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ABSTRACT

A boundary condition applicable to the inner radius of cylindrical
annular reactors of finite length is derived. The resulting boundary
condition is given as the ratio of the flux to the radial derivative of
the flux at the inside radius and is expressed as a- function of the
geometry and the neutron mean free path in the multiplying material.

The method assumes the validity of diffusion theory and also that
the flux is separable into radial and axial parts.

While the result is applicable to the more general multigroup
calculation, a two-group treatment is presented by way of illustration.
The latter is of practical value for such cases in which adequate
two-group constants are available either from fundamental cross-section
data or from a comparison to critical experiments using similar materials.
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INTRODUCTION*

The problem of a reactor in the form of a cylindrical annulus of
infinite length having a central void may be solved by the application
of conventional boundary conditions. The net neutron current into the
inner cylindrical void is taken to be zero, which implies a zero slope
of the flux in the radial direction at the inside surface. This

assumption is not valid for a cylindrical annulus of finite length due
to streaming losses. The problem of neutron streaming in cylindrical
channels has been considered previously, > but the results do not appear
to be directly applicable to the present problem.

Neutrons entering the inside cylindrical void will, on the average,
traverse the void in a direction away from the region of higher flux and
either re-enter the annulus at a region of lower flux or escape from the
system by way of the ends of the void. This loss of neutrons will result
in a net neutron current from the annulus into the void and a corresponding
non-zero radial derivative at the inside radius of the annulus. As the
inside radius becomes larger compared to the length of the cylinder, the
loss increases and relatively fewer neutrons entering the inside void will
be returned to the annulus. In the limiting case in which the ratio of
length to radius of the inside cylindrical void becomes zero, the rate
at which neutrons re-enter the annulus from the void approaches zero and
the boundary condition approaches that for a bare external surface, i.e.,
the flux extrapolates to zero at a distance two thirds of a mean free
path from the surface.

In the present treatment a boundary condition consisting of the ratio
of the value of the flux to its radial derivative at the inside radius of

the annulus is derived. The method is similar to the one used in the treat
ment of the problem of a gap in a reactor.5-5 in that method it was
assumed that the streaming of neutrons in the gap did not change the form
of the component of the solution parallel to the gap, but did cause a
depression in the flux, described by a change in the component normal to
the gap. The method consists of calculating, for a particular surface
element on the inside radius, the neutron current from all other such
elements and equating it to the diffusion theory expression for partial
neutron current. The source strength of surface elements is derived
from diffusion theory. It is assumed'that the flux is separable, i.e., it
can be adequately described as the product of independent radial and axial
functions. In the present case the axial function will be a simple cosine.

* A part of this work was presented as an Oak Ridge National Laboratory
Memo, CF-5J4—7-6*4-, July, 195^« This has been revised and a section on the
application to a two-group treatment has been added in the present paper.
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Cylindrical Reactors," NEPA-1207-EAR-Rl^ (19^9).

2. A. M. Weinberg and L. C. Noderer , "Theory of Neutron Chain Reactions,
Vol. II," ORNL-CF-51-5-98 (Aug. 10, 1951).

3. M. L. Goldberger, M. G. Goldberger, and J. E. Wilkins, Jr., "The Effects
of Gaps on Pile Reactivity," CP-3IA3 (Feb. 20, 19U6).
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I. METHOD

Consider a cylindrical annular reactor having a co-axial cylindrical
void of radius R and length 2L. (Fig. l). The outside cylinder may be

•^

W

fia. /

l/O/D

bare or reflected, but this is hot significant in the present problem.

Following the assumption of separability, the flux is given by

flr,z) =iMr)4(z), andV^(r,z) =^(z) S&kL r_•+ ^(r) S&M z
dr dz =o (1)

Where r^ and Zq are unit vectors in the direction of r and z. The values
of the flux in the following discussion are all taken at r = R, and the
abbreviated notation will be used:

!i - d^r
JR&=- dr

r = R,

K • ^z(z)

dz^
Z. = Z-<

(2)

The rate at which neutrons leave a surface nj_ dS]_, at (R,z^) directed into
a solid angle dH. about the directionQ0 is given by diffusion theory as

1J3J- [jrf(R,zi) -Av^(r,Zi). ^dJV^ Q,ni dSi
where ^. is the mean free path of neutrons in the core material.
Consider two surface elements dS^ at zi and dS2 at z2 on the inside
cylinder. The following relations are found by referring to Fig. 2.

