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ABSTRACT 

'. 

Two unreflected c r i t i c a l  assemblies using beryllium as the moderator 
and 93,476 enriched uranium m e t a l  as the  fuel were b u i l t  t o  provide a bas is  
f o r  the  evaluation of cer ta in  reactor calculational procedures. 
sa fe ty  rods of the core-element-removal type were used i n  order t h a t  the f i n a l  
assemblies would not be complicated by strong absorber rods. I n  the f irst  
assembly (CA-l ) ,  which had outside dimensions of 21.0 x 21.0 x 23.3 in . ,  the  
0.01-in.-thick uranium disks were separated by 1-in.-thick blocks of be ry l l i -  
um, Ghich gave a Be:UZ35 atomic r a t i o  of 390 and a f u e l  loading of 18.08 kg 
of U235. The extrapolated value of keff f o r  the system was 1.0054. In the  
second assembly (c~-18), which had outside dimensions of 24.0 x 28.4 x 24.1 
in., the  f u e l  disks were separated by 4-in.-thick blocks of ber I l i u m ,  which 

assembly the extrapolated keff value was 1,0020. 
cadmium f rac t ions  i n  the t v o  assemblies were 0.46 and 0.86, respectively. 

Control and 

gave a Be:UZ35 r a t i o  of 1560 and a f u e l  loading of 7.65 kg of U s 35. For t h i s  
The observed uranium 

A number of rmltigi-oup calculations were made t o  evaluate the e f f ec t s  
of various corrections and assumptions. It was concluded tha t  the calculated 
neutron multiplication is  very sensi t ive t o  the competition between leakage 
and slowing down at high energies, a range where fundamental data  a re  un- 
cer ta in ,  Without resolving the detailed neutron behaviors i n  t h i s  range, a 
reasonable select ion of data within experimental uncertainties w i l l  give 
sa t i s fac tory  values f o r  such quant i t ies  as c r i t i c a l  s i z e ,  

iii 



PREFACE AND ACKNoWLeDGERERTS 

During the late 1940's both the  Oak R i d g e  National Laboratory and the  
Muclear Energy Propulsion Aircraft  Division of the Fairchi ld  Engine and 
Airplane Corporation i n  Oak Ridge became interested i n  performing c r i t i c a l  
experiments which could be correlated with reactor calculations. 
a c r i t i c a l  experiments f a c i l i t y  was constructed an& equipped, and plans were 
made f o r  the two groups t o  jo in t ly  bui ld  and operate a simple unreflected 
beryllimn-moderated assembly, The assembly, designated as CA-1, became c r i t i -  
ca l  i n  the early p a r t  of 1951. 
the NEPA project was terminated and i ts  personnel dispersed, leaving the experi- 
mental program incomplete. 
OREJL f a c i l i t y  and, after a brief interruption, the experimental progran with 
C A - l w a s  resumed. 
pared, some of the r e su l t s  were publicized through private communications, and 
the discrepancy between the predicted and ac tua l  c r i t i c a l  s ize  of the assembly 
gave rise t o  rather widespread in te res t .  
and experimental, were made t o  determine the source of the disagreement, and an 
in t e re s t  on the pa r t  of ORNL staff menibers i n  resolving t h i s  problem as w e l l  as 
other inconsistencies associated with the calibration of CA-1 led t o  the con- 
s t ruct ion i n  1954 of a second beryllium-moderated c r i t i c a l  assembly, CA-18. 
Additional calculations were then perfarmed by the author f o r  both assemblies. 
This report describes the two experiments'and presents the calculations.  It i s  
t o  be pointed out that, these calculations were completed i n  1954 using the best 
cross-section data available a t  that time, and the  e f fec t  of using more recent 
values has not been investigated,  

Acc6rdingly, 

Shortly after the inauguration of t he  program 

The C r i t i c a l  Experiments Laboratory continued as an 

Although no complete report of the experiments was ever pre- 

Several attempts, both theore t ica l  

The success of the  two experimental programs i s  the r e su l t  of the cooper- 
a t ive  e f fo r t s  of many persons. 
f o r  the first assembly (CA-1) were procured by the NEPA Group, and the experi- 
ment itself was performed with t h e i r  assistance.  

The equ ipen t  and most of the material necessary 

The members of t h i s  group were: 
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J. Frank Coneybear, Dan Weinberg 

Frank a1y Lockheed Aircraft  Company, Marietta, Ga.  
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J. A. W t e r  The Martin Company, Baltimore, Maryland 
Fred Pressey Grenada, Br i t i sh  West kd ie s  

The ORML staff members who assisted i n  the performance of one o r  both experi- 
ments were: 
K. W. Downes Brookhaven National Laboratory, Upton, N.Y 
J. W. Noaks, on leave from P r a t t  

and Whitney Aircraf t  Alco Products, Inc *, Schenectady, M.Y e 

D. V. P. Williams Babcock and Wilcox, Lynchburg, Virginia 
A. D. CaUihan, J. H. Marable, 
E. R. Rohrer and Dunlap Scott  Oak Ridge National Laboratory 

and Eenry Kroeger ASTRA Associates, Milford, Connecticut 
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Special appreciation is extended t o  D r .  Callihan f o r  h i s  help throughout both 
experiments and during the  preparation of t h i s  report .  
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INTRODUCTION 

" 

Multigroup reactor calculation methods were f i rs t  used i n  Oak Ridge i n  
1950 by the NEPA and ORNL Physics Groups, at which time the c r i t i c a l  s i ze  of 
a,n unreflected beryllium-moderated reactor was calculated .l In  order t o  experi- 
mentally check the va l id i ty  of the calculational method, a c r i t i c a l  assembly was 
b u i l t  i n  the  NEPA-ORNL C r i t i c a l  Experiments Faci l i ty .2  
as CA-1, w a s  of the simplest possible geometry, approximating a bare cube. 
had a regular l a t t i c e  of l o a i l - t h i c k  enriched uranium m e t a l  f u e l  disks sepa- 
rated by l-in.-thick blocks of beryllium metal. 
such an assembly had the advantage of permitting re la t ive ly  simple corrections 
f o r  f u e l  heterogeneity, and the  more complicated calculations necessary f o r  a 
ref lected system could be avoided. 

This assembly, designated 
It 

Besides the ease of construction, 

CA-1 was first  m a d e  c r i t i c a l  February 4, 1 51. The s i z e  of the assembly 
was roughly 27$ less than had been predicted .l,? Therefore considerable experi- 
mental e f f o r t  w a s  d i rected toward finding possible experimental e r rors .  
quently a number of calculational attempts were 
or less rat ional iz ing the discrepancy between theory and experiment. 
spring of 1951 the NEPA project  was terminated, resul t ing i n  the ear ly  cur- 
tailment of experiments on this  c r i t i c a l  assembly. 

Subse- 
which resulted i n  more 

In the 

Unt i l  April, 1954- CA-1 remained the only simple beryllium-moderated 
c r i t i c a l  assembly available f o r  analysis.  
designated as CA-18, was b u i l t  s imilar  t o  CA-1 except t h a t  the f u e l  spacing 
w a s  changed from 1 t o  4 i n .  It was recognized t h a t  an assembly having a higher 
irrsmium concentration than that of CA-1 would have been Lnore desirable from the 
analytical standpoint, since the  grea tes t  uncertaint ies  i n  cross-section da ta  
a re  i n  the  high-energy range. However, the &-in. spacing was chosen on the  
basis  of ease of construction and the ava i l ab i l i t y  of materials and time. 

A t  that time a second assembly, 

Upon campletion of CA-18 several  multigroup calculations were performed 
and compared with the ac tua l  c r i t i c a l  assemblies. These calculations for  
CA-1 were a l s o  compared with tbe e a r l i e r  calculations.  The purpose of t h i s  
report  is $0 describe the t w o  c r i t i c a l  assemblies in  detail, t o  discuss the  
experimental measurements which were made i n  connection with them, and t o  
evaluate various assumptions made i n  the  multigroup calculations.* 

1. A. 0. Mooneyham, NEPA-l7lO (1951) (Classif ied) .  
2 .  F. T. Bly e t  al.,  "NEPR C r i t i c a l  Experiment Fac i l i ty , "  NEPA-1769 (1951). 
3 .  A. 0. Mooneyham, IC-51-2-7 (Supplement t o  NEPA-1710) (1951) (Classif ied) .  
4. G. M. Safanov, YF-10-45 (1951) (Classif ied) .  
5. D,  K. Holmes, ORNL-1227, p 4  64 (Classif ied) .  
6. C .  B. Mills, ORNL-1493 (1953) (Classified). * Calculations reported here were completed i n  1954 using the best  data 

avai lable  at  that time. The ef fec ts  of subsequent improvements i n  data  
have not been thoroughly investigated-.. However, the experuenta l  r e su l t s  
are s t i l l  val id  and w i l l  continue t o  serve as a comparison f o r  subsequent 
calculation techniques. 
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1. DESCRIPTION aF THE ASSEMBLIES 

The matrix in to  which the  materials f o r  both of the assemblies were 
placed was a 6-ft cube consisting of 3-in.-OD square 2s aluminum tubes, each 
having a w a l l  thickness of 0.047 in .  
fo r  CA-I, vas divided ve r t i ca l ly  in to  halves which could be separated by remote 
control. 
pleted by bringing them together. 

uranium disks (average mass of U235 = 16.774 g) separated by one (CA-1) o r  
four (CA-18) 1-in. -thick by 2-7/8 in.  by 2-7/8 in.  beryllium metal blocks of 
average density 1.86 g/cc. 
skewers through 0.196-in. -dia center holes i n  the f ie1  disks and, the  beryllium 
blocks. The elementbwere designed t o  maintain a constant fuel spacing 
throughout the assembly. 

This m t r i x ,  which is  shown i n  Fig. 1 

Fuel elements were placed i n  both halves and the assembly was com- 

Core elements consisted of 93.474 enriched 2.860-in. -dia, 0.01-in. -thick 

These were held together by 3/16-in.-dia aluminum 

The arran5ements of the core elements i n  the  aluminum gr id  fo r  CA-1 and 
CA-18 are indicated i n  Figs. 2 and 3, respectively. 
quarter-sized core elements. 
the same composition as the other elements. 

