before these principle results
are presented, the variation of the seversl physical parameters with r¥* will be
presented for some typical values of the specified parameters. Because of the
large number of possible combinations of the specified parameters, these results
can be only exemplary.

The calculations have been done for a combination of hydrogen as the light
gas and plutonium as the heavy gas. The gquantities involved in the integration
which depend on this choice, and the assigned values are: m2/ 1y = i19.5,

12 0.008, ¥ = 1.31. The value of ¥ was selected as a reasonsble mean
for the temperature range of interest

The density ratio, dimensionless temperature, and dimensionless fuel concentration:

The somewhat complicated behavior of w, which has been discussed qualitatively
at some leugth in the section "mexims and minime of w", is shown quentitatively in
Figs 4a and 4b, for typical values of My, and wy. For gy < gplcrit), (Fig ka), w
has & simple maximum, and falls off guite rapidly for r¥* both greater than and
less than unity. This simple maximum results from the fact that for g < {crit),
the vortex field strength decreases momotonically as r increases. If, on the
other hand, the rate of heat addition 1s large enough, i.e. g, > gm(crlt) the
rapid increase in density as r increases causes the field strength first to decrease
then incresse again as r incresses. In these cases, w increases again as the field
strength increases, as shown in Pig Lb.
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The variation of T™% is shown for the same values of M__, w_, and in
Figs 5a and 5b. For gm< g¥(crit), T#* varies rather slowly. TNear r¥= 1,
where w/wy is near unity, incresses steadily;  however, as r¥ becomes
small, and w becomes small, T* decreases because the propellant expands
toward the center of the tube. Similarly, if r* were carried to large
enough values, T would increase as r¥* increased for r¥* > 1,

For gm > gylcrit), the variation of T#* reflects the fact that w/w, is
of order unity for all r¥ > 1. T¥% continues to decrease as r¥ increases,
and in fact for g, near {crit), T* decreases very rapidly as w increases
rapidly. As has been ppinted out previously, these two effects reinforce
each other, since as the tempersture decresses, the derivative of w in-
creases, which gives a higher rate of heat addition and decremses T¥ further.

The variation of the dimensionless fissionable-species concentration with
r* ig shown in Figs 6a and 6b for the cases discussed above. For g < g (crit),
u¥% is very similar to w {compare Figs fa and ka), while for gy > & cri%? the
large variations in propelliant deunsity, which result from the large varistions
in T#, cause a rather extreme variation of n¥ near the periphery of the tube
for values of g, near gm{crit).

The validity of the analysis for these extreme cases where & is near
gplerit) will be discussed in a later section,

All of the above results have been for wy = 1.0 and My, = 0.7. The in-
fluence of wp on the distribution of w is shown in Fig T. The effect is small,
even when v, is changed by a factor of 20.

On the other hand, Fig 8 shows that M¢n, has a very strong influence on the
digtribution of fissionable materiasl. As My, is increased, w varies more rapidly
about its fixed maximum, W This is due to the fact that the vortewx field
strength increases with Mgy,

Dependence of the performance parameters on the choice of r%:
Beceuse any value of r¥ may be chosen to represent the periphery of the tube

for a given set of Mims Wi Bps each choice for these parameters yields a very
wide range of possible physical systems. In order to meke the results as con-

crete as possible, has been chosen as follows. For g,< g,(crit), r¥ has been
taken as that value of r* which gives the largest T./T,. The variation of 'I‘C/TP
with the choice of r; is shown for these cases in Fig Ya, together with that of
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PQC/POP. For g, > gm(crit), r§ has been selected to include the entire region
of r* in which w < wp., This choice also yields the largest value of T¢/Tp
consistent with the requirements that w < wy as shown in Fig 9b. It is true
that if, for example, & temperature ratio, T§/Tc = 0.7 is desired, it may be
obtained for any of the wvalues of gm/gm(max) shown in Fig 9b, by choosing rj}
suitably; however, the presentation of the results would have become very
cumbersome had all such possibilities been included, and it is felt that the
above somewhst arbitrary choices for r¥ show the general characteristics of
the heating-separation process to best advantage.

The dependence of the peripheral Mach number, Myps on the choice of r§
is shown in ¥ig 10. For g, < (crit), My, decreases as r§ increases, re-
flecting the decrease in tangential velocity as v increases. For g, > gmlcrit),
Mty increases as r§ increases. This reversal is due to the more rapid decrease
in temperature, and hence, in the velocity of sound, for these cases, the
velocity of sound actually decreasing faster than the tangential velocity.

