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Introduction 

A number of papers have been published i n  the pas t  two years  on the e f f e c t s  

of neutron i r r ad ia t ion  on s t ruc tu ra l  metals, 

t ions  reported i n  these papers, the most outstanding aye probably the increased 

Among the many in te res t ing  observa- 

strengths,  t he  increased b r i t t l eness ,  and the change i n  mechanical t e s t  behavior 

of a number of metals and a l loys  a f t e r  i r rad ia t ion ,  

recent observations of such property changes i n  i r r ad ia t ed  metals. 

data now avai lable  on rad ia t ion  e f f e c t s  i n  metals are no t  su f f i c i en t ly  complete 

t o  permit them t o  be used e i t h e r  in design calculat ions o r  i n  the  formulation of 

This paper presents  some 

Although the 

a rigorous theory of radiat ion e f fec ts ,  the r e s u l t s  presented here and i n  other  

papers should serve both t o  caution the reactor designer and t o  suggest prof i tab le  

s tud ies  by other invest igators ,  

D a t a  w i l l  be presented from t e n s i l e  and notched-bar impact tests on  several  

carbon s t ee l s ,  a carbon s t e e l  weldment, a nickel  s tee l ,  a high-strength s t ee l ,  and 

a high-purkty iron. 

Several papers have presented theories  of neutron e f f e c t s  i n  metals, and 

the subject  w i l l  not be reviewed i n  t h i s  paper. 

i n  t h i s  paper a r e  thought t o  be due almost exclusively t o  bombardment by energet ic  

neutrons, and, a s  a convention, integrated neutron f luxes (doses) reported i n  t h i s  

paper a r e  f o r  neutrons of energies g rea t e r  than 1 MeV. The measurements of  fas t  

neutron f luxes  and doses i s  d i f f i cu l t ,  and therefore  many of  the values reported 

The changes in propert ies  reported 

here and elsewhere a re  estimates,  

1. 
2. 

F. Sei tz ,  Discussions Faraday SOC. 5, 2 7 1  (1949)* 
D. S, Billington, Nucleonics (91,  - l-4, 54 (1956) .  



- 2 -  

. 

The techniques and d i f f i c u l t i e s  of i r r ad ia t ion  s tudies  have been discussed 

The sca rc i ty  of data  in  the l i t e r a t u r e  (394) and w i l l  be reported o n l y  br i e f ly .  

from neutron i r r ad ia t ions  a t  elevated temperatures i s  not due t o  a lack  of i n t e r e s t  

bu t  must be a t t r i bu ted  t 4  the d i f f i c u l t y  and expense of such investigations.  

g rea te r  pa r t  of the data presented here i s  f o r  i r r ad ia t ion  temperatures of l ess  

The 

than 200°F. 

low neutron doses. 

Some data will be presented on elevated temperature i r r ad ia t ions  t o  

Such data  f o r  higher neutron doses should be avai lable  i n  the 

r e l a t i v e l y  near future. 

Specimens 

The specimens machined from the s t e e l s  investigated were of  substandard s i ze  

so t h a t  a grea te r  number of specimens could be i r r ad ia t ed  i n  the avai lable  exposure 

f a c i l i t i e s .  

length with l /b-in square o r  round ends f o r  gripping i n  the  t e n s i l e  machine. 

subsize notched-bar impact specimens were multiple notch B o d  ty-pe, 0.2 in. square 

with a notch 0.060 in. deep, an included angle of 45 degrees, and a root  radius  of" 

0.005 in. A l l  specimens were machined with 

t h e i r  longi tudinal  axis p a r a l l e l  t o  the  ro l l i ng  d i rec t ion  of the p la te  and with the 

notches in the  impact specimens perpendicular t o  the  p la te  surface. 

The t e n s i l e  t e s t  specimens were of 0.18O-h-gage diameter and 1-irkgage 

The 

Notch t o  s t r i k e r  distance was 7/8 in. 