(3)



dST_ = Rd0 dzx

dS2 = 2R d6 dz2

f• = 2R cos 8

h2 = fcos 6=2R cos2 6

p2 = fsin 6=2R cos 0 sin 6

ni = - r0

ng = r0 cos 29 + gp sin 26

122 rn _ fe2 R +-,y • £.0 y fcS>T
Z2-g.l

Fig.2

V^(R,zi) , Ap -^ rfft ^2 +& ^ £2Z*1

_A- .nn - *

d^- -«2IS? / „ \ dSo ho

f2 =(Z2-Zl)2+e2 =̂ 2(f+eos2e) =̂

00

(l-kWe) =h-^jt
Where J. i£gjp2 , k2 = *— , A2 - (l-k2sin26)
Substituting into (3) one has the rate at which neutrons from dS^^ reach
dS2,



JdSf-*~dS2 = 8k fa k
k^cos^e

'1 1F~ ' '^zl

-A*yZl a-*2)
1/2 k*k cos 6

^T

+^z, &
k5cos66

(5)

d6 d3 dzi dz2

The rate at which neutrons from d^ reach the inside of the cylinder in dz2
about z2 is found by integrating Jag.—»- as2 with respect to 9. The
resulting expression is integrated over 0 and zi to find the total rate at

which neutrons reach the element about z2, which is

L 2* Jt/2

=0
•dSs (6)

This is the partial current at z2 which is to be compared to the diffusion
theory expression for the same quantity,

J+(R,z2) = *^(r,z)
6~5r

Z=Zr

z2
(7)

By the assumption of separability the functions j6r and ^r are independent
of z and. the ratio $r/^r may be found by equating the expressions in (6) and
(7) at any arbitrary z2. It should be noted that the functions fa and ^' are
not strictly separable and the above ratio found by equating (6) and (7) will
depend on the choice of z2. The assumption of separability will be somewhat
justified however by the agreement between the results found using this
assumption and the same quantities calculated by conventional methods for
certain limiting cases. These limiting cases are shown in a later paragraph.

The expressions in (6) and (7) are now equated at a particular z2 which,
for convenience in performing the integration, is taken to be zero. In this
case, by symmetry, the integral with respect to Zi is taken only over the
range 0 gkz-. -*=- L. Substituting (5) into (6), integrating with respect to
|3, and combining with (7), one has:

K<h-*•**•)• £[** I **?*.
Jt/2

k^cos^e de

«/2 k5cos6e de
+Wft / t. ^ /

0

- Mi r-^dz^i-k2 ,1/2

A?

fZ k^cos^e d9
0 ZS?

(8)
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2icR ^R f h± fl(k) dzl + Z& f h± f2(k)dzi

- %fa f _j^ f5(k)dZl1
. Jt/2 k

where f-(k) = ^ / cos e fe
x 0 £&

f9(k)-k5 //2cos%d6
Jt/2

f(k) =(1-k2)1/2 kk f cos49 d6
5 0 z^5

Rearranging terms in (8), one has the final result which may be expressed
in the form

**t-*x$u $**&>X:

where FtCb- ) = ^z<->

2 -- _L_ r3^

M|> =

lk*&.{ g1^)^!)

2L

itR

(8)

(9)

(10)

(11)

Using the result of (10) one can Immediately find an expression for the
rate of streaming out of one end of the inner cylinder. This is equivalent
to the net current into the cylinder integrated over half the length.

The net rate at which neutrons enter the void through a surface element
2*Rdz at z is 2jcR^/3)^z $. dz, and the total rate in half the cylinder is
therefore ^

2jtRX L k
s--r- fa [ h**-\ *- &*&

0

= 5 RL (12)



II. EVALUATION OF INTEGRALS

The integral in f, (k) may be reduced to an algebraic expression, while
those in f2(k) and f,(k) are solvable in terms of complete elliptic integrals
of the first and second kinds. Consider an integral of the form

kn rcosnQ, de ,where A - (l-^sin2©)1/2.

