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PREFACE

A comprehensive study of fused-salt phase equilibria has been in progress at the
Oak Ridge National Laboratory for several years in connection with reactor technology.
In the course of that study, several complex fused-salt ternary systems have become
well enough understood that nearly complete phase diagrams of the systems could be
constructed.1 Detailed discussion of the phase equilibria occurring in those systems is

included herein.

Except for the LiF-BeF2-UF4 and NaF-BeF2-UF4 systems, each of the diagrams
of ternary systems included in this discussion was derived at ORNL in the Fused Salt
Chemistry Section, under the direction of W. R. Grimes.

Because it was felt that this collection of fluoride phase diagrams might prove more

valuable if accompanied with a discussion of some of the types of phase relations
illustrated in them, the following treatment was prepared. The purpose is to present
some general principles and explanations which should aid in the reading, interpretation,
and use of the actual diagrams in the collection and of other similar diagrams which
may still be determined. While the relations are usually explicitly shown, at least as
far as they are known, in the temperature-composition diagrams of the binary systems,
the corresponding relations are not always equally apparent in the usual "phase diagram"
of a ternary system of any complexity. In either case, moreover, the diagram does not
show the actual data and observations upon which the diagram itself, essentially an
inference, is based, nor does it give any idea of the amount of work, in experimentation
and in thought, underlying the construction of the diagram. This aspect of the diagrams,
however, is something best presented and treated by the investigators themselves.

All the diagrams in the collection represent "condensed systems": i.e., they show
the temperature-composition relations between solid and liquid phases under one atmos
phere of open pressure. For chemical reasons the atmosphere was actually helium or
argon. No two-liquid equilibria were encountered. Limited miscibility of solids is
involved in some of the diagrams, but there are no critical solution (or consolute) points
for solid solution. The discussion will deal only with types of phase equilibria actually
represented in the systems.

We shall treat first the essentials involved in the binary diagrams of the collection,
and then, more extensively, the essential relations for the several ternary diagrams.
The last sections will consider specifically the ternary systems and their constituent

binary systems.

'R. E. Thoma (ed), Phase Diagrams of Nuclear Reactor Materials, ORNL-2548 (to be published).
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1. BINARY DIAGRAMS

1.1 PURE COMPONENTS AS SOLID PHASES

With the pure components as the only solid
phases in a binary system (Fig. 1.1), the melting
points (TA and TB) are lowered and the system is
always eutectic in type. In Fig. 1.1 the eutectic
e involves the high-temperature form of A (Aa)
and the low-temperature form of B (Bp); at the
temperature of e the phase reaction is:

L(e) - calories -*r—- Aa+ Bg .

If T'A is the transition temperature for the forms
of A, then the two-solid mixture consists, at
equilibrium, of Aa and Bg above T'A and of
Ag and Bg below T'A. If T'B is the transition
temperature for the polymorphic forms of B, there
will be a break in the freezing-point curve (or
solubility curve) of the B solid at the temperature
T'B, unaffected by the A if both forms of the B
solid are pure. Above T'B, the liquid is in
equilibrium with Ba, below T'B with Bg. If the
transition B •* Ba fails to occur on cooling, a
metastable eutectic e(m) is possible, for liquid in
(metastable) equilibrium with Aaand Ba.

(It is possible for a solubility curve to show a
"retrograde" temperature effect, even down to the
eutectic, in which case we would have Fig. 1.2.
Retrograde changes of solubility with temperature
were not encountered in the present systems,
whether binary or ternary, but reference will be
made to this question later.)

Liquids with composition between A and e,
such as point a (Fig. 1.1), give Aa as primary
crystallization product when cooled to the curve
T.e. At the temperature Tx the equilibrium
mixture consists of solid A^ and liquid / in the
ratio (by weight or by moles, depending on the
units of the diagram) xl/xs. When the temperature
of e (eutectic) is reached, the remaining liquid
freezes invariantly to a secondary crystallization
product of a mixture of ^aand Bg crystals in the
proportion ev/eu. For liquids between band B in
composition the primary solid will be Ba, changing
to B0at T„, and followed by the eutectic mixture

p D

at e .

In a two-phase region such as TAue, the
coexisting equilibrium phases are joined by
horizontal tie lines (also called conjugation lines,
conodes, joins) running in this case between the
liquidus curve TAe and the solidus curve TAu.
With pure solid A, the solidus is here a vertical

line, the edge of the diagram. The horizontal line
uev is also sometimes considered part of the
solidus of the diagram.

1.2. PURE COMPOUNDS

Figure 1.3 shows three binary compounds
(C, D, E) in the system A-B:

1. Compound C melts congruently at Cc; it has
a congruent melting point. It is stable as a solid
phase until it melts to a liquid of its own chemical
(analytical) composition. Points e1 and e2 are
eutectics for solids A and Ca and for Ca and D,
respectively. At T'c, the higher-temperature form
C undergoes transition to Co. At Tc, Cg
decomposes on cooling into the solids Aand D.

2. Compound D melts incongruently at the
temperature D.. It decomposes as a solid phase

A + Ca

TC>

A + CD

e (m) v
e'{m)

Ca+ D

A + D

UNCLASSIFIED
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D+E E+B

C D

Fig. 1.3.
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(into liquid p and solid B) before reaching its
own melting point [the metastable or submerged
congruent melting point Dc(m)}. In contrast to a
eutectic point (e]# e2), the point p is called a
peritectic point (also meritectic, sometimes) and
the reaction:

D + calories v "* L(p) + B

is a peritectic reaction.

3. Compound E decomposes as a solid phase,
into D and B, at the temperature TE, before it
reaches any equilibrium with liquid. Such a solid
phase is sometimes called "subsolidus."

Figure 1.3 shows a metastable eutectic, e(m),
between solids A and D, possible if compound C
fails to form on cooling; e'(m) is a similar
metastable eutectic for solids C and B.

It is also possible for a compound to undergo
incongruent melting on cooling (inverse peritectic,
or inverse fusion), as shown in Fig. 1.4. No
example is found in the actual binary systems
studied, but the relation will be referred to under
the ternary systems. In Fig. 1.4, T, is the usual
incongruent melting point of C; T2 is its inverse
fusion point:

C - calories ^=^ L(p') + B .

Relation Between Congruence and Incongruence of
Melting for a Binary Compound

The flatness of the freezing-point curve of a
compound at the maximum, whether exposed and
stable as at Cc in Fig. 1.3 or submerged and
metastable as at £>c(m), depends on the degree of
dissociation of the compound in the liquid state.
If the compound C is not dissociated at all, the
maximum is a pointed intersection of two unrelated
curves: on one side the freezing-point curve of
the compound in the binary system A—C, on the
other side the freezing-point curve of the compound
in the unrelated binary system C—B. Only when
the maximum is such a sharp intersection may the
whole diagram be said, strictly, to consist of two
adjacent binary systems. If there is any dis
sociation of C into A and B in the liquid state,
the curve is rounded, and its maximum is lowered,
because the liquid, even at the maximum itself, is
not pure C (in the molecular sense) but C plus
A and B. The greater the degree of dissociation,
the flatter and lower is the maximum. Hence,
whether the melting point of the compound will be
exposed or submerged relative to the freezing-
point curves of adjacent solid phases depends

on the "true" melting point of the compound
without decomposition and on its degree of dis
sociation in the melt.

In a comparison of corresponding compounds of
given formula, such as A-B in a series of
homologous binary systems with A fixed and B
varied, the congruence or incongruence of the
melting point of the compound will be a function
of three variables: the melting point of the second
component (B, B', B", .. .), the "true" melting
point of the compound (A-B, A-B', etc.), and the
degree of dissociation of the compound in the melt.

For a given specific binary system, moreover,
the relation may vary with the pressure, because of
several effects. Pressure causes some change in
the relative melting points of all three solids of
the system (A, C, B); it causes corresponding
changes in the compositions of the intervening
isothermally invariant liquid solutions (e, p, etc.);
and it causes changes in the dissociation of the
compound. The melting point of the compound
may therefore be exposed (congruent) at one
pressure and submerged (incongruent) at a different
pressure. At some particular or singular value of
the pressure, therefore, the diagram would pass
through the configuration in Fig. 1.5. When a
system at arbitrary pressure seems to give such
a diagram, however, it is reasonable to suppose
that the maximum is actually either just exposed
or just submerged.

1.3. SOLID SOLUTION

Continuous Solid Solution

In a binary system with continuous solid
solution, the usual relation is either an ascending
one as in Fig. 1.6, without minimum or maximum,
or, as in Fig. 1.7, one with a minimum. Continuous
solid solution with a maximum is very rare. The
space L + S between the liquidus and solidus
curves represents, at equilibrium, two-phase
mixtures, the L and S compositions being joined
by a horizontal tie line at any temperature. In
Fig. 1.6 L and S have the same composition only
for the pure components. In Fig. 1.7 the L and S
curves touch at the minimum; they touch tan
gential ly, however, and the two parts of the
diagram are not strictly like two binary systems
side by side.

Except for the pure components or for the
composition m, a given composition has a definite
temperature range of freezing or melting, for
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Fig. 17.

equilibrium conditions. Liquid x (Fig. 1.6) begins
to freeze at t}, and the solid starts with compo
sition s,. As the temperature falls, the L and S
compositions adjust themselves, always on the
ends of a tie line, and the solid reaches the
composition x at temperature t2, the last trace of
liquid that solidifies having the composition l2.
Such a crystallization process assumes complete
equilibrium all along, with the time for diffusion
in the solid that is formed being sufficient for the
solid to remain of uniform composition and in
equilibrium with the liquid.

As the opposite limiting extreme we may speak
of crystallization with perfect fractionation, in
which no diffusion at all is assumed to be
permitted to occur in the solid. The first trace of
solid formed is assumed to be effectively removed
from the reaction (as in removal of vapor in
distillation), and becomes merely the core of a
growing particle with a layered structure, one
with infinitesimal layers with infinitesimally
changing composition, each layer being taken out
of the equilibrium as it is deposited. In such a
process the liquid x (Fig. 1.6) begins to freeze

at tv forming solid sv but now, with removal of
B-rich solid, the remaining liquid continues to fall
in freezing point and approaches the melting point
of A as limit. The solid formed has a core with
composition near s. and an outermost layer
approaching A in composition. As in azeotropic
distillation, such fractionation in the case of
Fig. 1.7 is limited by the minimum m.

Miscibility Gap in Solid Solution

Figure 1.8 shows limited solid solubility in a
system with minimum melting point. The eutectic
of this system:

L(e) - calories v """ a + b

is similar to that in Fig. 1.1 except that the solids
(a, b) are not pure. They represent the limits of
solid miscibility at the temperature e. The change
of this solid solubility with temperature is then
shown by the curves aa' and bb', joined by tie
lines indicating the compositions of conjugate
solid solutions. In Fig. 1.9 the miscibility gap
impinges on a system without minimum melting
point. The relation:

a + calories ^—- L(p) + b ,

is called peritectic, being analogous to the
incongruent melting point of a compound (D in
Fig. 1.3).

Solid Solution and Polymorphism

We consider only a few simple relations for the
effect of B (in solid solution) on a polymorphic
transition point of A. Unlike Fig. 1.1, if B
dissolves in solid A, then the transition temper
ature for:

A„ + calories v. ^ Aa

is either raised or lowered:
1. It is raised if B is more soluble in the lower

form than in the upper form of A (Figs. 1.10, 1.11).
The region x represents equilibrium between
a phase and /3 phase, and with the B content in fi
greater than the B content in a, the transition
temperature is raised, from TA to T'A. In Fig. 1.10
the phase reaction at T'A is:

Ag + calories ••Aa+L(p) .

In Fig. 1.11:

Ag + calories- A„+Bs

the B phase being a solid solution.
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Aa+L~~
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TA' IX.

TA Ae\
Ap+Bs \
Fig. 1.11.

2. It is lowered if B is more soluble in the
upper form; it is, therefore, always lowered if the
lower form is pure A^ (Figs. 1.12, 1.13, and 1.14).

Polymorphic transitions of this sort apply to
solid solutions of binary compounds, as well as to
solid solutions of the components themselves.
These are only a few of the relations possible in

l y

Aa+ L~ *\A+«s/
4.

Bs

TA

5"Y
\ A" +Bs

A \
y-4.-<\ Ae+Bs \

Fig. 1.13.

Fig.1.12.
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Fig. 1.14.

transitions of solid solutions, but they suffice for
the systems under consideration. In particular,
these systems involve no case of a congruently
melting binary compound dissolving adjacent
solids on both sides; such a relation always
involves the possibility of nonstoichiometric
maxima and Berthollide compounds.



2. TERNARY EQUILIBRIUM OF LIQUID AND ONE SOLID (SURFACES)

The ternary diagrams under consideration deal
with temperature-composition (T vs c) relations
in additive ternary systems, each with three
fluorides as components. The special problems
of representation met with for reciprocal ternary
systems, those containing two cations and two
anions, are not involved.

The relations could presumably be completely
and explicitly shown in a transparent, "explodable"
and sectionable three-dimensional triangular
prism model, in which the various phase spaces
and the two-, three-, and four-phase equilibria are
distinguished. The two-phase spaces contain
horizontal (isothermal) tie lines joining the
compositions of coexisting phases (liquid and
solid, or two solids). The three-phase equilibria
occupy spaces triangular in isothermal section -
spaces generated by isothermal three-phase
triangles, the corners of which move along con
tinuous curves with changing temperature. The
four-phase equilibria (isobarically invariant)
constitute isothermal planes defined by the four
phases of the equilibrium.

The relations in the three-dimensional T vs c
prism are usually represented and discussed by
means of plane diagrams which are either pro
jections or sections of the prism.

The only type of projection used in the present
discussion is the polythermal projection of the
liquidus surfaces. This is a projection parallel
to the temperature axis, upon the triangular
composition plane, showing, therefore, the
various parts of the liquidus surface or surfaces
as viewed from the direction of high temperature.
The resulting "phase diagram" thus consists of
fields (projected surfaces) for liquid saturated
with a single solid, of the boundary curves between
surfaces, for liquid saturated with two solids, and
of points for the intersection of these curves, three
at a time, for liquid in equilibrium with three
solids. The direction of temperature change can
be shown by arrows on the curves, and some
actual temperatures can be shown by means of
isothermal contours.

Such a polythermal projection shows directly
which surface will be reached by a liquid of
known composition upon cooling, and hence what
the nature, if not the composition, of the primary
crystallization product will be. The diagrams
under consideration give this information (where
it is known) unambiguously in every case because
they involve no solid phase with a retrograde

effect of temperature on its solubility (Fig. 1.2),
so that there is no overlapping, in polythermal
projection, of primary phase fields. This re
striction is understood in all the subsequent
discussion. The absence of retrograde effect
means, moreover, that the amount of liquid always
diminishes on cooling, while the total amount of
solid (or solids) always increases.

The T vs c prism is further studied and
analyzed by means of plane sections, which may
be vertical Tvsc sections through two particular
binary compositions, or may be horizontal iso
thermal sections which then amount to isothermal
solubility diagrams of the ternary system.

We shall now consider the crystallization
equilibrium of liquid and one solid (the surfaces
of the liquidus); in the immediately following
sections we shall consider the equilibrium of
liquid with two solids (the boundary curves) and
the equilibrium of liquid with three solids (the
"condensed invariants" of the system).

The "surface" (the field, in projection) is
variously referred to as crystallization surface,
freezing-point surface, solubility surface, primary
phase region, or primary phase field.

When a liquid is cooled to one of these surfaces
it deposits one solid on cooling, as long as the
liquid is still on the surface ("on the surface"
means anywhere short of a boundary curve). Every
point on the surface represents equilibrium
between that particular liquid (point) and a
particular solid composition, and the liquid and
solid compositions or points are joined by a tie
line (isothermal). If the surface is cut in isothermal
section, the isothermal solubility curve is then
joined by a series of nonintersecting tie lines to
the composition of the saturating solid. If the
solid is one of fixed, constant composition, all
the tie lines, at any and all temperatures of the
surface, meet at the fixed composition of the solid
phase. Otherwise the tie lines, at any temperature,
simply join the liquidus and solidus curves; the
solidus "curve" may be a straight line.

The direction of falling temperature at any
point of the surface is away from the composition
of the separating solid in equilibrium with the
liquid at that point. If the solid is one of fixed
composition, therefore, straight lines radiating
from its composition are lines of falling temper
ature, in every direction, and they cut contours of
lower temperature, progressively.



2.1. FIXED SOLID

In Fig. 2.1, the region Ae }Ee2 is the (projected)
surface for saturation with pure solid A. The
arrows on the boundaries indicate the direction
of falling temperature, and the curves 7., . . . , 7
are isothermal contours (7, > . . . > 7 ). |f the
liquid x, with composition falling on this surface,
is cooled, it begins to precipitate solid A at 7..
The crystallization path of the liquid, the path
followed by the liquid on the A surface while it is
being cooled and while it is precipitating A, is
then a straight line extended from A through x.
Removal of A from the liquid makes its compo
sition proceed in a straight line from the corner A.
The crystallization paths for a field of a solid of
fixed composition are therefore simply straight
lines radiating from the composition of the solid.
The composition of the liquid starting at x, while
precipitating A, will therefore be ly ly / etc., at
the successive temperatures shown, and the ratio
of solid to liquid is given by xl /XA, etc., at
each temperature. The quantity of liquid is always
diminishing, but the liquid is never completely
consumed while it is still on the A surface. Some
liquid must reach one of the boundary curves of the
field.

These relations hold, moreover, whether the
solid A is kept in contact with the liquid while it
is being cooled, or whether the solid is continually
removed as produced.
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2.2. VARIABLE SOLID (SOLID SOLUTION)

If the solid is a ternary solid solution, there is a
solidus surface, representing solid solutions
which are in equilibrium (point for point) with
liquids on the liquidus surface. The solidus
surface lies everywhere beneath the liquidus
surface in temperature, and it will not be repre
sented at all in the usual "phase diagram." Any
point on the liquidus is connected by an iso
thermal tie line with one individual point on the
solidus, representing the solid composition with
which it is in equilibrium. These tie lines never
anywhere intersect. The space between the two
surfaces is the two-phase space in which mixtures
consist, at equilibrium, of liquid and the solid
solution.

These surfaces are in contact at the composition
of a pure component (if the solid phase includes
the composition of the pure component), and
otherwise only at absolute maxima or absolute
minima of temperature, which may be at the binary
sides or in the ternary system: only at points, in
other words, and not along a whole ridge or trough
(valley). [The "absolute" maximum or minimum of
a liquidus surface is a point "on" the surface -
and this means, it must be recalled, not on any
one of its boundaries with another surface. The
absolute maximum or minimum may be at a unary
point (composition of a component), at a binary
point (side of the triangle), or at a ternary point,
as at the dome of a continuous ternary liquidus.
The surface, moreover, may have more than one
absolute maximum (or minimum).]

The equilibrium process of the freezing of a
liquid now involves a definite temperature range,
the vertical distance along the temperature axis,
in the 7 vs c prism, between the liquidus and
solidus surfaces. A liquid of composition x, let
us say, begins to freeze at 7] (the liquidus temper
ature at x) and is completely solidified at 7
(the solidus temperature for the same composition
x). The composition s} of the solid, as it just
begins to form at T}l is different from x. As the
crystallization proceeds, however, with falling
temperature, and if the liquid and solid phases
maintain complete equilibrium with each other,
both phases change in composition, so that at 7
the final solid has the original composition x ana
the last trace of liquid to solidify has still a
different composition /2# Between T} and 72
each phase has followed a separate, three-
dimensional curve with respect to temperature and



composition, one along the liquidus surface and
one along the solidus surface, but such that the
two compositions were always joined by an
equilibrium tie line, at each temperature, passing
through the total composition x.

The path followed by the liquid, on the liquidus,
in such a process, is called its "equilibrium
path": the path followed by the composition of
the liquid during cooling, if the whole of the
solid phase is at every moment in complete
equilibrium with the liquid. Such a process can be
attained only as a limit, perhaps, with extremely
slow cooling, since the interior of the growing
solid can be kept uniform with the surface layer
only through diffusion in the solid.

At the opposite extreme of behavior we may
specify that no diffusion whatever takes place in
the growing solid. The first infinitesimal amount
of solid now acts simply as an unchanging core
for a growing layered structure, each layer differing
infinitesimally in composition from the preceding
one, and each layer, because of the absence of
diffusion, being effectively removed from the
equilibrium as it is formed. In such a process
there is no longer a definite freezing range for
the liquid. As the solid produced is being ef
fectively removed, the remaining liquid tends
toward some temperature minimum of the surface
before being consumed. The path followed by the
liquid in such a limiting process of perfect
fractionation we shall call a "fractionation path."

(When the separating solid is of fixed compo
sition, as in Fig. 2.1, there is no distinction
between "equilibrium path" and "fractionation
path"; hence the one term, "crystallization path.")

Fractionation Path

The surface may be considered to be covered
by a family of curves (fractionation paths),
following the course of falling temperature and
hence cutting contours in the order of falling
temperature, and all originating at some absolute
maximum of the surface. If there is an absolute
minimum on the surface, then these paths, after
fanning out, converge again at that minimum. All
the cases in the systems under consideration
concern solid solution surfaces having one or two
absolute maxima (in some cases the maximum is
submerged or metastable); there are no solid
solution surfaces with an absolute minimum.
Hence the fractionation paths in these systems
do not converge with falling temperature, but end,

each at a separate point, at the various boundaries
(for liquid in equilibrium with two solids) of the
surface. With two absolute maxima on a surface,
there are two families of crystallization paths, one
originating at each maximum.

At any point on the surface, such a path starts
with a direction given by the L-S tie line at that
point of the surface, but the direction immediately
changes because, as the temperature changes, the
separating solid also changes. The direction of
motion for the liquid composition is away from the
composition of the separating solid. The fraction
ation path is therefore such that its tangent at
any point is the L-S tie line at that point
(Fig. 2.2). Here the curve Bf is a fractionation
path on a surface for precipitation of an A—B
solid solution; and the lines /, sv 12S2> ' ' ' • ^4S4
are L-S tie lines on this surface at temperatures

7,>7„>7,>7,'4'
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Fig. 2.2.

Equilibrium Path

The composition x in Fig. 2.3 is liquid above
temperature t. and solid below ty When cooled
to t., it just begins to produce solid of compo
sition s.; s. is a point on the solidus surface in
equilibrium with the point /, (or x) on the liquidus
surface. The line s}l} is therefore the S-L
tie line for /, at t}. With precipitation of sy the
liquid tends to move on the liquidus in the
direction of this tie line (i.e., it tends, with



removal of the solid phase, to follow the fraction
ation path pv to which the tie line s, Z, is tangent
at /j), but its motion is restricted by the condition
that the line joining solid and liquid compositions
must always pass through the fixed point x, at
each temperature, and that this line must always
be an equilibrium tie line. These successive
tie lines are s2 ly s3ly etc. The solid follows
the curve s, s, . . . s5 (s5 being the same as x),
and the liquid follows the curve (its equilibrium
path) /, Z2 . . . /5 (Z, being the same as x). At <
the sample is completely solidified, Z being the
composition of the last trace of liquid. Since
the lines s2Z2, s3 ly etc., are tie lines, they are
tangent, at the liquid points, to the fractionation
paths (p2 . . . p5) through these points.

It is thus seen that the equilibrium path of the
liquid x (its path on the liquidus surface) is one
which crosses, with falling temperature, successive
fractionation paths at points where the tangent to
the path passes through the point x. The

Fig. 2.3
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equilibrium path crosses the fractionation paths
from the convex to the concave side. If a fraction
ation path should be a straight line, it is not
crossed by an equilibrium path; it is itself an
equilibrium path, as in the case of precipitation of
pure solid.

In the general case of Fig. 2.3, the solid is a
ternary solid solution, and the liquid may com
pletely solidify, as assumed in Fig. 2.3, before it
reaches a boundary curve of the surface. If, as in
Fig. 2.2, the solid solution is binary, it is
impossible for a ternary liquid precipitating the
solid solution to solidify completely before it
reaches a boundary curve of the surface, where a
solid involving the third component may also
precipitate. But although, with binary solid
solution, the curve s}s2 ... s$ becomes a
straight line, the relations between equilibrium
path and fractionation paths developed in Fig. 2.3
still hold (Fig. 2.4). At ^ the mixture is not all
solid; it still consists of liquid and solid in the
ratio s x/xl. .

Returning to Fig. 2.3, any total composition,
like x itself, on the particular tie line si will
consist, at ty of the phases s3 and ly Hence the
equilibrium path of any total composition between
s3 anc' ^3 w'" Pass through one common point,
namely, ly Consequently, while there is but one
fractionation path passing through any single point
of the surface, there will be an infinite number of
equilibrium paths passing through the same point.
A surface may therefore be described by the
family or families of fractionation paths on it, but
not by equilibrium paths.
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3. TERNARY EQUILIBRIUM OF LIQUID AND TWO SOLIDS (CURVES)

We now consider the crystallization process for
a liquid in equilibrium with two solids, S. and S,:
liquid on a curve of twofold saturation (boundary
curve, field boundary).

3.1. REACTION TYPES

The curve constituting the boundary between the
surface for S} and the surface for S2 represents
liquid in equilibrium with both solids, but not
necessarily precipitating both solids upon cooling.
If the liquid does precipitate both solids on
cooling, and the reaction is:

L - calories v ^ S. + S2 ,

the crystallization is said to be positive for both
solids, £,(+), S2(+), and the curve is said to be
one of even reaction. [With retrograde temper
ature effects it is possible to have both solids
dissolving on cooling, with negative crystal
lization for both, so that the reaction may still
be even: £,(-), S2(-).] The curve is one of
odd reaction (a transition curve) if one solid (S^,
let us say) is dissolving in or reacting with the
liquid and the other, S2, is precipitating during
cooling. The crystallization is now £,(-), S2(+),
and the reaction is:

L + S. — calories =* S-

The sign of the reaction at a particular point
on the two-solid curve involves the direction of
the tangent to the curve at that point in relation
to the compositions of the two solid phases in
equilibrium with the liquid at that point. The
liquid is at any point simply one corner L of a
three-phase triangle. In the general case, in
which all three phases are variable in composition,
each equilibrium phase follows its own compo
sition curve in the phase diagram, but the usual
polythermal phase diagram shows only the curve
for the liquid composition. If the solids S^ and
5. are of fixed composition, then the ^-Sj 'eg
of the triangle is a fixed line and only the L-S^
and L-S2 legs move, with L on the liquid curve;
if one of the solids is a binary solid solution, then
the curve for that solid is a straight line; etc.
In any case the liquid curve on the ordinary phase
diagram represents simply one corner of the
three-phase triangle of the equilibrium, and the

whole triangle may in general be moving, with its
corners changing in composition, as the temper
ature changes.