Row 8 of ~ ~ - 1 8  contained 
They were 1-7/16 in.  square but otherwise had 

Control and safety rods were similar t o  other core elements 'except t ha t  
The use of provision was made f o r  remotely moving them within the assembly. 

t h i s  type of control and safety devices permitted an assembly free of per- 
turbing neutron absorbers. 
strength, s ta in less  steel  rather  than aluminum skewers were used. 
rods were inserted by compressed air, spring loaded and magnet held. 
safety rod elements were inserted or withdrawn by means of a screw drive 
mechanism. 
Fig. 1. 

I n  order t o  give these elements more s t ruc tu ra l  
The safety 

A l l  

One such element is shown displaced from i ts  norma3. posit ion i n  

For CA-18 a simple servo control system was devised7 which employed a 
lX Brown "Electronic"* amplifier and a 27-rpm balancing motor arranged t o  
in se r t  or withdraw one of the  core elements. ?.%is control element was 
located i n  c e l l  K-13, as shown i n  Fig. 3 .  The input s ignal  was derived from 
one of the neutron monitoring instruments i n  opposition t o  an adjustable 
demand poten t ia l  supplied by a 1.5-v battery.  The system was capable of 
changing the reac t iv i ty  of the assembly a t  a maximum rate of O.Ol$/sec, which 
was adequate t o  follow slow transients  or  t o  maintain stable operations. 

A comparison of the physical compositions of the  two assemblies i s  given 
i n  Table 1, For completeness the corresponding values are  included. 
These values correspond t o  the  regular assembly having the  indicated f u e l  
loadings extrapolated t o  the condition of a l l  control rods f u l l y  inserted. 
C r i t i c a l i t y  i n  both assemblies was reached with one control rod s l igh t ly  
withdrawn. Each s ta in less  s t e e l  volume f rac t ion  includes the s ta in less  s t e e l  

7. M, E,  Remley, Science 119, 29 (1954). * Minneapolis-Honeywell Regulator Company, Philadelphia 44, Pa. 
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Table 1. Comparative Descriptions of CA-1 and CA-18 

CA-1 
~- 

CA-18 

Outside Dimensions 21.0 x 21.0 x 23.3 in. 

Spacing of 10-mil-thick 
fuel disks 1 in. 

Volume fractions: 

Aluminum (grid and skewers) 0.0610 

Beryllium (moderator) 0.9060 

Uranium ( fue l )  0.0064 

Stainless steel (skewers) 0.0004 

Void, 0.0262 

U235 loading 18.08 kg 

kerf 1.0054 

Be : U235 atomic ratio 390 

24.0 x 28.4 x 24.1 in. 

4 in. 

0.0611 

0.9128 

0.0016 

0.0003 

0.0242 

7.65 kg 

1.0020 

1560 

. 

. 
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skewers plus an a r t i f i c i a l  quantity having the same absorption cross section 
as the  impurities i n  other pa r t s  of the sys tm.  
describe the nearest approaches t o  simple unreflected cubical c r i t i c a l  
assemblies f o r  each of the  two f u e l  spacings. 
necessary excess multiplication was provided by placing additional core elements 
jus t  outside of the clean assembly. 

Table 1 and Figs, 2 and 3 

In  subsequent experiments the 

Measurements with CA-1 

I n i t i a l  Approach t o  Cr i t i ca l i t y .  In  the approach t o  c r i t i c a l i t y  with C A J  
(see -'I uranium fii& disks were added t o  the  core elements nearest  the  
center of a 24 x 24 x 25 in.  beryllium-reflected array u n t i l  the  assembly 
became c r i t i c a l .  
consisted of a 4 x 4 c e l l  core with a 6-in,-thick ref lector  on four sides.  
contained 6,05 kg of U235. A t  c r i t i c a l i t y  one control rod i n  t h e  re f lec tor  
(rod D i n  c e l l  M-10)  was withdrawn 3.7 in.  
was reached by a l te rna te ly  removing outside beryllium and adding fue l ,  The 
f ina lun re f l ec t ed  parallelepiped had the  dimensions 21.0 x 21.0 x 23.22 in., 
each of the  49 elements consisting of a 23-in. t o t a l  thickness of beryllium 
and 22 f u e l  disks of average thickness 0.01 i n ,  
kg of U235 and was c r i t i c a l  with control rod C withdrawn 2.59 in. ,  correspond- 
ing t o  0.0054 i n  reac t iv i ty ,  

Except for-'one missing corner f u e l  element, th i s  first array 
It 

The unreflected c r i t i c a l  assembly 

The assembly contained 18.08 

The experimental c r i t i c a l  mass of the  unreflected assembly was approxi- 
mately 27$ below t h a t  predicted i n  the multigroup calculationsa8 Since t h i s  
disagreement was larger  than expected, the experimental work described below 
was performed i n  an e f fo r t  t o  locate any possible experimental e r rors  of t h i s  
magnitude. 

Control Rod Calibration. In a control rod calibration, rod C w a s  found - 
t o  have a t o t a l  value of $2.82 by comparison with rod-drop measurements of the 
symmetrically located safety rods 7 and 8, 
Fig. 4 was constructed by assuming a form similar t o  the detai led cal ibrat ion 
measured i n  CA-18 and normalizing t o  a t o t a l  value of $2.82, 
used f o r  subsequent reac t iv i ty  comparisons. 
brat ion measurements were made on CA-1.  

The calibration curve shown i n  

This curve was 
No detailed control rod c a l i -  

Reactivity &asurements, The experiments intended t o  determine the  e f f ec t  

Reactivity values were found by comparing known control 
on the reac t iv i ty  of spurious ref lect ions from surrounding materials are 
summarized i n  Table 2. 
rod posit ions with the calibration of Fig,  4. 
the  neutron t r ap  below the assembly was designed t o  cut off any ref lected 
neutrons from the  f loor  and structure;  however, the ref lected neutrons from 
the  t r ap  were found t o  be more effective than those from the f loor .  In one 
experiment (No. 7) the en t i r e  parallelepiped was moved up 27 i n ,  t o  the 

In the first experiment listed, 

8. A. 0. Mooneyham, NEPA-1710, z. 
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Table 2. Effect of Various Surrounding Mterials 
on the Reactivity of CA-1 

~ - -  

Gain i n  Reactivity 
Experiment Over Basic Assembly 
Number, Description of Materiala ( % I  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

36 x 45 in .  neutron t rap  was added below 
assembly; t r a p  consisted of 8 in .  of air 
space, 0.017 i n .  of cadmium, 1 in .  of 
Plexiglas, and 3 i n .  of graphiteb 

Same as No. 1 except a 1;4-in.-thick by 
36 in .  boral  sheet w a s  added 2-1/2 in. bel 
the assembly (i .e., between the assembly 
and the cadmium) 

31.5 

.ow 

Same as No. 2 except a l l  Plexiglas and graphite 
was removed 

1/4-in.-thick boral  sheet was placed on four 
sides  of assembly (no air spaces) 

1-in.-thick bora l  sheet was placed 2 in .  from 
bottom o f .  assembly (i .e., a 2-in. -thick- air gap 
existed between t h e  assembly and the boral)  

Layer of pressure tape covered one side of 
assembly (similar tape was used t o  cover the 
bora l  plates  used i n  the above measurements) 

Entire c r i t i c a l  assembly was raised 27 in .  t o  
uppermost posit ion i n  the aluminum gr id  

Two pieces of 3 in .  by 1-3/8 in .  steel channel' 
Were added t o  the top of the assembly; the 
assembly remained i n  the  uppermost posit ion i n  
the gr id  

Assembly was returned t o  the center of the grid,  
and a 1-in.-thick aluminum sheet was added t o  
the top and one side of the assembly 

One of the 1-in.-thick aluminum sheets used in  
No. 9 w a s  llioved out, leaving a 3-in.-thick air 
gap between the  assembly and the aluminum 

19.8 

3.5 

73.5 

37.3 

4.5 

69.0 

88.6 

126.9 

26.8 

a. The aluminum gr id  ws supported on a 3/&-in.-thick s t e e l  table top, 
26 in .  above the f loor .  

b .  Listed i n  order of placement from bottom of assentbly. 
c. Four similar channelsmre pa r t  of- the normal s t ructure .  
d. The average t o t a l  thickness of aluminum i n  the grid outside of 

the assembly was 1.57 in .  
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uppermost posi t ion i n  the  grid. 
time caused by an increase i n  the number of neutrons reflected from the 
s t ruc tura l  steel  used t o  hold the  aluminum gr id  i n  place. 
10 were performed i n  order t o  exaggerate the e f f ec t s  of the external  aluminum 
gr id  and thereby set an upper l i m i t  on t h i s  contribution. 

Again a gain i n  reac t iv i ty  resulted, t h i s  

Experiments 9 and 

Some inconsistencies i n  the control rod posit ions for c r i t i c a l i t y  were ob- 
served i n  the above measurements. A l l  movable pa r t s  of the system were found 
t o  be mechanically reproducible, and the reason f o r  the inconsistencies had 
not been ascertainea at the time the assembly was dismantled. The d i f f i c u l t y  
was later a t t r ibu ted  t o  photoneutrons frm the beryllium, but  no quant i ta t ive 
conclusions could be drawn. 

Miscellaneous Measurements. One measurement of the uranium cadmium 
f rac t ion  (E?)* was made by comparing the act ivat ion of the f u e l  disk nearest  
the geometric center of the  assembly t o  that of a similar Yuel d i sk  covered 
with 0.02 in .  of cadmium. This gave a cadmium fract ion value of 0.46., The 
accuracy of t h i s  measurement is  questionable owing t o  uncertaint ies  i n  the 
f u e l  disk background as well as i n  the counting correction fac tors .  

Power dis t r ibut ions within the assembly were observed by measuring the 
gamma-ray a c t i v i t y  of f u e l  disks. 
with the expected cosine d is t r ibu t ion  as indicated i n  Figs. 5 and 6,  
terms lateral and longitudinal are used t o  define direct ions p a r a l l e l  or 
normal, respectively, t o  the interface of the two assembly halves. 