This may be written

kn-2 r cosn-2e [k2-k2sin2ej dQ

Adding and substracting A inside the bracket, this becomes

+kn-2 ;cosn-2e £-(l-k2) +^]jB , ^ f

kn ;cos11® d.9 = 2rcosn'2f de _ (i.k^)k11-2 /eosn"2e de .
^ a, m -'a m-2 ~" \ / J A m

Also note that

d(cos 6sip 0)= l-(2f>(m-l)k2) sin2 6-(m-Z^sin^e
Am

it/2

J de ^
e=o

m+2
A

and cos © sin

A m -!> d© =
cos 6 sin 9

it/2

A
m

- 0

(13)

de

m

By application of 13) and Ik), the integrals in 9) are reduced to simple
forms. 4

f^k) =£[2-(2+k2) (l-k2)1/2]
f2(k) = i f(2(l-*k) +3(2-k2)) E-(l-k2) (8-k2) k]

3k •— J

f5(k) =(l-k2)1/2 J(2+k2)K- 2(l+k2) E,
Jt/2 jt/2

where K=/ Sj9. , andE = / A de.
§ 0

The axial solution for the flux is ^z = ^z cos •£•

and «$' = - ^ Jt . JtZ
sin sr

2L 2L

2L

>
(15)

(16)



The functions in (ll) are

1"h !0 f2-(2+k2) d-k2)l/2 ]cos || dz
Fl(|> =

F2 (i) -

f[1+ ill /q I[(2(1-^) +3(2-k2)) E-(l-k2)(8+k2)K]cos || dz}
(17)

24/L (1-k2)1/2 [(2+k2)K-2(l+k2)E] sin || dz

ff1 +h llI|/2(l-k*) +3(2-k2)j E-(l-k2)(8n-k2)K] cos §| dz]
The functions in (17) have been integrated numerically and the results over a
range of L/R values are shown in Figs. 3 n^d- ^.

Equation (10) and the values of the functions from the curves give a convenient
boundary condition for the inner radius of an annular reactor. This condition
is valid within the limitations of diffusion theory and the separability as
sumption even when the radius becomes large compared to the cylinder length.
The values of F-^ and F2 for the limiting cases, i.e., where L/R becomes infinite
or zero, are indicated on the curves, and may be obtained directly from (17)-
These cases are discussed in Section IV, page 18. The derivation is for neutrons
of a single energy, but it may be used in two-group or multi-group analyses by
choosing an appropriate % for each energy group.

It is of interest to note that a similar expression for this inner radius
boundary condition may be derived by first calculating the streaming of neutrons
out of an end of the inner cylinder and equating this to the net rate at which
neutrons enter the inner cylinder from the sides. The converse of this procedure
was used in arriving at equation (12).

III. APPLICATION TO THE TWO-GROUP METHOD

A. General Solution for a Cylinder of Finite Length.

The neutrons in a system are assumed to be divided into fast and slow
energy groups. The behavior of each of the two groups of neutrons is
described by the two diffusion equations:

T72
1 £l j . k Z2 fah ~d7 h + d/

and <72^2 -E2- fa +Zl ft- =0
D2 D2

6. S. Glasstone and M. C. Edlund, The Elements of Nuclear Reactor Theory,
pp 238-2U3, D. Van Nostrand Company, New York (1952).



1.6

+'.
*a =xir =F<+TF2

4 5 6

V/?=HE.GHT/|NS|DED|A

Fig. 3

UNCLASSIFIED

ORNL-LR-DWG 26087

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

o

i



0.35

0.30

0.25

0.20

0.15

0.10

0.05

0

UNCLASSIFIED

ORNL-LR-DWG 26090

\ —\ $RXa-X^--F, H ^2

^2(*)

y^T)^^ \\H1

oo
20 10 9 8 7 6 5 4

^-HEIGHT/DlA

Fig. 4

2.5



12

Where the terms p1, E and D are flux, removal cross section and
diffusion constants for the fast and slow groups indicated by
subscripts 1 and 2, respectively. The neutron multiplication
in an infinite system containing the same materials is given by
k., Solutions satisfying

v2^ +B2^ =0

and \^J>9 +B2j^? =0
(19)

are assumed from which B is found by direct substitution into
(l8) to have the possible values

B2 =/a2 /l 1\ \U1 1 \2 Mk-l)

>
or B2=t)'2 =| Vl2' /^+£2) +~^L2-

(20)

where ^ = 5i , and L = 22. .
^2

For an infinite cylinder the general solutions of the equations
in (l8) are

^(r) =A^Our) +A2Y0(Fr) +C1 I^r) +C2 Kq(j)t)

h^ =[hJo^ +h^o^] Si + Vo^^) +C2Ko("^r)|S2
>(21)

Where J , Y. IQ, and K are zero-order Bessel functions, A,, k?,
C^_, and C2 are arbitrary constants, and the coupling constants, S,
---••• " 'eg*