Figures 3.1, 3.2, and 3.3 show three cases:
Figs. 3.1 and 3.2, cases with curves for both S,
and 52, both of which are therefore ternary solid
solutions; Fig. 3.3, a case with fixed solids for
S. and S2. The arrows on the curves indicate the
direction of falling temperature. The surface
on the left of the L curve is that for liquid de
positing S. on cooling; that on the right is for
liquid depositing S7 on cooling.
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Fig.3.2.

Fig. 3.3.

Positive crystallization (precipitation) of a
solid from a liquid corresponds to a direction
vector for the motion of the liquid away from the
composition of the separating solid; for negative
crystallization or dissolving of a solid in a
liquid, the direction vector for the motion of the
liquid is toward the solid. The resultant of the
direction vectors must make the liquid move in
the direction of falling temperature on the L curve.
Examination of the direction vectors, in Figs. 3.1,
3.2, and 3.3, required to give the indicated motion

11



on the L curve, shows that the reaction is even,
in every case, between r and s [£,(+), 52(+)], and
odd between s and t [£,(-), S2(+)]. Equivalent to
this procedure is the test of the tangent to the
curve at any point. If the tangent extends between
the compositions of the equilibrium solids, i.e.,
ifthe tangent cuts the S.-S2 leg of the three-phase
triangle, the curve is even [£,(+), S2(+)]; otherwise
it is odd. The sign of the reaction changes at
point s, where the tangent to the curve passes
through the composition of one of the solids (S
for the cases illustrated); i.e., where one of the
L—S legs of the triangle is tangent to the L curve.

A curve originating at a binary eutectic (pre
sumably as in Fig. 3.1), whether entering the
ternary system with falling or with rising temper
ature, always starts as an even curve, while one
originating at a binary peritectic (Figs. 3.2 and
3.3) starts as odd. But in all cases the sign may
change as the curve proceeds on its course, both
because of changing direction of the L curve and
because of variation in solid compositions. Hence
if "eutectic curve" or "peritectic curve" refers
simply to the origin of the curve, the expression
does not necessarily describe the type of reaction
later on along the curve. Since the type of re
action at any point on a curve is an important
property of the curve, it is better to speak of
"even" and "odd" curves in order to distinguish
curves for the precipitation of two solids from
transition curves.

The sign of the reaction on a liquid-solid curve
is, then, quite clear, on the ordinary phase dia
gram, if the solids are of fixed composition; but,
when the solids are variable, the type of reaction
(precipitation of two solids or transition) is often
unknown, for it is necessary at any point to know
the compositions of the saturating solids in order
to test the tangent at that point.

Since the direction of falling temperature on a
surface is always away from the composition of
the separating solid, it turns out that a two-solid
curve of even reaction can be reached from either

side, but if the reaction is odd [S.(-), SJ+)] it
can be reached only from the S. side. Both the
fractionation paths and the equilibrium paths
lead to the odd curve from the 5. surface, and
away from it on the S2 surface. This is at once
clear in Fig. 3.3, where all the crystallization
paths on the S^ surface radiate as straight lines
from the point 5., and those on the S, surface are
straight lines radiating from the point S..

12
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3.2. MAXIMUM AND MINIMUM

TEMPERATURE POINTS

A twofold saturation curve may pass through a
maximum or a minimum of temperature. This is
possible only if at least one of the solids is
variable in composition. At the maximum or
minimum the three-phase triangle becomes a line:
the three phases (L, S}, and S2) have collinear
compositions, all lying on one straight line of
the diagram. Figure 3.4 shows the case of a
maximum on a curve of even reaction, and Fig. 3.5
a minimum on a curve of odd reaction.

The leading corner of the three-phase triangle
(in the direction of falling temperature) may be
said to be the liquid. The collinearity corresponds
to the relations at a binary origin of such an
equilibrium, which is always a maximum or a
minimum for the equilibrium, and where of necessity
the three phases are on one straight line, which
then opens up into a triangle on entering the
ternary diagram.

3.3. EQUILIBRIUM CRYSTALLIZATION

PROCESS FOR LIQUID ON A TWO-SOLID CURVE

When the liquid is on a two-solid curve, the
fixed total composition x of the sample being
cooled must lie inside the three-phase triangle
(Fig. 3.6). The mixture consists of three phases,

Fig. 3.6.
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such that the ratio of the total solids to liquid is
xL/xy, and the ratio of S, to S2 is ySj/yS,.

As the temperature falls and L travels down the
curve, the whole three-phase triangle moves with
it, S. and S2 in general following their own com
position curves. Since the point x is fixed, it is
therefore possible (but not necessary) that one of
the three sides of the triangle may come to sweep
through x. When this happens, the mixture be
comes a two-phase mixture, the third phase having
been consumed in the crystallization process. In
the sketch in Fig. 3.6, if the general configuration
remains the same while the triangle moves to the
right, the amount of solid increases and the liquid
diminishes (as always), and when the side S^S2
sweeps through x, the liquid vanishes, leaving
S. and 5,. The solidification process would then
be completed while L is still on the curve, or
before L reaches the end of the curve, Q. But if
the triangle twists and changes shape as L moves
down the curve, the point x may come to be swept
by the S.L leg (S2 vanishing) or by the S2L leg
(51 vanishing). If S2 vanishes and the liquid is
left saturated with only S,, the liquid leaves the
curve to travel on the S^ field; if S, is consumed,
the liquid, saturated with S2 alone, moves off the
curve onto the 5. field.

Some of the possible variations of behavior are
the following:
1. Curve of even reaction:

(a) If the solids are not variable, no phase is
consumed while L is on the curve. The
liquid diminishes, but some reaches the
end of the curve; L does not leave the
curve.

(b) If S. is variable and 52 constant, either
liquid or S. may be consumed, but not S^.

Solidification may be complete on the curve,
or L may leave the curve for the 5] field,
or it may reach the end of the curve,

(c) If both solids are variable, any one of the
three phases may be consumed. Solidifi
cation may be complete on the curve, or
L may leave the curve on either side, or
L may reach the end of the curve.

2. Curve of odd reaction [S^-), S2(+)]: Now S,
may always be consumed, whatever the nature
of the solids.

(a) With fixed solids, only 5? can be con
sumed. The liquid may leave the curve for
the S2 field, or it may reach the end.
Solidification cannot be completed with L
on the curve.

(b) If S, is variable (S2 fixed or variable),
then any one of the three phases may be
consumed. Solidification may be com
pleted on the curve, L may leave the curve
for either side, or it may reach the end of
the curve.

A transition curve (odd reaction) is traveled
(L moves along the curve) only if complete equi
librium is maintained between the liquid and the
dissolving, or reacting, solid. If this solid (S^)
is effectively out of the equilibrium (i.e., if it is
removed as formed, if its surface is covered by
deposition of S2, or if the process is too rapid),
then a liquid which reaches such a curve by depo
sition of S. merely crosses the curve. It begins
to precipitate S2 without consuming any S^; it
undergoes a change in direction and enters at
once upon the S2 surface. The new solid S2 is
merely deposited upon the first (S^) in a non-
equilibrium mixture.
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4. TERNARY CONDENSED INVARIANT POINTS (FOUR PHASES)

Ternary condensed invariant points are generally
the points of intersection of three curves, each
for a liquid in equilibrium with two solids, re
sulting in the equilibrium of a liquid with three
solids. In addition we shall have to consider
reactions involving four solids, below temper
atures of equilibrium with liquid.

The four phases of the (isobarically) invariant
equilibrium are arranged either as a triangle, with
one phase inside (type A), or as a quadrangle
(type B). The special case which may appear
to be the limit between triangle and quadrangle,
with the fourth phase on a side of the triangle
(i.e., with three of the four phases on a straight
line), is strictly a binary three-phase invariant,
and the fourth phase, while present, is not in
volved in the phase reaction. We shall discuss
this case before considering the true ternary in
variant reactions.

4.1. BINARY DECOMPOSITIONS IN PRESENCE

OF TERNARY LIQUID

Given the four coexisting phases arranged as
follows:

Ph,_ Ph„ -Ph.

Ph.

with Ph,, Ph2, and Ph3 collinear, then the equi
librium:

Ph2 ^=^ Ph, + Ph3 ±calories

does not involve Ph.. Such a situation arises for
the interaction of three solids (collinear) in the
presence of a liquid phase:

B — C—D

1/

the liquid being saturated with all three. In the
usual examples found, the three solids are on a
binary side of the ternary diagram, but sometimes
they are on a line inside the ternary system.

U

'Pi Solids

If B, C, and D are three successive solids in
the binary system A-E, and if they are "pure" in
the sense that, although they may involve binary
solid solution among themselves, they nevertheless
do not take into (ternary) solid solution the third
component F, then the temperature (always at
constant pressure) of the equilibrium:

C — B + D + calories

is unchanged by the presence of a liquid, con
taining F, in which these solids are dissolved
to saturation. The liquid may even contain more
than one such foreign component. Provided that
the three solids themselves remain pure in re
spect to any of the foreign components (F, G, . . .)
in the liquid phase, the temperature of the phase
reaction is the same as that in the binary system
A-E itself.

Not only is the temperature independent of the
composition of the liquid phase, but, since the
liquid is not involved in the phase reaction, the
very amount of the liquid phase is constant (com
plete equilibrium being assumed) during the phase
reaction.

Such strictly binary invariant points will be
distinguished with a subscript identifying the
decomposing solid phase, such as P , or P_, in

the above examples. A similar invariant would be
that of the transition of a binary solid solution in
presence of a ternary liquid (points 7' in Figs.
1.10 to 1.14).

Effect of the Third Component Entering
into Solid Solution

If a foreign component enters any of the three
solids, forming a solid solution, the temperature
of the phase reaction is changed, and it now varies
with the composition of the solid solution (or
solid solutions). If C alone forms such a solid
solution with the foreign component, then the de
composition temperature is raised if the reaction
is:

C + calories ^—- B + D ,

and lowered if

C —calories ^ N B + D .



If C remains "pure" while either or both of the
other solids form a solid solution with the added

component, then the decomposition temperature is
lowered if the reaction is:

C + calories x N B + D ,

and raised if

C - Calories ^—> B + D .

If both C and one (or both) of its products form
such a solid solution, then the temperature of de
composition may be either raised or lowered, and
it may even pass through a maximum or a minimum.

Finally, however, when such ternary solid so
lution is involved in one or more of the three

solids, their compositions are no longer collinear.
The invariant reaction now involves all four

phases, it is no longer binary but ternary, and it
will pertain to one or other of the ternar/ types
now to be discussed.

4.2. TYPES OF TERNARY INVARIANTS

Type A Invariant: Triangular or Terminal
Type of Invariant

In the case of a type A invariant (Fig. 4.1), the
phase reaction is terminal with respect to the
interior phase. The phase reaction is:

4 ± calories ^=i 1+2+3 .

On one side of the invariant temperature we have
the three equilibria involving 1, 2, and 4; 2',
3', and 4'; and 1", 3", and 4"; and on the other
side only the equilibrium of 1"' 2'", and 3'".
The interior phase, 4, exists only on one side, and
its stable existence is terminated at the type A
invariant.

If the interior phase is a liquid and the others
are solids, the invariant is a eutectic. All four
phases may be solids, and then the invariant is the
decomposition of solid 4 into three solids. The
liquid may be an exterior phase, and then the in
variant is an incongruent melting point of the
interior ternary solid 4; two cases arise. Case

4 + calories v v 1 + 2 + L

is a ternary analog of the incongruent melting
point of a binary solid into liquid and another
solid. Case (b):

calories •*- 1 +2+L

is an inverse peritectic or inverse fusion point,
like one found in rare cases in binary systems
(Fig. 1.4), and (possibly) in one case in the
present ternary systems (solid phase C in system
Y-U-Z, Fig. 14.10).

Type B Invariant: Quadrangular, Diagonal, or
Metathetical Type of Invariant

In the case of a type B invariant (Fig. 4.2),
the phase reaction is:

1 + 3 ± calories v. s 2 + 4 ,

not terminal for any phase. On one side of the
invariant temperature we have the equilibria in
volving 1, 2, and 3 and 1 ', 3', and 4', and on the
other side the equilibria involving 1", 2", and
4" and 2'", 3'", and 4"'. This invariant is re
lated to double decomposition reactions, even
when occurring in additive ternary systems. The
combination 1 and 3 is stable only on one side
of the invariant temperature, and the combination
2 and 4 only on the other side. The stable di
agonal of the quadrangle changes from 1-3 to 2-4;
hence the term "diagonal reaction."

4.3. RELATIONS OF THE THREE LIQUID

CURVES AT THEIR INVARIANT INTERSECTION

On the liquidus diagram the only invariants we
see are those involving a liquid phase and three
solids, and they occur as intersections of three
curves of liquid in equilibrium with two solids.
Hence, unless the locations of the three solids
are known, relative to the position of the invariant
liquid (commonly this position is called "the in
variant point," but the invariant is not a point
but a plane, either triangular or quadrangular),
we cannot always know the type of invariant
involved.

If, as in Fig. 4.3, all three liquid curves fall in
temperature to their intersection, the invariant is
a eutectic (type A). The phase reaction is termi
nal for the liquid, which is inside the three-solid
triangle:

L - calories ^—> 5, +S2 +S, .

Conversely, if the liquid of the intersection is
known to be inside the three-solid triangle, then
the temperature must fall to the intersection on
all three curves, and the intersection is a eutectic,
the temperature minimum for the liquidus in the
area of the three-solid triangle.
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Fig. 4.1.

Fig. 4.2.

Fig. 4.3. Fig. 4.4.
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But any other arrangement of temperature fall of
the three curves may mean either a type A or a
type B invariant. Thus, the arrangement in Fig.
4.4 may mean either of the following reactions:

(a) Type A: S} +calories ^==^ S2 +S3 +L.
(b) Type B: 5, +L +calories rf^ S2 +Sy

That in Fig. 4.5 may be either of the following:

(c) Type A: S] - calories ^=^ S2 +S3 +L.
(d) Type B: S, +L - calories ^=^ S2 +Sy

These four invariants involving liquid (a, b, c, d)
are usually called simply "ternary peritectics"
as distinct from the eutectic reaction.

Moreover, the curves meeting at a eutectic are
usually all three of even reaction, but they need
not be; one may be odd in reaction. For in»
variants (a) and (b) (Fig. 4.4) one of the curves
proceeding from the invariant to lower temperature
must be odd. For invariants (c) and (d) (Fig. 4.5)
no restrictions of reaction sign hold.

For all invariant intersections of three liquid
curves, no angle of the intersection can be greater
than 180°. This requirement holds both for the
truly ternary invariants (types A and B) and for
those explained as binary invariants with the
three solids on one straight line. This restriction
means that the metastable extension of each

curve must extend into the field of the third

solid. The metastable extension of the curve for

liquid in equilibrium with S. and S., for example,
must penetrate to temperatures below the surface
for liquid in equilibrium with 5_, and this require
ment cannot be satisfied, for all three curves
simultaneously, if any angle of the intersection is
greater than 180°. Thus, in Fig. 4.6, the extension
ia' of the curve for liquid in equilibrium with 5-
and S„, which is a boundary of the surface for
liquid in equilibrium with S_, would have to pene
trate beneath the S. surface itself, an impossi
bility in the absence of retrograde temperature
effects, here excluded. The same contradiction
would hold for the extension z'&'of the curve for

liquid in equilibrium with S. and S which is
also a boundary of the S, surface. Only the
metastable extension ic'of the curve for liquid in
equilibrium with S. and S, would behave correctly.

4.4. CONGRUENT AND INCONGRUENT

CRYSTALLIZATION END POINTS

In Figs. 4.7 and 4.8, E represents a eutectic
liquid in equilibrium with the three solids S , S7,
and Sy (5,), (S2), and (S3) represent the fields for
liquid in equilibrium with each of the three solid
phases. With complete equilibrium always main
tained during cooling, the point E must be reached,
along one or another of the three curves meeting
at E, by liquid from any total composition in the
triangle S.S2S3, no matter how many other in
variant points may be traversed on the way; and,
with complete equilibrium, only liquids from
original compositions in the triangle S.SjS, will
reach E. Liquids with original composition x in
the triangle S^S-S3 cannot dry up, or they cannot
be completely solidified, until some liquid finally
reaches E. Since liquid E is inside the triangle
of its three solids, so that the composition of the
liquid E is accountable in terms of its three solids,
it is said to dry up congruently; i.e., E is the
congruent crystallization end point for compositions
in the triangle S.SjS,. Also, when the liquid

Fig. 4.6

Fig. 4.8
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reaches E, it is always entirely consumed; it
never leaves E. This is so whether the solids
involved in the reaction are removed as formed or
not. (Exceptions, of course, would occur if there
is supercooling with respect to some solid phase;
in such a case the liquid, approaching an in
variant point along a two-solid curve, simply con
tinues on the metastable extension of that curve
until the metastability is relieved.)

Invariant points other than eutectics [peritectic
points (a) and (d), Sec 4.3] may be crystallization
end points for some compositions, but they are
then, in contrast, incongruent crystallization end
points. The liquid in these cases is not inside the
triangle of its three solids, and its composition
is not accountable in terms of these solids.

The following consideration of these invariants
assumes complete equilibrium in all processes.

Case (a): Reaction of type A (Fig. 4.9):

L +S2+S3 calories ^= ^ S,

Here point P is reached by liquids traveling down
in temperature along the curve LS2S3, provided
the original total composition x is in the triangle
PS.S-. Then S. appears in the invariant reaction,
ana if x is in the triangle 5.5253 the liquid is
consumed, leaving the three solids. Point P is
therefore the incongruent crystallization end point
for the composition triangle S.i'.Sj. As for the
rest of the quadrangle: with x in the triangle
PS.S2, the solid S3 is consumed, leaving liquid,
Sj, and S2, and the liquid enters upon the curve
LS^S2; for x in the triangle PS^Sy S2 is con
sumed, and L leaves along the curve LS.Sy

This invariant is seen to be the incongruent
melting point of the interior phase S , which may
be either a fixed ternary compound or a ternary
solid solution. Upon heating, it decomposes or
melts incongruently, at the temperature of the
invariant, to produce liquid of composition P,
S2, and Sy

Case {d): Reaction of type B (Fig. 4.10):

S. + L —calories \ S2+ S3 .

Liquid P is reached on cooling for x in the quad
rangle S.S2PS3, along the curve LS^S2 if x is in
the triangle S.S2P and along curve LS^ for x
in the triangle S}S3P. If x is in the triangle
S2PS3, S. is consumed and L proceeds along
curve LS2Sy But if x is in the triangle S^S^y
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the liquid is consumed, leaving the solids Sy Sy
and Sy Point P is thus the incongruent crystal
lization end point for the composition triangle
S S ">
12 3
The invariants (b) and (c), on the other hand, are

never crystallization end points in a cooling
process.

Case (c): Reaction of type A (Fig. 4.11):

5] - calories s ** S2 + S3 + L .

This is the inverse incongruent melting point of
the solid S. (a fixed ternary compound or a ternary
solid solution), decomposing or melting incon
gruently, on cooling, into liquid of composition
P, S2, and S-, it is somewhat like that in Fig. 1.4
for a binary system. Liquids saturated with S^
and S„, along curve LS.Sy reach P on cooling
if x is in triangle S.S„P; and liquids on curve
LS S2, saturated with S. and Sy reach P if x is
in triangle S.S2P. Then at P, solid 51 decom
poses, and when all of it is consumed, the liquid
proceeds on the curve LS2S-. This case is en
countered later in Fig. 14.10, in system Y—U—Z.
For x in triangle S.S2S3, the system is com
pletely solid before the temperature falls to P; but
at P the liquid phase reappears in the invariant
reaction, as a result of the decomposition of Sj,
and L then proceeds along curve LS JSy

Case (b): Reaction of type B (Fig. 4.12):

S,+S3 —calories v S. +L .

At this invariant temperature the combination of
solids S„ and S~ reacts, on cooling, to produce
liquid of composition P and S., Liquid saturated
with S and Sy along curve LS S , reaches P
on cooling if x is in triangle PS.S,. Then if x is
above the diagonal PS., S, is consumed in the
invariant reaction, leaving liquid, S2, and 5., and
L then moves away on the curve LS.S.; for x
below the diagonal, 5, is consumed, and L leaves
upon the curve LS.S... In this invariant, the cool
ing of two solids, 5. and S3, leads to the for
mation of liquid and the solid S., a situation en
countered later in Fig. 13.6, in system Y—U—X.
For x in triangle 5,.5'253, the system is com
pletely solid before the temperature falls to P;
but at P the liquid phase reappears in the in
variant reaction, either S2 or S, is consumed
completely, and L then proceeds along one of the
curves falling away from P.



Fig. 4.11.
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With complete equilibrium, therefore, a liquid
reaching point P may be completely solidified at
that point in case (a) or case (d)t but never in
case {b) or case (c).

In the absence of complete equilibrium, however,
or if the liquid is not given time to react as re
quired with the solid phases at the invariant
temperature, the liquid reaching P does not stop
there at all, but travels on down in temperature;
along one of the issuing two-solid curves if there
is an even curve to lower temperature, or onto a
surface, of liquid in equilibrium with one solid,
if there is no even curve leaving P for lower temper
ature. Such crystallization processes will be
completed in various ways: on a solid solution
liquidus surface (the last crystallization product
being a single solid), on a curve of even reaction
(the last product being a mixture of two solids), or
at a eutectic (the last crystallization product
being a mixture of three solids).

4.5. MELTING POINTS OF

TERNARY COMPOUNDS

There are three types of melting points of
ternary compounds.

1. Congruent melting point: The solid ternary
compound here melts to a ternary liquid of the
same composition. This will occur at an absolute
maximum of the surface for liquid in equilibrium

with the compound, not at a boundary of that
surface. The compound is here said to possess
an "open" or "exposed" maximum.

2. Semicongruent melting point: In this case
the ternary compound M2 decomposes to a liquid
L and another solid M]# with all three compo
sitions, Mj, M2, and L , lying on a straight line
in the ternary diagram. This temperature will
be a maximum (y, in Fig. 4.13) on the boundary
curve between the surface (L + M^) and the sur
face (L + M_), and hence on curve LM^My The
temperature on curve LM}M2 falls away from y in
both directions, but, while the temperature on the
surface (L +M]) falls toward y, the temperature on
the surface (L + M_) falls away from y.

3. Incongruent melting point: In this case the
ternary compound S~ decomposes to a liquid P
and two other solids, in an invariant reaction in
which the ternary compound is the interior phase
of a triangle; case (a) above (Fig. 4.9).

4.6. INVARIANTS INVOLVING SOLIDS ONLY

Invariant reactions both of type A and of type B
may involve simply four solid phases, below
temperatures of liquid equilibrium. The usual case
would be some double decomposition of type B.
The type A reaction would apply for the decom
position, on heating or cooling, of one solid into
three others, as already mentioned. Both types
will be encountered later.
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5. CRYSTALLIZATION PROCESS WITH PURE SOLIDS

In this and in the next two sections we shall
consider some of the relations met with in typical
ternary systems, first in systems involving only
pure solid phases and then in systems involving
solid solutions.

The ternary system of Fig. 5.1 contains two
binary compounds, D} and Dy stable at the
liquidus temperature and not decomposing on
cooling. Any ternary liquid, upon complete solidi
fication, must, if complete equilibrium is main
tained throughout, consist finally of a mixture of
three of the five solids of the system - A, B, C,
D^, and Dy But there are two arrangements of
the five solids possible: scheme [a) and scheme
(b). We know in advance that one of the three-
solid combinations will be A, Dy and Dy but
to determine whether the coexistence of solids in
the system is (a) or (b), experiment is required.
In (a) the pair of solids D] and B is an unstable
combination, and it would react to produce D. and
C (plus excess of either D, or B), while in (b)
the pair D2 and C is unstable and would react to
produce D] and B. For this reason the three-
solid coexistence triangles shown in either scheme
are sometimes called "compatibility triangles."
Theoretically, a single experiment, upon a liquid
composition at the intersection of the lines D}B
and D2C, would suffice to establish the coex
istence relations, provided that the final solids
obtained upon complete crystallization represented
true equilibrium. In scheme (a) the experiment
would yield the pair D2 and Cas sole solids, and
in scheme (b) the opposite pair. Such an experi
ment is an application of what is known as
Guertler's Klarkreuzverfahren.

In either case, the phase diagram will have five
fields and three invariant points of liquid in
equilibrium with three solids, each functioning as
a crystallization end point, congruent or incon
gruent, for one of the three-solid triangles. The
curves of liquid in equilibrium with two solids
will be joined by three intersections, as in Figs.
5.2 (a) and (b), corresponding respectively to
Figs. 5.1 (a) and (b). The invariants are numbered
to correspond to the three-solid triangles in Fig.
5.1.

In either case, at least one of these invariants
must be a eutectic, with the invariant liquid in
side the three-solid triangle of corresponding
number, while the other two points may be either

20

eutectics or peritectics, together or separately.
Scheme (a) thus comes to have nine possible
arrangements of the three invariant points:

Triangle I Triangle II Triangle

EyP2 E3

El P2'£3

El £2'P3
PyE2 £3

EyP2. P3
EyP2 P3
— P F

V C2' P3
— Py P2. E3

The entry "F,, P2 Pg —" in line 7 means, for
example, that the first two intersections are in
triangle I and the third in triangle II, so that the
first is a eutectic and the other two are peritectics.

Although each of the curves for liquid in equi
librium with two solids enters the ternary diagram
with falling temperature, the temperature direction
on the two interior curves depends on the nature

Fig. 5.2.
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of the invariant points involved, for only a eutectic
is a temperature minimum.