The re su l t s  were i n  substant ia l  agreement 
The 

A dangercoefficient measurement on the f i e 1  was made by removing the 
f u e l  disk nearest the center of the assembly and replacing it with a smaller 
f u e l  disk. 
Assuming the fuel importance t o  be proportional t o  the f lux  square& and 
assuming the  value 10Ob t o  be equivalent t o  0.0073 of the reac t iv i ty ,  it was 
found that sk /k  = 0,475 dM/M, where M i s  the mass of $35 i n  the c r i t i c a l  
as semb l y  . 

The observed loss i n  specif ic  reac t iv i ty  was 2.9f!/g of $35. 

Measurements with CA-18 -- 
I n i t i a l  Approach - t o  Cr i t i ca l i t y .  The first c r i t i c a l  array of CA-18 

(Fig.~- an over-all s i ze  of 27 x 27 x 24 in .  Except f o r  the four missing 
corner f u e l  elements, the array consisted of a 7 x 7 c e l l  core w i t h  a 3-in.- 
thick beryllium ref lec tor  on four sides. 
c r i t i c a l  with one control rod i n  the re f lec tor  (rod D )  displaced 2.25 in .  
f i na lun re f l ec t ed  c r i t i c a l  assembly had d-imensions 24.00 x 28.40 x 24.06 in .  
and contained 7.65 kg of @35. 
control rod A i n  the core displaced 2.60 in., corresponding t o  0.0020 i n  
react ivi ty .  

It contained 4.97 kg of $35 and was 
The 

This unreflected assembly was c r i t i c a l  w i t h  

Control Rod Calibration. An absolute calibration, that is, one tha t  is  
This w a s  

- 
independent of delayed neutrons o r  transients,  was made for  CA-18. 
done by observing the displacement of control rod A caused by the addition of 

* CF = (&-?+d)/%, where l$, i s  the act ivat ion of the bare disk and NCd is  
the act ivat ion of the disk having a 20-mil-thick cadmium cover on each 
s ide.  
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a 1/4-in.-thick layer of beryllium on top of the 
displaced portion of the rod the  same reac t iv i ty  
a change i n  the buckling of the  system caused by 

assembly and assigning t o  the 
value as t h a t  calculated f o r  
the  addition of the  beryllium. 

The calculation, which is  presented i n  Appendix A, is  probably accurate within 
2%. Control rods B, C, and D were then calibrated against  control rod A. 

The control rod sens i t iv i ty ,  i v e , ,  the  change i n  r eac t iv i ty  per inch of 
t ravel ,  i s  shown i n  Fig. 7 f o r  each of the rods i n  CA-18, 
posi t ion is the displacement frm the center of the assembly, or the distance 
the  rod is  withdrawn, 
curve f o r  rod A occur when the fuel planes i n  the rod are misaligned w i t h  those 
i n  the 
v i c in i ty  of the  edge of the assembly is  due t o  the e f f ec t  of "plugging" the 
control rod channel. 
moderator i n  i t s  region of highest importance. The control rod cal ibrat ion 
curves i n  Fig. 8 were found by integrating the sens i t i v i ty  curves from 
i n f i n i t y  t o  any par t icu lar  position. 

The control rod 

The maxima par t icu lar ly  prominent i n  the sens i t i v i ty  

stationary part of the assembly. The steep pa r t  of the curve i n  the 

This e f f ec t  may be otherwise thought of as due t o  adding 

Conventional rod drop and p i l e  period observations were a l so  made f o r  
comparison with the absolute cal ibrat ion of the  rods; however, these C a l i -  
brat ion methods depend on a knowledge of the effectiveness of delayed neutrons 
and are camplicated by the  presence of photoneutrons from beryllium. P i l e  
period observations are par t icu lar ly  d i f f i c u l t  owing t o  a number of photo- 
neutron groups a r i s ing  from long-lived fission-fragment hard gamma-ray 
emitters. 
from the  p i l e  period observations and those obtained i n  the  absolute C a l i -  
brations.  Reactivity values from the i l e  period observations were calcu- 

neglecting delayed photoneutrons from the beryllium. The inconsistency of the 
r a t i o  of the r e su l t s  from the' two methods r e f l ec t s  the inherent uncertainty i n  
the e f fec t ive  value of delayed neutrons, and the e f f ec t  of the delayed photo- 
neutrons from the beryllium. Further, the apparent period is  strongly 
influenced by the operational his tory of the system. 

Table 3 is  a comparison between the  reac t iv i ty  values determined 

lated from f i v e  delayed neutron groups 8 through use of the  in-hour equation, 

In  Table 4 the control rod reac t iv i ty  values obtained by the rod drop 
method, using a t o t a l  delayed neutron f rac t ion  of 0.0073, are compared w i t h  
the t o t a l  control rod r eac t iv i ty  values obtained by the absolute cal ibrat ion 
method (see Fig. 8). 
pected i n  view of the experimental uncertainties i n  the  two methods. 

Again, the lack of consistency is  no worse than ex- 

Both the p i l e  period and the rod drop r e su l t s  are about 80$ of the corre- 
sponding absolute r eac t iv i ty  value. 
p i l e  period method are those from the shorter  period range. 

Apparently the best values found by the 

F o i l  - Exposures. Several types of f o i l  exposures were made within CA-18, 
Indium-aluminum f o i l s  were used t o  obtain indium act ivat ion measurements. 
addition, f i s s i o n  rates within the assembly were determined by observing the 
a c t i v i t y  of f i s s i o n  fragments on th in  aluminum "catcher" f o i l s  which were i n  
diredtcontact with f u e l  disks  during an exposure. F e  a c t i v i t i e s  of similar 

9. S. Glasstone and M, C Edlund, "The Elements of Nuclear Reactor Theory," 

I n  

p .  65, D.' Van Nostrand Company, Inc., 1952. 
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Table 3 .  Comparison of Reactivity Values of Control R o d s  i n  
CA-18 Determined by Pi l e  Period and by Absolute 

Calibration thods 

Reactivity 
Period P i l e  Period Absolute 

mservation (sec)  Me t h d  Methad P i l e  Period:Absolute 

Ratio of 
Reactivit ies,  

1 770 40 
2 521. 0 
3 417 ,O 
4 166.6 
5 152 ,O 
6 LO1 0 3 
7 95.6 
8 95 b 6  
9 84,8 

o 000182 
0.000460 
0.0003h7 
o .000610 
o ,000588 
0.000873 
0. ooogzo 
0.00111 
0.000940 

0,646 
0.369 
0.603 
0 e773 
0.863 
0 -799 
0 0 798 
0,661 
0.846 

Table 4. Comparison of Reactivity Values of Control Rods i n  
CA-16 Determined by Rod Dropa and Absolute 

Calibration Method8 

Equivalent 
Safety Control 
ROd Rod NO Ni 

1 C 39.0 35 -0 
3 rj 34.8 lg“1 
6 B %..O 18.0 
5 A 37-5 9.1 

Reactivity Ratio of 
Rod Drop Absolute Reactivities, 
Method Method R o d  Drop :Absolute 

0.000831 0,00143 0 ., 581 
0.00600 0 00793 0 - 757 
o 00810 o 01070 0 757 
0.02385 0.02564 0.928 

a. In the r d  drop method, 6k/k = 0.0073 (Mo-Ni)/Ni, where No i s  the i n i t i a l  
power l eve l  a d  Ifi is  the power l eve l  extrapolated t o  the time immediately 
following the rod drop; see, for  example, R e f .  9, p.  305, Eq. lO”35.3- 



. 

catcher f o i l s  which were exposed within a composite fue l  disk, t ha t  is, a d i sk  
consisting of f ive  individual disks, were used t o  stildy the e f fec t  of the  self 
shielding of the  fuel .  

The indium-aluminum f o i l s  were each 5/16 i n .  i n  diameter and 10 m i l s  thick,  
For one exposure 

Plots  of the r e l a t ive  ac t iv i ty  

Similar measurements (Fig. 10) 

having an e f fec t ive  indium thickness of 0.3 m i l  or 5.4 mg/cmz. 
the f o i l s  were placed along a horizontal  l a t e r a l  l i n e  (that is, p a r a l l e l  t o  the 
fuel plane) which w a s  1/4 in .  frm the midplane, 
of the f o i l s  f o r  t h i s  traverse are shown i n  Fig. 9 and are i n  substant ia l  
agreement with the expected cosine d is t r ibu t ion .  
along the longitudinal axis of the assembly ( t h a t  is, perpendicular t o  the f u e l  
plane) indicate  sharp depressions i n  the f lux  near the f u e l  planes, but  the 
p lo t s  are enveloped by cosine curves. The indium-cadmium f rac t ion  - - obtained 
by comparing the a c t i v i t y  of bare f o i l s  t o  t h a t  of f o i l s  covered w i t h  2 0 - m i l -  
th ick  cadmium covers - - varies  from a maximum of 0.4 between the  f u e l  planes 
t o  a minimum of 0.3  at the f u e l  planes. 

Fission rates determined by the catcher f o i l  technique a re  shown i n  
Figs,  11 and 12 f o r  f o i l  exposures along the lateral and longitudinal axes, 
Tespectively. I n  some cases measurements on opposite s ides  of the same f u e l  
disks are indicated,  The cadmium f rac t ion  f o r  f u e l  is  seen t o  vary between 
0.852 and 0,880. 
20 m i l s  th ick.)  