»1

and S2 are given by

si= -rc2
V"2

> (22)

and S2 = _£i
^D2 J: .^

Consider a cylinder of finite length h. (This is taken to be the
augmented length which is the actual length plus appropriate
extrapolation distances). One now assumes the solutions for p1-,
and ^2 to be separable into axial and radial dependent parts and
further that the fast and slow axial solutions are related by a



constant factor G. These assumptions may be written as equations

^(r,z) = i^lr(r) j^U),

j^2(r,z) = faT(r) faz(z), (23)

(42z(z) - G 4z(z)

Direct substitution of (23) into (l8) gives the equations in r,

and %?r ^(r) -(|2. )* ^(r) +(§L-)* ^ (r) .o

which have the same form as (l8), with the substitutions

<#?;• *♦&->«**-3-%'

f >*-<*♦£>-**- ^ (25)
where

B2 ...J^laM =_ ^ V,z) (26)

is the axial buckling. Since {2k) and (l8) have the same
form, the finite cylinder may be treated as an infinite cylinder
having the adjusted constants given in (25). The general solutions
for the radial flux is given by (2l) where constants V and/u have
been adjusted according to (2k) and their definitions (20). It may
be easily verified that the ratio of the coupling constants in (22)
is unchanged by (25), i.e.,

S2 S2

B, Boundary Condition for the Cylindrical Annulus.

In the following discussion it may be assumed that the adjustments
of (25) have been made and the star and subscript will be dropped
for simplicity in notation. Also the cylindrical annulus will be
considered as unreflected, or to have an appropriate reflector
savings which will reduce the problem to the unreflected caset The
boundary conditions are



^(P) = o

fa(?) = o

*2(R) = o<

-Ill-

(21)

where P and R are the outside and inside radii of the annulus

respectively. The values of them's are taken from the curves
in Figs. 3 and k. The boundary conditions in (27) are substituted
into (21) and the condition for criticality is that the determinant
of the coefficients vanish, i.e.

Jo0uP)

k0(Vp)

s2ko(t)p)

YoOuP)

SlJ0(^P) ^(pP) s2io0>p)

<^1Jo(FR)+^J;L(^R) ^yuRHu^OuR) ^IJtJrMi^R)

SL^Jo^^^l^] S^2Yo^)^l(uR3 S2|k2Io(^R)-^I1(1)R3

^k^rWk^Vr)

S2^2Ko(i;:R)+,)Kl(l)R0
This may be reduced to the second order determinant

= 0

I0V*)

|L (-^2+ai |20 (^Z-T)^-)
= 0

*1

[^l^uR) Y±(pR) Yq(aiP)_where f, =

2 [_ Yl(^) Yo^uP)3

> (28)

(29)

* P includes an appropriate extrapolation distance or reflector -Bavings..
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*3 "[iiWJ i^WI EJTd RJ
(30)

fi, =
'Kq(t)P) Ki(t)R)'

In general the critical size of a cylindrical annulus may be found from (29),
using fundamental cross section data. However, if information on the critical
size of solid cylinders of similar material is available the problem may be
greatly simplified. If the material buckling is known to be B2, one has to a
good approximation

2 . T,2p. = B Bf,

and from (20)

*2=A(K4)--b2-b2 +(K%)
r L<

In certain cases where t)¥ y i>R >1, the }) Jt in (29) maybe approximated
quite simply. For large arguments, one has the expansions

ex T 1 32 32»52 1Io(x) =T^EF/2 [ l +8^ +2JTBX!2 +Bufey3 + J
l,(x). eL. [~i 3 _' 3-3 32: '̂7 ^ 1

1 3 32'32 _
1-B5T + 2TT5X72- 3TTB¥p +

3 3*5 32*5*7 1
1 + m - m&i2 + 3TCBXT5 +"" -J

---J

and the ratio J")' ( ^ f (xT"

f)
Since l^P >^R, the term in the ratio —•
compared to those involving R. 3

For this case one has

v Kl(tfl)
fk A-.

involving P will be small

" ii(yR) . ^)M^ll
V

=-V[l +2l71 - BTFr^ +32tJr75 + J*

(31)

(32)

(33)

(3*0

(35)
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The only term in (29) which depends on P, the outer radius, is

fl

The critical equation (29) may now be written:

«l <»<« d- fe )-<-<i- |K> »>-££a . °*i ^a '••'•' s2 ) ' t^i- sg^ " f, (36)

in which the right hand side of the equation is independent of P.