Moreover, each of the nine possibilities enu
merated for scheme (a) will have several variations
depending on the congruence or incongruence of
the melting points of the binary compounds in
their binary systems, with further subvariations
(for incongruence) depending on whether the
peritectic and eutectic solutions for the incon
gruent compound are on the side of one or of the
other component in its binary system. With a
congruent melting point, the composition of the
compound will be on the binary side of its ternary
field, at the maximum temperature of the surface,
and the crystallization paths radiate from its
composition. The composition point of an incon-
gruently melting compound will be outside its
field, but the composition point still represents
the (metastable) maximum of its surface, and the
crystallization paths radiate, by extension, from
its composition.

In Fig. 5.3, with three binary compounds, D,
melts congruently, and <?„ and e, are both binary
eutectics:

L(e5)-*B +D2 ,

L(e6)->C +D2 .

(Note: reactions are written for the cooling
process.) The compounds D. and D. both melt in-
congruently, and p. and p3 are the peritectic
liquids of the respective binary systems:

L(Py\+C-*D} ,

L{p3)+A-*D3 .

There are six fields, projections of surfaces for
liquid saturated with a single solid: A, D., C,
Dy B, and Dy in clockwise order.

The system has four ternary invariant points,
corresponding to the four three-solid triangles.
Three of the invariants are eutectics (temperature
minima); however, one, P,, is not, since its
liquid, saturated with the solids of triangle III,
falls in triangle IV. The temperature along the
curve E Ey for liquid saturated with D. and Dy
has a maximum value at m, the intersection of the
boundary curve with the line joining the two solids.
This is a "collinear equilibrium," and the three-
phase triangle for liquid in equilibrium with D. and
Dy starting as the straight line D.mDy expands,
with falling temperature, to end as the triangle

DyEyD2 at F, and as the triangle D}E2D2 at Ey
The line D.mDy joining the compositions of the
solids and intersecting the boundary curve between
their adjacent fields, is known as an Alkemade
line. With the temperature falling toward m on
both adjacent surfaces (for liquid in equilibrium
with D1 and for liquid in equilibrium with D2),
while the temperature falls away from m on the
F.F2 curve, the point m is a saddle point on the
curve.

The line Am'D2 is another Alkemade line, and
m' another saddle point, a minimum in temper
ature on the surfaces between A and D2 but a
maximum of temperature on the curve F2P3. The
triangle for liquid in equilibrium with A and D.
expands, with falling temperature, from the line
Am'D2 tothe triangle AF2D2 and, also with falling
temperature, to the triangle AP J)y

The section of the diagram through the line
Am'D., moreover, is a quasi-binary section. The
vertical section of the 7 vs c prism through this
line is altogether like the 7 vs c diagram of a
simple binary system (Fig. 5.4). Such a section
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A+l
L+ Dn

A+D,

Fig. 5.4. Fig. 5.5.
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divides the actual ternary system A—B—C into
two separate subsystems, A—C—D2 and A~D2~B.
The section through the line D.mDy on the other
hand, although also containing a saddle point
very similar to m', is not quasi-binary; one of the
solid phases involved in the equilibria traversed
on this section is C (between D1 and point r), so
that the phase equilibria along line D.mD- are
not describable on the basis of a binary system
with D. and D. as components.

From this point on, phase reactions involving
one or two or three solids will be written always
as occurring in the direction of falling temperature,
or in the direction of removal of heat, unless
otherwise specified. The equation:

Sl +S2

therefore, means:

L - calories -> S + 52

The reactions along the boundary curves of
Fig. 5.3 are as follows:
e2E2: L -» D] + A;
P3Py L +A-*D3 (reaction odd);
e4E4: L -*D3+B;
e5E4: L -+B +Dy
e6Ey- L -*D2+C;
p,E.: reaction odd from p. to s: L + C -> D.; re

action even from s to F.: L -> C + D. (the
line D.s is tangent to the curve);

E}mE2: L-*D} +D2;
F1mP3: L -* A +Dy
P3F4: L,D3+D2.

The invariant reactions are:

F : L ->D, +C +D2;
E2: L -* A +D} +D2;
P3: L +A -*D2 +D3;
E4: L ->D3+D2+B.

Liquids with original composition x in triangle I
must reach F. for complete solidification; those in
triangle II must reach F • those in triangle III
must reach P ,; and those in triangle IV must reach

The peritectic P, is reached by all liquids with
x in the quadrangle AD2P3Dy For x in the region
m'D P, the liquid precipitates D as the first
solid, reaches curve m'P, and then proceeds to
P. carrying A and D, as solids. For x in the
region Am'P , the liquid reaches curve m'P
after precipitating A, and also reaches P3 carrying
AindD . Liquids with x in the region APyD3, and
hence on the A surface, precipitate A and reach
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the curve p,P,, which is then followed while some
A reacts with liquid to form Dy At P •.

L +A •* D3 +D2 .

Now for x in triangle III, the liquid is consumed,
leaving A, Dy and D_ (complete solidification).
But for x in the triangle D.D.Py A is consumed
and the liquid proceeds on curve P E ..

The eutectic F4 is reached by all liquids with x
in triangle IV. Those from the triangle D D2P3
reach P., as already explained. Those in the
quadrangle P D e^E. precipitate D2 as the first
solid, reach one of the boundary curves, and
then proceed to F , either along curve P3F4
precipitating D, and D_, or along curve e5F4 pre
cipitating D. and B. Those from the B field be
have similarly, reaching F4 either along curve
e.E. with D, and B as solids or along curve e,F.

4 4 J 0 4

with D2 and B as solids. Those falling upon the
D3 field, p P3F .e ., precipitate D3 as first solid,
and reach F4 along either curve P.E. or curve
e .E .. Original compositions in the region D.P3p.,
such as point u, give A as first solid and reach
the transition curve p3P3 on a straight line from
A, as at point v. They then travel on the curve,
toward Py but solid A is consumed before P., is
reached, as at point w, on a straight line through
D3 and u. At this point the liquid is saturated
only with Dy and it therefore leaves the curve
and travels across the D. field to one of its

boundaries, P3F4 or e4F4, finally to reach F4.
The transition curve ?,P, is therefore left be

hind, after some travel along the curve, by liquids
coming from original, total compositions x in the
region D.P.p., when the tie line D3L of the three-
phase triangle for L on curve p3P3 comes to sweep
through x, for at that point the solid A will have
been consumed to leave D. as the sole solid

phase.
(We shall speak of the transition curve as thus

being "crossed" by the liquid in an equilibrium
process, for x in a specified region. The word
"crossing" will be used, for brevity, to mean that
the liquid reaches the curve from one field, travels
along the curve for a limited range, and then,
when the original solid is consumed, leaves it
before reaching an invariant point, to move across
the adjacent field.)

While the liquid is on any one field, precipitating
a single solid, it travels in a straight line ex
tending from the separating solid, until it reaches
one of the boundary curves of the field.



Except for the region between point C and the
curve between p. and s, the relations in the sub
system A-C-D2 are simple. Precipitation of a
first solid leads to a boundary curve, and along
the curve to one of the eutectics. Thus compo
sitions in the region rsE^m give D} as first solid,
reach either curve sE} or curve mEy and finally
point E., to end as Dy C, and Dy

But pyS is a transition curve, and it is crossed,
as explained for curve p3Py by liquids originating
in the region p^D^s. The curve p]S is reached by
liquids precipitating C, from the region between
the curve and the corner C. Those coming from
above the tangent line D}s do not leave the curve,
but stay on the curve up to the eutectic Ey Along
the section p}s the quantity of C is decreasing
at the expense of Dy and between s and E, both
solids are being precipitated.

For solutions from the region pyD^s, solid C is
consumed when the tie line DyL of the three-phase
triangle passes through thefixed total composition,
and the liquid then leaves the curve. For x in the
region D}p^r, the liquid then reaches either curve
e E, or curve mE2 to end at point Ey from the
region D.ry {y being on the line D}E}), the liquid
reaches curve m£. and hence point Ey

For x in region D^ys, the liquid, having followed
the odd curve ys for part of its length, leaves the
curve, travels across the D1 field, and then
reaches the even part of the same curve, sEy
These compositions then give the following
sequence of events. The liquid precipitates C as
the primary solid and moves on the C field on a
straight line from the corner C, to reach the curve
between p} and s. Along the curve, as L moves
toward s,

L + C -*D} ,

and C will have been completely redissolved or
consumed when L reaches a point on the curve
between y and s, on the straight line D,x. The
liquid now traverses the D, field, precipitating Dy
and reaches the same curve again between s and
E , where it precipitates both D1 and C. Finally,
at point Ey

L -*D, +C +D2 .

The primary solid phase C therefore disappears,
but C reappears later as a secondary crystal
lization product together with Dy

Finally, some of the relations in Fig. 5.3 will
be shown on isothermal diagrams and vertical
7 vs c sections. Attending first to the isothermal
solubility curve of Dy we note that between p}
and r its isothermal solubility curve (simply an
isothermal temperature contour on the D} field in
Fig. 5.3) is not cut by the line DyDy while be
tween rand mit is. The solid D, is then said to
be incongruently soluble in D2 in the temperature
range between p, and r, but congruently soluble
in D2 between r and m. Asolubility isotherm for
this region between p} andrwould be schematically
as in Fig. 5.5. Between r and m, we have Fig.
5.6: just above m', below e2, below efi but above
e,, above py and below the freezing point of B.
The isotherm shown in Fig. 5.7 is still above E,
and Ey below p3 but still above P3 and ey
Figure 5.8 is at P3 and below Ey Ey and e5, but
still above e^ At the invariant Py the field of
A in equilibrium with liquid shrinks to a line
(AP3) and vanishes, in the reaction:

L(P3)+A-+D3 +D2 .

The vertical 7 vs c sections through D}D2 and
DS>2 are relatively simple, as shown in Figs.
5.9 and 5.10 (schematic, not in scale with Fig.
5.3). Figure 5.11 shows the vertical section
through CDy and Fig. 5.12 the section through
D.B (both schematic).

Fig.5.6
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6. CRYSTALLIZATION PROCESS WITH CONTINUOUS

BINARY SOLID SOLUTION

The system of Fig. 6.1 involves two solid
phases, pure C and the continuous binary solid
solution A—B. The binary system has a minimum
freezing point at m, Fig. 6.2. All ternary compo
sitions must solidify to two solids, pure C and a
binary A-B solid solution. Curve e.e, represents
liquid precipitating these two solids; M is a
temperature minimum on this curve, and it is also
the temperature minimum of the whole system.
(Curve e.e2 may have either a minimum or a
maximum or neither.) Liquids in the C field reach
this curve on straight lines from the corner C;
those in the solid solution field reach it along
curves on the solid solution surface. In either

case the liquid then travels toward M, but for
complete equilibrium solidification is complete,
leaving the two solids, before L reaches M, unless
the total composition x lies on the straight line
CMs, The three-phase triangles for L on the
boundary curve start as the straight lines Ce.A
and Ce2B and proceed, with falling temperature,
toward M according to the configurations shown

^^

Fig. 6.2.
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C+L+ss

C+ss

C A-

Fig.6.3.

in Fig. 6.1, collapsing again, from either side, to
the line CMs.

A vertical 7 vs c section from C to the side

AB appears as in Fig. 6.3. Here the composition
of the solid solution (55) is not on the plane of
the section. Even at point v the liquid of the
section is not in equilibrium with solid solution
of the same composition as the liquid (but point u
of course is simply the melting point of pure C).
Only for the section through Cm would v represent
liquid and solid of the same composition, but the
section through Cm would not pass through the
ternary minimum M. The region C + L + ss of
Fig. 6.3 collapses to a horizontal (isothermal) line
only for the section through M, CMs (and of course
also at the binary sides Ce.A and Ce2B).

In an equilibrium process, any liquid of original
composition x is completely solidified, while
traveling on the curve, when the C—ss leg of the
three-phase triangle passes through the point x,
to leave C and a solid solution of composition on
the extension of the line Cx. Solution y, moving
on a straight line from C, reaches the curve at L
and there begins to precipitate Sy As L travels
on the curve toward M, more C and more solid
solution will precipitate, but the solid solution
changes in composition, leaving the solids C and
s3 when the last trace of liquid vanishes at ly
Liquid z, moving on a curved equilibrium path,
reaches the curve e.e2 at /,, at which point the
solid solution has the composition Sy At ly C
also begins to precipitate, and solidification is
completed with liquid at ly leaving C and Sy

The course of the liquid on the solid solution
surface, however, is not shown by the "phase
diagram" of Fig. 6.1. With a minimum m in the
A-B binary equilibrium, this surface has two
families of nonintersecting fractionation paths, as
sketched in Fig. 6.4. All fractionation paths end,
without intersection, at the boundary curve e^ey
The two families are separated by a limiting
fractionation path originating at m. This path
reaches the curve e.e2 at a point N which may be
either on the left or on the right of M. Moreover,
the path mN may be either convex toward B,
as drawn, or convex toward A, and it may even
have a point of inflection. With the arrangement
assumed in Fig. 6.4, the fractionation paths on the
A side are always convex toward B; those on the
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Fig.6.4.

B side all start as convex toward A, but some of
them have an inflection point and become convex
toward B before they reach the boundary curve.
These inflection points are joined by the locus
curve mR.

6.1. FRACTIONATION PROCESS

As liquid follows one of the fractionation paths
in a fractionation process, the composition of the
layer of solid solution being deposited at any
point is given by the tangent to the fractionation
path through that point. Then, once the liquid
reaches the curve ey?2, whether from the C field
or from the solid solution field, it moves on the
curve toward M as limit. For liquids traveling in
the direction e. -» M, the outermost layers of solid
solution being deposited have compositions in
creasing in B content, approaching s as the limit,
from the A side. Those moving along the curve in
the direction e2 -» Af deposit layers increasing in
A content, and also with s as limit.

The total process therefore varies according to
the various regions of the surface. (In this dis
cussion it must be remembered that the fractionation

path is everywhere tangent to an equilibrium tie
line. Hence the layer of solid being precipitated
at the point where the fractionation path reaches
the curve e.e2 is given by the tangent at that
point, extended to the line AB. At M itself this
tangent is the line CMs; at N the tangent goes to
z, at R to y. Also, the word "solid" will here
mean "the layer of solid being deposited.")

26

1. Region Ae^M (i.e., between e. and the
fractionation path AM): While L is still on the
surface, the "solid" increases in B content, to a
limit given by the tangent to the particular frac
tionation path involved at its intersection with the
curve e^M; and as L then travels on the curve (to
M as limit), the "solid" increases still further in
B (to s as limit).

2. Region between paths AM and mN: With L
on the surface, the "solid" always increases in
B, with z as the possible limit for fractionation
paths reaching the boundary curve near N. The
boundary is reached in the section MN, and then,
as L moves toward M, the "solid" increases in A
content, toward the limit s.

3. Region BRe2: With L on the surface, the
"solid" increases in A, with y as limit for the
path BR itself; then, as L travels on the curve
(to M as limit), the "solid" increases still further
in A (to s as limit).

4. Region between paths BR and mN: The
"solid" increases in A until the inflection point
of the fractionation path is reached (intersection
of fractionation path with curve mR), and the
composition of the "solid" at that point is given
by the tangent to the fractionation path at the
inflection point. Now the "solid" begins to de
crease in A content, to a limit given by the tan
gent at the end of the fractionation path at the
boundary curve, reached in the portion NR. Then
as L moves on the curve toward M as limit, the
outermost layer of solid again moves to increasing
A content, toward s as limit.

5. Path mN: For a solution on the path mN
itself, the "solid" increases in B content (be
tween limits m -» z), and then moves toward s
as L, after reaching point N, moves on the curve
toward M.

6.2. EQUILIBRIUM PROCESS

In a crystallization process with complete
equilibrium between the total solid phase and the
liquid, the liquid, such as point a in Fig. 6.4,
follows an equilibrium path (dotted curve a ... b)
in its course on the surface to the boundary curve
e-\e2' The relation of this equilibrium path to the
fractionation paths which it crosses has been ex
plained in connection with Fig. 2.4. The point b
is fixed by a three-phase triangle with the ss—L
leg passing through point a. Then as L moves on
the curve toward M, solidification is complete
when the ss—C leg of such a triangle passes
through a.



The changes in the composition of the solid
solution as the liquid follows its equilibrium path
will depend on the region of the surface involved.
Now the word "solid" will mean the total solid,
assumed to be uniform in composition and in full
equilibrium with the liquid. We note first that all
equilibrium paths for solutions in the region AsMe^
reach the boundary curve between e1 and M; those
for solutions in BsMe2 reach the curve between
e„ and M. Point M is reached only for total com
positions on the line CMs.

1. Region AMe}: The equilibrium path does not
cross the line sM on its way to the boundary
curve. The solid increases in B both before and
after L reaches the curve.

2. Region AMs: The equilibrium path crosses
the line sM on its way to e}M. The solid again in
creases in B both before and after L reaches the
curve.

3. Region smNM: The equilibrium path does not
cross the path mN; it ends on MN. The solid in
creases in B while L is on the surface, but the
reverse change sets in when L begins to travel on
the curve.

4. Region BRe2: The equilibrium path does not
cross the line Ry; it ends on e2R; the solid in
creases in A both before and after L reaches the
curve.

5. Region ByR: The equilibrium path crosses
Ry; it ends on e2R; the solid increases in A both
before and after L reaches the curve.

6. Region yzNR: The equilibrium path does not
cross the path mN; it ends on NR.

(a) Region yzdR: The solid increases in A
until the equilibrium path crosses curve mR; then
the solid increases in B until L reaches curve
NR; then the solid increases again in A while L
travels on the curve.

(b) Region dNR: The solid increases in B
until L reaches curve NR; then it increases in A.

7. Region mzN; The equilibrium path crosses
the path mN, to reach the boundary curve on the
left of N (between c and N, curve cm being the
L-ss leg of a three phase triangle for L at point
c). The behavior for the regions above and below
curve mR differs as described for region yzNR.

(The preceding discussion of Fig. 6.4 is based
on the analysis by Osborn and Schairer.1)

The composition of the equilibrium solid for
original liquids in the region Rmy, as just stated,
reverses its direction of change (increasing first
in A, then in B) while the liquid is still on the
surface. The equilibrium path for such a liquid
first crosses fractionation paths which are convex
with respect to A, in the order 1, 2, 3, 4, etc., and
in this region the solid is becoming richer in A.
But the rate of this composition change of the
solid decreases as the equilibrium path meets
fractionation paths of smaller and smaller con
vexity. When the equilibrium path finally reaches
the locus curve mR, it has reached a fractionation
path exactly at its inflection point, with no con
vexity at all at that point. This fractionation
path will not be crossed by the equilibrium path,
which here turns away and begins to recross the
fractionation paths, which are now convex with
respect to B; i.e., it now crosses the fractionation
paths in the order 1', 2', 3', ... , 7', while the
solid increases in B content.

It has been argued by Bowen2 that when the
equilibrium path just touches a fractionation path
at the point of inflection of the latter (on curve
mR), the equilibrium path undergoes an abrupt
change in direction (a "corner"). This seems to
be incorrect. The equilibrium path crosses frac
tionation paths only from their convex to their
concave side. The sharper the curvature of a
fractionation path, the greater is the angle of in
tersection where the equilibrium path crosses it.
As the fractionation paths lose their curvature,
approaching their inflection points, this angle of
intersection diminishes; a zero angle of contact
is approached (no longer an intersection) when the
equilibrium path reaches a fractionation curve
exactly at the latter's inflection point. If an
equilibrium path has to cross the fractionation
paths 1, 2, 3 before reaching path 4 at the in
flection point of path 4, the intersection angle de
creases as it crosses paths nearer and nearer to
path 4, because the intersection is occurring
nearer and nearer to an inflection point of a path.

1E. F. Osborn and J. F. Schairer, Am. ]. Sci. 239,
715 (1941).

2N. L. Bowen, Proc. Natl. Acad. Sci. U.S. 27, 301
(1941).
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The contact at such a point must therefore be
tangential, and the equilibrium curve changes
its course smoothly, without a cusp (Fig. 6.5).
If i is the inflection point on the fractionation
path Bf, and is is the tangent at i, then equilibrium
paths for all total compositions {a, b, c) on the
line is reach point i, changing their directions
(with respect to the family of fractionation paths)
as shown. The change in direction is more marked
the farther the total composition is from the point
i, but the equilibrium path is nevertheless tangent
to Bf at i.
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CRYSTALLIZATION PROCESS WITH SOLID SOLUTIONS

AND SEVERAL INVARIANTS

7.1. THE PHASE DIAGRAM

In Fig. 7.1 the binary system A—B forms dis
continuous solid solution with a eutectic at e.,
liquid saturated with solids whose compositions
are Sg and S^. These points are to be compared
with the binary diagram shown separately as
Fig. 7.2. The other solid phases of the ternary
sys\em,C,Dy Dy are pure; D. is an incongruently
melting binary compound, D. melts congruently.
There are five fields - for C, Dy D2, As (the
A-rich binary solid solution of A and B), and
B (the B-rich binary solid solution of A and B) —
and there are three invariant points, each per
taining to a three-solid triangle. From the di
rections of temperature fall, one is a peritectic,
P., and two are eutectics, F, and F3.

The curve F.E3 must have a saddle point m on
it, and the A solid solution which (together with
solid D2) saturates the liquid at point m must lie
on the extension of the straight line D.m to the
side AB, at S . The solid solutions saturating
liquid E3 are somewhere close to the points S
and S '. Since the temperature of E. is lower
than e., the compositions of the limiting solids of
the A—B miscibility gap at E. will depend on the
effect of temperature on the solid-solid solubility.

The three-solid triangles for any of the three in
variant points, therefore, cannot be drawn in with
out the experimental determination of tie lines
along the curves near the invariants, and ultimately
of the solid solution compositions at the in
variants. The invariant P., a peritectic, involves
the solids C, D., and S. (a solid solution of
composition somewhere near A) in the reaction:

UP,)+D, C +5,

and P. is outside triangle I (CD.S.). The eutectic
E2 must be inside triangle II (CD-Sy where S2 is
another unknown solid solution composition); E3
must be inside triangle III (D-S^S'). In the last
case, S3 and S' are known points if the solid so
lution limits in the binary system A—B are known
for the temperature of F3 (as in Fig. 7.2).

In Fig. 7.3, we assume that these key solid so
lution compositions have been determined and that
the three-solid triangles may therefore be drawn.
The solid miscibility gap in system A—B has been
assumed to widen with falling temperature (Fig.

7.2) so that Sg and S' lie between the points
S3 and S'y

Since Sy Sy and S3 are different compositions,
the three-solid triangles are not adjacent. They
do not have common sides, and they do not cover
the whole of the diagram. Only original compo
sitions x falling inside one of these three-solid
triangles will, on cooling with complete equilibrium,

Fig. 7.1.

Fig. 7. 2.
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Fig. 7.4.

solidify to mixtures of three solids: those in
triangle I solidify incongruently at P., those in
triangle II and triangle III solidify congruently at
F_ and Ey respectively. The areas not included
in these triangles solidify to two-solid mixtures,
and hence these areas are shown with tie lines:

D. and a solid solution whose composition is be
tween A and S. for the area DyASy- Cand a solid
solution between S. and 52 for the area CS^Sy
D2 and a solid solution between S2 and S3 for the
area D2S2S3; and D2 and a solid solution between
53 and B for the area D2S'3B.

The three-solid triangles do not overlap unless
solid-phase interactions (here excluded) should
occur at temperatures between the invariants. But
when peritectic invariants are involved, the in
variant planes (which include the liquid phase

30

besides the three solids) may overlap, as is the
case here for the invariant quadrangle CDyS^Py
overlapping, on the polythermal projection, the
invariant triangle CS2D2 (with E2 as interior
phase). These planes are at different temper
atures; the P. plane is above the E2 plane, which
is above the E3 plane.

Also, the solid solution compositions S. and
S2, it must be kept in mind, are not on the solidus
curve aS of Fig. 7.2. They are simply compo
sitions in the area of solid solution below this

binary solidus curve. Liquids on the curve e.E3,
including the points e. and F3, are in equilibrium
with conjugate solid solutions — solid solutions
defined by the miscibility gap of Fig. 7.2. But
the solid solutions involved along all other curves
{pPyP,E2, E2Ey and e..E3, with the exception of
just the point E3) are simply compositions in the
solid solution areas of Fig. 7.2.

7.2. EQUILIBRIUM CRYSTALLIZATION

PROCESS

The reactions on curves e^P. and c2F2 of Fig.
7.3 are simple precipitations of two pure solids;
on e.P.:

L-+C +D

and on e2E2:

L-*C +£>„

On curve e.Ey the liquid precipitates two solid
solutions, starting as Sg and S'e at e. and changing
in composition to S3 and S' at Ey On curve e3Ey
the liquid precipitates D2 and a solid solution
starting as pure B at e, and changing in compo
sition to S3 at Ey For curve E2Ey the liquid
is precipitating D2 and a solid solution. If Sm
is the composition of the solid solution for L at
m (maximum of the curve), then along curve mE3
the solid solution varies from Sm to Sy and along
curve mEr. it varies from S to S„. The vertical

2 m 2

7 vs c section on the line D„mS is shown in
2 m

Fig. 7.4. It looks like a quasi-binary section but
it is not. The liquid on the curve am of Fig. 7.4
is in equilibrium, not with S , but with a solid
solution of changing composition (not on the
plane of the diagram) which is S only for L at
point m itself.

Along curve P,E2, the liquid precipitates C
and a solid solution changing from S. (at P.) to

^?».!*^pflf*f7^*"a»fst»s^Wiw;^v'



S7 (at E2). Curve pP is a transition curve, along
which the liquid reacts with solid solution and
precipitates D.. The three-phase triangle starts
as the line pDy\ and ends as PyUySy so that
the solid solution in equilibrium with liquid on
the curve varies from A at p to S. at P..

Since the solid solutions in the system are only
binary, solidification cannot be complete while
liquid is traveling on one of the surfaces; the
liquid must reach either a curve involving a solid
solution or one of the invariants. The course of
the liquid on a surface precipitating a pure solid
(C, D., or £>2) is clear: a straight line from the
composition of the separating solid (Fig. 7.1).
On the two surfaces for solid solution, the paths,
whether for fractionation or for equilibrium crystal
lization, are curved. Fractionation paths are
shown in Fig. 7.1; equilibrium paths cross these
curves as explained under Fig. 2.4.