Anpther performance parameter of cousiderable interest is Y , the relative
mass flow capacity per unit of tube length. Figure 11 shows that it increases
with r¥ for gE both greater than and less than gm(crit), though mach more
rapidly for the former. It ghould be noted that i?e actual mess flow per unit
of tube length,@”l, is proportional to]P times T /2, Therefore, the very rapid
rise in'Y for gm/gm(max) = 0.51 implies a correspondingly rapid increase in'M
oply if T is held constant., If T, is held constant, Tp decreases as T /Tc:

. 2 P
decreases, andﬂW& actually decreasses somewhat as rg increases.

Dependence of the nuclear-coupling parameters on the choice of‘rgz

The quantities which are needed in computing the criticality of a system of
vortex tubes are the average fissionable-species and propellant demsities. The
ratioc of average-to-peripheral propellant densities is shown as a function of
rg in Figs 12a and 12b, together with the ratio of average~to-maximum of the
density ratio, w. Both of these parameters are rather insensitive to r% for
gn < gplcrit), with the maximum W/w, occwrring for a somewhat smaller T¥ than
that for maximum TC/T ., Thus, if the largest possible value of W/wm were de-
sired, rather than the largest Tc/Tp: rg would be modified somewhat. For
By > gm(crit), both WVwm and.plf D sre more sensitive to the choice of r¥%
than for gy < gp{crit); however, “here the maximum of W/w, occurs_roughly at
the same value of r¥ as the maximum of TC/T . The density ratio, { /Plp, de~
creases steadily as r¥ increases. This is Bimply a reflection of t%e incressing
ratio of average temperature to peripheral temperature. ‘ ‘
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Finelly, the parameter g,, which essentially determines the required
neutron track length, is shown in Figs 1% and 13b. It increases rapidly
with r¥ for gm > gp{crit), reflecting the higher rate of heat release
demanded by the higher temperature ratios. For < gplerit), ggrdecreases
as r¥ increases, instead of increasing, even though the temperatlre ratio
increases with r§. This is reasonable, since gy is proportional to n#p
times @, and nX decreases as r¥ increases.

The overall temperature ratio:

Of the several performance parameters, the overall temperature ratio is
perhaps the best measure of the performsnce of the system, at least for rocket
applications. Therefore, it has been selected as a basic variable for presen-
ting the results. Its dependence on the heating parameter will first be shown,
then all other performance parameters will be referred to it.

A curve of T,/T. versus 8p/8p(max) for constant M;, and w, has two braunches,
corresponding to the two cases, g < gplcrit) and gy > gpl{crit), as shown in
Fig 1k, Modest temperature ratios can be obtained on either branch; however,
in order to obtain values of TP/TC less thauw about 0.3 it appears essentiml
that gm be greater than gm(crit). There appears to be no limit to the tempera-
ture ratio obtainable by approaching gm(crit) from above. Although the end-
points of the curves Tor gy < gm(crit) were not very well defined by the cal-
culations, it is belileved that the end points as shown are approximately correct.
That there is a minimum obtainable T /T, for g, < gp{crit), and not for gy >
gm{crit) is due to the sudden rise in w near the periphery in the latter case,
and the lack of it in the former. This rise in w gives a high fuel concentration
near the periphery which leads to a very rapid temperature variation, and the
smali values of T,/T. shown for gy > gylcrit). For gp < gypl{crit) on the other
bhand, w decreases steadily to the periphery, giving a very gradual temperature
variation. '

From a comparison of Figs 14 a, b and ¢, it can be seen that the variation
of Tp/Tc with g,/8n{max) is more rapid as My, increases. This is due to the
more abrupt variation of the concentration profiles with increasing My, which
in turn is due to the higher vortex field strength. '
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The overgll pressure ratio:

As the oversll temperature ratio is a measure of the performance of
the vortex tube as & heating-separation device, the overall pressure ratio
is a nmeasure of the penalty paid for the separation. The pressure drop
results, of course, frowm the resistance which must be overcome by the pro-
pellant in diffusing through the heavy gas; therefore, the more dense the
heavy gas cloud is, the larger the pressure drop may be exp&cted to be.
That this 1s true may be seen from ¥igs 15 &, b and c.

It may also be seen that the pressure ratio decreases as T /T decreases.
This is due to increased expansion of the gas toward the center of the tube
as the temperature rise increases. ,

The pressure ratic also decreases as M, 1s increased, because of the
increasing vortex field strength, which tends to concentrate the prapellant
nesr the perlphery of the tube, as well as the heavy gas.

The periphéral Mach number:

Although th was specified in carrylng out the calculations, the parameter
which is of interest in an actusl system is My, the Mach number at the
periphery, since it is the Mach number at which the propellant enters the
vortex tube.