(The cadmium covers used i n  these measurements were also 

The var ia t ion of the  f i s s ion  r a t e  within the composite f u e l  d i sk  con- 
s i s t i ng  of f ive  2-mil-thick disks i s  shown i n  Fig. 13. 
replaced one of the conventional 10-mil-thick disks during the measurements. 
The average f i s s ion  rate throughout the 10 m i l s  was found t o  be 8 9 2 $  of the 
average surface f i s s ion  r a t e  on the  disk, 

This composite disk 

Reactivity Measurements. A number of experiments were performed t o  
determine the e f f e c t  on the reac t iv i ty  of CA-18 of introducing various ma- 
t e r i a l s  i n to  the assembly. I n  the first group of experiments, the core element 
i n  c e l l  K-13 (see Fig. 3), tk;e c e l l  nearest the center of the assembly, was 
pushed back from the  midplane so t h a t  a sample of material could be placed very 
near the center of the assembly. The changes i n  reac t iv i ty  caused by various 
materials i n  t h i s  posi t ion are summarized i n  Table 5. A l l  of the samples were 
2-7/8 in.  square having the thicknesses indicated i n  Table 5 .  The r eac t iv i ty  
values l is ted are found from the  changes i n  control rod posit ions necessary t o  
compensate f o r  the  addition of the sample i n to  t h i s  space, that  is, the  differ- 
ence i n  the r eac t iv i ty  of the assembly with the  sample i n  place and the  re- 
a c t i v i t y  of the assembly with an air space of equal thickness at  the same 
location, 

The effects on the  reac t iv i ty  of other materials were observed i n  a s i m i -  
The lar way i n  c e l l  L-15. 

l iqu id  samples were contained i n  a thin-walled s ta in less  steel  can, 1 x 2-7/8 x 
2-7/8 in. ,  and t h e i r  r eac t iv i ty  values were corrected for  the e f f ec t  of the cano 
Furfural, H4C5@, is  an organic material having a hydrogen density approxi- 
mately one-half t h a t  of water. The sample labeled "1/2 Plexiglas" was prepared 
by d r i l l i n g  small holes i n  a Plexiglas block t o  reduce i ts  mass from 157.7.' g t o  

The r e su l t s  of these tests are l i s t e d  i n  Table 6. 
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Table 5. Reactivity Values of Various Materials Inserted 
i n  C e l l  K - l 3  Near the Center of ca-18 

Atomic 
Thickness X%ss Weight Number Reactivity, a & k/mole 

Sample ( in . )  (g> (g/mole) cf Moles &k 5 O.OOOO2 (xl0-3) 

Mg 0.500 

Fe 0.500 

T i  0.320 

Al 0.500 

N i  0.160 

Mo 0.425 

cb 0.250 

Teflon 0.500 

115.78 

523.68 

185.67 

179.3 

183.15 

475 *2 

277.42 

152.28 

24.32 

55.85 

47 90 

26 a97 

58 -69 

95.95 

92 091 
- 

4 4760 

9.376 

3 A376 

6.648 

3.121 

4.953 

2 .g% 

+O .oO024 

-0,00902 

-0 00936 

-0.00864 

-0.00584 

-0.01050 

-0.00335 

+O.OOOO1 

+0.0504 

-0 963 

-2.42 

-1.870 

-2 -120 

-1.121 

a. Compared t o  reac t iv i ty  of assembly with a void of equal volume. 

Table 6. Reactivity Values of Various Materials Inserted i n  
C e l l  L-15 Near the Center of CA-18 

Thickness Mass 
Sample ( in . )  (id 

Reactivity, a 
d k k 0,00005 

Furfural’ 1.0 

vat e rb 1.0 

1/2 Plexiglas 1.0 

Graphite 7425 

Teflon 7.28 

150.1 

127.6 

83.5 

1624.3 

2026.02 

-0 00005 

-0 oooog 

+o ,00000~ 

+o 00010 

-0 00005 

a. Compared t o  reac t iv i ty  of assembly with a void of equal volume; values 
f o r  Furfural  and water samples were corrected f o r  s ta in less  s t e e l  
containers. 

b .  Contained i n  thin-walled stainless s t e e l  can. 
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83*5 g. 
power c r i t i c a l  assemblies. 
scat ter ing e f fec ts  of the samples somewhat cancel each other. 
differences between water, Furfural, 1/2 Plexiglas, and Teflon are apparent, 
although the large graphite block was observed t o  be s ign i f icant ly  be t t e r  as a 
sca t te re r  than the Teflon block of the same s ize .  

Teflon (CF2)n i s  of in te res t  as a common material used i n  other zero 

No s ignif icant  
Since c e l l  L-15 i s  off center,  absorption and 

The ef fec t  of the f u e l  heterogeneity i n  the assembly was determined by 
observing the increase i n  the r eac t iv i ty  caused by replacing the 10-mil-thick 
disks i n  one-half of the element i n  c e l l  L-14 with uniformly spaced 2-mil- 
thick disks having the same t o t a l  mass. In  another tes t  the nuniber of 2-mil- 
thick disks used was reduced such t h a t  the t o t a l  r eac t iv i ty  value of the 
element was approximately the same as  tha t  of a normal element. 
of these observations are presented i n  Table 7. 
the r eac t iv i ty  values of c e l l  M-13 with a normal f u e l  loading and without any 
f u e l  a re  a l so  given. C e l l  L-14 i s  nearer the center of the assembly than 
c e l l  M-13, which explains the higher r eac t iv i ty  values. The r e s u l t s  given i n  
Table 7 a re  only a qual i ta t ive indication of se l f  shielding. Since the 
neighboring f u e l  elements were not changed, the effectiveness of the t h i n  
disks i n  positions intermediate t o  the normal f u e l  posit ions was exaggerated. 

The results 
For purposes of comparison, 

Table 7 .  Reactivity Value of Fuel i n  CA-18 

Half-Cell Description Reactivity Value 
Thickness of Total O f  $35 Of 1 g of 

Cel l  Number of Each Disk $35 Mass Of ,Total i n  $35 i n  
No. Fuel Disks ( m i l s )  ( g  1 Half -Cell Half -Cell Half -Cell 

L- 14 0 - 0.0 0. O230Ta - - 
L-14 3b 10 50.3 o a 02890 0.00583 0.000116 

L-14 15 2 50.3 0.03222 0.00915 0.000182 

L- 14 8 2 26.8 0.02873 0.00566 0.000211 

M-13 0 - 0.0 0 .  0220ka - - 
M-13 3b 10 50.3 0.02760 0.00556 0.0001105 

a .  

b. Normal loading f o r  ha l f -ce l l .  

Represents r eac t iv i ty  value of a l l  materials i n  ha l f - ce l l  except fue l .  



111. MULTIGROUP CaLcUIATIONS 

Several reactor multigroup calculations were performed and the resul t ing 
values of the e f fec t ive  multiplication of CA-1 and CA-18 -re compared t o  the 
experimental values. 
the same as those reported earlier.'' 
the derivation 

The method of calculation and the notation were bas ica l ly  
I n  order t o  show the approximations used, 

of t he  c r i t i c a l i t y  equation is  repeated i n  Appendix B. 

Eight var ia t ions of t he  bas ic  calculations were used t o  compare the e f f ec t s  
of various corrections. 
the calculations are discussed first. These are followed by descriptions of 
the variations i n  the  calculations, a swmaary of which i s  given i n  Table 8, 
The r e su l t s  of the calculations are then presented and comparisons are made, 

I n  the paragraphs below the assumptions common t o  all 

General Calculation Procedure. The calculations were made using 32 energy 

The cross- 
groups from 101 ev t o  thermal. 
curves11 and logarithmic averages were found f o r  each energy group. 
section values and the f i s s i o n  source d is t r ibu t ion  are given i n  Appendix C.  

The cross-section data were taken from published 

The uranium macroscopic cross sections i n  each group were reduced t o  
values corresponding t o  an equivalent homogeneous system. 
corrections were made i n  some of the  calculations t o  account for f u e l  lumping 
and the associated self-shielding e f fec t .  

A s  discussed below, 

The scat ter ing of neutrons i n  the uranium was considered t o  be isotropic  
f o r  a l l  energy groups. 
scat ter ing i n  the  beryllium was a l so  assumed t o  be isotropic.  

Ekcept i n  the special  cases specified below, the 

The effect ive leakage cross section, DB', f o r  each group includes the 
var ia t ion of A t r  with energy since D = 1/3 A t r  and Bz i s  a function of the  
extrapolation distance, 0.71 A tr. 
Variations i n  Calculations - 

Uranium Self-shielding Corrections. With the exception of Method I, - 
one of two d i f fe ren t  correctionsiL w a s  m a d e  i n  each calculation t o  compensate 
fo r  the  lumping of the fuel i n  the  experimental assemblies. 
corrections, called the  Po correction, was calculated under the assumption 
t h a t  the neutrons entered the absorber isotropical ly .  The second, i e e a ,  %he 
P i  correction, allowed f o r  some d i rec t iona l  preference or a flux depression 
outside of the uranium. P/dethods of calculating both corrections are given i n  
Appendix D, The self-shielding fac tors  resul t ing from these calculations a re  
compared i n  Fig. 14. 

One of the 

10 * 
11. 

12. 

C.  B, Mills, ORNL-1493, G, pp5, 115-117. 
Publications by the Neutron Cross Section Advisory Group, AECU-2040, 
BNL-l'7O, BNL-l7OA, BNL-170B a 

J, C e Bartels, "Self-Absorption of Monoenergetic Neutrons," K A P L - ~ ~ ~  
(1950) * 

25 
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Table 8. Description of the Various Calculations 

Method PJumber Code Description 

I 
I1 
IIa 
I11 
Iv 
V 
V I  
V I 1  

A, B-1, C-1, D-1, E-1, F-1, G-1 
A, B-2, C-1, D-1, E-1, F-1, G - 1  
A, B-2, C-2, D-1, E-1, F-1, G - 1  
A, B-2, C-1,  D-2, E-1, F-1, G-1 
A; B-3; C-1, D-2, E-1, F-1, G - 1  
A, B-3, C-1, D-2, E-1, F-1, G-2 
A, B-3, C-1, D-2, E-2, F-1, G - 1  
A, B-3, C-1, D-2, E-1, F-2, G - 1  

Code Definitions: 

A,  Hultigroup calculation using general calculation procedure described 
on page 25 and i n  reference 6, 

B-1. No correction made f o r  uranium self shielding. 
B-2. PO 
B-3. P1 

11 11 I1 11 I t  11 

tl I I  11 I1 11 11 
. . 

C-1. Elas t ic  scat ter ing i n  U235 fo r  a l l  enerqies. 
C-2. Ine las t ic  '' ene rg ie s51  &v. 11 11 

D-1, Isotropic scat ter ing i n  Be f o r  a l l  energies. 
D-2. Anisotropic I1  energies >1 Iviev. 11 11 11 

E-1, E las t ic  scat ter ing i n  Be for a l l  energies, 
E-2. Ine las t ic  I'  energies ~1 k v .  11 0 tl 

F-1. Neutron slowing-down density of $5 X t ,  
F-2 11 I I  11 11 'I $ 3 C s  (Fermi model). 