In the region D2SmB, only liquids from an
original composition x in triangle III {D2S3S3)
reach E3, to solidify to three solids. Those for x
in triangle E3S3S3 reach F3 along curve e4F_,
carrying two solid solutions, and these liquids ao
not solidify completely until they reach Ey to
produce D2 as third phase. For x in the region
D2E3S3B, the liquid reaches the curve eyEy but
if x is in triangle D2S3B, the liquid is consumed
(in complete equilibrium) before reaching the
eutectic, to leave D2 and a solid solution between
B and S'. Liquids in the region D2SmS3E3 reach
curve mEy and again those in triangle D2SmS3
solidify completely on the curve, before reaching
E„, to leave D. and a solid solution between Sm
and S,. (Similar behavior is shown in the region
D2SmS2E2.)

The curve pP. is reached by liquids originating
in the region pAS^y after first precipitating a
solid solution between Aand Sy For x in triangle
D.AS., the liquid is consumed on the curve pPy
leaving D and solid solution. For x in triangle
pD.P. the solid solution is consumed on the
curve, leaving liquid and D • L then leaves the
curve, crosses the D1 field to curve e^Py and
travels to Py For x in triangle DyS^Py no phase
is completely consumed along curve pPy and
the liquid reaches Py

The peritectic P. is also reached for x in the
D. field and for x in the region Ce^P^ - along
curve e P.; P. is thus reached only for x in
the quadrangle CD ^Sy°y At Py

L + D1 -> C + S, .

Hence solidification is completed here for x in
CD.S. (triangle I), in an incongruent crystal
lization end point. Otherwise (for x in triangle
CS P.) D1 is consumed and L begins to move
along curve P,Ey This curve is also reached
directly from the C field, for x in the region
CP.Ey and from the As field for x in the region
P.S.S2Ey As L travels on this curve, pre
cipitating C and solid solution, it completes its
solidification if the total original composition x
is in triangle CS.Sy otherwise it reaches F2,
the crystallization end point for triangle II.

Some isothermal relations are shown in Figs.
7.5, 7.6, and 7.7. Figure 7.5 is still above the
temperature of p, Fig. 7.6 just below p. Points
s, /, s', and /' in these diagrams are related to
the solidus and liquidus curves of the binary
system A-B shown in Fig. 7.2. The points s",
s'" in Fig. 7.7 are between Se and 53 and between
S'and S' respectively, of Fig. 7.2. The temper
ature of Fig. 7.7 is between m and the eutectics
E2, Ey below all the binary eutectics, but still
above P.. At P. the tie-line region for D. in

Fig.7.5.

Fig. 7.7.
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equilibrium with liquid shrinks to a line and
vanishes.

Some vertical sections are shown in Figs. 7.8,
7.9, 7.10. The m in Fig. 7.9 is at the temperature
of point m but does not represent its composition.
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7.3. PROCESS OF CRYSTALLIZATION

WITH PERFECT FRACTIONATION

The fractionation paths in the two solid so
lution fields (Fig. 7.1) are families of curves
radiating from points A and B, respectively.
Those in the A field are convex with respect
to B, meaning that as L travels along such a path
on cooling, in a fractionation process, it deposits
successive solid solution layers always richer in
B content; those in the Bs field are convex with
respect to A, and the outermost solid solution
layer here continually increases in A content
while L is traveling on the surface.

In fractionation, a liquid in the region between
e3 and the path BE3 reaches the curve eyEy and
on this curve the solid solution continues to in

crease in A content. Liquid between e. and the
path BF3 reaches curve e4F3, but now two solid
solutions precipitate, and their outermost layers
vary from Sg and S'g to S3 and S'3 in composition
(Fig. 7.3). In an equilibrium process, the curve
e3F3 is reached by all liquids below the line



E3S3, which is tangent, of course, to the frac
tionation path BE3 at F3, and elE3 is reached
only by liquids between e . and line E3Sy

In a fractionation process on the As field, the
curve P,F, is reached by liquids between the
fractionation paths AP ^ and AEy and the solid
solution continues to increase in B content along
this curve. Curve E2m is reached by liquids
between the paths AE2 and Am, but in this case
the outermost solid solution layer being deposited
begins to increase in A content as L travels on
this curve in the direction m -* Ey The frac
tionation process for the region between the paths
AP. and Am ends at Ey The curve mE3 is reached
for liquids between paths Am and AEy with the
solid solution increasing in B content both before
and after L reaches the curve; and curve e4Eg
is reached for liquids between e4 and the path
AEy In these regions the fractionation ends at

Liquid between p and the path AP 1 reaches the
curve pP. and immediately crosses this curve to
deposit D. on the solid solution already deposited
before the curve was reached. The liquid then
reaches curve e.P., deposits a mixture of D] and
C while traveling on this curve, reaches P]t and
without stopping at P] continues on curve P}Ey
depositing C and a solid solution. The process
ends at Ey In this process the precipitation of
the solid solution is interrupted while L is cross
ing the D. field and then returning to P1 on the
curve e.Py There will consequently be a gap in
the composition of the solid solution finally
obtained.

In the fractionation process all liquids in the
region bounded by the lines mD2, D2B, BA, and
the fractionation path Am end at Ey to leave
three solids, As, B, and Dy Liquids in the rest
of the system end at Ey of these, moreover, those
in the region bounded by lines P^C, CA, and the
path AP^ end as a mixture of four solids, As,
D,, C, and Dy while the rest end as three solids,
As, C, and Dy

7.4. TERNARY SOLID SOLUTION

IN COMPOUND D

Finally, we shall assume that the solid Dy
forms solid solution with both A and C in its
binary system and with the third component B, to
give at any temperature a small isothermal area of
solid solution of ternary composition. This will
affect all the equilibria involving solid Dy The
pertinent region of Fig. 7.3 becomes that shown
in Fig. 7.11. Figures 7.6 and 7.7 change as shown

in Figs. 7.12 and 7.13. A section like Fig. 7.8
now shows the region of homogeneous ternary
solid at the D, side, labeled Dy(s) in Fig. 7.14.

Fig. 7.11

Fig. 7.12.

DAS)

C+D^S)+S
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PART II

THE ACTUAL DIAGRAMS





The following sections will consider, one at a
time, the ternary diagrams which have been con
structed. For ease of drawing and for the sake of
clarity, the diagrams used in these sections are
not according to actual scale, but schematic in
their quantitative relations. The formulas and the
actual numerical values, including the tempera
tures, may be obtained from the experimental
diagrams. For brevity and simplicity, moreover,
single letters rather than chemical formulas have
been used to represent the solid phases.

The following is the key for the letters regularly
used for the components of all the systems:

Symbol

R

U

Component

RbF

UF,

Symbol

V

w

X

Y

Z

Component

BeF2

ThF.
4

LiF

NaF

ZrF,

The letters A, B, ... , N will be used, as needed,
for the various binary compounds in the binary
systems. Theydonot represent the samecompounds
from one section (ternary system) to another,
whereas the components are always referred to by
the same letters.

The letter x will be used throughout to mean
' the total original composition of a sample being
cooled and solidified."

8. SYSTEM X-U-V: LiF-UF.-BeF,
4 2

The schematic phase diagrams for the binary
systems of the first ternary system to be dis
cussed, system X-U—V, are shown in Figs. 8.1,
8.2, and 8.3. No solid solution is involved, either
in the binary systems or in the ternary system.
Compound A in system X—U decomposes on cooling,
at TA, into the solids X and B; and compound E
in system X—V forms on cooling, at T„, from the
solids D and V.

Every solid reaching equilibrium with liquid in
its binary system must have its own primary phase
field, bordering on the side of the triangle, in the
ternary system. The field for compound A of the
system X—U, however, will have TA (designated
PA in the ternary system) as its lower temperature
limit of stability, inasmuch as A decomposes on
cooling to this temperature. At P. the X and B
surfaces of the ternary liquidus, separated above
that temperature by the A field, will come into
contact. The compound E of system X—V may or
may not have a field (for liquid in equilibrium with
solid E) in the ternary system. It will have a
field only if the ternary liquid saturated with the
two solids D and V exists down to the temperature
TE of Fig. 8.3, the temperature for the formation
of E from D and V upon cooling.

The phase diagram of the ternary system is
given in Fig. 8.4 (schematic). There are seven
fields, identified by letters in parentheses, (U),

(C), etc. The A field vanishes with falling temper
ature at PA, at the temperature of decomposition
of solid A in its binary system, T ., but now in
presence of ternary liquid. The temperature of

P
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Fig. 8.4.

decomposition is unchanged, because the com
ponent V does not form solid solution with any of
the three solids involved in the reaction. Since
solid A decomposes before its field touches any
field involving the component V, it is not part of
one of the three-solid triangles of the system, of
which there are only four, I, II, III, IV, with the
corresponding invariant liquids P1# P2, E3, E^.

The reactions on the curves are as follows (all
written as the reactions occurring upon cooling):

L + U -> C.

L +C -*B.

L + X - A.

L -> A +B.

L + X -> D. But this may change to:

L -> X +D

as the curve approaches E • it does change
if the tangent to the curve comes to fall
between X and D.

L + D + V.

L -* U + V.

L->C + V.

L-+B + V.

L -> B + D. Accordingly, m is a saddle point,
with temperature falling away both toward
E and toward E,. But the line BD is not
a quasi-binary section, for it includes the
C field and the X field.

The invariant reactions are as follows:

P.: L + U -• C + V. Point P, is reached along

Pypv
P2pr
P,pa
*1PA
P5E4:

e6Er
e7PV
p,pr
P2Er
E4E3:

r

the quadrangle P.CUV. It is the incongruent
crystallization end point for triangle I (CUV).
If x is in triangle P, CV, the liquid continues,
completing its solidification at P2 for x in
triangle II, or continuing still further and
completing its solidification at E3 for x in
triangle III.
L + C -» B + V. Point P, is reached along
either of the curves P2P2 or P\P2' 'or x ,n
the quadrangle P.BCV. It is the incongruent
solidification end point for x in triangle II.
L -• D + B + V. Point E is the congruent
solidification end point for triangle III. The
final equilibrium solids for this triangle, left
at the lowest liquid reaction (£,) of the region
(triangle III), are therefore B, D, and V. How
ever, at a still lower temperature (T£ of
Fig. 8.3) the solids D and V react to form
the compound E. Below T£l therefore, the
triangle III becomes two three-solid triangles,
one for B, D, and E and one for B, E, and V.
L -> X + B + D. Point E. is the congruent
solidification end point for triangle IV.

P : A •* X + B, in the presence of liquid PA. The
point PA is reached by liquid for x in the
triangle XBP ., along either curve p^PA (as
liquid in equilibrium with X and A) or curve
e,P . (as liquid in equilibrium with A and B).
At PA the solid A decomposes to produce
more X and B, and the liquid moves on along
curve PAEA.

Four of the boundary curves are of odd reaction
(transition curves). They are crossed by equi
librium crystallization paths as follows. (The
expression "crossing of transition curves is
used with the meaning explained in Sec 5 in con
nection with curve p3 P3 of Fig. 5.3. For restricted
values of x, the liquid reaching a transition curve
travels along the curve only for part of its length
and then leaves it for another field.)

1. p-,Py Liquids reaching this curve for x in
p.CP. (i.e., in the region between C and the
curve f.P.) travel along the curve only until all
solid U is consumed, when the CL leg of the
three-phase triangle passes through x; L then
leaves the curve and crosses the C field.

2. P7P2: S'm''ar!y crossed by liquids reaching
it from x in the region P2^P2' ^ proceeding onto
the B field.

3. pdPA- Similarly crossed by L for x in the
region p .AP ., L proceeding to travel upon the A

either of the two curves falling to it, for x in field.
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Fig. 8.5.

Fig. 8.6.

4. p5E .: Crossed for x in the region psDs (s is
the point of tangency of the LD leg of the three-
phase triangle with curve p.E .). Then, for the re
gion between the line Ds and the line DE ., the
primary X solid, which has been entirely consumed
while L travels on the curve p5s, appears again
as a secondary crystallization product, mixed with
D, when L, traversing the D field, reaches the
curve sE . (cf. curve p .E. of Fig. 5.3).

The isothermal relations for the A solid are

shown in Fig. 8.5, (a) between p. and e3, (b) be
tween e3 and PA, (c) at P ., and (d) below PA.

Figure 8.6 is a schematic isotherm between e,
and p2, above P2 and P., above p., and below e_.
The L + U region will vanish as a line when the
temperature falls to P., and the L + C region
vanishes similarly at P..

Some vertical T vs c sections are shown in

Figs. 8.7, 8.8, 8.9, and 8.10.

Fig. 8.9.
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9. SYSTEM Y-U-V: NaF-UF4-BeF2

For the ternary system Y—U—V, we have the
binary systems Y—U in Fig. 9.1 and Y—V in Fig.
9.2; the system U—V is as in Fig. 8.2, except that
point e7 is now designated e0. The ternary diagram
is given in Fig. 9.3.

The horizontal dotted lines in Figs. 9.1 and 9.2
represent polymorphic changes in pure phases:
one in solid A, two in H, and one in G. Even
when these transitions occur at liquidus tempera
tures, as in the transition T' for compound G,
there is hardly any effect in the ternary diagram.
Strictly, the freezing-point curve of G in the binary
system Y—V has a slight break at t'. This break
becomes an isothermal crease on the G surface

in the ternary system. The crease starts at t' and
enters the ternary diagram to look simply like an
isothermal contour on the surface. It represents
liquid in equilibrium with both forms of G. Above
this temperature the surface is for liquid in equi
librium with G , and below this temperature it is
the surface for liquid in equilibrium with G„.
This crease has been sketched in Fig. 9.3 as the
curve t't" across the G field.

40

UNCLASSIFIED

0RNL-LR-DWG25583

\ '
e6

e7 fe8

H7—

H G

Fig. 9.2.

In the system Y—U, Fig. 9.1, we note two binary
compounds, A and C, decomposing upon cooling
and two, E and E, forming from other solids upon
cooling. The first two decompose before reaching
an invariant involving a solid containing component
V; hence, as in the case of compound A in system
X—U—V, these solids have primary phase fields
but do not take part in the three-solid triangles of
the ternary system. The compounds E and F of
the present system, unlike the similar compound E
of system X—U—V (Fig. 8.4), do have ternary
fields in the system, because the curve for liquid
in equilibrium with D and U extends down to the
temperature T£ for the formation of E from D and
U, and the resulting curve for liquid in equilibrium
with E and U further extends down to the tempera
ture T „ for the formation of E from E and U.

F

The ternary diagram thus has eleven fields and
seven three-solid triangles (with corresponding in
variant liquids). It also has four invariant points
for liquids accompanying binary solid-phase re
actions: P . and Pc for the decompositions of
solids A and C on cooling, and P„ and Pp for
the formation of solids E and E on cooling.

The limited A field is divided into two regions
by an isothermal crease, uu on Fig. 9.3. This
crease is at the temperature T" of Fig. 9.1, the
transition temperature for:

A _ —calories

The higher-temperature region of the field repre
sents liquid in equilibrium with A , the lower
region liquid in equilibrium with A a) the form
decomposing at P . is A „.

The similar transitions in the solid H are assumed

to occur below the temperature of equilibrium with
any ternary liquid, and hence are assumed to have
no effect on the phase diagram.

Five curves are of odd reaction. (The even
curves simply precipitate the solids of both ad
jacent fields.) The transition curves are as
follows:

Pap

Pzp<

C

P P •
E F'

P P •rFrV
P P •

L + D -» C; crossed by L for x in region

cP*pc-
L + C •* B; crossed by L for x in region

BP3PC-
L + U ->

L + U -* F; crossed for x in EP „ P
E; crossed for x in EP„Pp.

F' T
L + E -» E; crossed for x in EP P.



U
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Fig. 9.3.

Invariant reactions are:

j! L + (/ -> E + V; incongruent crystallization end
point for triangle I.
L + F -» £ + V; same, for triangle II.
L + E -> D + V; same, for triangle III.
L + B -» D + H; same, for triangle VI.

E4, E5, E7: eutectics for triangles IV, V, VII.
There are two saddle points: m on curve E E.

and m' on curve P<E.. But only the line DG is a
quasi-binary section, dividing the whole diagram
into essentially independent subsystems. (Note:

r

6"

The composition diagram of a ternary system does
not have to be a triangle. As long as it is a plane,
with only two independent composition variables,
it may have any shape.)

Some relations in the subsystem D-U—V—G may
be illustrated by consideration of the equilibrium
crystallization process for solution a, Fig. 9.3.
This point is located on the left of line UPp, in
the region FPpPy in the region EPpP2, in the
quadrangle P^DEV, and in triangle IV. The first
solid on cooling is U, and the liquid travels on the
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straight line Ua to the curve PEP F- With L on
the curve,

L+U+E ,

but not all the U solid is consumed, and L reaches
P . At this point all the E solid so far produced
is consumed in reaction with U, to form E, and
then the liquid, saturated with U and F, begins to
travel on the curve PpPy On this curve, the rest
of the U solid is consumed, and L leaves the
curve to traverse the E field on the straight line
Fa. When L reaches the curve PpP2,

L + F -> E ,

and now when all the F is consumed the liquid
leaves this curve to traverse the E field, on the
straight line Ea, until it reaches the curve P2Py
Now precipitating E and V, the liquid reaches P3,
where

L +e-D +V .

Here E is consumed, and L moves on down the
curve P3E41 precipitating D and V. It reaches
E. and there solidifies completely to G, D, and V.
The original solution a thus gives only three
solids upon solidification with complete equi
librium. If the phases are not given sufficient
time for reaction during the cooling process, the
liquid from the composition a would still reach
E. before complete solidification, but the final
mixture would contain all the solids of the sub
system: U, E, F, V, D, and G.

The point PE is reached, in equilibrium crystal
lization, for x in the region DPpU, by L on curve
e.P Ecarrying solids Dand U; at P£ these solids
react to form E, leaving one of them in excess.
Hence, if x is in the region DEPR, U is consumed
and L takes the curve PEP3i for * in the region
EUPp, D is consumed and L travels on curve
P Pp. The point Pp is similarly reached, for x
in the region EPpU, by L on curve P£PF carrying
solids E and U. Then for x in the region EFPp,

42

U is consumed and L leaves on curve PpP2,
while for x in FUPp, E is consumed and L takes
the curve PpPy

Isotherms near Pp are shown in Fig. 9.4 (a) just
above Pp and (b) just below Pp. At Pp the equi
librium area for liquid in equilibrium with E
appears as the line FPp.

Vertical T vs c diagrams for three sections of
this subsystem are shown in Figs. 9.5, 9.6, and
9.7; and two T vs c sections for the subsystem
Y-D-G are shown in Figs. 9.8 and 9.9.

Fig. 9.4.

' ^-^^ L
,-L+D +lJ^^

L + V

fi5 y~~~^ L+u \\\
P

L + £+U \.
P

L+F+U \1 *
P 1 /

L+ V+Uy
F+V

Fig. 9.5.
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10. SYSTEM Y-U-R: NaF-UF4-RbF

For the ternary system Y—U-R, Fig. 10.1 shows
the binary system R—U, and Fig. 10.2 the system
Y-R. The binary system Y-U is that of Fig. 9.1,
with the same lettering.

Figure 10.3 is the ternary diagram.
We note first the restricted fields for the binary

compounds A and C of the system Y—U, ending at
points PA and Pc, respectively, at the tempera
tures of decomposition of these solids on cooling
(Fig. 9.1). The isothermal curve uv on the A field
has been explained in connection with Fig. 9.3.
The low-temperature compounds E and E of Fig.
9.1 do not appear at liquidus temperatures in Fig.
10.3, since the curve of liquid in equilibrium with
D and U (e.E..) ends at a temperature higher
than TE of Fig. 9.1.

The new item in the present ternary system is

the ternary compound Q, with PqP3E2PA as 'ts
primary phase field. This compound is stable
only below the temperature of Pq. When heated
to the temperature of PQ it decomposes in a
strictly binary solid-phase reaction, into the
solids B and H. If the ternary compound Q is not
pure, but is mixed either with a little Y or with a
little R, it still decomposes as a solid phase into
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the same solids, B and H, at the same tempera
ture, namely that of point Pq, but now in the
presence of the liquid PQ. The invariant point
P0 is therefore entirely analogous to P£ in Fig.
9.3, where solid E decomposes, when heated, into
D and U in the presence of the liquid P£.

Figure 10.3 shows fifteen primary phase fields
and eleven three-solid triangles with corresponding
invariant liquids. There are five saddle points:

onnzj on curve E. P0,m. on curve E.E^
curve P6E7,
P E ~~r10E1T

curve E-E-, and m. on curve
Two of these saddle points, m. and m.,

are on quasi-binary sections,Ym. G and Dm. J; Fig.
10.3 therefore consists of three subsystems.

The subsystem D—U—J is relatively simple, with
two eutectics, E& and £.., and two peritectics,
P, and
curves:

P

Three of the curves are transition

E •
13 ir

?12P10:

?11P9

Pzpc-
Papc-
Pipa-
P9E7-
P P •

Q A'
P P :

io-

L + U -» N; crossed by liquids originating
in region Np.^E... This curve may
become even in reaction close to point
En.
L + N -» M; crossed by liquids originating
in region Mp]2P 1Q.
L + M-» K; crossed by liquids originating
in region Kp.. P„.

Compositions in triangle XI solidify to D, U, and
N, but at T of Fig. 9.1, D and U react to form E,
and the triangle DUN is divided into two triangles
of three coexisting solids, DEN and EUN. At a
still lower temperature [Tp of Fig. 9.1), the
triangle EUN divides into EFN and FUN.

In the middle subsystem, Y—D—J—G, there are
the following transition curves:

L + C -> B; crossed for x in Bp3 P ...
L + D -» C; crossed for x in Cp . P _.
L + G-> H; crossed for x in Hpy P ..
L + / -> /; crossed for x in IpgE-.
L + H -> Q; crossed for x in QPQP..
L + D -> B, up to point s (line Bs tangent
to the curve). The relations along this
curve are like those explained for curve
p^sE^ in Fig. 5.3.

Point P„ is reached by liquid from original
compositions x in the triangle BPQH. The liquid
reaches the curve m.P _ either from the left side,
carrying solid B, or from the right side carrying
solid H. It then travels on the curve, precipitating
both B and H, and reaches P„. At this point, B
and H react to form solid Q, and one of the original
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Fig. -10.3.

solids will be completely consumed. For x in the
triangle PqBQ, H is consumed and the liquid
travels down the curve PgPii ^or x ,n *ne triangle
PQQH, B is consumed and L moves onto curve

PQPA>
Consider a total composition x in the region

QPqP.. On cooling, the first solid is H, and L
moves on a straight line from H to reach either
curve PqP4 directly, or first curve m^P _, then
point PQ, and then the curve P»P^. While L

travels along this curve, H reacts with liquid to
form Q, and eventually L leaves the curve, when
all H is consumed, to enter the Q field. Traversing
this field on a straight line from Q, it can reach
any one of the three other boundaries of the Q
field. These are all even curves, and liquid cannot
leave them. If x is in triangle III, L will reach P,
along curve PqP•$ and complete its crystallization
at P. to leave solids Y, B, and Q; for x in triangle
II, L ends at E leaving Y, Q, and G.
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For a liquid with composition Q itself, the first
solid is H, and L travels to the saddle point m2,
where the liquid solidifies completely into B and
H, which solids will be present at the end in the
exact proportions corresponding to Q. Then at
the temperature of PQ these solids combine to
produce Q.

Compositions in triangle Vcomplete their crystal
lization at E5, into a mixture of B, H, and /. But

Fig. 10.6.
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Fig. 10.7.

on cooling further, B and H combine to produce Q,
leaving, below the temperature of Pq, either B,
Q, and / or Q, H, and /.

Some T vs c vertical sections are shown in
Figs. 10.4-10.10.
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11. SYSTEM Y-Z-R: NaF-ZrF4-RbF

For the ternary system Y-Z-R, the binary
system Y-Z is shown (schematically) in Fig. 11.1
and R-Z in Fig. 11.2. The system Y-R is as in
Fig. 10.2, but now with e13 in place of e14.

In each of the first two compounds, A and B, of
the system Y-Z, there is some solid solution on
the Z side of the stoichiometric composition. In
the case of B, solid solution is limited to the
upper form, Ba, while the lower form, B^, is pure.
The transition temperature is accordingly lowered,
from T" to T ". The compound E forms similar
solid solution extending in the direction of the
Y side. The subsolidus compound D, which forms
from the solids C and E (a solid solution) at TD,
forms solid solution on the Z side. The compounds
D and E, in other words, may be said to form a
limited series of solid solutions with each other.
The 1:1 compound will not be considered in con
nection with the ternary system. It is observed
to be formed at relatively low temperature, but
its relation to the established phase equilibria
of the binary system has not been even tentatively
clarified.

The phase diagram for the system R-Z shows
some solid solution, on the Z side, for the two
compounds G and H. At 7" the compound H is
shown as undergoing a polymorphic transition:

H - calories ^= H.

and the transition temperature is shown as being
lowered to T" as the result of the solid solution
formation. The relations for compound H, however,
are experimentally not clear. It seems possible
that it may in fact be a pure solid phase, without
any solid solution, and moreover, without any
polymorphic transition.

The ternary diagram for the system is given in
Fig. 11.3.

With regard to this diagram, which is shown as
it has so far been worked out, we note the absence
of any primary phase field for the incongruently
melting compound B of the system Y-Z and for
the subsolidus compound D of the same system.
Both of these solids should have primary phase
fields in the ternary system. The regions involved
were investigated before the relations for these
compounds were definitely established in the
binary system, and they have not yet been rein
vestigated.

We shall first discuss briefly the relations for
the ternary system as reported in the diagram of
Fig. 11.3, assuming, moreover, that the solids
form no solid solution. This will serve as a basis,
then, for a more detailed discussion of special
regions of the system involving the missing solids,
together with the solid solutions formed.