I r rad ia t ion  Conditions 

Specimens were i r r ad ia t ed  e i t h e r  i n  a horizontal  beam hole f a c i l i t y  (HB-3) 

of the Low In tens i ty  Test Reactor (LITR)") a t  Oak Ridge o r  in a horizontal  beam 

hole f a c i l i t y  (HB-3) of the Materials Testing Reactor {HTR)(5) a t  Arco, Idaho, 

3. R. G. Berggren, S. E. Dismuke, M. J. Feldman, and J. C,  Wilson, "The Mechanics 
of Testing I r rad ia ted  Materials," presented a t  the 2nd Pacif ic  Area Meeting 
ASTM, Sept. 17-21, 1956, Los Angeles, Calif .  (To be published). 
"Fourth Annual Symposium on Hot Laboratories and Equipment," T1D-5280 (Sept. 
1955) and Supplement 1 (Jan. 1956). 

b. 

5. "Research Reactors," TID-5275. 
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All specimens not purposely held a t  elevated temperatures were cooled by contact  

with water-cooled metal walls. 

200°F during i r radiat ion.  

t i on  were mounted i n  miniature furnaces, and temperatures were monitored with 

thermocouples welded t o  the specimens. 

The temperatures of these specimens d id  not  exceed 

Specimens held a t  elevated temperatures during i r r ad ia -  

Integrated f a s t  neutron f luxes f o r  i r r ad ia t ions  i n  the LITR and MTR were 

determined e i t h e r  by measurement of su l fur  monitors included i n  the experiment 

and i r r ad ia t ed  simultaneously with the  t e s t  specimens o r  were calculated from 

such data obtained during a subsequent experiment and corrected f o r  reac tor  

operating conditions, The maximum dose reached i n  LITR i r r ad ia t ions  was 5 x I$ 

nvt and i n  the PlTR i r r ad ia t ions  was 1.3 x lo2* nvt. 

8 

Test Procedure 

A l l  t e n s i l e  specimens, both i r rad ia ted  and unirradiated,  were tes ted  a t  

room temperature i n  a ver t ica l ,  screw-loaded, t e n s i l e  t e s t e r (6 )  with a "hard, 

e lectronic ,  load-measuring system. The specimens were pulled a t  a s t r a i n  rate 

of 0.05 min." except where otherwise noted. 

within 2 %  (not 1% of reading). 

Elongation measurements a r e  accurate 

The impact specimens were tes ted  in a modified Tinius Olsen p l a s t i c s  impact 

t e s t e r (7 )  adapted f o r  remote t e s t ing  of subsize metal specimens. Test specimens 

and v i se  were brought t o  t e s t  temperature i n  posi t ion f o r  t e s t .  Test temperatures 

were determined by means of  a thermocouple attached t o  the v i se  and adjacent t o  the 

spec ime n . 

6. 

7 .  

J. C. Wilson, R. G. Berggren, W. W. Davis, and R. A .  Hall, p 43, "Fourth A n n u a l  
Symposium on Hot Laboratories and Equipment," TID-5280 Supplement (Jan. 19%) 
W. Pate e t  al., Nucleonics 10 ( 6 ) ,  60 (1952). 
a l t e r ed  s ince t h i s  a r t i c l e  z s  written.  

The machine has been considerably 
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Mat e r ia  Is 

The metals used i n  t h i s  s e r i e s  of i r r ad ia t ion  s tudies  a r e  described below. 

The mechanical t e s t  values given in t h i s  sect ion were provided by the supplier.  

Chemical analyses were made by e i t h e r  the suppl ier  or the author 's  laboratory.  

The i t e m  numbers a r e  the author 's  i den t i f i ca t ion  of each individual l o t  of 

mater ia l  . 
High-Purity Iron 

Item 25 i s  a vacuum-melted and ro l led  i ron  obtained i n  the  form of $-in. 

square rod. 

0.0028% N i ,  and O.OOy% S i ;  other  metal l ic  impurit ies were l e s s  than 0.001% 

each. 

Chemical composition was 0.004$ C, 0.0038% 02, 0.000073% N2, 

Specimens were annealed a t  1150°F (below the c r i t i c a l  temperature) f o r  

$ hr and water quenched. 

