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81. Introduction

Recently W. Kofink [3], [4] has applied the spherical harmonics method for
obtaining approximate solutions of the neutron transport equation. The present
paper is a mathematically rigorous exposition of the main part of Kofink's work and
is self-contained. Originally our interest was to investigate the question of con-
vergence of Kofink's approximate solutions, but we have found it necessary first to
reorganize his results on a more rigorous basis. Throughout this paper, we follow
Kofink's treatment except when clarity or rigor requires modification or supple-
mentary proofs. His several ingenious calculations are adopted with some occasion-
al changes. Thus the only contribution of the present authors is to supply rig-
orous proofs in certain derivations and thereby make it explicit and precise under
what hypothesis the results are valid.

In§2 » we describe the approximate solutions fn of the Boltzmann equation
(2.1). To define these approximate solutions, several preliminaries will be needed:
First, it is necessary to investigate the zeros of certain polynomials Gn. This is
done in §3. Secondly, certain identities needed in §2 are derived in §4. Then the

long calculation of certain coefficients «, is carried out in §5. Only with these

i
§§ 3-5 is the construction of the approximate solutions given in &2 complete. Fin-
ally, in the last §6, we examine the behavior of the approximate solutions.

"We wish to express our thanks to Dr. A, M. Weinberg for ¢alling our atten-

tion to Kofink's work and.for his continuous advice; to Dr. A. S. Householder for

his valuable discussions and for simplifying the proof of Theorem 3.1.
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§2. Approximate solutions of the Boltzmann equation. -

The Boltzmann equation considered in this work is -

1-y. 1 3(1-7,) 1
(2.1) ¥ Qf%ﬂ + £1(x, ¥) = == _Jl' £(x,y) dy + '—‘é—t_ y_{ £(x, y)y dy ,

where the unknown function f is defined for - ®<x <+ ®, -1 ¢ ¥y ¢ 1 and is re-

quired to satisfy the following boundary conditions:

X
(2.2) < Aim e’ f(x,y) =0 for y> 0;
(2.3) £(0, y) =0 for -1 < y<O.. ’

7a.’ 71:. are constants, but their values depend on whether x > O or x < Ot

7=7t=l for x > 0;
(2.4)

0« 7ag 1, 0« 7t$ 1 and not both equal to 1, for x < O.
We refer to [3], [8; Chap. IX] for the physical meaning of equstion (2.1).

In the spherical harmonics method, as an approximate solution of (2.1) we

shall take a linear combination of functions each of the form

=X

K 2n
(2.5) e jZ, (al+1) 6, (V) E (v),
where l?l denotes, as usual, the Legendre polynomial of degree 2 , and where X is a .
parsmeter.

When we substitute the expression (2.5) for f(x,y) in (2.1), we obtain

2n 2n
- £ Zo (2L+1) 6 (V) B (3) + gL, (20+1) 6,(3) B () = (1-7,) Go(2) + 3(1-7,)y G, ().




Using the recurrence relation

(2.6) (20+1)y 5 (v) = (£+1) B,y () + LB (¥),

the above equation can be written

1 2n - 2n
$iZ G [ 7y 028 ]+ 2 (22) 6 () 5 ()

= (1-7,) Go() Bo(y) + 3(1-7,) 6, (A) Py (¥),

or
)/Gl (M =7, 26, (N, 26, (M) + G, () = 3 7, 2 6,(2),
(2.7) (2+1) ¢y, (A) + ,@G£_1 (2) = (24 +1) 2 G, (2), (2 ¢ I < 2n-1)
. 2n G, 1 () = (4n+1)xc (1), Gopy (A) = 0.
) Obviously (2.7) implies that Gﬂ (A) =0 for 0g g This merely means that

equation (2.1) has no solution of the form (2.5) besides the trivial solution

m

f(x,y) = 0.
To remedy this situation, we shall still consider functions of form (2.5),

but we shall require QQ to satisfy

Gy (M =1, G, (M) =72,
o8 ) (M) + 6, (M) =37, 2a (), |
€+1) 6, (W) +Lg,_, (1) = (28+1) 2 G, (2), (2 ¢ £< 2n-1)
LGen (A) =0

instead of (2.7). Notice that (2.8) is obtained from (2.7) by dropping the relation

- en G A) = (dn+l) 2 Gy (1) and by adding Gy (2) = 1.