The varlatlon of with T /T is shown in Fig 16 for various velues of
th. The dependence of %hls rel tlonshlp on Wy, was found to be smell, and
so is not shown,

As T /T is decreased, larger values of My, are reguired to give a speci-
fied value of th,since the velocity of sound a% the periphery becomes smaller
compared to that at ry. Another interpretatmon of this same effect is that if
T is held constant, 1arger values of My are required to generate a given
vortex field strength {or given Myy) as decreases. Thus, for a given vortex
Tield strength, larger pressure drops musg be maintained in the inlet nozzles
as T is decreased. These pressure ratios must be combined with those shown
1n,F?g 15 to obtain the effective pressure ratio across the entire system.
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The relative mass flow:capacity:

Of equal importance to the temperature ratio is the mass-flow capacity
of the vortex tube, which sctually determines the total tube length required
for a given total mass flow or thrust.

The vortex tube is rather unusual, in that the mass flow capacity per
unit of tube length is independent of the tube diameter. This fact cannot
be too strongly emphasized. It means that the mass flow capacity per unit
of tube volume, which is a measure of the system size for a given mass flow,
is inversely proportiocnal to the tube dimmeter, within limits to be indicated
in the next section. ,

From Fig 17, it may be seen that the relative mass flow capacity per unlﬁ
of tube length increases as My, increases. It is in fact nearly proportional
to Mgy. The depe7dence on temperature ratio is not so clear, since "y must be
multiplied by T.,1/2 to obtain the actual mass flow capacity per unit of tube
length. If Tp is held constant, and T. incressed, the mass flow capacity in-
creases;  however, a simple computation with the aid of these curves will show
that if T, is held constant, while T is decreased, the mess £low capac1ty
actually decreases slightly. ;

Numerical values of?”l, the actual mass flow capacity per unit tube
length, will be given for some sample cases in a later section (see Eq AE)

The exit-to-peripheral radius ratio:z

In ail of the preceding results, it is implied that w is reduced to a
small value, w., at some radius, r,, within the tube, and that the propelilant
leaves the tube at this radius, W1th only a very small amount of heavy gas. As
was mentioned previously, w, = 0.0001 was selected for all of the present cal-
culations.

The resulting values of the exit-to-peripheral radius ratic are shown in
Fig 18. As might be expected, this ratioc increases as My, increases, since
the concentration profiles become more abrupt as Myy increases. It also in-
creages as T /T increases, because heating of the propellant increases its
radiasl velocmty, which tends to sweep the hesvy gas toward the center of the
tube.
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From the standpoint of the overall performsnce of the vortex tube as B
rocket propulsion device, the significaunce of rc/r is that 1t sets an upper
limit on the ratio of exit nozzle throat radius to tube periphersal radius.
Referring to Fig 1, 1t is clear that if the throat to tube radius ratio, say
rt/r s, is greater than rc/r , the cloud of fissionable material will be swept
from the tube. If ry/ry is less than r./Ty, the results of the calculations
are in some sense conservative, since then, the actual value of w in the
exhaust nozzle may be somewhat less than w.. TFor a given set of separation
parameters, the mass flow capacity of a vortex tube is simply@%ih, where L
is the tube length, and the throat radius is determined by this mags flow.
A lower limit on the tube radius is then set by the fact that r, must not be
less than ry. Numerical examples of this relationship will be given in a
later section. ‘

Nuclear coupling parameters:

In order to estimate the critical size of a system of vortex tubes it
is necessary to know the average fissionable and light gas concentrations
in the vortex tubes. These may be obtained from w/wm, the ratio of average
to maximum density ratios, andfsl/plp, the ratio of average to peripheral
propellant densities. ' ; '

The dependence of W/wy on T,/Tr, wy and Myy is shown in Fig 19. For
given wy and Mip, if gy >»gm(cri§), there is a value of TP/TC which gives
the largest W, because of the large region of r¥ with low w which occurs in
the cases with small T./T, (see Fig 4b). Also, W/w, decreases as My, in-
creases, because of the more rapid variation of w with r¥ as Mg, increases.
The cases with gy < gy{crit) have lower values of ¥W/wy than those with ‘
Em > gm{crit) because the former do not have the extended region of high w
which occurs In the latter near the periphery. ‘

The density ratio depends principally on the temperature ratic, as may
be seen from Fig 20. As T /T, decreases, the average depmsity in the tube de-
creases compared to that a% the periphery. There is also a smell effect of
Mim and wy, which is due to the fact that increasing either of these decreases
poc/pop, hence lowers the average density compared to that at the periphery.