- 8 9  Nickel Steel 

I t e m  42 i s  a high-nickel s t e e l  manufactured t o  ASTM Specif icat ion A-353-53T 

and was obtained i n  the form of 3/8-in. plate .  Heat treatment, by the supplier,  

consisted in double normalizing from 1650 and I&sO°F and reheating a t  105O0F.c8) 

Chemical composition was O.la;% C, 0.7@ Mn, 0.23% Si, and 8.58% N i .  Grain s i ze  

was sn-aller than ASTM-8, and ASTN inclusion rat ing was A - 1  thin.  

Hot-Rolled Carbon-Silicon Stee l  

Item 43 i s  a carbon-silicon s t e e l  manufactured t o  ASTN Specification A-212- 

5 k T ,  Grade B, in the form o f  hot-rolled, 5/8-in. plate .  

was oe2% C, 0.82% Mn, 0.018% P, 0.03@ S, and 0.22% Si. 

Chemical composition 

Grain s i ze  was ASTI4-7, 

~ 

8. G. R, BropPy and A. J. Miller,  Trans. A S 4  - hl, 1185 (1949). 
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and ASTM inclusion r a t ing  was C-2 heavy. Mechanical t es t  values on standard 

specimens were 46,700 p s i  yield point; 79,600 and 78,400 p s i  t ens i l e  strength; 

and 26% elongation in 8 in .  Homogeneity and bending tests were satisfactory.  

Specimens machined from t h i s  s t e e l  were given no fu r the r  heat treatment. 

Hot-Rolled Carbon S t e e l  

Item 44 i s  a carbon-steel manufactured t o  ASTH Specif icat ion A-285-52aT, 

Grade A, as  hot-rolled, 3/4-in. p l a t e& 

0.018% P, and 0.02% S. 

Mechanical t e s t  values on standard specimens were 32,400 p s i  yield point;  51,700 

and 49,600 p s i  t ens i l e  strength; and 34% elongation i n  8 in. 

bending tes ts  were sat isfactory.  

Chemical composition was 0.11% C, 0.36% Mn, 

Grain s i z e  was 5STM-7, and inclusion r a t ing  was A-3 thin.  

Homogeneity and 

Specimens from t h i s  s t e e l  w e r e  l e f t  i n  the hot- 

rol led condition. 

C hr omium-Mol ybde nwn S tee l  

Item 45 i s  a chromium-molybdenum pressure vesse l  s t e e l  manufactured t o  ASTM 

Specif icat ion A-301-52aT, Grade B, a s  3/4-in. plate.  

0.11% C, 0.36% Mn, 0.02% P, 0.026% S, 0.22% Si, 0.98% C r ,  and 0.47% Mo. 

s i ze  was ASm-5, and inclusion ra t ing  was A-1 thin.  

standard specimens (normalized a t  1650 t o  17C0°F f o r  11/2 hr, furnace cooled t o  

llOOCF, and air cooled) were 40,600 yield point; 65,700 and 64,600 p s i  t e n s i l e  

strength; and 2% elongation i n  8 in. 

factory. 

Seamless Carbon-Steel Pipe 

Chemical composition was 

Grain 

Mechanical t es t  values on 

Homogeneity and bending tests were s a t i s -  

Specimens used i n  the i r r ad ia t ion  s tudies  were normalized from 1700'F. 

Item 55 i s  a carbon-steel pipe for high-temperature service manufactured t o  

ASTM Specif icat ion A-106-52T in the form of heavy w a l l  pipe. 

coarse-grained s t e e l  f o r  corriparison tests with Item 56, a f ine-grain, aluminum-killed 

This was a r e l a t i v e l y  
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s tee l .  

0.2% Si.  

Chemical composition was 0.24% C, 0.72% Mn, 0.018% P, 0.023% S ,  and 

Grain s ize  was ASTM-2. 

Item 56 i s  almost i den t i ca l  t o  Item 55 except that  it was aluminurn-killed 

t o  secure a fine-grain s t ructure .  

0.7% Mn, 0.01% P, 0.020% S ,  0.1% Si; and aluminum pe r  f-be-grain pract ice .  