11.1. THE SYSTEM ACCORDING TO FIGURE

11.3 AND NEGLECTING SOLID SOLUTION

There are primary phase fields for three ternary
compounds, Al , AL, and M3, all with the same
(1:1) ratio of the components Y and R, and varying
only in Z content. They lie on a line with the
corner Z. Both Al. and M3 have congruent melting
points, with a temperature maximum in each field
at the composition of the compound itself. Crystal
lization paths in each of these two fields radiate
in all directions as straight lines from the maxi
mum. Liquid can be in equilibrium with solid
Al and any of seven other solids (the M3 field has
seven boundaries). The Al. field has five bound
aries (but the field for the here missing compound
B will probably add a sixth boundary).

The ternary compound Al2 has a semicongruent
melting point, at the temperature of point y on the
boundary curve between the AL and M^ fields
(cf. Fig. 4.13). Instead of reaching a congruent
melting point, the compound AL, when heated to
the temperature of y, decomposes, or melts incon
gruently, into compound AL and liquid y, collinear
with AL. The Al surface falls in temperature
toward y, the AL surface falls away from y, and
the temperature on the boundary curve P$P \b
falls away from y in both directions.

With saddle points (m'and m") on each of the
other two boundary curves crossed by the line
ALALALZ, this line is a quasi-binary section
(from Al] to Z) of the ternary system (Fig. 11.4);
y is seen to be simply the incongruent melting
point for the compound M in this binary system.

Figure 11.3 shows fifteen primary phase fields
and sixteen three-solid triangles with corresponding
invariant liquids. There are ten saddle points
(m-points), only one of which, with all solids
assumed pure, is not on a quasi-binary section;
this is on the curve E]4E^y The nine quasi-
binary sections divide the diagram into eight
quite simple ternary subsystems, shown as the
eight areas of Fig. 11.5.
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Only five of the boundary curves in Fig. 11.3
seem to be of odd reaction (pPy P6P]qi P]2P1]'
pgPyj, and P5P]6); all the others seem to be

The curve P5P,6, for

L +A1 Al,

is crossed by L for x between the curve and the
lines P.AL and P..AL.

The binary peritectic point p has been left un
numbered in Fig. 11.3, because it may represent
either p2 or p3 of Fig. 11.1; and the invariant
P' has been primed, because there must be two
invariants here (P. and P4) in place of just the
one. Also, a primary field for compound D of
Fig. 11.1 should make its appearance somewhere
along the curve e.P', the prime on P.' being used
because there should be two invariants here also,
P6 and P7.

11.2. CONSIDERATION OF SOLID

SOLUTION FORMATION

If the actual solid solutions in this system are
considered, the phase diagram is no longer divided
into as many independent subsystems as assumed
in Fig. 11.5. Five of the areas of Fig. 11.5 re
main simple, involving only pure solids: EZA13
with just P. and E9 as invariants; AlgZ/ with
Pn and E]2; Ay/ with E]3; YGR with E,8; and
YAG with Ey

However,although the solids A and G are present
as pure solids in their equilibria below the line

AG, they both form solid solutions, containing
excess Z, in their binary systems. In other words,
the liquid on curve E. precipitates purem.

A and pure G, but the liquid on the part
(of the same curve) precipitates two solid so
lutions, starting as pure A and pure G at m2 and
ending as A, (on the side YZ) and G2 (on the side
RZ), for E2. The A solid solution extends be
yond A2, toward Z, for the equilibrium with liquid
on curve P'E' , and the saddle point m^ is no
longer on a quasi-binary section. At m^, the
liquid is in equilibrium with Al. and a solid so
lution of composition A , between A„ and A„,

3 . .the composition corresponding to L at Py Simi
larly, the saddle point m is no longer on a quasi-
binary section, since here the liquid is in equi
librium with Al. and a solid solution of composition
G , between G„ and G.,, the composition for L

m' 2 17'

at P17. On the other hand, «2, on the curve EyE2,
is exactly on the line AG, a quasi-binary section.

The fractionation paths in the A field, then,
originating from point A, are straight lines for the
line Am. and below, but they are curves convex
with respect to the Z corner above the line Am2,
with the limiting paths Ap and Am2 both straight
(sketched on Fig. 11.3). The paths for the G
field are similar: straight lines from G below the
line Gm_, and curves, convex with respect to Z,
above this line.

The region AEAL/G, then, although it contains
the quasi-binary line A^Alj, is not subdivided
into separate subsystems; the line A1.A12 does
not cut the region into two parts. For convenience,
however, the right and left portions will be dis
cussed separately.

11.3. THE REGION FOR COMPOUNDS

G AND H OF SYSTEM R-Z

The Region As Shown in Figures 11.6 and 11.7

The relations forcompounds G and H, as assumed
in Fig. 11.2, are shown in schematic detail in
Fig. 11.6. On the basis of these relations the
region ALAL/G of the ternary system would be
schematically as sketched in Fig. 11.7. For the
H solid solution field the fractionation paths are
curves, convex with respect to Z, originating by
extension from the point H.

On the curve m& -» P]7, the liquid precipitates
Al and solid solution on the binary side starting
at Gm for L at m and ending at G17 for P]7>
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Fig. 11.7.

These solid solutions are not on the "solidus"

curve of Fig. 11.6, but G]7 itself is. On the curve

Ps-'p^7>

L + G (solid solution) -> Ha (pure) .

The three-phase triangle starts as the line p.H G
8 a ps

(see Fig. 11.6), and ends as the triangle P,7# G,_.
This curve is crossed for x in the region HpgP.7.
The invariant reaction at P.- is

L+Gyj-* Al, +Ha .

This is an incongruent crystallization end point
for x in triangle XVII (A1,HG,7); for x in M.P.jH,
the liquid moves onto curve P.yP.,, precipitating
Al. and an Ha solid solution starting as pure H
and ending as H . (As shown on Fig. 11.6, H,,
is not on a solidus curve of the binary system.)
On curve y -» P, ,,

L +A4 AL

this curve is crossed for x in the region ^2^16"
The point P., is reached for x in the quadrangle
ALALP,,//,,; its reaction is

L +A1 Al2+«,6

and it is the incongruent crystallization end point
for triangle XVI (ALAL/L,). For x in the region

^2^16^16' ^ tnen trave's on curve P., -» E,s,
precipitating Al. and an Ha solid solution starting
at H and ending at H . Along curve e -* E,5,
the liquid precipitates / and an Ha solid solution

starting at H and ending at //., (see Fig. 11.6).

Along curve E,4-»£._,

L -»A12 +1 .

The point E]5 is reached for x in triangle XV
(M2IH]5).

For x in the regions Al.G,7G, M.H..H, and
AL/L./L,, liquid is consumed, to leave two solids,
while traveling on curves E-P.-, PyfP,&, and
P.,E.y respectively. The H solid solution
produced in these processes, with compositions
ranging from H to W15# is the a form of H. As the
temperature is lowered, however, the solid so
lution undergoes transition to the /3 form, starting
at T' for pure H and ending at T", as shown in
Fig. 11.6; and these temperatures are unaffected
by the coexistence with solid Al, or solid AL,
since the Ha and Hg solid solutions are purely
binary.

We have here assumed the order of decreasing
temperature to be: T" «= P.. > e. > E,s > T".
But if T" > E.s, then there is an isothermal
crease, at temperature T", running across the H
surface between curves e.E.. and P..E... The

surface between this crease and E,5 represents
liquid in equilibrium with H„ solid solution; the
rest of the H field represents liquid in equilibrium
with Ha solid solution.

For the relations assumed in Fig. 11.7, liquid
of composition a gives AL as first solid, and L
moves on a straight line from Al, (i.e., on the
extension of the straight line Al,a) to the curve
yPu. Here

L +A1, - Al2

Al, is consumed; L leaves the curve, traverses the
Al field on a straight line from AL, and reaches
curve »z7E,,. Here

Al2 +/

and at E,5, H,5 also precipitates.

The Region As Shown in Figures 11.8 and 11.9

The other possibility for the region A1,AL/G
seems to be, as already stated, that H forms no
solid solution, and has but one form. Then Fig.
11.6 becomes Fig. 11.8, and Fig. 11.7 becomes
Fig. 11.9. In Fig. 11.9, the first solid for liquid

51



Fig. 11.9.

UNCLASSIFIED

ORNL-LR-DWG 25596

a is the G solid solution, between G and G
17*

The liquid reaches the curve mJP'-, traveling on
a curved equilibrium path over the G surface. On
the curve, the liquid precipitates Al, and more
solid solution, ending at G.-. At P,7,

L +G,7 -»A1, +H

G.. is consumed; the liquid travels on curve
P.jP.,, precipitating Al. and H, and reaches Pw»
where the liquid is consumed in the reaction

L +A1 Al2 +H

11.4. THE REGION INVOLVING COMPOUNDS

B AND D OF SYSTEM Y-Z

Figure 11.10 shows a probable arrangement for
the missing primary phase fields for compounds
B and D of system Y-Z. Also, since four of the
solids of system Y—Z form binary solid solutions,
there must be various two-solid areas reached upon
complete solidification in this region, whenever
one of these solids crystallizes together with a
solid involving the third component R; i.e., for
every case of a boundary curve involving one of
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these solids and a solid containing component R.
These areas are shown with tie lines, the relations
being essentially as already explained schemati
cally for Fig. 7.3.

The field for compound B is introduced as
P2P-\PaP%i and that for compound D as PpP.Pj.
There are now two more three-solid triangles, for
the two added ternary invariants. The compo
sition represented by PD is simply the ternary
solution present when the compound D forms on
cooling from solids C and E (a solid solution); it
is similar to P„ and Pp in Fig. 9.3, where, how
ever, only pure solids are involved.

As explained for the solid phase H under Fig.
11.7, the solid form of B involved on the B field
and along its boundaries is the solid solution in
the upper polymorphic form Ba, ranging in compo
sition from pure B to the solid solution limit indi
cated in Fig. 11.10. As the temperature is lowered,
however, the Ba phase undergoes transition to the
pure /3 form, starting at T'for pure Ba and ending
at T" for the solid solution (Fig. 11.2). As in
the case of compound H these temperatures are un
affected by the coexistence with solid Al,.

Wherever the compound C is involved as a solid
phase, its form is Ca above the temperature of t.
(Fig. 11.1), Cq between t. and /,, C between
t2 and L, and Cg below ty The C surface, (C),
is, strictly, divided into four parts, by the special
isothermal contours at /,, t , and ty These con
tours constitute slight creases in the surface,
defining the regions for liquid in equilibrium with
Cgf Co, C , and Cg, respectively.

Since A, B, D, and E are binary solid solutions,
the fractionation paths on the fields for these
solids are curved. Those for the E field are

are similar to those on the A field: above the

line Em they are straight lines from E, and below
this line they are curves convex with respect to
the corner Y. For the B and D fields the paths
originate by extension from the points B and D
respectively, and tjiey are convex toward Z in
both cases.

Along the binary curve Ee . (from the congruent
melting point of E to e ), the liquid precipitates a
solid solution starting as pure E at the melting
point of E and ending at Es for L at e . Along
the ternary curve e.P_, the liquid precipitates
C and a solid solution of £, strictly varying in
composition between the temperatures of e. and
PD, but practically constant because the solidus
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Fig. 11.10.

(Fig. 11.1) is practically vertical. At PD, there
fore,

C + E — calories -* D .
s

For x in the region CDPD, Es is consumed, and
L travels on curve PDP6, precipitating D in the
reaction

L +C -*D .

For x in the region DE P „, C is consumed, and
lidL travels on curve PDP7/ precipitating two so

solutions, conjugate solid solutions of the com
pounds D and E. The D solid starts as pure D at
P and ranges to Ds when P? is reached, and the
E solid, already at Es, changes slightly but is
still practically constant at Es. The point P? is
then the invariant liquid for the solids Ds, Es,
and AL, in the reaction

L +D ->E +A1, .
s s 2

For x in the region EsP?M2, Ds is consumed, and
L moves along curve P-,E~, precipitating A12 and
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Es (still practically constant, we are assuming).
The saddle points m., m2, m., and m' involve

liquid saturated with two pure solids, as does
also the special point y; m, and m., as already
discussed, involve Al, and a solid solution (A

i i \ miand G , respectively). J

For liquid of composition a in Fig. 11.10 the
first solid on cooling is a solid solution of A,
between Am and Ay The liquid reaches curve
P2F'y where

L + A(ss) -> B .

The A solid solution is consumed; L leaves the
curve, traverses the B field precipitating solid
solution B, and reaches the curve p3P.. Here

L +B(ss)-* C .

The B solid solution is consumed; L leaves the
curve, traverses the C field on a straight line from
C, and reaches curve P .Pc. Here

4 5

L -* C +AL .
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AtP„

L +M, ->C +A12

Al, is consumed, and L moves to P , where D also
precipitates to leave C, D, and Al2. The path of
the liquid on the solid solution fields (A and B)
is curved, convex with respect to the corner Z.

Liquid b gives Al, as first solid, reaches curve
P4P5, precipitates C and Al., and reaches P.,
where M, is consumed in the reaction

L +A1, ->C +A12 .

Now L moves on P.P. to P., where C is con-
i • i . s ° °

sumed in the reaction

L +C -*D +AL .

The liquid now starts out on curve PfP-,, pre
cipitating Al2 and solid solution, but the liquid
vanishes on the curve to leave a two-solid mixture

of AL and a solid solution between D and D , on a
straight line through b and AL.



12. SYSTEM Y-Z-X: NaF-ZrF4-LiF

For the ternary system Y-Z-X, the diagram of
the binary system Y-Z, already considered under
Fig. 11.1, is used here with the same lettering.
The binary systems X-Z and Y-X are shown,
schematically, in Figs. 12.1 and 12.2. Two of the
compounds of the system X—Z decompose on
cooling, one of them, G, also showing a polymorphic
transition, at T'.

The ternary diagram, as far as it has been worked
out, is shown in Fig. 12.3. Like Fig. 11.3, the
diagram does not show the primary phase fields
for compounds B and D of the Y-Z system, which
should appear.

This system involves several series of solid
solutions. It has not only the binary solid so
lutions of the system Y-Z (Fig. 11.1), but also
solid solutions, with compositions on straight
lines (crosshatched on Fig. 12.3) across the
diagram, formed between corresponding binary
compounds of the systems Y—Z and X—Z. The
compound A of system Y-Z (3Y-1Z) forms solid
solution with G (also 3:1 in composition) of
system X-Z. The solid solution is not continuous,
but has a miscibility gap. Since both compounds
have congruent melting points and since the

e?
^\?toJes

e9

Fig. 12.1.

Fig.12.2.

section Am2G of Fig. 12.3 is quasi-binary, it is
clear that the ternary system may immediately be
divided at this point into separate subsystems.
With m7 a temperature minimum between A and G,
the binary system A-G is eutectic in nature.

Solid A, however, also forms solid solution
(with excess Z in its composition) in the binary
Y-Z system. The solid solution originating at
point A of Fig. 12.3 is therefore actually ternary
in composition, occupying an area of the diagram,
and one edge of this area is the straight line from
point A to point G.

The corresponding compounds E and /, both 3:4
in composition, also form solid solution with a
miscibility gap. Both have incongruent melting
points, however, and the section FI of Fig. 12.3
is of course not quasi-binary, even though the
solutions formed are strictly on the. line FI. The
quasi-binary section EH, however, through the
saddle point m% on the curve E^Eg, divides the
upper part of Fig. 12.3 into two independent sub
systems. This is so since E forms solid solution
with D (Fig. 11.1) but not with E, and H is pure.

We shall therefore discuss this system part by
part, for it consists of three practically inde
pendent subsystems: Y—A—G—X, A—E—H—G,
and E-Z-H. (Note: This independence holds at
least to just below liquidus temperatures, but not
all the way, since compounds G and / of system
X-Z decompose at low temperature.)

We shall first describe the fractionation paths
for the solid solution surfaces. The field for the
A-rich solid solution of A and G, i.e., the surface
for liquid in equilibrium with As, is eyApP^PyEyEy
The maximum of this surface is point A itself,
since this compound melts congruently. The
fractionation paths therefore radiate as curves
from point A, and they may be said to consist of
two families of paths, divided by the straight-line
fractionation path running from A to my All the
paths, diverging from this line, are convex with
respect to point G. A similar arrangement holds
for the G field (field for liquid in equilibrium
with G-rich solid solution), e^Ge^P yE2, with a
straight-line path running from G to m2 and all
other paths diverging from this line and convex
with respect to the point A. For the surface
e5p,P,QP9, for liquid in equilibrium with Fs
(F-rich solid solution of E and /), the temperature
maximum for the origin of the fractionation paths
is the metastable congruent melting point of F.
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X

Fig. 12.3.

Hence the fractionation paths do not show a common
origin on the field itself, but radiate, as curves
convex toward /, from point E. The fractionation
paths for the lg surface, e9p}QP} QP9ES, similarly
radiate, as curves convex toward E, from the sub
merged maximum at point /.

The fractionation paths for the fields for solid
solutions of the compounds B, D, and E of system
Y—Z, to be considered later, will be as described
for the same fields in the preceding system (Sec
11.4).
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12.1. SUBSYSTEM y-A-G-X

The region YAGX is shown in Fig. 12.4, and
the vertical T vs c section AG is given, sche
matically, in Fig. 12.5.

Liquid on the curve m2E2 precipitates two
mutually saturating solid solutions, with con
jugate compositions starting as s and s'

at the temperature of m and ending as s and s'
at the temperature of £2. These limiting solid so
lutions may be identified on the miscibility gap in



^m~ SI,
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X

Fig. 12.4.

Fig. 12.5.

Fig. 12.5, which shows the solid-solid solubility
as diminishing with decreasing temperature. On
curve e,E,, liquid precipitates Y and solid so
lution A ranging from pure A at e, to s, at E,;
similarly, liquid on curve e^E2 precipitates X
and solid solution G ranging from Gto Sy Liquid
on curve EyE2 precipitates X and As solid so
lution starting at s for solution wz, and ranging
to s„ for liquid following curve w,E2 and ranging
to s. for liquid following curve ra,E,. The solid
solution compositions s. and sm are not related

to the miscibility gap of Fig. 12.5; they are merely

points in the A solid solution area of that diagram.
Also, as explained under Fig. 7.3, the line sm myX
is not a quasi-binary section.

Liquids with original composition x in the region
s'2GX reach the curve e?E2 and solidify com
pletely before reaching E2, to leave X and Gs.
Similarly, liquids from x in the sm s2X solidify
on the curve rrtyE2 to leave As and X. Only
liquids for x in the triangle s2s2X reach E2 to
give the three solids s2, s2, and X. Similarly,
only liquids for x in the triangle YsyX reach E,
to form the three solids of triangle I.
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Summarizing the equilibrium crystallization highest in temperature. Below it is the quadrangle
process for the curves: curve e,E is reached for
x in region YAsyEy but the liquid vanishes on
the curve for x in Yasy- curve eyE2 is reached
for x in XGs2Ey but the liquid is consumed for x
in XGs2; curve EyE2 is reached for x in
s,s2E2XE,, but the liquid is consumed for x in
SyS2X; curve e,,E, is reached for x in YE.X,
and curve ^2E2 for x in s2s2Ey but on these
curves the liquid does not vanish.

12.2. SUBSYSTEM E-Z-H

The region EZH is shown in Fig. 12.6, and the
vertical T vs c section FI is shown in Fig. 12.7.
The miscibility gap in the F—I solid solution is
shown as widening with falling temperature.
The three invariant planes in Fig. 12.6 are seen
to overlap. The quadrangle Py^s^Zs^ is the

PqEsySg. The lowest in temperature is the
triangle for Eg, Es H. (This diagram has certain
similarities to the hypothetical case of Fig. 7.3.)

In the relations as assumed in these figures,
liquids in the field P^p^P^ give pure Z as
primary solid, and travel on a straight line from Z
to one of the transition curves p,P,n and p,ftP,n.
0i w I U i u i u

n the curve p P

L + Z-*F .
s '

the E-rich solid solution. The three-phase triangle
for this equilibrium starts as the line p.EZ and
ends as the triangle P]Qs}0Z. For x in the region
EZs,Q, the liquid vanishes on the curve, leaving
Z and Fs (between E and s,Q). For x in the
region P6Fs,0P,0, Z is consumed while L is on
the curve, and the liquid then leaves the curve to
travel, on a curved path, across the E field.
Similar relations hold on the / side, with respect
to curve P1()P, 0, with the reaction

L +Z-*I .
s

For x in the region IZs^Q, the liquid vanishes on
the curve, leaving Z and Is (between / and s' ),
and for x in p,0/s,'0P, Q, L leaves the curve when
all Z is consumed, to travel, on a curved path,
across the / field. Only liquids for x in the

A

Fig. 12.7.
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quadrangle s^Zs^P^
reaction is

reach P
10'

L +Z s10+510

where the

For x in s,0Zs,'0, therefore, the liquid is consumed
at P,Q to leave the three solids of triangle X,
s10' sl'o' an<^ Z' anc' otherwise, with Z consumed,
L moves down along curve P,nPo, precipitating
two conjugate solid solutions with compositions
changing from s,0 and s,'Q to s? and s?', according
to the miscibility gap in Fig. 12.7.

The curve P]QP9 may also be reached directly
from either the E^ field or the / field, for x in
the regions V,/,/, and ^>9'P9P,0, re
spectively, point P? is reached by liquids for x
in the quadrangle Es9s^P9l and with the reaction

L +s9-*E +sg' ,

this is the incongruent crystallization end point for
triangle IX, EsySy If s9 is consumed in the P
reaction, the liquid moves down on curve PnEB,
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precipitating E and / solid solution ranging from
s' to s„. (With reference to Fig. 12.7, s. is in the
/ area but not on the solidus edge of the misci-
bility gap.) Also, liquids reaching curve e.E.
travel on it precipitating H and I (between / and
s ). For x in Hs I, the liquid vanishes on the
curve to leave H and I . The point Eg, then, is
reached for x in triangle VIII, Es H, for which it
is the eutectic.

Finally, liquid traveling on curve s^P., but with
x in the region EFs , vanishes on the curve to
leave E and E ; liquid traveling on the curve
P9E„ and with x in Es's vanishes to leave E
and / between s' and s„.

S" 7 O

As an example of some of the relations we con
sider point a in Fig. 12.6. For liquid of this
composition, the first solid on cooling is Z, and
L reaches curve p,P-,0 on a straight line from Z.
On the curve,

L +Z -* F ,

starting between E and s, and moving toward
s... But before the composition of the solid
solution reaches s,., Z is consumed; L leaves
the curve and travels on a curved path, convex
with respect to /, across the F field. While L

A +

is on the E surface, the solid solution continues

to become richer in /. When L reaches curve

P,0Pg the /-rich solid solution begins to pre
cipitate together with F , the compositions of the
solid solutions being given at each temperature by
the miscibility gap of Fig. 12.7. When L reaches

P9,

L +s -> E + s ' ,

and s' vanishes. The liquid then travels on the
curve P9Efi, while s. changes toward s_. Crystal
lization is completed at E„, to leave the solids
E, sg, and H.

12.3. SUBSYSTEM A-E-H-G

The phase diagram as constructed in Fig. 12.3
omits fields for the binary compounds B and D of
the system Y-Z (Fig. 11.1). We shall, however,
discuss the region AEHG, not as shown in Fig.
12.3, but as it might probably appear with the
necessary fields for B and D (Fig. 12.8), as was
done for the system Y—Z—R in Fig. 11.10.

The points s ,, and s' of Fig. 12.8 are
'2 ' "2

the same as those so labelled in Fig. 12.4. The
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Fig. 12.8.
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solid solutions s3 and s' (like s and s' in Fig.
12.4) are also conjugate solid solutions of the
A-G solid solution miscibility gap, identifiable in
Fig. 12.5.

As liquid travels on the curve m -» P it pre
cipitates solid solutions beginning as s and

s'm and ending as s3 and Sy The solids of
triangle III, s3, Sy and H, are in equilibrium with
the invariant liquid P , where the reaction is

l+s;- s3+H

If s3 is consumed in this reaction, the liquid moves
down the curve Py°4, precipitating A solid so
lution and H. The As solid solution, however,
is here shown as ternary in composition, and
it has the composition s. when L reaches P„.

4 4

Point a is the limiting composition in the binary
system Y—Z at the temperature of p .

Compositions x in the area Acts s would
solidify (in full equilibrium) to a single ternary
solid solution phase while the liquid is traveling
on the As field, before the liquid reaches any
boundary curve (cf. Fig. 2.3)» For x in the region
aBs^, L reaches the transition curve p0P., along
which

L + A -*B .

and the liquid vanishes while on that curve, to
leave As (on the curve as .) and B.

The rest of the relations in this diagram are
altogether similar to those in Fig. 11.10, with H,
so to speak, in place of the various ternary com
pounds of that diagram.

12.4. SUBSOLIDUS DECOMPOSITIONS OF

COMPOUNDS G AND I

As shown in Fig. 12.1, for the binary system
X-Z, the compounds G and / undergo solid-phase
decompositions at the temperatures T- and T„
respectively. In the ternary system Y-Z-X, both
of these compounds form solid solution with the
third component, Y, while their products of de
composition do not. The decomposition temper
ature is therefore lowered, in both cases, and we
shall say to T'c and T't, respectively. The com
pound / is considered first.

Decomposition of Compound /

The changes inthe two- and three-solid equilibria
accompanying the low-temperature decomposition
of compound / are shown in the successive iso
therms of Fig. 12.9. Isotherm (a) is just below
Eg of Fig. 12.6, and it represents the various two-
and three-solid mixtures which will be obtained
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Fig. 12.9.
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upon complete solidification of any composition
in this subsystem. Only the number of phases
is shown in the figure; the phases may be identified,
if necessary, from Fig. 12.6. Figure 12.9 (b) is
just below Tj of Fig. 12.1, where the three-solid
area for Z, H, and / appeared on cooling. Figure
12.9 (c) is at the temperature of a four-solid in
variant, for the reaction

E +1 -* F +H
s

on cooling, and Fig. 12.9 [d) is just below this
invariant. Figure 12.9 (e) is at the temperature
T' the lowest temperature for the existence of
the / solid phase (point s). Figure 12.9 (/) is
below this temperature. The T vs c section FI
(Fig. 12.10) shows little of all these changes.