G-1. N o  correction for e f fec t  of external aluminum grid.  
G - 2 ,  Correction'for e f f ec t  of external aluminum grid. 
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Elast ic  Versus Ine las t ic  Scattering -_I_ i n  U235, In  general, the  neutron 
scat ter ing i n  uranium was assumed t o  be e l a s t i c .  
scat ter ing correction was included i n  the IIa calculation of CA-1. 
e f fec t  was small, a similar  calculation was  not made f o r  CA-18 i n  which the 
average neutron energy was lower. 

However, an i ne l a s t i c  
Since the 

Isotropic Versus Anisotropic Scattering i n  Beryllium. In methods I, 11, 
and IIa, the neutron scat ter ing i n  beryllium was considered t o  be en t i r e ly  
isotropic.  
scat ter ing of neutrons with energies higher than 1 hv. These corrections 
affected the multigroup calculation through variations i n  the  t ransport  cross 
section, U t r ,  and the  lethargy gain per co l l i s ion  
been determined from d i f f e r e n t i a l  scat ter ing datai? which were corrected t o  
the center-of-mass system. Estimates were a l so  m a d e  of the  number of neutrons 
scattered t o  energies below the threshold of the U238 f i s s ion  detector  used i n  
the d i f f e r e n t i a l  s c a t t e r i w  experiment and the data  were corrected accordingly, 
These corrected data could not be well approximated by the simple addition of 
a p-scattering term, although it was possible t o  evaluate)Too, the average 
cosine of the scat ter ing angle. Values of a t r  and z w e r e  then calculated from 

In methods 111 through V I 1  corrections were made f o r  anisotropic 

5, values of both having 

P O  

Numerically integrating the corrected curve f o r  d i f f e r e n t i a l  sca t te r ing  

1 yielded the  value 

J /.&+p 
. = 0,254 

-I 
1 

Eo = - 
I O ( P )  $1 
-1 

f o r  the average cosine of the scat ter ing angle i n  the center-of-mass system 
with anisotropic scat ter ing.  Similarly, the value ofTO, the  average cosine 
of the scat ter ing angle i n  the laboratory system with anisotropic scattering, 
was found t o  be 0.329. This is  t o  be compared with a value o f 5 0  = 0.074 f o r  
the laboratory system with isotropic  scattering. 

The t ransport  cross section a t r  for the  system with anisotropic 
scat ter ing found by 

is  thus smaller than 

a t r  = ( l - j & )  us 

i t s  isotropic  value by the fac tor  

= 0.725 

13. E. T. Jurney, " Ine las t ic  Collision and Transport Cross Sections f o r  
Some Light Elements," LA-1339 (Dec., 1951). 



. 

The calculation of the  lethargy gain per col l is ion,  5, i s  presented i n  
Appendix E and found t o  give a value of 0.150 for the  system with anisotropic 
scattering. 
r a t i o  of the two values being 0.728. 

The corresponding value fo r  the i so t ropic  system i s  0.206, the  

The product of the two ra t io s  f o r  U t r  and 5 then i s  

= 0,527 

and t h i s  was assumed t o  be the fac tor  which should be used i n  the  calculations 
t o  correct the product Ea t r  t o  include anisotropic scat ter ing i n  beryllium. 

In order t o  tes t  the  va l id i ty  of using t h i s  fac tor  t o  include anisotropic 
scat ter ing i n  the calculations, a calculation of the  neutron age t o  thermal 
energy i n  beryllium was performed, the  r e su l t  of which could be compared with 
the accepted experimental value of 7. The re la t ion  used f o r  t h i s  calculation 
of t h e  %e 

where 

i 
'tr" 

w&S 

lethargy width of energy group i, 

macroscopic sca t te r ing  cross section f o r  energy group i, 

lethargy gain per  co l l i s ion  i n  group i as defined i n  the 
preceding paragraph, 

macroscopic t ransport  cross section f o r  energy group i. 

When only i so t ropic  scat ter ing i n  beryl l iumms assumeti, the  value of 2' 
ource d is t r ibu t ion  and the calculated with t h i s  relation, using the  f i ss ion  

cross section values from Appendix C, was 84.3 cm . 
value is  98 cm'. Anisotropic sca t te r ing  was then included i n  the  calculation 
in an attempt t o  approach the  accepted value. 
t he  t e l m s Z t r  i n  the upper energy range by the fac tor  0,527 determined i n  the 
preceding paragraph. 
indicated a gross over-correction f o r  anisotropic scat ter ing.  

9 The accepted experimental 

This was done by multiplying 

The resu l t ing  calculated value of Y w a s  125 anz, which 

This discrepancy i n  the  age calculation is an obvious indication of 
e i t h e r  poor fundamental data or an inarjequate calculation method, 
two-thirds of the value of the age i s  contributed by terms i n  the summation 
above 1 kev of neutron energy, so uncertaint ies  i n  f i s s ion  source d is t r ibu t ion  
or  cross sections i n  t h i s  range have an exaggerated e f fec t .  

Approximately 

If a correction fac tor  of 0,762 instead of 0.527 had been used, t he  
calculated value o f y w o u l d  have been i n  agreement w i t h  the accepted value. 



This higher value of the  correction was the one actual ly  used i n  Methods I11 
through V I 1  t o  account f o r  anisotropic scattering i n  beryllium. 

Nuclear Reactions i n  Beryllium, A number of nuclear reactions with 
beryllium, s u ~ 2 ~ ~ , ' ~ - /  ,n),  and ine las t ic  scattering, are known 
t o  take place,  
events a re  very d i f f i c u l t ,  and the  resu l t s  a r e  questionable. 
measure the  cross section f o r  the  (n,2n) reaction resulted i n  an i l l og ica l  range 
of values from 0.24 + 0.07 barn, using a poloni 
-0.16 + 0.13 barn, using a mock f i ss ion  source;E therefore, no e f f o r t  was made 
t o  consider t h i s  reaction i n  t h e  present calculations. 
convenient methods f o r  including the  e f fec ts  of the (a,n) and (-f,n) reactions; 
however, these effects a r e  probably small. 

Experimental measurements of cross sections f o r  any of these 
An attempt t o  

-beryllium source, t o  

Neither are there any 

A value of 0.38 barn for the ine las t ic  scattering cross section f o r  neutrons 
above 1. Mev has been reported,l3 which w a s  found by subtracting the  d i f f e ren t i a l  
scattering cross sections integrated,over a sphere from the  t o t a l  cross section. 
However, applying the  corrections mentioned i n  the previous section t o  the ob- 
served data reduces the value of the  cross section t o  0.1 barn, which i s  s o  small 
t h a t  it may be completely obscured by experimental uncertainties.  
it was included fo r  one calculation of CA-1 (Method V I ) .  

Nevertheless, 

Methods of Computing Neutron Slowing-Down - Density. With the  exception of 
Method V I I ,  the value of q, the neutron slowing-down density, w a s  assumed t o  be 
equal t o  q = fi :,Zt. 
used. 
DB2 

I n  Method V I 1  the  Fermi slowing-down form, q = 
The scat ter ing and t o t a l  cross sect ionsZs a n d 2  t included a leakage term 

7, P s, was 

Correction f o r  Effect of External Aluminum Grid. An estimate of the e f f ec t  - - 
of the external gr id  was madr in  Method V by calculating t h e  return probabili ty 
of leakage neutrons. The ca lcu la t iona l  procedure i s  given i n  de ta i l  i n  Appendix 
F. The dis t r ibut ion of first coll isions of leakage neutrons i n  t h e  external gr id  
i s  calculated fo r  a par t icular  energy group i. Isotropic scattering i n  the  gr id  
i s  assumed and the probabili ty of a scattered neutron being returned t o  the core 
i s  calculated. 
gives the  t o t a l  probabili ty of' a leakage neutron being returned. The returning 
neutrons are assumed t o  be dis t r ibuted uniformly throughout the core such that 
t h e i r  importance is  0.535 times tha t  of a normal mode source dis t r ibut ion.  The 
effective number of leakage neutrons of groups i which are returned t o  the  core 
are added t o  the  next lower, o r  i + 1, source term. This allows some slowing 
down due t o  the co l l i s ion  w i t h  aluminum and affords a convenient means of 
including the  effect  i n  the bare reactor multigroup procedure. Counting only 
f irst  col l is ions gives a resu l t  for the number of scattering col l is ions which 
is  too low. On the  other hand, t h i s  assumption i s  somewhat self-compensating i n  
t h a t  it allows the neutrons t o  return unattenuated from the scat ter ing points. 
assumption of isotropic scat ter ing and the  uniform dis t r ibut ion of the returning 
neutrons overestimate the  effectiveness of the aluminum grid so tha t  the  r e su l t  
is  an upper value. 

The convolution of first col l is ion density and the  re turn probabili ty 

The 

~ ~- 

14. H .  M. Agnew, "Measurement of u(n,2n) of Be'," LA-1371 (Mar. ~ 1952). 



Results of the Multigroup Calculations- -- 
The r e su l t s  of the various calculations described above are summarized 

Variations i n  the r e su l t s  caused by individual corrections are i n  Table 9. 
shown i n  Table 10. 
the  corrections may be seen i n  Figs, 15, 16, and 17 which are p lo t s  of the 
leakage, absorption, and f i s s ion  dis t r ibut ions i n  CA-1. 

A qual i ta t ive picture  representing the e f f e c t  of some of 

The predominant var ia t ion i n  leakage (Fig. 15) occurs i n  the  upper energy 
range and r e su l t s  from the inclusion of anisotropic scat ter ing i n  beryllium. 
With anisotropic sca t te r ing  the high-energy m e a n  free paths are greater,  
resul t ing i n  an increased leakage i n  t h i s  region. 
high-energy leakage, fewer neutrons are available f o r  the lower energy range. 
This i s  obvious from the absorption and f i ss ion  dis t r ibut ions of Figs, 16 and 
17 * 

A s  a re su l t  of increased 

Self-shielding corrections have the e f f ec t  of sh i f t ing  the spectrum 
toward the lower energy, With no self-shielding corrections, a greater  f rac t ion  
of neutron absorption w i l l  be indicated i n  the  intermediate range, o r  j u s t  above 
thermal (around u = 18), and fewer neutrons w i l l  be available t o  the thermal 
group, On the other hand, self-shielding corrections cause r e l a t ive ly  small 
changes i n  the  t o t a l  number of absorptions or f i ss ions .  