Grain s i ze  was ASTM-7. The chemical compositions of these two s t e e l s  a r e  almost 

i den t i ca l  except €or the aluminum addition in the  fine-grain s t e e l ,  

Chemical composition of Item 56 was 0.24% C, 

Bars cu t  from both the above s t e e l s  were normalized a t  1700'F for 1 hr and 

a i r  cooled before machining of t es t  specimens. 

High-Yield-Strength Alloy Steel 

Item 60 i s  a high-yield-strength a l l o y  s t e e l  manufactured under the  trade 

n a m e  "Caril loy T-1" (9,101 and was obtained as quenched and tempered 1/2-in, p l a t e ,  

Chemical ana lys i s  and other  data  on t h i s  s t e e l  are not ye t  available.  

Welded Carbon-Silicon S tee l  P la te  

Item 65 i s  a weldment in a s ta inless-s teel-clad carbon-silicon s t e e l  p la te .  

The design of t h i s  weldment i s  shown i n  Fig. 1. 

conformed t o  ASME Boiler Code Specif icat ion SA 212, Grade B, f i rebox qua l i ty  and 

w a s  manufactured t o  SA 300, aluminum-killed, f he-grained low-temperature pract ice  . 
The stainless s t e e l  cladding was not included i n  this ser ies  o f  t e s t s .  The portion 

of the weld j o i n t  from which specimens were taken consisted of multiple passes with 

The carbon steel base p l a t e  

9. L. C. Bibber e t  al., Trans. ASME, 74, 269 (1952). 
10. United States Stee l  Corp., "USS Cari l loy T-1 Steel-Technical Data.& 
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. 

a low-hydrogen, carbon-steel, coated electrode, E7016, A l l  specimens were cu t  

from t h i s  p la te  with longitudinal axes perpendicular t o  the weld and pa ra l l e l  t o  

the p la te  face. Notches of a l l  the impact specimens were perpendicular t o  the 

p la te  face. Tensile and impact specimens referred t o  as  stbase plate"  were from 

portions of the  SA 212 p la te  su f f i c i en t ly  remote from the weld t o  be unaffected 

by the  welding process. The t e s t  sections of impact and t ens i l e  specimens re fer red  

t o  as  "weld" consisted en t i r e ly  of deposited weld metal and were taken such that 

no d i lu t ion  by the deposited i ron  passes had occurred, 

referred t o  as "heat affected zonett were made such t h a t  the notch (and sub- 

sequent t e s t  f r ac tu re )  was i n  the heat a f fec ted  zone of the base p l a t e  (within 

1/16 in. of the fusion l i ne ) .  

Chemical analyses and other information on t h i s  weldment w i l l  be avai lable  a t  a 

The impact specimens 

Specimens were given no subsequent heat  treatment. 

l a t e r  date.  

Results and Discussion 

Impact Tests 

The r e s u l t s  o f  notched-bar impact t e s t s  on these s t e e l s  are showninFigs, 2 

through 10. The behavior o f  the two s t e e l s  i n  Figs. 2 and 3 a t  about 5 x 1OI8 nvt 

i s  typ ica l  of  mny carbon s t e e l s  a t  t h i s  neutron dose. 

b r i t t l e  t r ans i t i on  temperature and lower f r ac tu re  energy of the duc t i l e  (high 

temperature) p a r t  of the curve a f t e r  i r r ad ia t ion  a r e  common fea tu res  of such 

curves. 

The higher ducti le-to- 

The magnitude and the  cha rac t e r i s t i c s  of these chanEes w i l l  vary from 

one s t e e l  t o  another, depending upon a number of factors .  

The e f f e c t s  of increasing neutron dose (and a l so  neutron f lux)  a r e  shown 

i n  Fig. 4. 
f rac ture  energy i n  the ?*ductilett p a r t  of the curve a r e  more evident a t  the  

The increases i n  f rac ture  t r ans i t i on  temperature and decrease i n  

higher neutron dose, This f igure  does not indicate  any sa tura t ion  of rad ia t ion  
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e f fec ts ,  Within the accuracy o f  the  flux and f rac ture  energy measurements it 

i s  possible tha t  the  e f f e c t s  observed a re  roughly proportional t o  the neutron 

dose. 