Decomposition of Compound G

According to Fig. 12.1, the compound G under
goes a transition on cooling, at T', from Ga to
Go, before the /3 form decomposes at TG> In the
successive solid-phase isotherms of Fig. 12.11

it is assumed that, as in the case of the decompo
sition temperature itself, the transition temper
ature is also lowered, from T'to T", as the result
of the presence of the third component in solid
solution. The temperature-composition relations
assumed, then, for the section AG are shown in
Fig. 12.12.

The first isotherm, (a), of Fig. 12.11 represents
the two- and three-solid combinations for equi
librium just below the temperature of point P. of
Fig. 12.8, for the region YBHX (the ternary solid
solution area for A is omitted). At T' there
appears a length of Go solid solution, with four
new equilibria for H and (G ) ; X and (G ) ; H.

s p s p
(G ) , and (G ) ; and X, (G ) , and (G ) . Figure

S a s P s a s P
12.11 (^)shows these new combinations, ata temper
ature between T'and T ". Figure 12.11(c) isatT",
the lowest temperature for existence of the ternary
Ga solid solution. Figure 12.1 ](d) is between
T"and TG, where the /3 form begins to decompose
(into H and X) in the binary system. Figure
12.11(e) is between TG and T'. Figure 12.11(/)
is at T', the lowest temperature of existence of
the Go solid solution in the ternary system.
Figure 12.11(g) is below T.
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13. SYSTEM Y-U-X: NaF-UF4-LiF

For the ternary system Y—U—X, the binary system
Y—U is used with the lettering shown on Fig. 9.1.
The binary system Y—X is that of Fig. 12.2, with
e.- now in place of e... The binary system X—U,
already given in Fig. 8.1, is repeated here in Fig.
13.1 to show the new lettering required in the
present section. We note the binary compounds A
and C of system Y—U and G of system X—U, de
composing on cooling. The system Y—U also has
two compounds, E and F, which form below the
liquidus temperature.
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Fig. 13.1.

The ternary diagram is given in Fig. 13.2. There
are no binary solid solutions involved in this
system, but there are two large primary phase
fields for solid solutions formed across the diagram
by corresponding 7:6 compounds D and H. These
compounds form discontinuous solid solution with
a considerable miscibility gap. The primary phase
fields for Ds (the D-rich solid solution) and for
Hs (the H-rich solid solution) are in contact along
the boundary curve E3 E' and the point m3 on this
curve is a saddle point, being on the line DH.
However, compound D has a congruent melting
point, while compound H melts incongruently, so
that the line Dm,// is not a quasi-binary section.
The system has three saddle points but no quasi-
binary section at all. The line Dw.X looks like
one but is not, because of the solid solution in
the D solid phase. The extent of solid-solid
solubility at the liquidus temperatures, across the
section DH, is suggested by the crosshatching on
this line in Fig. 13.2.
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The fractionation paths on the D surface origi
nate at point D and radiate, on either side of the
straight-line path Dm3, as curves convex with
respect to point H. The paths on the H field must
be imagined as radiating by extension from point H
(the submerged, metastable maximum of the field);
they curve similarly on either side of the straight-
line path Hm3 (of which only the portion r -» ra, is
on the stable surface for liquid in equilibrium with
H ) and are convex with respect to point D.

The vertical Tvsc relations for the section DH
of the ternary system are shown in Fig. 13.3. The
point r is on curve Pgfj of Fig. 13.2, and s is
the composition of the solid solution in equilibrium
with liquid r. The solids s and s' are the

m3 m3
conjugate solid solutions in equilibrium with liquid
rtiy the minimum of the section. The compositions
below this temperature on Fig. 13.3 correspond to
liquids at the ternary eutectics E and E., and
will be referred to later.

The system (Fig. 13.2) has ten primary phase
fields and ten invariant points. Four of these
invariants, however, involve simply the decompo
sition or formation of binary compounds. There
are consequently only six three-solid triangles for
ultimate combinations of solids on complete solidi
fication, related to two ternary peritectics and four
ternary eutectics. We shall consider first the four
special invariant points for appearance or dis
appearance of binary compounds and then the
relations involved in the principal invariants.

13.1. THE INVARIANTS PA, Pc, PQ, AND P£

The Invariant P.

The decomposition of compound A involves pure
solids:

A^Y + B ,

and the temperature of the invariant P . is there
fore the same as TA in Fig. 9.1. (The changes in
isothermal relations near PA are entirely similar
to those shown in Fig. 8.5.) The curves e. P . and

s of even r

L -> A + Y

e.P . are both curves of even reaction,

and

L -> A + B ,

respectively; the first is reached by liquid for total
composition x in the region YAPA, the second for
x in ABP .. At P ., solid A decomposes, and the
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Fig. 13.2.

liquid travels on curve P .E. precipitating B and
y. The isothermal curve uv represents liquid in
equilibrium with Aaand A«and divides the A field
into regions for liquid in equilibrium with Aaand
for liquid in equilibrium with A„. Its temperature
is T" in Fig. 9.1.

The Invariant P_

The temperature of the invariant Pc, for the
decomposition of compound C in the presence of
ternary liquid, is higher than Tc of Fig. 9.1, be
cause C is here decomposing not into pure solids

but into B and a solid solution of D and H. The

isothermal relations involving Pc are shown in
Fig. 13.4: (a) between p3 and Pc, (b) at Pc,
(c) between Pc and Tc, and (d) below Tc. The
reaction on curve p. Pc is

L +D -*C ,

the three-phase triangle starting as line p.CD and
ending as PcCy (isotherm b). This curve is
reached for x in the region p.DyPc. For x in
CDy, the liquid is consumed on the curve to leave
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C and D (between D and y). For x in p.CPc, D
is consumed on the curve, and L then traverses
the C field on a straight line from C, to reach
curve p- Pc. For curve p3 Pc,

L +C -*B .

The curve is reached for x in p3CP • then for x in
p3BPc, C vanishes on the curve and L leaves the
curve to travel on the B field. The point Pc, with
the invariant reaction

L + C -> B + y ,

is reached only for x in the quadrangle BCyPc- For
x in the triangle BCy, the liquid is consumed to
leave the three solids, while for x in ByP _, C is
consumed and the liquid moves away on curve
PCE., precipitating B and D , the solid solution
ranging from point y at Pc to s_ (Fig. 13.9) at E^.

At Pc the equilibrium between C and liquid,
shown in isotherm (a), is replaced by the equi
librium between B and D , shown in isotherm (c),
with the D composition ranging between limits
y' and y". The limit y' reaches pure D at Tc
and the limit y" reaches s, at E-.

As the temperature begins to fall below Pc,
compositions in the region BDy have already been
completely solidified, either as C and Ds (from D
to y) or as B, C, and y. Now as the tie line By'
of Fig. 13.4 (c) moves to the left, the C vanishes
from the three-solid mixtures to leave B and Ds,
and the two-solid (C and D ) mixtures first change
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to B, C, and y'and then lose the C phase to leave
B and D . The lowest temperature for coexistence
of C with liquid is Pc, but C finally vanishes from
coexistence with solids B and D at Tc, to leave
Fig. 13.4 (d).

The Invariant PG

The relations at PG are'similar, except that one
of the boundaries of the G field is a curve of even

reaction. At PG, the decomposition of G involves
pure X and H solid solution, and the temperature
is higher than TG of Fig. 13.1. The isothermal
relations are shown in Fig. 13.5: (a) between e_
and PG, (b) at PG, (c) between PG and TG, and
(J) below TG. The reaction on curve p. PG is

L +X-.G ;

the curve is reached for x in Xp ,P G, and crossed
for x in Gp. PQ. On curve e- PG,

L -+G + H ,

the solid solution starting as pure H and ending at
z [Fig. 13.5 (b)]. The curve is reached for x in
PGzHG. For x in zWG, the liquid vanishes on the
curve to leave G and H . The point PG, for the
reaction

L + G -» z + X ,

is reached for x in the quadrangle PGzGX. For x
in the triangle zGX, the liquid vanishes to leave
the three solids; for x in PGzX, G is consumed,
and the liquid travels on curve PGE3 precipitating
X and H solid solution ranging from z to s'
(Fig. 13.9f at E3.

In the two- and three-solid mixtures containing
G, left in region zHX as the temperature falls
below PG, solid Gvanishes to leave simply X and
H , as the tie line z'X of Fig. 13.5 (c) moves to
the side of the diagram, which it reaches at TG,
to leave the isotherm of Fig. 13.5 {d).

The Invariant PE

The invariant PE represents the formation of the
binary compound E in the presence of ternary
liquid, not from pure solids but from U and D
solid solution; the temperature of P£ is therefore
lower than T_ in Fig. 9.1. The pertinent isothermal
relations are shown in Fig. 13.6: (a) between es
and TE, (b) between T„ and P„, (c) at PE, and
(d) below P£. Curve e,P_, with the reaction

L-U+D ,

is reached for x in the region e, UP „ by liquid
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precipitating U or for x in De-P Ed by liquid
precipitating D solid solution which starts as
pure D at e. and ends as d at P£ [Fig. 13.6 (c)].

For x in the region DUd, the liquid vanishes
while on the curve between e5 and PE, when the
tie line d'U, moving from DU at e5 to dU at PE,
comes to pass through x, to leave Ds and t/. At
TE, however (between e5 and P£ in temperature),
the tie lines d"E and d"'[/ also begin to enter the
diagram [Fig. 13.6 (b)]. When x comes to be swept
by the line d"U, solid E appears in the mixture,
and the two-solid mixture of Ds and U becomes a
mixture of D , E, and U. Moreover, if x is in the
region DEd [Fig. 13.6 (c)], it comes next to be
swept by the line d"E, when solid U vanishes
from the mixture, to leave Ds and E.

Mixtures in the region DUd are therefore com
pletely solidified before L reaches P£, and at
that temperature, when d" and d' meet to give
point d of the invariant quadrangle in Fig. 13.6 (c),
and when the region for D and U has shrunk to
the line dU, the solids present are either Ds and E
in DEd, or D (of composition d), E, and U in
dEU.

Liquids traveling on the curve e^PE reach P£
only if x is in the triangle dUPE.

The reaction at the temperature of PE, however,
is

Ds{d) + U-+E + L(PE) ;

it requires simply the solids d and U, and proceeds
whether or not the liquid phase is present. Hence
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those mixtures which had already solidified to E,
d, and U now produce liquid of the composition
PE again, in the invariant reaction. The invariant
PE is an example of the type of invariant dis
cussed as case (b) under Fig. 4.12.

Now for x in the region EUPE, the solid solution
d is consumed and L travels away on curve PEP6,
along which

L + U -> E ;

and for x in dEP „, U is consumed and L moves
onto curve PEE^, for

L-+ E +D ,

the solid solution starting at d and ending at s.
(Fig. 13.7).
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13.2. THE REGION DUH

Figure 13.7 gives the schematic arrangement for
the reactions involving the invariant points in the
upper half of the ternary system, the region DUH.
The invariant quadrangle pertaining to PR is
shown by dashed lines. The invariant planes are
seen to overlap in various ways. The order of
temperature is PE > P, > P, > E.. The planes
are dEUP£, EUIP&, Els^P^, and s^Es'^ (for Ej.

The transition curve PgP6, for the reaction

L + U -* E ,

is reached, directly or indirectly, by liquids for x
in the region P£EUP&; but for x in P£EP L
then leaves the curve when U is consumed, to
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travel across the E field. The transition curve

p9 P., for the reaction
L +U -> I ,

is reached from the region p. UP,, and it is left
by liquid for x in p?/P,. The point P. is reached
only for x in P.EUI; its reaction is

L + U -+E + 1 ,

and it is the incongruent solidification end point
for triangle VI (EUI). At a still lower temperature,
solid F of system Y—U forms from the solids E
and U, and then we have either E, F, and / or F,
U, and /.

The reaction on curve P&PS is odd,

L+E^l,

if, as assumed in Fig. 13.7, its tangent extends
to the right of /. In this case the curve is reached
either from P. (for x in the region P^El) or directly

/ifrom the E field for x in P^EP^. But for x in
P IP. the curve is left by the liquid when E is
consumed, when the liquid, saturated only with /,
moves onto the / field.

Next, the transition curve pgPe is reached,
directly or indirectly, for x in the region IP5p„.
The reaction on this curve is

L + / -» Hs .

The three-phase triangle for liquid in equilibrium
with H and / starts as the straight line p«HI and
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extends into the diagram to end as P-s.I. Conse
quently either the liquid or the solid / may be
completely consumed while L is on the curve.
For x in s.IH, the liquid is consumed when the
Hs~I leg of the three-phase triangle sweeps through
the point x, to leave / and H (between H and s.).
For x in the region p-rP.s'.H, solid / is consumed
when the L—H leg passes through x; this leg starts
as the line p& H and sweeps around to become rs
for L af r, and finally P5s5- When / has vanished,
L leaves the curve to travel upon the Hs field,
on a curved path (a straight path only between r
and to,, but otherwise curving always away from
this line). The invariant P_ is reached only for x
in the quadrangle PjE/Sj. Its reaction is

L + I -* E + s. ,

and it is the incongruent crystallization end point
for triangle V (Els.).

For x in the region P.Es5 the liquid moves on
down the curve PjE., precipitating E and solid
solution H , beginning at s5 and ending at s^.
The curve PSE. is also reached directly, from the
E field for x in E. EPC, and from the H field for x

4 5 s

in s, P. E. Sj. For x in Es' s_, the liquid vanishes
on the curve to leave E and a solid solution (be
tween s'. and sj. The curve PEE. is reached
from the E field for x in PEEE ., from P£ itself
for x in dEPE (d shown in Fig. 13.6)-, and from the
D field for x in dP „E.s.. Liquid on the curve

s E 4 4 ^
PRE. precipitates E and D , starting at d and
ending at s.. Compositions in dEs. solidify com
pletely on the curve to leave E and D . (It will
be recalled that compositions in DEd solidify
completely on the curve e,P_.) The invariant E.
is also reached along curve m3E4, with the liquid
precipitating two mutually saturated solid solutions
ranging from s and s' at w, to s. and s' (cf.

Tfl n 771 n O *t *•

Fig. 13.3). From the D side, m3E, is reached
for x in s.E.m.; from the H side, directly or

4 4 3 s '

indirectly, for x in m3E s'.. The invariant E^, a
eutectic, is therefore reached for x in triangle IV
(s4 Es'A).

The vertical Tvsc section through EH is shown
schematically in Fig. 13.8.

Solution of composition a, in Fig. 13.7, gives U
as first solid, and L reaches curve PEPi on a
straight line from U. On the curve,

L + U -. E .

The solid U is consumed; L leaves the curve,
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travels on a straight line from E, and reaches
curve P. P.. On this curve

L +E-/ .

The liquid reaches P., where

L + I •* E + s. .

The compound / is consumed, and the liquid follows
curve P. -» E., precipitating E and a solid solution
ranging from s, to s.". At E , s4 also precipitates,
and the liquid vanishes to leave s., E, and s'.

Liquid b gives U as first solid and reaches curve
p9 P.. On the curve,

L + U ->I .

The solid U is consumed; L leaves the curve,
crosses the / field, and reaches curve PgPs- On
this curve

L + /-»// ,

the solid solution starting with composition just
to the right of s and reaching s5 when L is at P..
Now

L + I -» E + s. .

The compound / is consumed, and L starts out on
curve P^P-ai but *ne liquid is consumed before
reaching E to leave E and a solid solution be
tween s. and s'.<

Liquid c gives U as first solid and reaches curve
e, P£. On the curve

U + D

and the liquid vanishes, on the curve, to leave U
and a solid solution between D and d, fixed by the
straight line Uc. As the temperature continues to
fall, solid E forms to give E, U, and D , the compo
sition of the solid solution moving toward point d.
The D solid reaches point d at the temperature
ofP£. Here

U+d^E + L(PE) .

The solid U is consumed, and liquid reappears,
therefore, with composition P„. Now the liquid
travels along curve PEE., precipitating E and
D , with D starting at d; but the liquid vanishes
while on this curve to leave E and a solid solution
between d and s., fixed by the line Ec.

Finally, consider a liquid of composition x on
the line DH. The first solid is /, and liquid
reaches curve P8P5/ f°r tne reaction

L + /-> H .

If x is between r and s , then when L reaches
point r, I will just have been consumed, and the
solid solution has the composition sr. Now the
liquid leaves the curve and travels to to,, where
it vanishes to leave the conjugate solid solutions
s and s' . But for x between s and H, them3 m3

liquid and / vanish simultaneously, leaving H as
sole solid phase, before L reaches point r on the
curve, when the H corner of the L—H —I three-
phase triangle passes through point x.

13.3. THE REGION YDHX

The lower part of the ternary system is repre
sented in Fig. 13.9. The relations involving the
fields of the decomposing solids A, C, and G have
already been discussed. The Y, B, and X fields
involve pure solids, with straight-line crystal
lization paths radiating from the points Y, B, and
X, respectively. The transition curve p- P. was
discussed under Fig. 13.7. Liquids reach this
curve on straight-line paths from the point / (Fig.
13.7), but for x in the portion of the / field in
cluded in Fig. 13.9, / is completely consumed
while L is still on the curve. On leaving the
curve, L then travels across the H field, on a
curved path, to reach one of its boundaries ^3^3'
PGE3, or e7PG.
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The eutectic E. is reached for x in triangle
(YBX). The reaction on the curve E.m.E is

L-*B +X ,

in both directions. The reaction for curve E.m.E.

is

L-*X + D ,

the solid solution ranging from s for L at m,,

to s. at E, and to s_ at E_. For x in the region
s.s.X, the liquid is consumed on the curve,
before reaching a eutectic, to leave X and D
(between s2 and s_). The point m, is a saddle
point, but the section s m.X is not quasi-binary;

the liquid with composition s is in equilibrium

with a solid solution not of composition s but
between D and s

77?*

The reaction on curve PCE. is probably of even
sign,

L^B + D .
s

along its whole length. The solid D for this curve
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starts as point y (see Fig. 13.4) for L at PQ and
ranges to s2 for L at E_. For x in the region CDy,
solidification is complete on curve p.Pc to leave
C and Ds; compositions in BCy solidify at Pc to
leave B, C, and y. As the temperature falls further,
C then begins to vanish from these solid mixtures,
disappearing completely on the binary side of the
system at T_. For x in Bys., solidification is
complete on the curve PCE. to leave B and D .
The point E. is reached only for x in triangle II
(Bs2X).

Similarly, compositions in the region zHG solidify
completely on curve e_PG to leave G and H , and
those in zGX solidify at PG to leave G, X, and z.
Then as the temperature falls further, G begins to
decompose in these solid mixtures, vanishing last
on the binary side at TG> For x in slzX, the
liquid vanishes on the curve PGE. to leave X and
Hs. On curve m3 E3, the liquid precipitates conju
gate solid solutions ending at s. and si. The
point E is reached for x in triangle III {s3slX).

The vertical T vs c section BG is shown in

Fig. 13.10.



UNCLASSIFIED

ORNL- LR-DWG 25615

L + B

L + B+X

X + sz + B

X+Dc

B

Fig. 13.10.

Liquid a in Fig. 13.9 gives X as first solid,
reaches curve p&P' G, reaches PG carrying G and
X, and there solidifies to G, X, and z. With falling
temperature, the composition of the solid solution
moves to the right from z, and G vanishes to leave
X and a solid solution fixed by the line Xa.

Liquid b gives G as first solid, reaches curve
e?PG, and solidifies on this curve to leave Gand
a solid solution z' [Fig. 13.5 (c)] between z and
H. Then as the temperature falls further and z'
moves to the right, X appears as third solid when
the line Gz' passes through b, and finally G
vanishes when the line Xz' passes through b.

Liquid c gives C as first solid, reaches curve
p PG, leaves this curve when C is consumed,
reaches curve e.P^ on the left of v, and begins
to precipitate A together with B. At v, Aachanges

to A.. „• . A
travels on curve P

B, and X.

-X + G + H.

TEMPERATURE OF m.

At PA, AR decomposes, and the liquid
idify at E. to Y,E to sol

13.4. FRACTIONATION PROCESS ON THE

SOLID SOLUTION FIELDS

In a fractionation process, L follows one of the
fractionation paths to a boundary of the field; the
solid increases in Hon the Ds field and increases
in D on the H field. The fractionation end point
is E. above the line DH. Liquids starting in the
region between e. and the path DPE end as four
solids, D , U, E, and H$, but all others starting
in the solid solution fields above line DH end as
D , E, and Hs.

Below the line DH the fractionation process for
the H field ends at Ey leaving Hs, X, and Ds;
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the same holds for the D field above the path
Dm... The rest of the D field is divided by the
fractionation path Dq of Fig. 13.11; q is the
intersection of p±Pc with line Ct, and t is the
intersection of curve p3 P' with line Bm.. Liquid
in the region between p. and the path Dq reaches
curve p4 q. Without stopping on the curve, L
crosses it and traverses the C field in a straight
line from C to reach curve p3t. Without stopping
on this curve, L crosses it and traverses the B
field to one of its boundaries, e.P ., PAE., and
m.E.. The process ends at E. to leave D , B,

Y, and X, since solids C and A will have de
composed. The fractionation end point for the D
field between the paths Dq and Dm. is E the
final solids being D B, and X. For the region
between the paths Dq and DP the precipitation
of the solid solution is interrupted while L crosses
the C field and then the' B field between curve
tPc and curve m}E2, finally reaching E2, where
Ds begins to precipitate again with the composition
s2. Consequently, there is then a gap in the
composition of the D solid solution finally ob-
tamed.
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Fig. 13.11.
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14. SYSTEM Y-U-Z: NaF-UF4_ZrF4

For the ternary system Y—U—Z, the binary
system Y—U appears in Fig. 9.1, and it is here
used with the same lettering. The Y—Z binary
diagram was given in Fig. 11.1, but it is redrawn
here (Fig. 14.1) to show the different lettering
necessary in the present section. The system U—Z
is given in Fig. 14.2.

14.1. GENERAL CHARACTERISTICS

The phase diagram of the ternary system is
given schematically in Fig. 14.3.

The principal feature in this system is the
existence of three continuous series of solid

solutions: that between the components U and Z,
with a minimum at m', that between the congruently
melting corresponding 7:6 compounds D and K,
and that between the congruently melting corre
sponding 3:1 compounds A and G. For brevity
these solid solutions will be called U , D , and
Aj( respectively. The primary phase fields for
these solid solutions are the three largest fields
of the diagram.

Moreover, each of the sections AG and DK
constitutes a quasi-binary section of the system
(Figs. 14.4 and 14.5). At least as far as the
equilibria involving the liquidus are concerned,
therefore, the system as a whole may be divided
into three independent subsystems, Y—A—G,
A-D-K-G, and D-U-Z-K, whick will thus be
considered separately.

In the subsystem Y—A—G, with only two fields
(pure Yand As), there is only one boundary curve
(e. -> e.), and the temperature on this curve falls
in the same direction as for the quasi-binary
section G -* A itself. In the subsystem D—U—Z—K
the liquidus pertains almost entirely to the primary
fields for two continuous (effectively binary) solid
solutions. The boundary curve is slightly compli
cated by the field for compound M, but it has no
minimum of temperature. The temperature of the
boundary curve falls continuously from the YU
to the YZ side, as in the section DK itself, despite
the minimum m' in the U—Z system. The middle
subsystem, however, is unusual in having opposite
directions of falling temperature in its bounding
quasi-binary solid solution systems, D •* K and
A «- G. No "normal" behavior can be predicted for
the boundary curve between the solid solution
fields. This boundary curve is complicated by the
minor fields of the four other solids of this sub

system, but essentially it falls in temperature

from the AD to the GK side, with a slight maximum
m near point e .

The A—G and D—K solid solutions, moreover
(as shown in exaggerated form in Fig. 14.6), are
actually ternary in composition on the YZ side.
They occupy small areas of ternary composition
near points G and K, respectively, not lying
simply on the straight lines AG and DK. This is
so because the compounds G and K form solid
solutions in the Y—Z system itself, besides
forming the continuous solid solutions with the
analogous compounds of the Y—U system.

The only invariant points (for liquid in equilibrium
with three solids) in the entire system are five
peritectic points. There is no eutectic, nor is
there a minimum on any curve of liquid in equi
librium with two solids.

The vertical T vs c section of the system from
the corner Y to a point midway between U and Z is
merely a section passing successively through the
three adjacent but independent subsystems
(Fig. 14.6). Details of this diagram will be
mentioned later.

14.2. SUBSYSTEM Y-A-G

The relations in the subsystem Y—A—G (Figs.
14.7 and 14.8) are similar to those discussed
under Figs. 6.1 to 6.4, but simpler, since there is
here no minimum either in the binary edge AG or in
the boundary curve e. e, .

All mixtures in the system solidify to two
solids, Y and A . The reaction on the curve

ele6 is

l->y + as ,

and the three-phase triangle, starting as the line
Ye G, moves, with the configuration shown in
Fig. 14.7, across the diagram to end as the line
Ye^A. All liquids reach the boundary curve, and
they are completely solidified on that curve when
the total composition x is swept by the leg YA of
the three-phase triangle. Liquid a (Fig. 14.7)
gives Y as first solid and reaches the curve on a
straight line from Y. On the curve, the liquid
precipitates Y and a solid solution starting with
composition Sy The liquid vanishes on the curve,
while moving toward e]t when the solid solution
reaches a composition on the extension of the
straight line Ya. Liquid b precipitates a solid
solution beginning between G and s.. The liquid
reaches the curve on a curved equilibrium path
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Fig. 14.7.

(as discussed in Sec 6) convex with respect to
point A. When it reaches the curve, the liquid is
at Z1 and the solid at Sy Now Y begins to pre
cipitate with the solid solution; the liquid moves
toward e.t and vanishes when the solid solution
reaches a composition on the extension of line Yb.

The vertical T vs c section (first third of
Fig. 14.6) is similar to Fig. 6.3; but in the present
case the area for liquid in equilibrium with Y and
As collapses to a line only at e, and at e^, since
there is no minimum in the boundary curve.

Crystallization paths in the Y field are straight
lines from Y. Fractionation paths in the As field
are a family of curves originating at G, diverging
from the line G -* A, convex with respect to A, and
each ending at the boundary curve (Fig. 14.8).