The final nuclear coupling parameter is g., which is a measure of the
neutron frack length required to give the heat addition rate implied by the
speciflied value of gyp. It depends very strongly on the temperature ratio,
and somewhat less on and vy, as may be seen from Fig 21. The actual
requirements placed on the neutron track length ¢ {see Eg 40) are somewhat
magked by the fact that &p is also proportional to np As T_/T. is reduced,

; /. o
for a given value of T,, npp increases very rapidly i? Tg/Tp is gmall {see
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Fig 6b). Thus, ¢ does not increase as rapidly as it appears to from Fig 21.
Again, the reason g for the systems with g, < gm{crlt) falls far below that
for the systems Wltﬁ (crxt} is that np,, for the former is much less
than that for the latter (see Fig 6). Representative numerical values for
¢ will be given later in examples. ‘

Discussion of the Principal Assumptions
and Proposal for Bxperimental Verification

The two most important assumpilons invelved in the preceding analysis
of the vortex heating-separation process are that the flow in the tube is
laminar and that it is inviscid, Of these, the most critical is the first.
It will be shown that if the flow is laminar, the neglect of viscous effects
is probably not seriocus; however, if the flow is turbulent, the effect of
the turbulent mixing on the separation process cannot be predicted st present.

The purposes of the present sechion are: {1) to present an argument which
indicates that it is not obvious that the flow will be turbulent; (2) to give
an estimate of the viscous effects for leminar flow; and (3) to propose a
series of experiments designed to check the assumptions in 2 logical order,

Stability of the flow in the vortex tube:

The gas flow in the vortex tube is of a type with which there is no
pravious experience, and there seems 30 be np sengible criterion based on
Reyunold's number which will give an indication as to whether the flow will
be laminar or burbulent, Since the propellant must be introduced through
small Jjets, as in Fig 1, it seems, intuitively, at first smght that the flow
wiil in all probability be turbulent.

Hn::»wza‘veer‘)7 the hegting effect in the tubes shouvld tend to stabilize the
flow, that is, prevent its becoming turbulent. This may be seen by remembering
first that the tramsition from laminar flow to turbulent flow occurs when ine-
ertial forces in the fiuid become large enough so that a random fluctuating
motion can exist despite the dissipative, or damping, effect of viscous forces,
In fact, the Reynold®s number has been characterized as the ratio of inertisl
to viscous forces. Now in the vortex tube there is an additional stabilizing
force which will help to prevent the formation of random fluctuations, at least
in the radial direction. This is the body force which resulis from the vortex
field and the temperature gradient. In order to move a small element of fluid
instantaneovnsly from some radius to another radius where the temperature is
lower and the demsity higher, a buoyant force must be overcome, which may aid
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in suppressing turbul?gse. This effect, or its inverse, has been termed
"Paylor instability”. The general principle is that the interface
between two fluids of different densities is destabilized by an accelera-
tion toward the denser fiuid, and stabilized by an acceleration toward

the less denge fluid,  In the present case, there is an extremely largg
acceleration toward the center of the tube {of the order of 10 to 10
times the acceleration of gravity). It therefore seems quite possible
that the flow may be laminar in the cases where the femperature increases
rapidly toward the center of the tube.

Estimate of viscous effects:

It is clear that viscous shear Torces at the periphery of the vortex

tube will tend to cause the actual tangential velocity, and hence the :
actual vortex field strength, to be less than that predicted by the pre-
ceding calculations, which assume that viscous effects are negligible.
In order to estimate this effect, it will be assumed, as in the separation
caleulation, that the flow is laminar. It will be further assumed that the
entering fluid is introduced unifermly over a cylindrical surface which has
a dimensionless radius r¥* = a, where a < r§, as shown in Fig 22.

The equat%ﬁ? expressing conservation of angulsr momentum of the fliuid

may be written
E , | (46)

where the notation is the same as has been used previously,

o Yo _ A{"‘" 1 Yo
dr T : POuO drzk r dr

"fm'!o<§

This equation may be made dimensionless by dividing Ve by the tangential
velocity of the entering jet, V3 and dividing r by L Thus ,

-~

| . | |
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and Eq (46) finally becomes,

d(VO/Vj) AN Y. d (vo/vj) L1 a(vo/v) ] (vo/vj)‘} o
dr¥ T™* W, i) e ™% T arE 2

It éan be seen imxm=:cifuss.‘beibyY that the parameter which measures the effect
of viscosity on the system is%4 /2Tu . If it is large, then we have,

T ar¥ -y 7 ’ .
or v.r = const. This means that ‘the angular momentum of the fluid is con-

served as it moves radially. On the other hand, 1f/#/2U is small, we have,

o , |
d (vo/vj) Y d(vo/vj) ) vo/vj . o | | (5"
dr*e S o dr#* 1°*2 oz

The megnitude of% is get by the binary diffusion process, as expressed
by Bg (42). A formula For the viscosity of a gas mixture is given in Ref {5).
Assuming the hard-sphere model for moleculsr collisions, that my> > ey and
that ny, < < n, this expression may be reduced to:
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where/l(l is the viscosity of the light gas, di and are the effective
hard-sphere collision diameters for light and heavy wolecules, and dq, is
the effective hard-sphere diameter for collisions between light and %g