Figs. 5 and 10, 

This does not appear t o  be t rue  f o r  other  s t ee l s ,  a s  can be seen i n  

The notched-bar impact behavior of an i r r ad ia t ed  high-tensile-strength 

alloy s t e e l  (Item 60) is  shown in  Fig. 5 .  
gressively grea te r  neutron doses i s  very clear .  I n  addition, the e f f e c t  of 

i r r ad ia t ion  a t  higher temperatures i s  depicted. The e f f e c t s  of i r r a d i a t i o n  

a t  600°F is  not so grea t  as  during the same i r r a d i a t i o n  a t  l e s s  than 200°F, 

The increasing b r i t t l e n e s s  a t  pro- 

Figure 6 gives the r e s u l t s  of notched-bar impact t e s t s  on an  8 1/2$ 

nickel  s t ee l .  This s tee l ,  having excellent low-temperature notch d u c t i l i t y  

before i r rad ia t ion ,  also su f fe r s  degradation of propert ies  upon i r rad ia t ion .  

The e f f e c t  of grain s i z e  upon the s e n s i t i v i t y  o f  a s t e e l  t o  neutron 

i r r ad ia t ion  was studied by i r r ad ia t ion  of two s imilar  s t e e l s  (Items 55 and 

5 6 ) ,  one of  which was aluminum k i l l ed  t o  secure a fine-grain s ize .  

of these t e s t s  a r e  given i n  Figs, 7 and 8. 

showed a lower duc t i le -br i t t l e  t rans i t ion  temperature and higher t*ductilet '  

energy than did the  unirradiated coarse-grain s teel .  

a l so  t rue  a f t e r  i r r ad ia t ion  t o  about lo2' nvt, The t r ans i t i on  temperature of 

the i r r ad ia t ed  coarse-grain s t e e l  was about 300°F, and tha t  of the i r r ad ia t ed  

fine-grain s t e e l  was l e s s  than 200°F. The coarse-grain s t e e l  showed a s l i g h t l y  

grea te r  radiation-induced increase i n  t r ans i t i on  temperature than did the  fine- 

grain s tee l .  

be discussed l a t e r .  Although these r e s u l t s  seem t o  indicate  some super ior i ty  

of t he  f ine-grain s tee l ,  such a conslusion must be ten ta t ive  in t h a t  only two 

heats  of s t e e l  were studied, 

The r e s u l t s  

The unirradiated fine-grain s t e e l  

This re la t ionship  was 

These r e s u l t s  agree with d u c t i l i t y  results from tension t e s t s  t o  
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The r e su l t s  of impact tests of  another i r r ad ia t ed  fine-grain s t e e l  (Item 65, 

I n  this s tee l ,  i r r a d i a t i o n  a t  6 0 0 ~ ~  t o  a dose of base p l a t e )  a r e  shown i n  Fig. 9.  

about 5 x 1018 nvt  resu l ted  i n  impact propert ies  almost i den t i ca l  t o  those of the 

unirradiated s tee l .  

changes in impact properties.  

I r r ad ia t ion  a t  less than 2W°F again resul ted i n  subs tan t ia l  

Results of  impact t e s t s  on a weld metal (Item 65 - Weld) and the  heat-affected 

zone (Item 65 - Heat Affected Zone) near the  weld are given i n  Fig, 10. 

propert ies  a s  measured by t r ans i t i on  temperature and l1ducti1ert energy of both the 

deposited weld and the heat-affected zone were superior  t o  those of the base p l a t e  

(Fig. 9 )  before i r rad ia t ion .  Both the i r r ad ia t ed  weld metal and the  heat-affected 

zone showed the grea tes t  changes i n  impact behavior that have been observed i n  t h i s  

study, However, comparison of Figs, 9 and 10 will show that the  impact character-  

i s t i c s  of  the  weld metal s t i l l  appear t o  be bet ter  than those of  e i t h e r  the base 

p l a t e  o r  heat-affected zone a t  the highest  n e u t k n  doses. 