A s  was noted i n  Section 11, each of the assemblies was c r i t i c a l  with a 
control rod p a r t i a l l y  removed so that the  clean assemblies described had 
values of s l i g h t l y  @eater than one. The t o t a l  var ia t ion i n  for a l l  
the  cases 
might easily be made t o  vary much more by means of a par t icu lar  choice of data. 

reported i n  Table 10 is  14%. This i s  actual ly  qui te  a rb i t r a ry  and 

For example, t he  correction made fo r  anisotropic scat ter ing was adjusted 
t o  f i t  the thermal neutron age, but  it i s  smaller than errperimental obser- 
vations of d i f f e r e n t i a l  scat ter ing would indicate.  Using the correction 0.527, 
which was indicated by the experimental observations, instead of the adjusted 
value of 0.762, would change the  value of &ff as much as 2oqd from the iso-  
t rop ic  case. On the other hand, the inclusion of the (n,2n) reaction might 
completely overbahnce t h i s  negative correction, 
cross section of 0.01 barn f o r  the (n,Zn) reaction above 0.3 Mev would 
introduce a change i n  kff around 4qb i n  e i the r  CA-1 or CA-18. 
0.01barn may be compared to an expeyimental uncertainty as grea t  as 0,lO barn. 

For example, an assumed 

This assumed 

Some of the multigroup r e su l t s  were used t o  calculate cadmium f rac t ions  
f o r  indium and uranium and neutron self-shielding fac tors  i n  the  fue l .  These 
par t icu lar  calculations are re l a t ive ly  insensi t ive t o  high-energy ef fec ts  and 
show neutron energy d is t r ibu t ion  sh i f t s ,  such as those caused by d i f fe ren t  
self-shielding corrections. 
mentally determined quant i t ies  i n  Table 11. 
f rac t ions  vary widely due t o  the heterogeneity of the system as shown i n  
Fig. 10. 
calculated values f o r  ~ ~ - 1 8  are generally low, even f o r  the Po self -shielding 

The calculated resu l t s  a re  compared t o  experi- 
Experimental values f o r  cadmium 

While no exact comparison can be made due t o  t h i s  variation, the 
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Table 9. Summary of Results of Multigroup Calculations f o r  
CA-1 and CA-18: Comparison of Calculated &ff Values 
with Experimental keff Values 

CA -1 CA-18 
Yercent Yercent 

Leakage Absorption Thermal Leakage Absorption Thermal 
Fraction Fraction keff Fission Fraction Fraction keff Fission 

Calculations 

Method I 

Bkthod I1 

Method IIa 

Method I11 

Method IV 

Rthod V 

Method V I  

Method V I 1  

Experiment 

0.4583 

0.4655 

0.4651 

0.5094 

0.5074 

0.4911 

0.4872 

0 5133 
- 

0.5417 

0 5345 

0.5349 

0.4906 

0.4926 

0.5087 

0.5128 

0.4865 

- 

1.0215 

1.0102 

1.0110 

0.9290 

0.9323 

0.9632 

0 9675 

0.9190 

1.0054 

4.32 

8.07 

8.08 

7.95 

6.14 

6.19 

6.17 

3.89 
- 

0.4560 

0.4843 

- 
0.5202 

0 5090 

0.4954 

- 
- 
- 

0 5439 

0 5157 
- 

0.4798 

0,4910 

0.5046 

- 
- 
- 

1.0550 37.95 

0.9839 45.32 
- 

0.9153 45.10 

0.9369 42.10 

0.9734 41.8 

- - 
- - 

1.0020 - 

, 
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Table 10. Changes i n  Values of k f o r  CA-1 and CA-18 Caused 
by Variations i n  Calculational Methods 

Variation 
A k  

CA-1 CA-18 

No correction for uranium self 
shielding t o  a Po correction 
( k t h c d  I t o  Methba 11) 

P correction for uranium self 
shielding t o  a PI correction 
(Method I11 t o  Methd IV) 

NO i ne l a s t i c  sca t te r ing  i n  u235 
t o  ine l a s t i c  sca t te r ing  for 
energies above 1 Mev (Method 
I1 t o  k t h o d  IIa) 

Isotropic scat ter ing i n  beryllium 
t o  anisotropic sca t te r ing  f o r  
energies above 1 Mev (Method IIa 
t o  Method 111) 

No ine l a s t i c  scat ter ing i n  beryllium 
t o  ine l a s t i c  sca t te r ing  f o r  
energies above 1 Mev (lusethod IV 
t o  Method V I )  

$ s Z t  slowing-down m o d e l  t o  $ 3 ~  
Fermi model (Method IV t o  Me th  V I I )  

No correction for e f fec t  of aluminum 
gr id  t o  a correction (Method IV t o  
Bkthod V) 

-0 01133 

-0,00803 

+O ,00081 

-0.08120 

+O. 03519 

+O .0133 

-0 07118 

-0 04954 

-0.06858 
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Po SELF SHIELDING, INELASTIC SCATTERING 
IN U235 FOR E > 1 MeV, ISOTROPIC SCAT- 
TERING IN Be. 

NO SELF SHIELDING, ELASTIC SCATTERING 
iN u235, ISOTROPIC SCATTERING IN Be.  

Po SELF SHIELDING, ELASTIC SCATTERING 
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Be FOR E >  1 Mev 
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7 U, LETHARGY ( U = In E0/E, Eo = 10 ev) 

Fig. 45. Calculated Neutron Leakage Spectra for  C A - 1  for  Various Assump- 
t ions and Corrections. 
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= Po S E L F  SHIELDING, INELASTIC SCATTERING 
IN U235 FOR E > I  MeV, ISOTROPIC SCAT- 
TERING IN Be. - 

NO S E L F  SHIELDING, ELASTIC  SCATTERING 
IN u235, ISOTROPIC SCATTERING IN B e .  

pTA Po S E L F  SHIELDING, ELASTIC  SCATTERING 
IN U235, ANISOTROPIC SCATTERING I N  
Be FOR E > I Mev 

20 18 16 44 12 40 8 6 4 2 0 
u, LETHARGY ( u =  In E ~ / E ,  E ~ =  4 0 ~ ~ ~ )  

Fig. 46. Calculated Neutron Absorption Spectra fo r  CA-4 for Various Assump- 
t ions and Corrections. 
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= Po S E L F  SHIELDING, INELASTIC  SCATTERING 
IN U 2 3 5  FOR E > I  MeV, ISOTROPIC SCAT-  
TERING IN B e .  

NO SELF SHIELDING, E L A S T I C  SCATTERING - - m  IN U2353  ISOTROPIC SCATTERING IN B e .  

VTA Po S E L F  SHIELDING, ELASTIC  SCATTERING 
IN U235, ANISOTROPIC SCATTERING IN 
Be FOR E > 1  Mev 

2 0  48 46 44 12 40 8 6 4 2 0 
u, LETHARGY (u = In Eo/€,  Eo = 4 0 ~ ~ ~ )  

Fig. 17. Calculated Fission Spectra for  CA- 4 for Various Assumptions and 
Corrections. 
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Table 11. Comparison of Calculated Cadmlwn Fractions and Urah iwm 
Self-Shielding Factors with Experimental Values 

Fuel D i s k s  Foils, 
CA-1 CA-18 CA-18 

Cadmium Fractions 
Indium Self-shielding 

Factor, 
GA-18 

Calculations 

Method I 

Method I1 

Method I11 

Method N 

MEthod V 

Experiment 

0.456 

0.753 0.258 0.649 

0.820 0.348 0 799 

0.816 

0.793 

0.793 

0.46 0.852- 
0.888 

0.326 

0.289 

0.292 0 847 

0.28- 0.892 
0.40 

correction. 
and perhaps a self-shielding e f f e c t  even greater  than t h a t  indicated by the  
PO factors .  
r e s u l t  is very approximate due t o  uncertainties i n  counting corrections available 
at  t h a t  time . 

This would imply a more thermal system than the calculations show 

One measurement of the  cadmium fract ion was made i n  CA-1, but  the 

An approximate method was used t o  calculate reac t iv i ty  coefficients of 
poisons, but only i n  hopes of obtaining agreement t o  within an order of magnitude. 
Dependable self-shielding corrections are not available for the par t icu lar  sizes 
of poison samples used, 
without f i rs t  calculating the  camplete adjoint  flux corresponding t o  each of the 
mzlltigroup calculations.  

Further, a s ignif icant  camparison could not be m a d e  

Comparison of Present Calculations f o r  CA-1 with Previous Calculations - ---- 
The method used i n  the or ig ina l  ca lcu la t ion8  f o r  CA-1 assumed the Fermi 

primarily is  due t o  
age form f o r  the neutron slowing-down density but  otherwise was similar  t o  the  
second calculation reported here. 
differences i n  the high-energy scat ter ing cross sections for beryllium which a t  
tha t  time were somewhat lower than values from more recent data. 

The difference i n  

fi5. A. 0. Mooneyham, MEPA-1710, op. c i t .  



16 Following the experiment with CA-1, a number of other calculations 
were made using a var ie ty  of assumptions and methods. 
using from 15  t o  45 energy groups, assuming a monoenergetic 2-Mev f i s s i o n  
neutron source instead of a f i s s ion  neutron dis t r ibut ion,  and varying the f u e l  
self-shielding correction, gave only s m a l l  changes i n  the calculated c r i t i c a l  
mass. 
section f o r  beryllium i n  the range 107 t o  lo5 ev would give the correct value 
of c r i t i c a l  mass. It was concluded that the calculations were very sens i t ive  
t o  high-energy sca t te r ing  cross-section values, bu t  were re l a t ive ly  insensi t ive 
t o  self-shielding corrections or the  number of energy groups used. 