; avy
molecules.
To the same approximation as used in Eg (So)afil is given by,
2, 3/2 o
oy = (emr) e (51)
Now taking the value ofﬂ%& given by Eq (M2),9%g/2ﬁxL may be written,
: ~ dg my 1/2 —
o ‘ 11l +0.416 *‘é"‘(*) wp
d i m, \2 d 2 :
M 1 VR 1 12 ~
m~0.853?f?(1*1)m(1+m) 5 {(52)
10 ¢’ m 2 : dl
1 +0.1+16~é—- WP
- 4 -

Assuming that the quantity in braces is of order unity, i.e. w_ is not too
large, and that T#* and r¥* are of order unity, it is clear that™for and

Puor U gas,ﬁw&/QBDuis of order 1007) . Since W varies between 1/4 and 1,
7%&/22%lvaries from about 25 to 100.

Thus Eq (48) is a good approximation to the flow if r* is less than a,
the dimensionless radius at which the fluid is introduced, and in this region
the flow 1s essentially inviscid, However, if r¥ is greater than a,iU{l is
effectively zero, and Eq (49) applies. In this region, viscous forces are
dominant, while in the region of r¥ less than a, inertial forces are dominant.
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The viscous torque tending to retard the vortex flow is therefore due
o the shear layer between r*¥ = a and r¥ = r¥, Its magnitude may be esti-
mated from Eq (49), the solution of which is), -

1
vo/Vy = Ayx* + Ay %

it

where Al and A, are constants. Clearly VO/Vj 0 at r¥*¥ = r;g‘hence

*2

v v.{a) T

0 ] a ( ko) ) ,
- = ; - r¥* , (53)
VJ vj r;@_ a2 r¥ ,

where v.(a) is the actual tangentlal velocity at the dimensionless radius, a,
where tge fluid 1is introduced.

Now v.{a)/v, may be determined by equating the torque exerted on the
fluid in tﬁe tubé by the entering fluid, to the torque caused by shear at
the periphery. Thus, ‘

i 3 (l - vg(.a)>“ 7“'2‘;9

all v 2MWr x* | (5h)
PP :
3 T
P
From Eq (55)j
d(vO/v‘) v.{a) 2a
X J rP -8
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Substituting in Eq (54), and solving,

vola) M, /e

he-]

| = . (55)
i WS+ r;e/ (rfm a®) |

From Eq {55), two points are clear. First, if & approaches rk, v {a)/v
becomes small, and the effectiveness of vortex formation is poor. Secohid,
for a given ratio of r§/a, the effectiveness is improved as?f; /2T increases.
This is shown in Fig 2%. :

For the range of?%&/EQ}L of interest, i.e. from 25 to 100, the effec-
tiveness of vortex formation predicted by this simple model is adequate.

A more general couclusion which can be drawn from the simple analysis
is that the effectiveness of vortex formation is determined by the magnitude
of 4%}/2@?4. This quantity moast therefore be considered an important simi-
larity parameter in any experimental study of vortex heating-separation devices.

Suggestions for experimental verification of thefanalysis:

As hag already been mentioned, the principal questions which reguire
experimental investigation involve the nature of the flow in the tube, and
may really be reduced to one guestion. The guestion is whether or not it is
possible to create a vortex fleld of the strength required to achieve separation,
with the low mass flow rates which are required by the diffusion process.

R

Except for the unknown effect of heat addition on the flow stability, thisg .
question can be answered by a simple experiment which involves no diffusion.
The experiment should be so designed that three similarity requirements are
satisfied, First, in order to insure dymamic similarity between the experiment
and the actual vortex tube, the inlet Mach numbers should be the same. Second,
the Reynold's number, based on some tube dimension, such as its diameter,
should be the same. Finally, the mass flow rate per unit of tube length divided
by the dynamic viscosity, i.e.?ﬁ&/quL, should be the same for the experiment
and the actual device. In order to verify the strength of the vortex field it
should be sufficient to measure the radial pressure distribution, say at a
closed end.




If the result of this experiment is negative, in the sense that the
vortex field is much weaker than is predicted by theory, it must be con-
sidered inconclusive, because of the possible stabiliziug effect of heat
addition. Thus, should the result be negative, it is sugpested that the
stabilizing effect of a positive density gradient {in the direction of
increasing radius) be studied.

At present it appears very difficult to simulate, in an experiment,
the voiume heabing which is expected to produce such s density gradient
in the actual vortex reactor. However, there iz a possibility of pro-
ducing a stabilizing density gradient by =adding & heavy gas to the light
gag in the tube, and choosing the mass flow rate of light gas and its
entrance Mach number so that the concentration of heavy gas decreases
rapidly from the periphery of the tube toward the center. For example;
if, in Fig. 7, the value of r¥ corresponding to the tube periphery is
taken as 0.9, then for large values of w_; 2 considerable favorable denslty
gradient is produced. It is of course necessary that separation of the
heavy and light gases be cobtained before this stabilizing effect can
occur; however, a very heavy gas {for example tetraethyl lead) might be
uged, to make the separation posslble at lower vortex strengths.