Tensile Tests 

The impact 

The results f rom t e n s i l e  t e s t s  on severdl s t e e l s  and on i ron  are tabulated 

i n  Table 1 through 4, 
of loL9 t o  lo2* nvt. 

the work-hardening capab j l i t i e s  t o  low values, Figs. 11 and 1 2 ,  

yield s t r e s s  and the ult imate t e n s i l e  streng$h of these s t e e l s  a r e  p rac t i ca l ly  

ident ical ,  and about 2% (or l e s s )  uniform elongation precedes necking, 

tes ted  d id  show elongation during necking .(ll) 

t o  be  dose sens i t ive  bu t  t o  a l e s s e r  degree than i s  the  uniform elongation, 

Several unusual f ea tu res  may be observed a t  neutron dosages 

I n  the  more-radiation-sensitive s tee ls ,  high dosages reduce 

A s  a result the  

A l l  s t e e l s  

The postnecking elongation appears 

11. Some important measurements, that is, reduction of area,  have not  yet been 
made and a l l  specimens i n  the t e s t  s e r i e s  h v e  not been broken. 
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The r e s u l t s  of t ens i l e  t e s t s  on the  two a l l o y  s t e e l s  a r e  shown i n  Table 1. 

20 Both s t e e l s  had approximately the same yield and ult imate s t rengths  af ter  1 x 10 

nvt dose but  the 8 1/2$ nickel  s t e e l  had a higher uniform elongation. 

t ionship was a l s o  shown by  the load-elongation curves, the 8 1/2% nickel steel  

showing a region of  some work hardening (s imi la r  t o  the uppermost curve of Fig. ll), 

while the high-yield-strength a l l o y  s t e e l  showed p rac t i ca l ly  no work hardening 

(s imi la r  t o  the uppermost curves of Fig. 12). 

This re la-  

The fine-grain s t e e l  appears t o  be l e s s  sens i t ive  t o  radiat ion than does the 

coarse-grain s t e e l  (Table 2 ) ,  although the load-elongation curves f o r  both s t e e l s  

showed a region of some work hardening. 

ment with the notched-bar impact t e s t  resu l t s ,  and, tentat ively,  a f ine-grain 

s ize  seems t o  be a necessary, though hot  sufficient,  condition f o r  r ad ia t ion  

resistance.  

These r e s u l t s  a r e  i n  subs tan t ia l  agree- 

I n  high-purity i ron the shape of the load-elongation curve was markedly 

affected by  an increase i n  s t r a i n  r a t e  by a f ac to r  of 40. 

0.05 min'' the  i r r ad ia t ed  i r o n  showed a reduced uniform (but  not postnecking) 

elongation, but the load-elongation curve was unusual i n  that the  y ie ld  s t rength  

exceeded the  conventional ult imate t ens i l e  strength.  

min ' l  the i r r ad ia t ed  i ron showed no ob,servable uniform elongation; v i r t u a l l y  a l l  

the elongation occurred during necking. 

affected Qy the  i r r ad ia t ion ,  

higher s t r a i n  r a t e  was similar t o  the uppermost curve o f  Fig. 12, 

A t  a s t r a i n  r a t e  of 

A t  a s t r a i n  r a t e  of 2.0 

Pos tnecking elongation was not  grea t ly  

The shape of t he  load-elongation curve a t  the 

Tensile t e s t s  on the i r r ad ia t ed  carbon s t e e l  weldment (Item 65) yielded the 

r e s u l t s  shown i n  Table 4 and i n  Figs. 11 and 12.  

p la te  showed no unexpected increases i n  yield and t ens i l e  s t rengths  and reductions 

i n  uniform and t o t a l  elongations. 

The carbon-silicon steel-base 

The load-elongation curves, Fig. 11, were 
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conventional i n  that  the s teel  re ta ined some work-hardening capab i l i t i e s  even 

a t  the highest dose. The deposited weld metal, however, showed no observable 

work-hardening capabi l i ty  a t  1.7 x ld-9 nvt, and higher and local deformt ion  

(necking) occurred immediately a f t e r  i n i t i a l  yielding, Fig. 12. 

tes t  of weld metal i r r ad ia t ed  a t  an elevated temperature, Table 4, t en t a t ive ly  

The one t e n s i l e  

ind ica tes  tha t  an elevated temperature lessens the e f f e c t s  of i r rad ia t ion .  

data are not conclusive i n  that they a re  f o r  a r e l a t i v e l y  low neutron dose. 