14.3. SUBSYSTEM A-D-K-G

The two large fields in the subsystem A—D—K—G
(Fig. 14.9) pertain to solid solutions As and Ds.
Part of the As field is in the subsystem Y—A—G
already discussed, and part of the Ds field is in
the subsystem D-U-Z—K. The line G -» A is
simply the line of maximum temperature running
from G to A, and it is the limiting fractionation
path of the field dividing the curved paths of the
two subsystems. The line D -* K is a similar
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limiting straight-line fractionation path running
from the melting point of D to the melting point of
K, and dividing the curved families of fractionation
paths of the two adjacent subsystems. The
fractionation paths in the As field (on either side
of the line AG - i.e., both in Fig. 14.8 and in
Fig. 14.9) are convex with respect to point A, and
those in the D field are convex with respect to
point K. The tangents for the two fractionation
curves meeting from two sides at the curve PjP?
must be such that the three-phase triangle for this
curve points toward P, (direction of falling
temperature), as shown for point a in Fig. 14.9.

The vertical T vs c section across the curve

PjPj 's shown as the middle part of Fig. 14.6.
There is theoretically a single-phase ternary solid
solution band reaching very slightly into the
section both from the AG line and from the DK
line; the dimensions are exaggerated in order to
show the schematic relations. The region "A^ +
L + Ds" is a cut through the space generated by
the moving three-phase triangles of curve P'2P' .
The coexisting phases are not on the plane of the
diagram. The order of temperature for the three
corners of this cut (L > As > D ) results from the
fact that the section involved, from Y to the 1:1
ratio on the UZ side, is reached, with falling
temperature, first by'the L corner of the three-phase
triangle, next by the As corner, and last by the
Ds corner, according to the configuration of the
triangle drawn on Fig. 14.9.

The solid H of system Y—Z forms some binary
solid solution on the side of compound /, and hence
the fractionation paths in the Ha field are curved
and are convex with respect to K. The common
origin of these paths, extended back, is the
metastable congruent melting point of H in the
Y—Z binary system. The transition from Ha solid
solution to pure H„, all occurring below liquidus
temperature, will be discussed later. The compound
C, as will be explained shortly, also forms solid
solution with composition extending into the
diagram toward the GK side; hence the paths on the
C field are also curved, are convex with respect
to K, and originate by extension from the point C.
Only the solids B and / are pure, in Fig. 14.9.
The / field is divided into three portions, by
isothermal creases at the temperatures t^ and t2
of Fig. 14.1; the portions represent, with falling
temperature, liquid in equilibrium with / , liquid
in equilibrium with I„, and liquid in equilibrium
with / . The t3 transition, to /g, occurs at a low
temperature and does not affect the liquidus
surfaces.
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The crosshatched lines in Fig. 14.9 indicate
where the solid solution compositions are found.

The Region Involving A, B, C, and D

With regard to the evidence for solid solution
formation by compound C, we note that this
incongruently melting 5:3 compound decomposes
on cooling, at Tc(630°), into the pure solids B
and D in the binary system Y—U. But its primary
phase field in the ternary system Y—U—Z extends
down to the temperature of P (610°). Since D is
known to form solid solution with K in the ternary
system, the decomposition temperature of C is
expected to be raised in the ternary system unless
the solid phase C itself forms a solid solution
containing the third component. This solid
solution, which the compound C must therefore
form, may be imagined as involving the hypothetical
corresponding 5:3 compound in the Y—Z system, so
that the composition of the solid phase to be
called Cs (solid solution of 5:3 compounds
originating at point C) probably extends on a line
into the diagram parallel to the edges AG and DK.

Moreoever, the point P2 may either represent the
lowest temperature of existence of this solid phase
in the ternary system; or it may represent simply
the lowest temperature for its equilibrium with
ternary liquid, while the lowest temperature for its
existence may be still lower (in subsolidus
relations). In absence of the information required
for deciding between these alternatives, we shall
consider both relations for this region of the
system, referring to the first as Scheme I and to
the second as Scheme II.

Scheme I. - The point P2 is here assumed to be
the lowest temperature of existence of the Cs
solid solution, with the third component, in other
words, continually lowering the decomposition
temperature of C. The schematic relations for
the invariant four-phase planes would be as shown
in Fig. 14.10. There are three such planes. The
highest-temperature plane is the quadrangle for
P]( involving B, Cy Ay and L(P j); the next, in
dashed lines, which will be referred to as the
invariant Q , is a quadrangle involving B, Az, Dz,
and C ; the lowest is the triangle for P2, for the
phases A2, D2, L(P2), and C2 as the interior
phase.

The order of decreasing temperature for the
fixed points involved is assumed to be:

Pi>p3>m>e2>P^>Tc>Qz>P2 .

A series of isotherms relating these points is
given in Fig. 14.11: (a) between p4 and p3;
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(b) between p3 and m; (c) between 772 and e2; (d) at
Py (e) between P1 and Tc; (/) between Tc and
Sz; (g) at Qz; (h) between Qz and P2; (1) at P2;
(7) below P2.

The reactions on the curves (of liquid in equi
librium with two solids) and at the invariants are
as follows:

1. p. -> P • L + Ds •* C . The three-phase
triangle, triangle 1 in Fig. 14.11(a), starts as the
line ptCD and ends as P2C2D2. This curve is
reached by liquids from the region p.DD2P.,
precipitating Dg. But for original, total compo
sition x in the region CDD2C2, the liquid vanishes
while traveling on the curve, before reaching P.,
to leave Cs and Ds when the Cs—Ds leg of the
three-phase triangle comes to pass through x.
(The appearance and disappearance of phases to
be considered in this section will most easily be
visualized through the sequence of isotherms in
Fig. 14.11. The disappearance of the liquid
phase is not necessarily the end of the phase
changes.) For x in the region p.CC2P2, the Ds

phase vanishes while L is still on the curve,
when the L—Cs leg of the triangle passes through
x. Then the liquid, saturated only with Cs,
traverses the Cs field to reach one of its other
boundaries, P3P^ or P^P^'

2. p3 •* Py L + Cs -* B. The three-phase
triangle, [triangle 2 in Fig. 14.11(6)], starts as
line P3BC and ends as PyBCy The curve is
reached for x in p^C^Py by liquid precipitating
Cs, For x in BCCy the liquid vanishes on the
curve to leave B and Cs when the leg B—Cs
passes through x; for x in p3BPy Cs vanishes on
the curve when the L—B leg passes through x, and
then L traverses the B field.

3. 772 -* e2: L -* B + As. Point 772 is the temper
ature maximum on the curve e2P.. For this
section, 772 -» e2, the three-phase triangle starts
as the line AmmB and ends as Ae2B [triangle 3'
in Fig. 14.11(c)]. The curve is reached from the
B field for x in 772C2B or from the As field for x in
Ae2772A . The liquid always vanishes before
reaching e2,to leave B and As (between Aand Am)
on a line passing through x.

4. 772 -> Py- L -* B + As. The three-phase triangle
[triangle 3 in Fig. 14.11(c)] starts again as the
line AmmB and ends as A.BPy The curve is
reached from the B field, by liquid precipitating B,
for x in mBP^; and it is reached from the As field
by liquid precipitating As, for x in AmmPyA..
Now if x is in AyAmB, the liquid vanishes on the
curve to leave B and As (between Am and A,)
on a line passing through x.

Invariant Py~ The triangles 2 and 3 are seen, in
Fig. 14.11(c), to be separated by a region in which
B is in equilibrium with liquid. This equilibrium
shrinks to a line at Py in the invariant reaction

HPJ+B-tA^ +C, ,

and it is replaced by the equilibrium between
As and Cs which now separates two new three-
phase triangles [4 and 5 in Fig. 14.11(c)] for B,
Cs, and As and for liquid, As, and Cs. Point P1
represents a type B diagonal invariant reaction,
the triangles 2 and 3 being replaced by 4 and 5.
The point Pj is reached for x in the quadrangle
AyBCyfy For x in AyBCy the liquid is consumed
in the reaction to leave Ay B, and C, (triangle 4);
for x in AyC.Py the solid B is consumed, and L
travels on the curve P, -» P2, representing the
traveling of triangle 5 (L—A—C).

5. Pj -+ P2: L -* As + Cs. The three-phase
triangle (triangle 5) starts, as just explained, as
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Fig. 14.11. (part

AyC)P) and ends as A2C2P2. This curve is
reached from the Cg field for x in P^C^C2P2, and
from the As field for x in A^P^P^^ For x in
AyCyC2A2, the liquid vanishes on the curve to
leave Ag and Cs when the As—Cs leg of the
triangle passes through x.

Between the temperatures of P. and P2,however,
at Tc (the decomposition temperature of C in the
binary system) the equilibrium between B, Cs, and
Ds appears as a three-phase triangle [triangle 6
in Fig. 14.11(/)]. It starts as the line BCD at
Tc and ends as the triangle BCZDZ at the invariant
temperature Qz.

The invariant Qz involves four solid phases
(three of them variable) in another quadrangular or
diagonal invariant reaction of type B. As the Qz
temperature is approached, the region for the
equilibrium between B and C [which is seen, in
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Fig. 14.11(/), to separate triangles 4 and 6]
shrinks to a line, the two triangles come into
contact, and we have the reaction

B + C_-+ Az + Dz

The equilibrium between B and Cs is replaced by
one between As and Ds, now separating the two
new triangles originating at Qz: triangles 7 and 8
of Fig. 14.11(A), for B, Az, and Dz and for As, Ds,
and C ,

s

In all the three-phase triangles of Fig. 14.11,
the corners representing variable phases (Cs, As,
Ds, L) move continually to the right with falling
temperature. Triangle 7, however, will be assumed
to remain constant with further decrease of temper
ature; at any rate it will not be involved in any
more of the phase changes now under discussion.
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Fig. 14.11. (part 2)

The invariant reaction Qz will occur for x in
the quadrangle BDzCzAz, leaving B, Dz, and Az
for x in triangle BDZAZ, and otherwise As, Ds,
and C , as triangle 8, which continues to move to
the right.

Finally, the three remaining moving triangles,
1, 5, and 8, come together at P2. The range of
existence of the Cs solid phase, in other words,
here shrinks to a point, C2< The invariant P2,
then, is of type A, triangular, with C2 as interior
phase; it is terminal for the phase Cs. It is an
example of the case c invariant discussed under
Fig. 4.11. It may be said to be the decomposition
point, on cooling, for the C solid solution in the

ternary system. The reaction is

C2 -> D2+A2 + L(P2) ,

whereupon the liquid then travels down the curve
P2 -* P., with its three-phase triangle 9 [Fig.
14.11(7)1.

Some of the relations may be shown, in different
fashion, in the Tvs c vertical section of Fig. 14.12,
between C in system Y—U and the 5:3 ratio in
system Y—Z. This section cuts triangles 1, 6,
7, 8, and 9 of the foregoing discussion.

The sequence of phase changes upon cooling,
for complete equilibrium, starting with a liquid of
specified composition in Fig. 14.10 may be followed
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1

B + D

with the aid of Fig. 14.11. The fixed composition
point x will fall successively in the various two-
phase regions (tie line areas) and three-phase
triangles (numbered and explained above) as these
move through the point with falling temperature.
A few particular compositions will be considered,
for illustration.

Point a (Fig. 14.10): The first solid on cooling
is Agl starting between A, and A,. The liquid
reaches curve Py*>2 and precipitates As and Cs
(Cs starting between C, and C2). The liquid
vanishes before reaching P,, leaving As and Cs
on a line through point a. Point a, in other words,
finds itself in the two-solid region between
triangles 8 and 5 of Fig. 14.11(A). With further
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Fig. 14.12.

cooling, this region moves to the right, and point
a enters triangle 8, with three solids, As, C , and
Dg. The solid Cs thus decomposes into As and
Ds on cooling, and the residual Cs approaches
C, in composition. When the temperature reaches
P2, liquid reappears, in the invariant reaction:

C2 - calories -* L(P2) + A2 + D2 .

[This reaction is case (c) of Sec 4, Fig. 4.11, but
now with solids of variable composition.] When
all C2 is consumed, the liquid starts out on curve
P<jP-i, vanishing to leave As and Ds on a line
through point a.



Point b: The first solid is D , between D and
D2. The liquid reaches curve PtP^' Here

Cs starting between C and C2. The liquid is
consumed on the curve, leaving Cs and D on a
line through b. Point b now comes to be in the
region for Cs and Ds, between triangles 6 and 1.
When triangle 6 reaches b, B appears as a solid
phase. Then at Q

B + Cz-.Az + Dz ,

B is consumed, and b ends as A and D , in the
region between triangles 7 and 8 [Fig. 14.11(A)].

Point c: As in the case of point b, the liquid
reaches curve P4P2 and vanishes to leave Cs
and Ds. But below Tc, C begins to decompose;
point c comes to be in triangle 6, and finally into
the area for B in equilibrium with D as triangle 6
moves on.

Point d: The first solid is C , between C and
Cy The liquid reaches curve f,P,, where

L + Cs-* B .

At Py A, appears, and

L + B -* A, + C, .

The liquid is consumed, and point c? finds itself in
triangle 4. Next, As vanishes, leaving B and Cs.
Then Ds appears, and point Centers triangle 6. At

B + CZ->AZ + DZ ,

leaving B, Az, and Dz, d being in triangle 7.
Point e: The first solid is B, and L reaches

curve 772P., where

L-*B+As ,

the solid solution being between Am and A,.
At P,

1'

L +B-+ A, + C, ,

the liquid is consumed, and point e is now in
triangle 4. As this triangle moves on, however,
the Cs phase vanishes, to leave B and As, on a
line through point e.

Point /: The first solid is Cs, L reaches curve
PjPy Cs is consumed on the curve, and Ltraverses
the B field to reach curve 772P.. At P.,

L +B-* Ay+C^ ,

B is consumed, and the liquid travels on curve

P^j, precipitating As and Cs (triangle 5). The
liquid vanishes, however, to leave A and C ,
between triangles 4 and 5, and point / next comes
to be in triangle 4, as B, As, and Cs. Then at Qz,

B + CZ-*AZ + DZ ,

leaving the solids of triangle 7.
Scheme II. —The point P2 is here assumed not

to be the lowest temperature of existence of the
Cs solid solution (with composition C2). The Cs
phase is assumed to vanish, on cooling, at some
intermediate composition (C , between C and C2),
at a still lower temperature, that of a four-solid
invariant to be called Q . The relations would be
those shown schematically in Fig. 14.13. The
highest-temperature invariant plane is again the
P, quadrangle, assumed to be identical with that
in Scheme I (Fig. 14.10). Next is the P2 plane,
now a quadrangle, an example of the case (d)
invariant discussed under Fig. 4.10. Below these
is the triangular plane of the Q invariant
reaction, terminal for C , the interior phase. We
now have the temperature order:

P,>Tc>P2>Qy .

The first six isotherms of Fig. 14.11 apply to
Scheme II as they are. The subsequent isotherms
are given in Fig. 14.14, and to preserve continuity
these will be lettered as follows: (g) at P., (h) be
tween P2 and Q , (0 at Qy, (7) below Qy.

Except for the positions of the compositions
A2, C2, and D2 involved at P2, the crystallization
processes on the liquidus surfaces and on the
curves of twofold saturation are the same in both

schemes. The schemes differ only in the reactions
of the solid phases left after complete solidi
fication.

Triangles 1-6 originate as in Scheme I, and they
again move to the right with falling temperature.
The relations in the isotherm (/) (which is between
Tc and P2 in Scheme II and between Tc and Qz
in Scheme I) are topologically the same for both
schemes. This is now followed by isotherm (g),
at Pj. The triangles 1 and 5, separated in (/) by
the equilibrium between Cs and liquid, here come
into contact, in the reaction

L(P2) + C2*A2+D2 ,

giving rise to the equilibrium between A and D ,
separating the two new triangles 8'and 9'. These
involve the same phases as the triangles of the
same number in Scheme I, but the compositions
are different. Also, while triangle 9', like triangle 9
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Fig. 14.13.

in Scheme I, now continues to move to the right as
the liquid travels on the curve P2P3 precipitating
As and Ds, the triangle 8' begins to move to the
left with falling temperature. Eventually it makes
contact with triangles 6 and 4, in the Q invariant
reaction, in the arrangement shown in Fig. 14.14(z).
The ternary C solid solution, the interior phase of
the triangular, type A invariant reaction, simply
decomposes into the solids B, A and D , leaving
triangle 7', which corresponds to triangle 7 of
Scheme I.

The vertical T vs c section through C and the
5:3 ratio in the system Y—Z is shown in Fig. 14.15,
which is to be compared with Fig. 14.13. In both
cases there are two solid-state decomposition
reactions for Cs:

C+B + D.
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and

C. *s + Ds

In Scheme I, the decomposition into B and Ds
extends from the binary temperature Tc to the
invariant Qz, and the decomposition into As and
Ds falls in temperature from Qz to the invariant
P2. In Scheme II, the decomposition into B and
Ds falls in temperature from Tc to Qy, and the
decomposition into As and Ds rises in temperature
from Q to Pj.

Point a (Fig. 14.13): The first solid is Ds. The
liquid reaches curve P4P2, where

L+Ds->Cs

(triangle 1), and the liquid vanishes on the curve
to leave Cg and Ds. Below Tc, the point a is
reached by triangle 6 (for B, Cs, and Ds), and
finally remains as B and Ds when it is left behind
by triangle 6.

Point b: The first solid is Cs. The liquid
reaches curve P3P1, where

L + CS-+ B

(triangle 2). At P,,

L + B -* A^ +C} .

The compound B is consumed, and the liquid
moves on curve Py°2, precipitating As and Cs
(triangle 5). The liquid vanishes on the curve to
leave As and Cs, and point b is next reached by
triangle 4 (for B, Cs, and Ds). At Qy, the C
phase decomposes
(triangle 7 ') •

Point c: The first solid is

reaches curve p .P' where

to

L + D

(triangle 1). At P2,

B,

D.

C.

'y. and Dy

The liquid

L + C2-> A2 + D2 .

The liquid is consumed, and point c is left in
triangle 8'(for As, Cs, and Ds). But this triangle
moves to the left with falling temperature, and
before the temperature of Q is reached, Cs will
have vanished to leave As and Ds .

Point d: The first solid is Cs. The liquid
reaches curve P^j, where L -* As + Cs (triangle 5).
The liquid vanishes on the curve to leave As and
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Cs. But point d is next reached by triangle 8',
from the right, to give As, Cs, and Ds. At Q
the Cs phase decomposes to leave the three solids
of triangle 7 ' (B, A and D ).

The Region Involving G, H, I, and K

The lower part of the subsystem A—D—K—G
is shown in Fig. 14.16. Liquids on curve F'F'
precipitate the solid solutions As and D , solidi
fying completely, while on the curve, for x above
the line A3£>3 (joining the solid solution compo
sitions for liquid at P3). (We continue here to
call the A—G solid solution As and the D—K solid
solution D even down to the limits G and K.)
As the composition of G is approached, the As
solid solution is shown as occupying an area in
composition, since G also forms solid solution in
the binary system Y—Z, varying from G to the
composition G- at the temperature of p_. The
same situation holds at K, which forms solid

solution in the binary system Y—Z, extending from
Kto the limit K? at the temperature of e?.

For the curve pyP3, which is reached for x in
the region p7G?A3P3, the reaction is

L+A, H.

The solid solution starts at G_ for L at py and
ends at Ag for L at P3. The three-phase triangle
starts as the line GjHp7 and ends as A^HPy
Hence liquid on the curve is completely solidified,
leaving Ha and As (between G_ and A3), for x in
HG-A-. For x in the area of the ternary solid
solution, ss, solidification is complete with L
still on the As surface, before any curve is
reached. The curve P7P3, moreover, is crossed
for x in HP3p when, after the As phase has been
consumed, the liquid leaves the curve to travel
across the Ha field, but now precipitating not pure
Wabut the Hasolid solution ranging from H to #4.
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B+ Cs+ Ds

0,

C

The point P., is reached for x in the region
HA3D3P3, by way of either curve F'2F'3 or curve
PyPy Liquids with x in the triangle A3D3H then
solidify completely in the reaction

L(Pz)+A3-*Ha+D3 •
while the others travel down the curve P3 -> P4,
precipitating two solid solutions, one of Ha
(H to «4) and one of Ds (D3 to D4). Complete
solidification is therefore effected on this curve

for x in HD D.H.. The curve is reached from the

tfafield for x in HP3P4H4 and from the Ds field for
x in P3D3D4P4.

On the transition curve PgP4;

L+H+I .
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Fig. 14.15.

The Ha solid solution in equilibrium along this
curve is, strictly, variable in composition, starting
just to the right of H. at p. and ending at H..
(Since P. is below p. in temperature, the compo
sition of H must be just to the left of that for
the binary peritectic p. of Fig. 14.1.) Since the
variation is probably very slight, we have here
assumed this solid to be constant at H for the

whole curve. This curve is reached for x in

H4P4p„, and it is crossed for x in tP.pR. The
point P4 is thus reached, either from curve P^4
or from curve pJ'^^ox x in the quadrangle H^D^P^l.
The reaction is

L(P4) + H4-, ;a+D4 ,

so that liquidus for x in the triangle H D.I here
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L + HA -» K4 a

The solid H. is consumed, and L crosses the /
field to curve P'4e9. Here

L-* I + D

and the liquid vanishes to leave / and Ds on a line
through point c; the polymorphic form of / depends
simply on the temperature.

Point d: The first solid is A_, between G_ and
A3 . The liquid reaches curve P7P3, where

L + A -♦//
5 a

GG7 H //4 / p7

Fig. 14.16.

The solid A^ is consumed; L leaves the curve,
crosses the H field, and reaches curve P' P'.
Here

L-*Ha+Ds .
solidify completely. The rest move on down the
curve Pieqi precipitating / and Ds (between D.
and Kg); the form of the compound / deposited will
be /adown to temperature ty then la to temperature
t0, and Iv to the temperature eq. All liquids Hi is consumed; the liquid starts out on curve

P4e9, and vanishes to leave / and Ds on a line
through point d.

Fractionation Processes in the Subsystem
A-D-K-G

The phase changes so far discussed have been
those for crystallization with complete equilibrium.
We shall now consider crystallization with perfect
fractionation, as explained in Sec 6, simply for
the two principal solid solution fields of Fig. 14.9.

In a fractionation process, the liquid on a surface
follows a single fractionation path (as sketched
in Fig. 14.9). These paths are here curves in
every case except for the B and / fields, where
they are straight lines radiating, by extension,
from points B and /, respectively. When the liquid,
following such a fractionation path, whether curved
or straight, reaches a boundary curve of even
reaction (one on which the liquid precipitates
two solids on cooling), the liquid travels along
this curve. But if it reaches a curve of odd

reaction (transition curve), it immediately crosses
the curve and begins to travel along a fractionation
path - curved or straight - on the next field.
(See Sec 4-D for the behavior at invariant points.)

In the fractionation process, the outermost layer
of solid solution being deposited by liquid on the

reaching curve P4e„ solidify completely before
reaching eg. The curve is reached from the /
field for x in IP.e. and from the D field for x in

4 y *

P^D.Kgeg. Liquids with x in the ss area near K
solidify completely while L is still on the Ds
surface.

For composition a in Fig. 14.16 the first solid
to form on cooling is Ds. The liquid reaches
curve P'2F'3, where

L-*As + Ds .

At P,

L + A -> H + D, ;

A3 is consumed, and L starts out on curve PjP4',
on this curve the liquid vanishes, to leave Ha
and Ds solid solutions on a line through point a.

Point b: The first solid is Ds. The liquid
reaches curve P->P4, where it precipitates a solid
solution between H and H and a solid solution

between D3 and D4> At P4,

L+/V'a+D4 <

leaving the three solids H4, /a, and D4 .
Point c: The first solid is H^ (strictly slightly

to the left of H ). The liquid reaches curve pgP4,

At P
4'

L + tf4-Wa+D4 ;
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Ds field continually increases in K content. It
continues to change in the same direction,
moreover, whichever of the four boundary curves
is reached, while L travels on the boundary curve.
But the boundary curve P4P2 's a transition curve;
L does not travel on it but immediately crosses it.
Hence the ultimate mixture of solids (non-
equilibrium mixture) produced by liquid in a
fractionation process varies according to the
various regions into which the Ds surface may be
divided.

There is first a very narrow region, close to the
p4D side, from which L will cross the curve P4P2i
traverse the Cs field, cross the curve P^Py
traverse the B field, and reach curve 772 -* e2.
The final mixture of solids obtained therefore

contains Ds, C , B, and A^(although Cs may have
decomposed on cooling).

Next to this region there is one from which L
will traverse the same curves and fields but end

on the boundary 772 -> Pj of the B field. The liquid
then follows boundary curves all the way to eg, to
leave a mixture of all six solids of the subsystem:
Ds, C , B, As, Ha solid solution, and Ia. The
next region will send L to curve P^P2, missing the
B field, and now solid B will be missing in the
final five-solid mixture, except as formed by
decomposition of Cs For these two regions the
composition of the Ds solid solution finally
obtained will have a discontinuity (a gap), since
precipitation of D is interrupted between the
point when L reaches and crosses the curve p4P'
and the point when it reaches P. along curve
PiP, (as explained also in Sec 7.3).

The next region, between the fractionation paths
DP' and DPy will miss the Cs field entirely and
end as four solids: D , As, H, and /. The region
between paths DP3 and DP4 will give only Ds, H,
and /, and that between the path DP and the
corner Konly Dg and /.

On the As field the outermost layer of solid
solution continually increases in A content while
L is still on the surface. For the region between
A and the fractionation path G772, the solid
deposited continues to increase in A content
while L moves on the curve 772 -» e2, ending as a
mixture of B and As. For the region between the
paths Gm and GP' the depositing solid reverses
its direction (of composition change) and moves
toward G as L travels on the boundary curves
m->P.-*P.-* P.. The liquid then follows the
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curves P3 •* P -* e_f and finally leaves a mixture
of all six solids of the subsystem (counting C ,
which, however, may have decomposed). For the
region between p? and the path GP3, L crosses
the curve P?P3 but ultimately reaches either P3P4
or P4eg, to approach, in either case, e„ as the
limit of the process; the final mixture consists of
As, Haso\\d solution, Ia, and Ds.