C. Special Cases

1. Center of annulus is a void.

In this case °T- and c*2 are found from the curves Fig. 3 or k by

Fl Fo _ F
c< = £2- pC =FJL_+F2. (37)
1= U + L' '2 2

2. Center of annulus is lined with a poison, black to slow
neutrons, but transparent to fast neutrons. Otherwise the center
is void.

A2

*2
L

(38)

3. Center is lined with thin poison sheet, black to slow neutrons
but transparent to fast neutrons. In addition the central
region is filled with a non-multiplying material having fast
group constants Dj and Z^.

The fast flux will satisfy the equation

•cT2 1 k zl jh-w Pi - —=7— Pi = 0, which has the solutionx D-^ x

p'1= EIQ (dfx r), where
r, h ,

t^p hx2 £2 1<*1 ) * Dlh " ^E *



17

At the inside boundary,
77" " v^r)

By the continuity of flux and current, one finds

^1"
DlX
Dn

h _ 5i_ ^ih ii( ^ihR)
jr = D-, i0(^ihR)

As in case 2 above,

*2 = 1.5

"77

>

4. This method is not applicable to the case in which the inner
region is filled with a non-multiplying material without a
poison shell.

5. Limiting cases.

(a) Infinite length.

In this limit °»i = c7^2 - ° an^- the critical determinant
(29) reduces to f2 = 0, or

J-tQuR)
iter

Let P be the outside critical radius of a solid cylinder
of infinite length and define

?2 -s -y-

Pl =
R

(39)

(»k>)

(M)

The difference Pg- Pi =
the critical solid cylinderradius is plotted in Fig. 5 as a fxinction
of P]_. For large P-|_ the roots of the Bessel functions are separated
by h, and the ratio approaches the value

P-R
or the annular thickness in terms of

2 -Pi->2T2?E>57 " °'6531k (k2)

It is of interest to note that the critical volume for unit length
of annulus (ignoring the extrapolation distance) is
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2, 2V(P1) =«(P2~R2) -«P0 (P2 "Pi) "yoL^2-*l' +'2*lU,2-*l) J

where V is the volume per unit length of the critical solid cylinder.
For large P-., P2 - P-, approaches a constant and the volume increases linearly
with Pi, (Fig. 6).

IV. VALIDITY OF THE METHOD

The practical utility of the method lies in the fact that the effects
of neutron streaming in the void of a cylindrical annulus reactor are taken
into account, to at least a first approximation, by the simple application
of a boundary condition. Once the functions Fq/l/r) and F2(L/R) have been
calculated, values* for the boundary conditions may be read directly from the
curves of these functions. The boundary conditions are valid even for
systems in which the inside radius, i.e., the radius of the central void,
is Large compared to the length of the cylinder.

As has been indicated in an earlier section, the assumption of separa
bility of variables is not strictly valid for this problem. The neutron
current found by a detailed summing of incremental contributions will, in
general, not equal the neutron current found by a diffusion expression which
is itself only a first degree, of P^ approximation. Further, equating
neutron currents at the lateral midplane of the annulus, i.e., at z = 0,
is an arbitrary choice and, strictly speaking, neutron currents will not be
exactly matched at other values of z„ However, this choice does lead %o a
useful solution. Despite these obvious difficulties, the method results
in a good approximation as is indicated by the agreement of the two limiting
cases which may be found by other considerations.

In the limiting case of an annulus of infinite length, there will be
no loss of neutrons to the inside void due to streaming. This implies a
zero current and zero radial derivative of the flux at the inside radius
of the annulus. This corresponds to the limit found%y the'present method,
(see equations (10) and (ll)),

lim (Xfa/fa) = lim F,(L/to) + lim (A/L) Pz(L/R) -0
L/R-»°«> L/R-><»« L/R-*»e

where L / 0.

It may be shown that the denominators in the expressions for F± and
F2 both become infinite in this limit.
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In the opposite extreme case, i.e., one in which the void radius becomes
very large compared to the length of the cylinder, the return current will
approach zero. This is similar to the case of a bare slab for which a
boundary condition is

or Af/p1 = 3/2

corresponding to the limit, in the present method

lim (Ap'r/p'r) - lim P.. (L/R) + lim (A/L) F?(l/R)
L/R-»o L/R-^O1 l/r-jo

= 3/2 + 0 = 3/2, where L/ 0.
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