2n-1 (




.

Because the recurrence relation for 2 ¢ £«< 2n-1 in (2.8) is the same as that

for Legendre functions, we set

Gy (a) =1, Gy ) = 7, M
(2.9)

G () = A(2) B (2) + BOY) W,_; (A), (2< L« 2n)
where
(2.10) W ) =5 () ey (A) - g (M),

Qﬂ being the Legendre function of the second kind (see, e.g.‘[z; p. 152]). If the
parameter A satisfies

(2.11) AP, (M) +B Q)W A) =0,

2n-1 (
then the gﬁ's defined by (2.9) will satisfy the relation Gy (A) = 0 and the re- .
currence relations for 3¢ £ ¢ 2n-l1 in (2.8). We choose A(\), B(A) in such a way

that the recurrence relation for £ = 2, 1.e.

3G3(x)+2Gl(?\)=5kG2(l)

and the two remaining relations of (2.8)

G () =7

w26 (M) +6 (M) =37 26 ()

will also be satisfied. In other words, A(N), B()) are so chosen that

G, (M =2 () B, () +B (M)W ()‘)=%7a7t}‘2'%"

G3()~)=A(A)P3 (x) + B (3) W, (x)=%7a7tk3--§-7ax-%x.
As

Pz(x)=gx2-%, P3(x)=gx3-%x,

wl(x)=%x, W2(>~)=gk2--§',

a simple calculation yields

A () =143y, ()25 B{(2) = -x[l - 7y + 37, (1-7,) xa].




To simplify, we introduce

l-yo

H

(2.12) a =37, (1-7), c

Then we can state the above result as follows:

Lemma 2.1. Let

(2.13) & () =1, 6 (1) = (1eh, Gy () = (1+22%) B (1) - aleran®) W, Q)
(2¢l« en),

where a, ¢ are given by (2.12). Then for every zero ) of the polynomial G2n’ the

quantities G, () (0g¢ £ ¢ 2n) satisfy all relations in (2.8).

In view of (2.4), the constants a, c¢ introduced by (2.12) depend on whether
x>0 o0r x<O:
a=c¢=0 for x >0

(2.14) s o
0<c<l,0¢a<3(l-c) and a° + ¢ #£0 for x <O.

Consider first the case x > 0. In this case, a = ¢ = 0, the polynomials Gﬁ

defined by (2.13) are simply the Legendre polynomials PQ . P2n is even and has ex-

actly n positive zeros [6; p. 43]:

(2.15) p§2n);> uéEn) > cee > péan).

Thus we form a linear combination of n functions each of form (2.5) (ccoresponding

to the n positive zeros of Pen):
X
n -pj 2n-1
(2.16) £ (g,y) = f:‘l B e oL, (24+1) By (p,j) Py (y) for x =0,

where B, are constant coefficients, and where we have set pJ = u§2n) for the sake

J

of simplicity. Here we do not use the negative zeros of P,, in (2.16) because we

want x-} m fn (x, y) =0 for y > 0. This condition did not appear among the boundary
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conditions (2.2), (2.3), but the equation y égig*;Xl + £(x, y) = 0 (i.e. equation
' -X .

(2.1) for x >0) implies f(x, y) = e J £(0, y) for x >0, y # O and therefore
xgg_x@f(x, y) = 0 for y > O. _ -
For x < 0, we have 0 ¢c <1, 0 a< 3(1 - ¢c) and a® + 2 £0. For n >1,
the polynomial
2 2
G, (A) = (1 + &%) Py, (A) - A(c + a A%) Vo 1 ()

is even and of degree 2n. It will be shown in £3 (Theorem 3.2) that G2n has exactly

n positive zeros which are éll distinct. The positive zeros of G2n will be denoted

by

/o (2n) (2n) (2n)

(2.17) )\l > )\2 S il D> )\n .