If the result of the viscous experiment is favorabWe’ then it is
suggested that the next logical step is to attempt to effect the separa-
tion itseif. For this second experiment, some mixture of gases such as
hydrogen and mercury vapor, or hydrogen and iodine wspor, might be suitable.
A complete formulation of the separation experiment must awaii the results
of the viscous experiment; however, two limitations should be noted.

First, unless a volume heat source can be incorporated intc the
experiment, the concentration profiles obitainsble will be limited tc the
type shown in Fig. {6a) for < g {erit). The mors exitreme concentration
variation shown in Fig. {6b) Tesults from the heating effect.

Second, success in obtaining the type of conceniration profile shown
in Pig. {6a) will not guarantee that the more extreme profilss sbown in
Fig. (6b) {and the associated high temperasture ratios) are also obtainable.
Viscous effects may be expected to be most important nesr the periphery of
the tube, just where the most exireme concentration variation occurs for
the high temperature ratic cases. Thus, it appears that experimental proof
of the feasibility of cobtaining temperature ratios greater than about 3 can
be obtained only by incorporating a wvolume heat source into the separation
experiment. :
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Performance and Criticality Bstimates

The significance of the results obtained from the preceding analysis
of the heating-separation process may perhaps be better revealed if incor—
porated into the performance analysis of a vortex-cavity reactor for
rocket propulsion. In the present section the characteristic performance
paremeters of the rocket are calculated in terms of the parsmeters derived
from the separation snalysis and from the nuclear configuration. To be
definitive, such an analysis would have to include an optimization of the
entire system for some mission, and this would imply e detailed study of
many aspects of the vehicle configuration, as well as those of the power
plant. The intent of the present analysis, however, ls much mors modest;
it is simply to provide a physical feeling for the several parameters
which charscterize the performance of the vortex tube as applied to rocket
propu*sion ‘

To this end, the reguirements imposed on the reactor system by the .
overall heat balance, and by criticality, will be estimated. The weight,
thrust-to-weight ratio, neutron filux and various other parameters will
then be given for some representatiVe examples .

It is mssumed in these computations that the reactor consists of a
cylindrical bundle of vortex tubes such as that shown in Fig. 1, the
diameter being equal to the length, L, of an imdividual tube. In the
cases where the temperature ratio, TC/T , is such that heat must be added
tc the propellant, by fissionable materisl, before it enters the vortex
tubes, two possible situations are considered. In the first, it is assumed
that the fissionable material not contained in the tubes is dispersed uniformly
throughout the mederator which forms the structure for the tubes. In the
second case, 1t is assumed that this materisl is concentrated in a compara-
tively smell cylindrical region, having a length equal to its diameter,
leocatad at the center of the reactor.

The reachor is assumed to be surrounded on all sides by a beryllium
reflector 6 inches thick. Graphite has been chosen as the moderating and
struchbural material in both the cavity and the solid fuel region, although
considerably smaller reactors might be possible 1f beryiiium oxide were used
as mogerator. f :

Heat balance:

Since the gas in the vortex tubes is essenbtially transparent to
penetrating radiations, it may be assumed that all radiation originating
in the tubes deposits its energy in the moderator. This is equivaient to
assuming that some fraction, £, of the total heat gemerated by fission in
the gas is actually deposited in the gas. Now if the fraction of the total
reactor core volume occupied by the gas is B, $. and ¢ are the average
neutron fluxes in the gaseous and solid regions; Wy, and T, are the
respective mean fiss%on&ble maberial concentrations, and gpg and Gfg are
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are the fission cross-sections in the gaseous and solid regions, a simple
hegt balance gives, ;

Spe(le ) . Brog’rls . (56)
Sy \P B(IE)Rg0p By + (B, F |

As ﬂos is decreased, Tc/T increases, and a maximum attainable value
of T, T is reached when Ny =P0. 1In this case

T < |
7= (max) = 1+ -82 1% - (57)
P c

Because of dissociation, < depends rather streongly cnp_ and T . It

B o -
increases with increasing “~T, and decreasing py.- The deépendence of
To(max) /Ty on pye and Te is shown in Fig. 2k, for €= 0.90. It should
be noted That even though the vortex ftube 1tsei* is capable of very large
tempersture ratios, (see Fig. 14) this limitation imposed by the heat
depcsition from penetrating radiations limits s Ieal system to moderate
temperature ratios. This limitation applies to 8ll gas-phase fission
heating devices.