Variations, such as 

However, it was found that a small increase i n  the scat ter ing cross 

I n  a later calculation17 a correction f o r  anisotropic sca t te r ing  i n  
beryllium was made i n  order t o  ge t  a r e s u l t  f o r  the age i n  agreement with the 
experimentally determined value. 
were a d e q k t e  t o  bring the calculation in to  agreement with the experimental 
s i ze  of CA-1, The agreement between t h i s  calculation and the elrperiment i s  
considerably b e t t e r  than t h a t  found i n  the present set of calculations although 
it i s  somewhat a r t i f i c i a l .  
sensi t ive t o  any change i n  high-energy data or any correction which e f f ec t s  
the competition between high-energy leakage and slowing down. 
the same fac tors  cause s imilar  changes i n  calculated age. Mills did make a 
scat ter ing correction i n  order t o  give the correct experimental age resul t ing 
i n  a decrease i n  &ff of about lo$. 
rect ion approximately compensated kerf f o r  t h i s  loss, but i t s  e f f e c t  on age 
was not considered. 
values of age and keff could not be found simultaneously. 

Several other corrections were m a d e  which 

A s  has been observed previously, keff i s  very 

I n  the  meantime, 

The beryllium ine la s t i c  sca t te r ing  cor- 

In other words a consistent agreement with the experimental 

This dilemma has not been resolved by the  present investigation. Good 
agreement, however, may be found for bff by simply adjusting data i n  the high- 
energy range. While th i s  is quite arbitrary,  the choice may cer ta inly be well 
within the  range of uncertainty i n  fundamental data. 

I V  * CONCLUSIONS 

The primary purpose of t h i s  report  is  t o  make available the experimental 
r e su l t s  obtained from the two beryllium-moderated c r i t i c a l  assemblies. The 
multigroup calculations were made i n  an e f f o r t  t o  evaluate some of the  un- 
cer ta in t ies  involved and, i f  possible, t o  indicate  an approach which would be 
applicable t o  other reactors,  
data t o  g e t  good agreement with the  c r i t i c a l  experiments, the rules governing 
the  choice are cer ta inly not c lear .  

While it is possible by a judicious choice of 

A n  agreement i n  the  value of keff does not i n  itself imply an under- 
standing of the detailed neutron behavior. 
or c r i t i c a l  mass of the system is the primary consideration, a f a i r l y  

If, however, the c r i t i c a l  s i ze  

1_ 

16- G ,  M. Safanov, YF-10-45, o . c i t .  
17. C .  B ,  M i l l s  e t  - a1 ,*I O m - 1  3- 93, 3. cite 
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dependable c a l m a t i o n  may be made by adjusting highenergy' fundamental 
data t o  give agreement with the c r i t i c a l  experiments. 
quantit ies may be adjusted, me* ,  the  value of the high-energy scat ter ing 
cross section, the tern for anisotropic scattering, ine l a s t i c  scattering, etc. 
The c r i t i c a l  s ize ,  or the ac tua l  kerf, are  convenient expdrimental quant i t ies  
for  a theore t ica l  comparison since they may be observed accurately. Unfortu- 
nate*, o.ther available observed quant i t ies  a r e  themselves subject t o  interpre  
ta t ions  which involve uncertaint ies  comparable t o  those i n  the multigroup 
calculations. 

A nuniber of such 



Appendix A 

C A I C U W I O N  OF THE REACTIVITY VALUE OF A BEWILIUM LAYER 
ON TOP OF CA-18 

As stated i n  Section 11, f o r  the absolute cal ibrat ion of the control 
rods i n  CA-18 it was necessary t o  determine the change i n ' r e a c t i v i t y  i n  the 
system effected by the addition of a l /&-in,-thick layer of beryllium on the 
top of the a s s d l y .  The calculation w a s  performed i n  the following manner. 
In  a parallelepiped of augmented dimensions a x b x c,the geometric buckling 
of the system is  

9 3 

( A 0 0  

If e is  increased a small  amount, sc, the buckling w i l l  be decreased an 
amount 

Assme that the multiplication hff may be writ ten i n  the  form 

keff == Apnn k 3 )  

where A is  a constant and P d  is the nonleakage probabili ty 

$ being the migration mea. 
Eqs. A.2 and A,4 i n to  A , 3  is 

!lke change, dk, i n  hff found by subst i tut ing 

Solving Eq, A,& for $ and substi tuting in to  Eq. A.5  gives: 

In Eq, A . 6  the value of c is  73.89 em which corresponds t o  one of the 
augmented dimensions i n  CA-18, and dc is 0,635 cm, which corresponds t o  
the 1/4-in. thickness of beryllium. 
obtained from a ml t igroup calculation as follows: 

The values of Bo2 and P a  were 

B: = 0.00655 cm-2 
P d  = 0.4765 

40 



41 

Substituting these values in Eq. A.6 yields 

k - 0.003231. 
%ff 



Appendix B 

MJLTIGROUP FORMJUTION* 

For the  multigroup 
n groups plus a thermal 
Eo = LO7 ev and E is some par t icu lar  neutron energy, 

formulation the neutron energy range is  divided in to  
group, h t h a r g y  is  defined as u =, In(Eo/E), where 

Consider group i i n  which u hEts the ran@;e U i - l s u  S u i ,  and U i  = u i  - ui,l.  
The f i s s ion  source i n  grouy i, i-e',  the  number of neutrons barn with energy 1, 
is represented by d Z i  Fission sources are normalized such that i&Z'Zi  =U. 
The slowing-down density at a par t icu lar  l e t b r g y  u i s  d-esignated by q and the  
appropriate subscript .  
and are considered as constant over the par t icu lar  group, 
8 neutron w i l l  slow down from u past  UT without loss due t o  absorption or 
leakage is given by 

n 

Cross sections are lethargy averages over each group 
The probabi l i ty  that 

2Ci(Ui " u )  

e ui 
where 

absorption cross section, 
leakage cross section, 
diffusion coefficient,  
buckling, 
average lethargy gain per neutron col l is ion,  
t o t a l  cross 2ection, 
Cs + E, + DB , 
scat ter ing cross section, 

In the Fermi age approximationdCt = C,, 

-2Ci  The contribution of ~i from group i-1 is  qi-le , while the contr i -  
bution from the f i s s ion  source is 

The t o t a l  contribution i s  

* This i s  a convent ionalmlt igroup formulation included. here for completeness 
of the report; see, f o r  exaanpbe, reference 6, p .  115. 

42 
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This is the  recursion re la t ion  used i n  L e  xultigroup calcu,ations. 
is  the average flux i n  group i, then the losses by leakage and absorption 
are 

If fii 

Ei = &DB 2 U i  a d  A i  = &CaiUi 

respectively, The neutron balance f o r  group i is given by 

2 
Si-1 +fzi = q i  + # i U i  (zai + DBi ) 

Solving Eq. B . 3  f o r  $i and using the def in i t ion  of Ci, - 

where 

The thermal-neutron f lux  is  given by 

The f i s s i o n  rate i n  group i is F i  = fii+iUi where cf is the  f i s s i o n  
cross section. The c r i t i c a l i t y  equation is  

n 

Ine las t ic  scat ter ing is  included i n  the calculation by adding the neutrons 
scattered i n t o  a par t icu lar  group t o  the f i s s ion  source t e r m  i n  tha t  group. 
The def in i t ion  of Ci i n  Eq. B , 1  is changed t o  include the ine l a s t i c  sca t te r -  
ing cross section by adding the ine l a s t i c  cross section t o  the term i n  
parentheses. 



Appendix C 

SOURCE DISTRIBUTION AND CORRESPONDING CROSS-SECTION DATA FOR THE REACTOR MATERIAIS 

Stainless S tee l  
Group Microscopic Cross Sections (barns) Macroscopic 

Upper Lower U Z i ,  Scattering 
Ikmrgy Energy NumbeF- of Enriched Uranium Beryllium Aluminum Cross SectionC 

( Bmber fe=lof it ev) ev) Neutronsa us ‘a Qf QS QS ‘a n- 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
si 
12 
13 
14 
15 
16 
17 
18 
19 
20 
2 1  
22 
23 
24 
25 
26 
27 
28 
29 
70 
31 
32 
Th 

0.5 
1.0 
1.5 
2.0 
2.5 
3-0 
3.5 
4 .O 
7 -0 
10.0 
u . 4  
xz .6 
13.4 
13.8 
14.6 
15.8 
16.2 
16.6 
17.0 

17.6 
17.8 
18.0 
18.2 
18 -4 
18.6 
18.8 
19.0 
19.2 
19.4 
19.6 
19.8 
19.8 

17.4 

6.06 x lo6 
3.68 x io6 6 

1.35 x 10 
0.82 x 14 

2.23 x lo6 

4.98 105 
3.02 105 
1.83 x 105 
9.12 x l@ 

1.12 x 10 

1.515 x 10 
1.015 x lo1 
4.546 
1.375 
9.214 x 10-1 
6 .I76 x 10-1 
4.140 x 10-1 
2.,775 x 10-1 

4.54 x 10; 

3.372 x lo1 

2,275 x lo-= 
1.860 x io-? 
1.523 x 10-1 
1.247 x 10-1 
1.021 x 10-1 
8.36 x 
6.843 x 
5.603 x 10-2 
4.587 x 
3.756 x mb2 
3.075 x 10-2 
2.518 x 
2.518 x 

0.0525 
0.2600 
0.5175 
0.5775 
0 4575 
0.2925 
0.1675 
0.0875 
0.0875 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

3.5 
3.7 
4.3 
4.2 
4.8 
6 .o 
7.2 
7.8 
9 *4 
10.5 
15 
l2 
9.5 
9.0 

8.5 
8.5 
8.5 
8.5 
8.5 
8.5 
8.5 
8.5 
8.5 
8*5 
8.5 
8.5 
8.5 
8.5 
8.5 
8.5 
8.5 

8*5 

1 

1.25 
1.24 
1.23 
1.22 
1.21 
1.26 
1.41 
1.63 
2.78 
8.88 
22.3 
47.0 
58.1 
61.4 
52.9 
26.3 
76.5 
60.6 
78.3 
172. 
242 
227. 
237. 
253 
273 
305 
342 
3% 
426 
475 
530 
590 
636 