The negative zero of ng of largest absolute value will be denoted by léEn), i.e. -
(en) _ (2n)

(2.18) )‘o = ')‘1 . .

Then we form a linesr combination of n + 1 functions each of form (2.5) (correspond-

aen) - a(en) - (En) e gy,
n 2n

ing to the zeros -Ay" 7, A7,

X
J n Xi 2n-1
(2.19) £ (x, y) = 1§o a e QZ (2f+1) G, (-ki) Py (y) for x< O,

where G, ere constant coefficients and where we have set ki ='k§2n) (0 € 1 gn) for

+he sake of simplicity. Here in (2.19), we use only the n + 1 zeros -)O’-kl’ ceey

‘lh of G2n' The reason for this lies in the boundary condition (2.2) and will be-
' \

come clear in the proof of Theorem 6.1.

We now have

x .
n "o, 2n-1
, J;l Bye J gLy (2441) Pﬁ(uj) P, (y) for x>0, ]
<2-2O) fn (x: y) = \ x
i n Xi 2n-1
I 1§o a, e ,?Zb (2f+1) qz(-ki) fk(yj for x < O.




By use of §h, an alternative but identical expression for fn is

x
4 n “ny Py o(ny)

J 2n-1""3
2n o (y) j—z—-‘l Bj e 3 < 5 for x >0,

(2.21) £ (%, y) = 3

Fd I3

2
5 NI SN c +aly Pgn(y) - Pgn(~li)

- +
\_1=0 "1 ; i Pzn(xi) Y+ Ay

for x « O.

We proceed to choose the coefficients Qs B, so that the function fn defined

J
by (2.21) is continuous along the 1line x = O.

Lemma 2.2. The function fn defined by (2.21) is continuous along the line

x = 0 (and therefore continuous for - < x < +®, -1 ¢ y 1), if and only if the

coefficients Qy B. are so chosen that .

J
n (’ c + a }i
(2.22) o N la - o | =9 (1< 3gn)
i J
1 § cC + a }i
(2.23) B, = : 2oa, A, —= - a |, (1< j gn).
j on P2n-l(“j) P2n(“j) 0 1 i Ay o My i

Proof. fn is continuous along the line x = 0, if and only if the two ex-

pressions in (2.21) are identical for x = O, i.e.

n P (ny)
(2.24) 2n P, () J)_;_l P K

J y - uj

0
+

2
a Ri Pzn(y) - Pgn('li)

n
= -0« C+
120 MleMNtsE () Y+

i i i ’(-ls ysl)‘
2n

's must necessarily

Since the left-hand side vanishes for y = H (Lg § ¢n), the oy

satisfy (2.22). Now

—

2
oly) = -iio a0, (o s ; + ;Al§ Poy (y) ; ign (-li)
= on ‘M I A
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being & polynomial of degree < 2n - 1, we have the partial fraction decomposition
n . n -
QQKE - 3 o(u ;) 1 . le (-n,) 1
= ] - = 1 (. . -
If the necessary condition (2.22) is satisfied, then we have @(-uj) =0 (1< jgn)
_ 35 (u ) 1
QLX%—- = - = .
P2n y) =1 Pzn(“'j) y “J

Hence, under the assumption (2.22), relation (2.24) will hold, if and only if

and

@(uj) (1 ; )
T £ J < n);
) P n(uj)

J - 2Py ,(uy) P

which is precisely (2.23). .
As (2.22) is a system of n homogeneous linear equations in n + 1 unknowns

Q. , we shall add a normalizing condition
(2.25) a. +a, =1.

In §5, we shall solve the system of n + 1 equations (2.22), (2.25) for the ai's.
It will be shown (Theorems 5.1, 5.2, 5.3) that ai‘s are uniquely determined by
(2.22), (2.25) in the following three cases:
(Case 1) 0<ec<l, 0< a<3(l -c) and
. 3 - - -E— .
VT P, ) F_ (VE) - F_ O F, (1VE ) # 0; vhere F_, F_ are defined

vy (5.7), (5.8). .
(Case 2) 0O<e<l, a=0.
(Case 3) c=0, 0< ac<3.