Criticality:

Estimates of critical length {or Aiameter) L, have been taken from the
data of Ref. T. The calculations rezported in Ref 7 utilized the two-
group ruclear model in spherical geometry. One calculation in cylindrical
geometry indicated that the critical radius of the cylindrical reactors
conaidered bere ls very nearly equal to that of a spherical reactor having
the same core composition and reflector thickness. The calculation in
cylindrical geowetry was done on the ORACLE, using the three-group, three
region code described in Ref. 8.
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For the cases where the fuel not conbained in the vortex has been
assumed to be concentrated in a solid fuel region, the volume of this
region has been taken as 50 cubic feet. Thisg is the smallest solid
reactor volume considered in Ref. 7. No consideration has been given
to the engineering problems connected with this solid fuel regiomn in
the present study  These cases have been included only to indicate the
decrease in criticsl size which is possible if a sizeable fraction of
the fissionable material can be concentrated near the center of the
reactor. ‘

Performance:

For the present purposes, the performance:of the vortex tube reactor
may be charascterized by the specific impulse, the total thrust, and the
ratio of thrust to reactor (core and reflector) weight.

The specific impulse will be ftaken as,

. ) ;
1) 2f P *
ISP = -é- {m RTC [l ~(‘§i““;‘) ,.}J} 5 | (58)

where g is the gravitational constent, and P, ig the atwospheric pressure
at the exm* of the rocket npozzle.

The overall thrust of the cri tlcal agsembly of vortex tub&s is
given by:

= ML, | | {59)
where L is the length of the tubgs, N is the numbﬁr of tubes, andﬁhy is

the mass flow per unit of tube length. Now the product 4% L is rel a%ed
to the nozzle throat radius by the simple relation,

ML = W2, VRE, . (60)
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The qaanmt}r r‘,./r e 18 the ratio of nozzle throst radius to the radius at
which w is equm. to w. in the vortex tube. Thus, m./r can be assigned
any valus less than unity. With fhis expression ﬂx‘ﬂ s By (59) becomes,
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Now umL/a is the reactor core volume, which sguals TFLZ)/)-L for a square
cywlnder’, hence, ; :

F“%G‘*%"}‘)——T}:ﬁlﬁ/"h() (-~> (62)
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It can be seen from Eq (63) that the thrust of the vortex reactor is
actually limited by the size of the area which can be provided at the
back face of the reactor for the exbaust nozzles, without allowing the
Tissionable material to be blown out. This ares is precisely,

: 5 '
e
LG

b

The thrust is also proportional to the pressure, P,.s but independent
of T . The ratio rc/r is of course determined by the diffusion
procéss in the tubes. “It depends principally on thy increasing as
M, increases.

EBquation {63) contains the factor (r+/rr)g, which may have any
value from zeroc to unity. Thus, for a given set of vortex tube parameters
and critical size, the thrust may have any value from zero to that given
by Eg (63) for ry/ro = 1. As ry/r_ is increased, the mumber of tubes in
the reactor is increased, each tube decreaging in diameter. This may be
seen by equating Bqs (59) and (62) and solving for N. We get,

"6 ; i :
; Y- A WRT 2 e \?
o) T () () @

v = T
Y [o )
For a given set of vortex tube parameters, and rc/rp are fixed. Then

for fixed Poc and TC, the number of tubes is proporticnal to (r%/rc)g.

The neutron track length required teo give the heat release rates
implied by these performance estimates may be determined from Eq (40),
which gives, :

. (l+wc)cplg1? 4”&
D 2n2pch 5 'W;§

Using Bq (61) to replace 7%&/r§,
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hence

2, \ X‘J‘T 2 (65)
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It can be seen from Eq {41) that g is ro y proportlonal to (T /Tp ,
so § is essentially proportional t gg Cplg T r.)e. Since T lw in-
creases as T, 1ncreasesé $ increases qulte rapldly Wlth To - The pro»
portionality to (rt/r )¢ simply reflects the fact that the total pro-
pellant mass flow raté is proportional to (rt/r

Numerical examples:

As mentioned previously, the temperature ratio, T /T , is the most
important parameter in debermining the characteristics of*the vortex
heating - separation device. On the other hand the fissionable material
concentration determines the overall size of the reactor.  Accordingly,
examples have been selected having two representative values of T /Tp,
and three values of Wp- The exit pressure has been taken as 100
atmospheres for all cases, so v is nearly a direct measure of the fuel
concentration in the gas phasge.

Cases 1, 2, and % have To/Ty = 1.56. This temperature ratio
corregponds to about helf the heat being added to the propellant by
solid fuel elements, and half by the voritex tubes. The temperature
leaving the solid reactor, T., has been set at the upper limit for
graphite fuel elements, namegy LSOOYR; hence, the chamber temperature,
Te, is TO20°R. This is of the same order ss the chamber temperature
for contemporary chemical rocket motors (eg. liquid Op and JP-b give
T, A= 6300°R) .