Subsolidus Reactions Involving Compounds
A, H, and J

The two- and three-solid regions left on complete
solidification in the two subsystems so far con
sidered, below the temperatures of all the phase
reactions discussed, are shown in Fig. 14.17.
There are also two single-phase regions ss near
points G and K.

At TA (Fig. 9.1), the compound A of the system
Y—U (after changing from Aato Aa at T") decom
poses on cooling into Y and B. Because A forms
ternary solid solution (As, with G), the decompo
sition temperature is lowered in the ternary
system. This decomposition involves changes in
the upper part of Fig. 14.17, and the pertinent
isotherms are shown in Fig. 14.18: [a) just below
TA; (b) at a four-solid invariant of type B, where

B + S} -+ Y + S2 .

on cooling; and (c) below this invariant.
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b/b+as+.

H„(ss) + Dc

r+Ar

(ss)-Ji
W--X

l + Dc

k
G \ H l\

Fig. 14.17.



Fig. 14.18.

At T' (Fig. 14.1), Ha undergoes transition to
Wo, which is a pure solid instead of a binary solid
solution, and the binary transition temperature is
lowered to T". Since the solid solution is not
ternary, these temperatures are not changed in the
ternary system. Figure 14.19 shows the ac
companying changes in the solid phase combi
nations: (a) above T' (b) between T' and T ,
(c) below T .

At T. (Fig. 14.1), the compound / of system
Y—Z appears on cooling, forming from / and K.
(the binary solid solution composition for K at the
temperature of T,). Because K forms ternary
solid solution (Ds, with D), the formation temper
ature is lowered in the ternary system. The
changes affecting Fig. 14.17 are shown in the
isotherms of Fig. 14.20: (a) just at T., where the
point / appears as pure / in equilibrium with / and
K.; and (b) below Tj. With decreasing temperature
the three-phase equilibrium of / + / + Ds moves
into the diagram as the triangle 1JK". The two-
phase equilibrium between / and K. (Fig. 14.1)
becomes the two-phase tie-line band /s + Ds of
Fig. ^4.20(b)l with tie lines running from the
binary solid /-/' to the ternary solid K" —K\

The solids /' and K' vary with temperature ac
cording to the miscibility gap in the J—K solid
solutions shown in Fig. 14.1.

14.4. SUBSYSTEM D-U-Z-K

Equilibrium Crystallization Along Curves

The relations for complete equilibrium solidi
fication in the subsystem D—U—Z—K are shown,
schematically, in Fig. 14.21, and Fig. 14.22 shows
approximate temperature contours for this region.

There are three primary phase fields: one for
the D—K solid solution Ds, one for the U—Z solid
solution Us,and one for the incongruently melting,
pure compound M. The reaction on the curve
e.P is L -* Ds + Us, the three-phase triangle
starting as the line DeJJ and ending as the
triangle D^P U.. This curve is reached from the
Ds field for total composition x in the region
De5P5D5, and from the Us field for x in e5[/U5P5.
Solidification is complete on the curve for x in
DUU5D5.

The third part of Fig. 14.6 shows the vertical
T vs c section through this part of the system.
It is similar to the middle part of Fig. 14.6 except
that the solid solutions are strictly on vertical
lines, Ds being on a vertical line through DK and
U on a vertical line through UZ.

On the curve py^P , from p-^ to t, the reaction
is one of transition,

L + Us - M ,

with Us ranging from pure Z at p11 to Ut at t. For
the section of the curve from t to P., the reaction
is even:

L -> M+ Us

(ranging from U to £/_). The three-phase triangle
L—M—Us starts as the line p^.MZ and ends as
P.MU5. The sign of the reaction changes at
point t, where the L—M leg of the triangle is
tangent to the curve.

The odd-reaction section of the curve, py,t, is
reached only from the Us field, for x in the region
p^^tUtZ, by liquids precipitating Us as primary
crystallization product. Then if x is in the region
py\tM, Us is consumed while L is traveling on the
curve, between p^ and t, and the liquid leaves
the curve to traverse the Mfield, on a straight line
from M. Compositions for x in p,.yM (y being on
the line PjM) then reach the curve P5e]Q, while
those for x in ytM reach the curve tP5, where Us,
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Ha(ss)+Ds

Ds+ /+Ha(ss)

Hfi + Ds

Ha{ss)+Ds

Ds + / + Ha(ss)

ic)

Ha(ss) + H/3 + Ds

^ +DS +/

Fig. 14.19.

now richer in U, appears again as a secondary
crystallization product mixed with M.

The even portion of the curve, iP is reached
from either side: from the U field directly for x
in the region tP U,U(, and from the Mfield for x
in MP t, either directly or after the crossing of
the yt curve.

Liquids for x in the region MU.Z solidify
completely while traveling on this curve, somewhere
between p^ and P,, when x comes to be swept
by the M—U leg of the three-phase triangle.

The point P, is therefore reached only for x
e D5U5MPS, and, w

L + U5 -♦ Ds + M ,

in the quadrangle DjL/jMPj, and, with the reaction
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it is the incongruent crystallization end point for
x in the triangle D5U5M, to leave the three solids
D5, U5, and M. For x in PcD.M, U5 is consumed,
and L travels down the curve P^e.. to solidify
completely, before reaching e.n, into M and D
solid solution between D. and K. The curve

P5e, Q, along which

L -» M + D

is reached from the Ds field directly for x in
KD5P5e1(. and from the Mfield for x in e^^PM,
either directly or after the crossing of the p, ,y
curve.

The compositions of points D,, U., and U are
hypothetical.



ia) (b)

Fig. 14.20.
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The minimum 772'of the U—Z binary system is
not involved in any of these considerations, for
the points U5 and U( involve temperatures and
compositions not on the soiidus curve of Fig. 14.2.

Point a: For liquid with original composition
at point a in Fig. 14.21, the first solid on cooling
is Ds, with composition between D and D.. The
liquid reaches curve e.P,, where

L - Ds + Us

(between Uand U5). At Ps,

L + U5-* D5 + M .

The solid U is consumed; the liquid moves onto
curve P^e-y. and vanishes to leave AI and Ds on a
line through a.

Point b: The first solid is U (below (/.). The
liquid reaches curve PiiP5, where

L-*M + US .

The solid Us now moves up to reach U. when L
reaches Py Thereafter, the solidification occurs
as for point a.

Point c: The first solid is U (below £/,). The
liquid reaches curve py.P . As L follows this
curve, the quantity of U first diminishes - until
L reaches / — and then increases as L moves

from t to P5. But all the while the composition
of U is moving toward U.. At P„ the liquid is
consumed to leave D., U5, and M.

Point d: (This point is not shown on the diagram;
it is in the area between M and curve p..P.,
between the lines MP and MD..) The first solid
is Ugl near Z. The liquid reaches curve P^PS,
and U is now entirely consumed in the reaction

L + U M

while L is moying on the curve, before it reaches
point t. The liquid then leaves the curve, travels
across the M field precipitating more M, and
reaches the same curve again near P.. Here

L-* M+ U
s

(now near U, in composition). At P., U. is
consumed; the liquid moves onto curve P5e,Q and
vanishes to leave M and D on a line through
point d.

Fractionation Processes in the Subsystem
D-U-Z-K

Figure 14.23 shows schematic fractionation
paths in the subsystem D—U—Z—K. These are
hypothetical, for we have no information on the
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liquid-solid tie-line directions for points on the
surfaces (and we can make only uncertain infer
ences for the directions of tie lines at the boundary
curves). However, we shall assume the relations
shown schematically in Fig. 14.23 and discuss
them along the lines followed under Figs. 6.1
to 6.4.

The paths on the M field are simply straight
lines originating by extension from point AI. Those
on the D surface originate from the maximum D
and diverge from the straight line DK, always
convex with respect to K. This means that when
a liquid is traveling over this surface, whether in
complete equilibrium with the whole solid phase
or in a fractionation process, the solid solution is
always changing in composition toward K. More
over, the same direction of change in the solid
continues here when either of the boundary curves
is reached: ^orP^,,,.

The U surface, with two maxima (U and Z), has
two families of fractionation paths, separated by a
limiting fractionation path originating at the binary
minimum 772'. This path, 772'N, must reach one of
the two boundary curves, e.P. or p,,P.. We
assume that it reaches the curve P-i^Pc at the
point N between Ps and t, and that it is convex
with respect to the corner Z. Accordingly, the



paths on the Uside of m'N are convex with respect
to Z through their entire length, but some of those
on the Z side, while starting out as convex with
respect to U, pass through a point of inflection
and become convex with respect to Z before
reaching the boundary curve. The dashed curve
772'R is the locus of these inflection points, and
R is assumed to be between N and t. The paths
between ZR and Zp^ have no inflection point
and are simply convex with respect to U.

For further orientation we note that the line

P5U5 of Fig. 14.21 is tangent at P5 to the fraction
ation path UP5, Nr is tangent at N to the path
m'N, and Rv is tangent at R to the path ZR. Point
y is on the line PcM.

The sequence of changes in the fractionation
process varies according to the regions into which
the U surface is divided by the lines and curves
just defined. The outermost layer of Us solid
solution being deposited will be referred to as
"solid."

1. Region e&UP5 (meaning between e5 and the
fractionation path UP5): While L is still on the
U surface, the "solid" increases in Z content to
a limit given by the tangent to the particular
fractionation path involved at the curve e^Py At
the same point of the curve, the tangent to the Ds
fractionation path gives the initial composition of
the Ds "solid" precipitated, together with Us,
while L follows the curve e5 -* P . Then, as L
travels on the curve, the "solids' reach D5 and
U when L reaches Py Then L follows curve
P5e1Q towards e]Q as limit, depositing Mand Ds
ranging from D. to an outermost layer approaching
pure K.

2. Region between paths UP5 and m'N: The
"solid" increases in Z while L is on the surface,
reaching a point between U and r when L reaches
the curve between P5 and N. Then, as the liquid
moves toward P precipitating M and Us, the
outermost "solid reverses its direction, reaching
U5 when L reaches Py Thereafter the solidi
fication occurs as for region 1. (Note: Once L
reaches P5 in fractionation, it continues onto
curve P5e1Q.)

3. Region p}]Zy: The "solid" increases in U
content while L is on the surface, to a limit, fixed
by the tangent to the fractionation path, when L
reaches the curve between pn and y. The liquid
crosses the curve at once in a straight line from
M, precipitating M, to reach curve P5e]Q. There
after the solidification occurs as for region 1.

4. Region between paths Zy and Zt: The
"solid" increases in U for L on the surface, to
a limit, fixed by the fractionation path, when L
reaches the curve between y and t. The liquid
crosses the curve at once on a straight line from
M, precipitating M, to reach the curve again along
tPy This curve is followed to Py with the liquid
precipitating Mand Us again, the "solid" starting
at a higher U content than when its precipitation
ceased on the curve yt. Its composition reaches
U when L reaches Py thereafter the solidification
occurs as for region 1.

5. Region between paths Zt and ZR: The
"solid" increases in U both before and after L
reaches the curve. The limit is U5 at Py There
after the solidification occurs as for region 1.

6. Region between paths ZR and m'N: The
"solid" increases in U until the inflection point
of the fractionation path is reached (intersection of
path with curve m'R), and the "solid" at that
point is given by the tangent to the path at its
inflection point. Now the "solid" begins to
decrease in U content, to a limit, given by the
tangent to the end of the fractionation path at the
boundary curve, reached between N and R. Then,
as L follows the curve to Py the "solid" again
moves to higher U content, reaching U^ for L at
P , Thereafter the solidification occurs as for
region 1.

7. Path 772'N: For a liquid on the path 772'N
itself, the "solid" increases in Z (between the
limits m' -* r), and then moves, in reverse, to U5
as L moves on the curve from N to Py Thereafter
the solidification occurs as for region 1.

Equilibrium Crystallization in the Us Field

We finally consider the behavior of liquid on
the U surface under conditions of complete
equilibrium with the whole of the solid phase.
For such crystallization with complete equilibrium,
involving equilibrium paths crossing the fraction
ation paths, the behavior for the various regions
would be as follows (all entirely analogous to the
discussion of the regions in Fig. 6.4). When the
liquid reaches a boundary curve, of liquid in
equilibrium with two solids, it proceeds according
to the equilibrium relations already considered
above for Fig. 14.21. We are here dealing only
with L on the surface itself.

1. Region between e and the fractionation
path UP-. The equilibrium solid always increases
in Z content. The equilibrium path does not
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cross the line PsUy The liquid reaches the
boundary curve e^Py (It reaches it at a point
where the L-Us leg of the three-phase triangle
for L on the curve passes through the total original
composition x.)

2. Region between path UP5 and line UgP„: The
solid always increases in Z. The equilibrium path
crosses the line fjPg on its way to the boundary
curve, which is reached between e and P,.

3. Region between line UP and path m'N:
The solid always increases in Z. The equilibrium
path does not cross the fractionation path m'N,
and it reaches the boundary curve between P.
and N.

4. Region between pn and the path ZR: The
solid always increases in U content. The equi
librium path does not cross the line Rv, and it
reaches the boundary curve between R and p...

5. Region between the path ZR and the line Rv:
The solid always increases in U. The equilibrium
path crosses the line Rv, and it reaches the
boundary curve between R and p,-..

6. Region between line Rv and line Nr: The
equilibrium path does not cross the path 772'N, and
it ends on the curve between N and R.

(a) Region rvRd: The solid increases in U
until the equilibrium path crosses the curve m'R;
then the solid increases in Z content until L
reaches the boundary curve.

(b) Region dNR: The solid always increases in
U content for L on the surface.

7. Region between path m'N and line Nr:
The equilibrium path crosses the fractionation
path m'N, to reach the boundary curve on the left
of N, between N and a point c, where C772' is the
L—Us leg of the three-phase triangle for the curve
with U at composition The behavior above

and below the curve m'R differs as under region 6«

Subsolidus Compounds E and F

The solid equilibria after complete solidification
of liquid will be affected, with further fall of
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temperature, by the appearance of the subsolidus
compounds E and F of the system Y—U (Fig. 9.1).
The pertinent isothermal relations are shown
schematically in Fig. 14.24: (a) above TE (temper
ature of formation of E from D and U in the binary
system); (b) between T£ and Tp; (c) below Tp
(temperature of formation of F from E and U in the
binary system). Only the upper part of Fig. 14.21
is involved.

Fig. 14.24.
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15. SYSTEM Y-W-Z: NaF-ThF4-ZrF4

The binary system Y—W is shown schematically
in Fig. 15.1, and W—Z in Fig. 15.2. We note com
pound G in Fig. 15.1, decomposing on cooling at
T'. System W—Z forms continuous solid solution
with a minimum at 772. The diagram for the system
Y—Z is used with the same lettering as shown in
Fig. 11.1. It has the subsolidus compound D,
solid solution in four compounds (A, B, D, and
F), and transitions in two compounds (B and C).

The ternary diagram, as at present reported, is
that of Fig. 15.3.

Despite the continuous solid solution in the
W—Z system there seems to be no solid solution
formed across the diagram between the corre
sponding 2:1 compounds H and C.

The phase diagram as represented in Fig. 15.3
has two principal items of uncertainty. The first
is the absence of a field for compound B of system
Y—Z. The field now attributed to compound C
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Fig. 15.2.

pertains, actually, practically entirely to the 5:2
compound B, and only a small region of the "C
field" of Fig. 15.3, near the boundary curve e E
pertains to the 2:1 compound C. There must be
another three-solid triangle in the diagram, and
another invariant point between t?22 and E,. The
second uncertainty concerns the invariant point
Eg, reported as eutectic. If a temperature maxi
mum definitely exists on the curve PjE., then
E. must be a eutectic. This temperature maximum,
however, if it does exist (and its existence seems
to be experimentally uncertain, actually), will not
be, as now drawn, on the line WE, for the solid
phase in the large field is not pure W but a con
tinuous solid solution of W and Z. The curve

PjE, then, may or may not have a maximum on it,
and if it does, the maximum must be on the right
of the line WE. The mere position of E in the
triangle EWZ does not tell us whether it is a
peritectic or a eutectic, for it is necessary to
know its position in relation to the particular
solid solution composition saturating the liquid
at E8.

In Fig. 15.4 we assume, principally for the sake
of clarity of discussion, that this invariant, now
called Eq, is a eutectic; and an additional field
is introduced between those for A and E, so that
both B and C are now represented with primary
fields.

In this schematic diagram, then, there are eleven
fields and nine three-solid triangles (not all
shown in Fig. 15.3) with corresponding invariant
liquids. There are only two saddle points, m.
between the A and the H fields, and t?2 between
the fields for E and W (solid solution of Wand Z).

5 i
Because of the binary solid solutions formed

by the solid phases A, B, and F, the triangles in
Fig. 15.4 are not drawn for the actual compositions
of the solid phases involved at the invariant so
lutions. The probable relations will be discussed
separately for the two principal regions of the
system, shown in Figs. 15.5 and 15.7.

We shall assume that the saddle point m. is
exactly on the line HA, although compound A
forms solid solution in the direction of B. With

this assumption, the line Hm.A becomes a quasi-
binary section (the only one in the system), and
the region YHA an independent, simple subsystem,
with two invariants, P. and E_, involving pure
solid phases. The final solids are either Y, G,
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Fig. 15.3.

and A or G, H, and A; but below TG of Fig. 15.1,
G decomposes into Y and H, leaving Y, W, and A
for the whole corner.

Some solid solution is involved at each of the

other invariants of the system.
The region between the section HA and roughly

JE is shown in detail, in Fig. 15.5, schematically,
and distorted for clarity. The reactions along the
curves are as follows:

1. myP3: L -* H + A, the A solid starting as
pure A and ranging to A3 at P .
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2. e9P3: L-*H +1.
3. p]0Py L+J-,1.
4. p2P4: L + A -» B, the A solid starting with

the composition given by Fig. 11.1 at temperature
p2 and ranging to A4 at P..

5. P3P4: L -* I + A, the A solid ranging from
A3 toA4.

6. P4P5: L -> / +B, the B solid starting as pure
B and ranging to B .

7. P5P&: L •* J + B, the B solid ranging from
B5toB6.



Fig. -15.4.

8. P3P6: L + B -* C, the B solid starting with 11.
the composition given by Fig. 11.1 at temperature
p3 and ranging to B, at P.. 12.

9. e4E7: L -* C + E, the E solid starting with
the composition given by Fig. 11.1 at temperature
e. and ending at E,_, (not to be confused with
the eutectic point E_).

10. PfiE7: L-*J+C. (Note: the solid for the
C field is Ca above the isothermal curve at t. and P •

?11P8:
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L + W •* ], the W solid starting as
pure Wand ranging to W (of Fig. 15.7).

E?: L -* J + E, the E solid starting as
pure E and ending at Ef7.. (But the compositions
of the solids at P will be discussed further under

Fig. 15.7.)

The invariant reactions are as follows:

L + H A, + /; incongruent crystallization
Cq below it.) end point for triangle III (HA.I).
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L + A,

6"
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Fig. 15.5.
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•4 - / + B; incongruent crystallization
end point for triangle IV [A .IB).
L + I -* B. + J; incongruent crystallization
end point for triangle V (B,//).
L + B, -» Ca + /; incongruent crystallization
end point for triangle VI (B.CJ).

E • L -> Co + ] + E(7y congruent crystallization
end point for triangle VII [C JE(7A.

Liquids with original compositions in the tie-
line areas of Fig. 15.5 complete their crystal
lization on the various curves, leaving two-solid
mixtures of one pure compound and one solid
solution.

The B solid involved in the liquid equilibria of
Fig. 15.5 is the Ba form. Figure 11.1 shows this
form undergoing transition to the pure B» between
the temperatures T' and T" in the binary system
Y—Z. These temperatures are unaffected by the
third component W. The changes in the solid-phase

combinations brought about by this transition are
shown in the series of schematic isotherms of

Fig. 15.6: (a) between P. and T ; (b) between T'
and Q; (c) at Q; (d) between Q and T"; (e) below
T". The point Q is a four-solid invariant of type
B, the reaction being:

/ + Ba(ss) - calories ^=^ ] + Bo .

The two-solid equilibrium between / and B^ss)
here shrinks to a line on cooling, to be replaced
by the two-solid equilibrium between / and B„
(a line). At T", between isotherms (d) and (e),
the equilibrium between / and Ba(ss) shrinks to
a line and vanishes.

Also, at temperature T„ of Fig. 11.1, below E_
of Fig. 15.5, the compound D of system Y—Z
appears, forming from C and Ef7. (more exactly it
forms from compound E of the composition given
by Fig. 11.1 at the temperature TJ). This simply
divides the triangle VII [which involves, at this
temperature, C , /, and E.?.] into two triangles:
one for C , /, and D (pure D), and one for / and
conjugate solid solutions of D and E, with compo
sitions given in Fig. 11.1. At / of Fig. 11.1,
C further changes to C§.

The remaining region of the system is shown
schematically in Fig. 15.7, with a temperature
maximum m3 assumed to occur in the curve PR£g,
and Eg therefore a eutectic. The point E. there
fore lies in a three-solid triangle (IX) involving
the solids E, F, and a W—Z solid solution assumed
to have the composition shown as W„. The W

composition in equilibrium with liquid at r?z , W ,

is, of course, on a line with m. and E. Although
m., then, is a saddle point, the section Em.W

is not quasi-binary, since the point W does not

represent liquid and solid of the same composition
in equilibrium. The point W represents the W

8 ^

composition for triangle VIII, for the peritectic
point P , together with the two solids / and E.
It is assumed that the solid phase E is pure for
liquids along the whole length of the curve PREg,
and that the binary solid solution of E (in the
direction of C) enters only beyond P , on curve
PgEy. It seems possible, however, that the E
solid phase may begin to vary in composition even
before P is reached. In this case the line WE

would end slightly to the left of E, as would also
the line W m.E. We assume, therefore, that the

m3
spread in the composition of sol id E is insignificant
along the curve P E..

8 9



Fig.15.6.
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Fig. 15.7.

We consider this region, then, on the basis of
the relations as drawn in Fig. 15.7.

The reaction on curve p] .P is

L+Ws^J ,

and the three-phase triangle starts as the line
P-i^JW and ends as P8/Wg. The curve is reached
by liquids for original composition x in the region
PuWW&Pe. For x in /WWg, the liquid vanishes
on the curve to leave / and W . For x in p..]P.,
W vanishes on the curve, and L leaves the curve

to traverse the / field on a straight line from /.
On the curve ra,P ,

L -* E + W

the three-phase triangle starting as Em.W and

ending as EP WR. For x in the region EWBW
8 8 i m>

the liquid vanishes on the curve to leave E and
W . The curve is reached from the W field for x

\nP0W0W 772, and from the E field for x in EPam..

The point P is reached for x in the quadrangle
P.JW.E; the invariant reaction is

L +W -* J +E .

102

This is the incongruent crystallization end point,
then, for triangle VIII (/WgE); but for x in EPa],
L moves onto curve P.E^. Along this curve,

L-*J +E ,

with the three-phase triangle starting as ]PRE
and ending as JP E(7), so that for x in E(J.JE
the liquid vanishes on the curve to leave / and a
solid solution between E and E,

Along curve m,E„,
'(7)-

L -»£ + W

the W solid ranging between W and W.. ForS 3 3 m 9

x in the triangle EW Wn, the liquid vanishes on3 m3 9' ^
the curve to leave E and W . Along curve e.E.,

s 3 5 9

L-* E + F .

Curve p,Eg starts as

L + W -*F ,

from p to point s, where the line Fs is tangent to
the curve; between s and £.,

L •* F +W .

The three-phase triangle starts as the line p,FZ
and ends as the triangle EE W. For x in FWqZ,
the liquid vanishes on the curve to leave £ and W
between Z and W„. For x in the region Fp.s, W
vanishes on the curve, and L traverses the £ field
to reach either curve esE or the even section of
the original curve, s£g, when W appears again,
but as a secondary crystallization product mixed
with £. The point £„ is reached only for x in
triangle IX, with the reaction

L -*E +W9 +F

Compositions in the region covered in Fig. 15.7,
then, upon cooling in complete equilibrium, solidify
either to a mixture of three solids (the corners of
one of the triangles VII, VIII, and IX) or to mix
tures of two solids, in the tie-line areas for / and
^si for / and E, for E and W, and for E and W.

The fractionation paths on the surface for liquid
in equilibrium with Ws are sketched in Fig. 15.8,
on the basis of the assumptions made in Fig. 15.7.
Line WgP8 is tangent to the fractionation path
ending at P0, W m. is tangent to the path Wm„,



and WgEg is tangent to the path WEg. Curve mN
is the limiting fractionation path dividing the
separate families of paths originating at Wand at
Z. The path mN is assumed to be convex with
respect to Z and to end (at N) on the curve P&Eg.
The paths onthe Wside of mN are convex, through
out, toward Z; the solid solution being precipitated
on this surface continually increases in Z con
tent. Those on the Z side start as convex with
respect to W, but some of them (nearing 772N)
pass through an inflection point before reaching
the boundary curve between p, and N. For these
paths the solid solution precipitated by liquid
traveling on the surface first increases and then
decreases in Wcontent before reaching the curve.

The complete fractionation process tends toward
one of the eutectics E? and E as limit. It must
be remembered that on reaching a transition curve
in such a process L does not travel on the curve
but immediately crosses it. This occurs, there
fore, in a narrow region between Z and the curve

UNCLASSIFIED
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P-Eg, where the odd section of the curve (p6-s)
would be crossed. Liquids reaching the boundary
curves between 772, and p, all end at £„, however,
whether or not they cross the transition curve, and
the final solids consist of E, F, and Ws.

The curves f. .P. and p10Ps are also crossed in
the fractionation process. Consequently in a
narrow region between Wand the beginning of the
curve PiiPgi liquids will end on the curve e9P3,
then proceeding to E? as limit, leaving Ws, J, I,
H, A, B, C, and E in the final nonequilibrium
mixture. For liquids a little farther out from the
YW side, the curve e P3 will just be missed, and
the solid H will not be present at the end. If the
curve p. .P. is just missed, then both A and /
will also be absent. If the liquid misses the curve
P5P,i and ends to the right of Pfi, then the final
solids will be Ws, ], C, and E; this will be the
mixture obtained for liquids up to the fractionation
path Wm...
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