1.18 
1.17 
1.16 
1.15 
1.13 
1.18 
1.26 

2.26 
6.23 
15.60 
33.4 
40.3 
43.8 
32.7 
18.7 
60 .i 
52.5 
74.4 
143.5 
179 3 
174.6 
184.7 
19.9 
216.7 
241.9 
273 9 6 
3ll 
349.3 
393 2 
441.8 
495 0 

1.40 

537.1 

1.7 
1.9 
2.4 
1.9 
3.1 
4.0 
3 -7 
4.2 
5 .I 
6.0 
6.0 
6 .o 
6 .o 
6.0 
6 .o 
6.0 
6 .o 
6 .O 
5.8 
5 =7 
5.6 
5.5 
5.4 
5.3 
5.2 
5 *o 
4.8 
4.5 
4.3 
3.9 

1.8 
2.3 
2.9 
3.0 
3.1 
3.5 
4.0 
4.0 
4.0 
1-35 
1-35 
1.35 
1-35 
1-35 

1.35 
1-35 
1.35 
1.35 
1.35 
1-35 
1.35 
1-35 
1-35 
1-35 
1.35 
1.35 
1.35 
1-35 

1.35 

1.35 
1.35 
1.35 
1-35 

0.0001 
0.0002 
0.00035 
0.00038 
0.00038 
0.0006 
0.0004 
0.0014 
0.0030 
0.00og 
0.0016 
0.0043 
Assume 1/v 

n 
n 
n 
n 
n 
I1 

ll 

n 
n 
tl 

n 
n 

n 
I 

n 
n 
ll 

n 

ll 

0.215 

0.269 
0.303 
0.252 
0 235 
0.201 
0.201 
0.294 
0.300 
0.350 
0.570 
0.770 
0.880 
0.880 
0.880 
0.860 
0.880 
0.880 
0.880 
0.880 
0.880 
0.880 
0.880 
0.880 
0.880 
0.880 
0.880 
0.880 
0.880 
0.880 
0.880 
0.880 
0.880 
0,880 - 

a.3 2% = nmiber of f i s s ion  neutrons born in  the ith energy group. 
b. cr 
c, ZEth = 0.240 cm-l; 

= 0.009 barn; assume 1/2/for higher energy groups. 
I’ I t  11 I t  II 



Appendix D 

C U L A T I O H S  OF SELF-SHIELDING CQRREeTIONS" . 
In a system i n  which the f lux  $(XI is a function of a single Cartesian 

eoordinate x, diffusion theary gives the followfng expression for  d i f f e ren t i a l  

flux and emrent :  

Here 

axis .  

is the  cosine of the angle between the neutron direct ion and the x 

Integrating the terms i n  Eq. D e l  over all directions gives f o r  the 

t o t a l  flux 

and f o r  the net current 

An irnffnfte plane absorber of thickness t having absorption cross section 

ca is plaeed i n  the medium n o m 1  t o  the x axis. A neutron at  x = 0 

travel ing i n  a 

the  absorber 

of passing through - zat/r dfrectfon has the probabill ty e 

Then 
r 

The partfal current of neutrons having a component of motion i n  the posit ive 

x direction fs 

*This approximation was derived by J. H. Marable, ORNL. 
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where 

0 0 

0 

Similarly 

In the following, the argument of f l ( Z a t )  and f 2 ( x a t )  are dropped f o r  

simplicity i n  notation . From Eqs.  D.3  and D.5 the  derivatives of f lux are 

The absorption rate per un i t  area i n  the element dp a t  depth p i n  the absorber 

i s  #(x + p)xadp. The absorption rate of neutrons entering the absorber from 

the l e f t  is 
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. 

0 
J 
0 

Similarly, the absorption rate of neutrons entering from the r igh t  is  

The t o t a l  

I =  

absorption rate is the sum, 

Substi tuting the expressions f ~ o m  Eq. D.6 into D.7e gives the absorption 

rate 

where 

self shielding, the absorption rate would be No = @Cat. 
fac tor  is therefore the r a t i o  

i s  the average of the  two boundary values of the flux. Assuming no 

The self-shielding 
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This i s  the p, self-shielding fac tor  and may be compared t o  po approximation 
-.L 

which has the form 

(D. 10) 

The functions S1 and S2 are shown i n  Fig. 14, p. 27 . 
A similar approach has been used t o  calculate the ac,,ration rate of 

a f o i l  covered on both s ides  by similar absorbers. 

x =Cat with subscript  c f o r  the covers and d f o r  the detector f o i l ,  the  

act ivat ion rate of the detector per un i t  area per un i t  t h e  i s  

Using the notation 

flW - f d x c  + X O )  

2 

L - fh + 2xCJ.&2(XC) - f 2 b d  + xc) 
( D . 1 1 )  I 

2 c 1 + f 2 ( X d  + 2xc) I N = F  + 

1 
c 

Consider the function f',(x)l=C (n + 1) \ d given i n  Eq. D.4.  
0 Y r  

Direct p a r t i a l  integration gives the recursion re la t ion  

X -X Pn(x) = - - n fn-l(x) + e 

1 A l s o  note that 

1 
fo(x) = $ e-x/ydy = eeX + xEi(-x) 

0 

By Eqs. D.L2 and D . 1 3  - 
-X fo(x)  = e + xEi(-x) 

f l (x)  = (1 - x)e -x 2 - x Ei(-x) 

(D.12) 

(D. 14) 

x(1  - x )  -x x2 
f 2 ( X )  = (1 - 

1. The function of -E i ( -x )  2 5 7 d t  i s  the exponential integral ,  the  values 
-* n 

of which are tabulated. 
Jahnke and W e ,  Dover Publications (1945). 

See, for example, "Table of Functions," by 
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The function f (x) is related t o  the tabulated function' 

q ( x )  e-?-%? r 1 

bY 

OP 

2, G. Plaezek, "The Functions % ( x ) E  3 e-xpp-ndr," MT-le 
1 



Appendix E 

CALCULATIONS OF e FOR ANISOTROPIC SCA"?XRING 

Consider a neutron of energy E, which is elastically scattered by a 

nucleus of atomic mass A. 

in the center of mass system, the energy, E2, of the neutron after collision 

is given by 

Defining as the cosine of the scattering angle 

2 
where a 5 rd) . 

A + 1  

In isotropic scattering the frequency function for scattering into a range 

du aboutp is given by 

1 
1 

fo(y) = 5 , which satisfies the normalization 
-1 

The averagep is zero in this case. 

In anisotropic scattering one has a frequency function 

1 

Normalization requires that [ f l p y  = 0 
-1 

The average cosine, i, may be measured experimentally 
1 1 
n 

and is given by 



The average lethargy gain per col l is ion,  may be calculated immediately. P . 

1 1 

-1 -1 

and f i n a l l y  

using Eqs. E . 3  and E.4 and ignoring higher order terms i n  (g); t o  i s  the 

value of $ f o r  the isotropic scat ter ing case. 

i f  is  known experimentally. Ignoring higher order terms i n  - is not 

serious f o r  heavy elements, e.g., i n  the case of berylllwn where A = 9, 

The approximation i s  convenient 
- (:;:) 

= 0.22. Using the value o f ?  - from 
= 0.024 compared t o  - 

i s  Pound t o  be 
$ (: 
page 28 the value of 7 0.206 - (0.220)(0.254) = 0.150. 



Appendix F 

Consider a spherical  reactor having a core radius r and an outside 

ref lector  radius R ,  

ing mean f r ee  path 

The re f lec tor  is nonabsorbing material  having a sca t te r -  

A f rac t ion  of the neutrons leaking out of the core w i l l  undergo col l is ions 

i n  the re f lec tor  and may eventually be returned t o  the core, Only first 

col l is ions a re  considered i n  t h i s  approximation. From Fig,  F- la  
c t 

c 

where p = cos@. 

e is found Assuming the leakage t o  be constant i n p ,  the average of 

If the t o t a l  leakage rate frm the core is  E, the  number of f irst  col l is ions 

per un i t  time i n  the re f lec tor  w i l l  be n = Ecsc. ( F . 3 )  

Assuming the f i r s t c o l l i s i o n  density t o  have an inverse square dis- 

tr ibution, the f i r s t - co l l i s ion  density i n  a volume element xZdRdx (see 

Fig. F-lb), is  
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* 

Fig. F-l. Spherical Reactor Geometry for Calculation of Leakage 
Correction Which includes Effect of Aluminum Grid. 
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The fraction of solid angle subtended by the core at a distance x is 

Assuming isotropic scattering and combining Eqs. F .3 ,  F.4, and F.5 the 

rate of return to the core is 

R 

R + P  In Rx) I R  - r) - (R2 - P 2 
4 2r R - P  

and the fraction of leakage neutrons which are returned is 

f = - -  F E - 4  ++- Z S  R + P  2P R - r  
L (F-7) 

Neutrons which reenter the core are assumed to be distributed unffomly 

throughout the core and are less effective than the same number of neutrons 

would be in a normal distribution. 

In a parallelpiped bare reactor of dimension Za x 2b x 2c, the fiu is 

given by 

zle cos - yg cos - . Pl(X,Y,Z> = go cos - XA 

2a 2b 2c 

In the norms1 mode the source density is given by 
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where the total source, Q is 90 - 8V and V is the volume of the reactor. 
A3 

In a uniform distribution the same rimer of neutrons would give rise to a 

8 source density - Q  q = - = - 
v x3 40. 

Assuming the importance function for a source to be proportional to 

the flux, the relative effectiveness of a uniform distribution compared 

to that for a normal mode distribution is: 
13 

(F .lo) 

Cnmparing CA-1 and ~ ~ - 1 8  to a volume eQuivalent spherical system, one finas 

from Eqs. F.7 and F.10 the value of the effective f, i.e., the leakage 

correction discussed in EqI P?7: 

r 

R 

f 

Effective f 

CA-1 - 
34.22 cm 

134.5 cm 

8.646 c, 

4,605 Cs 

CA-18 - 
40.60 cm 

134.5 cm 

9.960 cs 

5.304 c, 
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