Cases k, 5, and 6 have the largest values of TC/TP p0851ble for
T, = lO OOOOR They represent systems with chamber temperatures con-
sxderably higher than the best obtainable with chemical rockets. At
the seme time, the temperatures entering the vortex tubes are con-
sidersbly below the limits for graphite or the refractory metals. These
systems have all fissionable material in the gas phase.
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The characteristics of vortex-tube reactors with these two
temperature ratios, and three values of w;, are summarized in Table
1. Values for the reactors with solid fuel concentrated in a volume
of 50 cubic feet at the center of the core are shown in parentheses.
In the cases where the gas-phase fuel concentration is rather low,
the weight of the reactor is halved by concentrating the fuel in this
way. Only one set of values is given for case 3 because the gas phase
fuel concentration is so high in this case that the reactor volume is
only a little over 50 cubic feet with homogeneous fuel distribution.

The reactor weights are very high for fuel concentrations of the
order of 0.5x101°, but are quite reasonable if the concentration can ,
be incressed to about 5.0%x101C. These higher fuel concentrations imply
high pumping pressures, however. For case 3, Dop 18 498 atmospheres or
7,320 psi. The pumping pressure must be taken as about twice this
figure, to allow for pressure drop in the inlet nozzles and solid reactor.

Although the weights are very high, the thrust-to-weight ratios are
also quite high if rt/r ig near unity. It wmay, however, be sowmewhat
more realistic to take rt/r a little less than unity, to allow for three-
dimensional flow effects in the long, thin vortex tubes. If ri/r; is
taken as 0.5, for example, the reactor described by case 3 would have a
thrust of 525,000 pounds, and a thrust-to-weight ratio of 34. This com~
pares favorably to chemical systems. The specific impulse is higher by
at least a factor of two than that of the best chemical rockets. In
order to produce this thrust the reactor would contain 4,2%0 vortex tubeg
each 0.76 inches in diameter. The average neutron flux would be 5. ox10t
neutrons/sec cm®.

It seems from comparison of cases 3 and 6, for example, that as Te
is increased, the critical size, and weight, of the reactor incresse.
This effect is due to a lower average fuel concentration in the higher
temperature reactor. The gas-phase fuel concentrations, npg, are about
the same in the two cases, but the lower - temperature reactor containg’
considerable solid fuel

Flnally, it must be emphasized again that these resulis are only
exemplary. It ls obvious that reactor weight is a very important param—
eter in these systems; therefore, a detailed criticality analysis must
be made before definite conclusions can be drawn as to the advisability
of further development of the vortex tube for rocket propulsion.
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. Case :
Paramegnger 1 2 5 b 2 : 6
Tc/Tp 1.56 1.56 1.56 4.05 L.05 05
v 5.5 T 5.0 0.5 o) )
W, 1.0 RO 10 10 10 [0
T_, R 7080 7020 7020 16,000 ]10,000 10,000
T, R V500 %500 500 2,570 570 B, ET0
Bos atm 100 100 100 100 160 - 100
Doy BB 51% 531 58 71 188 T38
rc/rp 0.66 0.66 0.65 0.59 0.59 0.58
W/ o3k 5.35 036 0.56 5.56  [0.5%
g, 096 5.96 175G 55 58 BT
A Tb/sec £t 0.0168 0.0198 5.0198 50121 0.0121  [0.0121
Ly s i 155 L K R 61
I, ec (p,=0) | 96 156 %8 N b
Ty o 0.50%10%0 0-85%1010 5 Bx1010 0 Lgx1010 | 1T-01x10T0 [5.18%10
= 151 115 55 i88 150 5.8
Ly T (11.5) (8.4) '

F 2 | 17.800° 9.7x10° 0.ax10° | 22.1x10° | 10.5%10° fo.8x10°

‘rt/rc) , 1b 6 ' 6 T ;

: (10.422107) | (5.5%107) , ,

| £22%,000 100,000 15,280 412,000 | 150,000 28,700
Weight, 1b. {(110,000) (48,160)

Fr,/r ) 80 oot 157 54 70 ot
Weight (95) (11k4)
N/<rt/rc)€' 50,200 57,000 16,900 68,500 | 47,%00  lek,000

, | (38,300) (27,900) \
#/(x, [ )52t 0.87x10°° | 0.55x10%° | 0.20x10%° | 1.26x10%° | 0.83x10° 0. 31210

: cmsec | 11080 | (0.7310%8) ;
rp(jzé)’ incnes | 0+3 0.27 0.19 0.5% 0.28 0.20

\ © (0.27) (0.2%)

Table 1 - Humerical Examples of Vortex-Tube Reactors
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Tables:
Table 1 Numerical examples of vortex-tube reactors.
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F1G. 22— INTRODUCTiON OF THE FLUID AT A
DIMENSIONLESS RADIUS a.
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