These 

Such 

data f o r  higher neutron doses  w i l l  be avai lable  a t  a l a t e r  date.  

Conclusions 

It has been shown that neutron i r rad ia t ion ,  i n  addi t ion t o  increasing t h e  

yield and t ens i l e  s t rengths  and reducing the d u c t i l i t y  of s t ruc tu ra l  s tee ls ,  can 

also change the  behavior of those s t e e l s  t o  such a n  extent  that they become un- 

familiap materials f o r  s t r u c t u r a l  components such a s  pressure vessels. 

designer of a nuclear power p l an t  may be faced w i t h  the p o s s i b i l i t y  of  b r i t t l e  

The 

f r ac tu re  of components a t  temperatures higher than previously assumed. 

poss ib i l i t y  that these deleter ious e f f e c t s  w i l l  be lessened a t  the  higher i r r ad ia -  

The 

t i o n  temperatures expected i n  nuclear power p l an t s  appears t o  be good. 

i r r ad ia t ion  s tudies  a t  elevated temperatures should and w i l l  be conducted t o  

ascer ta in  how ef fec t ive  elevated temperatures a r e  i n  lessening the de le te r ious  

Further 

e f f e c t s  of  i r rad ia t ion .  

Some data  were presented which indicate  that rad ia t ion  s e n s i t i v i t y  i s  

dependent upon a number of f a c t o r s  such a s  gra in  size, s t ructure  and chemistry.* 

Further study of such f ac to r s  should be a f r u i t f u l  f i e l d  of investigation. 

development o f  metals or  a l loys  uniquely su i ted  t o  use i n  intense radiat ion 

f i e l d s  may be a r e s u l t  of  such studies.  

The 



TABLE 1 

Tensile Properties of Two I r rad la ted  Alloy S tee l s  

Neutron Yield Tensile Total  Uniform 
Dose Strength Strength Elongat i o m  Elongation 

(nvt  fast) (Ps i  1 (Psi)  (% 1 (% 1 

8% Nickel S t e e l  0 91,800 119 , om 2905 21.5 

( I t e m  &) 1.7 X 1019 138 , 000 148,000 18 11 

1 x 1020 183,000 134,000 5 05 2 

High-Yiel d-Strength Alloy 0 120,000 129,000 7.8 
Stee l  (Item 60) 

171, GOO 0.5 

1 X d 0  186,000 187,200 3 .a 0.3 

t Total elongation in 8 diameters; uniform elongation i s  elongation before onset of necking; s t r a i n  rate 

0.05 m i n - l .  
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TABLE 3 

Tensile Properties of I r rad ia ted  High-Purity Iron (Item 25) 
Subcr i t ica l  Anneal 

S t ra in  Neutron ,Yield Tensile 
Dose Strength Strength Rate 

-- 

( m i r l - l )  (nvt f a s t )  (Psi)  ( P s i )  

Total Uniform 
Elongation% Dongat ion* 

@ ) (% 1 

0.05 0 16,800 34,400 
0.05 3.6 ld-9 41 , 100 40,700 

2 .o 0 26,000 37 3 800 

59.5 
2 9 3  

54 

L2 
11 

31 

'*t 21 0 2 00 3.6 x 10~9 48,700 

9 

Wk Load decreased continuously a f te r  i n i t i a l  yielding. 

T o t a l  elongation in 8 diameters; uniform elongation i s  elongation before  onset of necking# 

^ .  
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Fig. 1 .  Weld Design of Stainless Steel Clad Carbon-Silicon Steel Plate (Item 65). 
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Fig. 3. Subsize Notch-Bar Impact Strength of Irradiated Normalized ASTM A-301 -B Chromium-Molybdenum Steel 
(Item 45). 
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Fig. 4.  Subsize Notch-Bar Impact Strength of irradiated Hot-Rol led ASTM A-212-B Carbon-Silicon Steel (Item 43). 
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