In each of these cases, the function fn defined by (2.21), with ai, B, uniquely de-

J
termined by (2.22), (2.25), (2.23), will be called the pth approximate solution

of equation (2.1).
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§ 3. Zeros of the polynomials G-
In §2, we have encountered (see (2.13)) polynomials G defined by

Gy (M) =1, G (0)=(1L-c¢) x; G, (M) = (1+ ar2) P () - Me + axd) ¥y (V)

for n 2 2.
Since W, (1) = 1, we have actually
2
(3.1) G (N =(1+a2)p (A)-2Arc+adW . (1) for n >1
n n n-1
and therefore the recurrence relation (same as that for Pn, Qn)
(3.2) (n + 1) G g (2) - (2n+1) A G, (A) +n G, () =0 formn> 2.

This relation together with

(3.3) G, (A) = (1L -c)r, G, (1) = l-c2 -8 32 _ %

determine the Gn's completely. The purpose of the present §3 is to study the
distribution of the zeros of Gn (n>1). In §2, the constants a, c are either
both O, or they satisfy the restrictions

(3.4) 0ge<l, 0g<ac3(l-c), a2+c2940.

When a = ¢ = 0, we have Gn = Pn:} As the distribution of the zeros of Pn ig well=-
known [6; pp. 118, 1217, we shall assume (3.4) throughout this §3.

Theorem 3.1. For n >1, all n zeros of G, are real and distinct. Further-
(n+1)

of G are each arranged in

- "n+l

more, when the zeros (n) of Gn and the zeros

descending order, they satisfy the inequalities

(3.5) A§n+l)>' xgn) > xén’“l) > lén) >0 Al(ln+l)> xr(ln) > xr(lf’l“l).
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Proof . By (3.2), (3.3) and (3.4), G, (n > 1) is a polynomial of degree

n and the coefficient of A" in Gn is positive. Therefore

(3.6) x_}im

im G (3) =+, lim (-1)nGn(x)=+m.

Ao S0

(2) (1) 5 ,(2)
Clearly the zeros of Gl’ G2 are real and satisfy ll > xl, >-}2 . Assume for

i £ n, the zeros of each Gi are all real and distinct and separate the zeros of

G We shall prove that the same is true for Gh+ Consider two consecutive

i-1°
Zeros )ifi, kin) of G . Then

1°

n)

o0 (47) 5 () <

This and (3.2) imply that

el (lifi) Cpe1 (iin)) <0 )
so that Gn+1 has at least one zero, say l£n+1), such that lﬁfi:> l£n+l):> kén).

(kgn)) £ 0 and (3.2), we have

Gni1 <>‘§n)) Gna1 <"§n))< 0

This and (3.6) imply thet G _,, must change sign in the interval e ¢ Vo,

Next, from Gn_1

1
(n+1)
Hence Gn+1 has at least one(zero, say ll s in this interval. Similarly, Gn+1
(n+l) n)
must have a zero kn+1 < kn . This accounts for all zeros of G -

For the sake of simplicity, whenever only one polynomial Gn is involved,

(n)

its zeros will be denoted by A Kk

k

instead of A
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2

Theorem 3.2, For n> 1, G, n hag exactly n positive zeros }k (l.s k < n)

and they satisfy the inequalities

(3°7) A'l>“-l>)'2>“-2 >"'>ln>“-n)
(1)

where e (lg k < n) denote the positive zeros of P2rl .

Proof. By Theorem 3.1, all 2n zeros of G o 8re real and distinct. Since

2
G2n is evén, it follows that G2n has exactly n positive zeros.
Let

@n(x)=%— {Qn (}\+i0)+Qn(}»-i'O)};, (1<) <1),.
Then

Q, M =Q, M2, M -w () (-1<2<1)
and therefore

@2n () = = Wpp g Gy) (L< kgn).

Since sgn éggn (uk) = (-l)k [65 p. 152], we have

sgn wen_l (le) = ('l)k-l

By (3-1),
Gop (i) = -y (c + @ “12{) Won1 (i)
By (3.4), we have

(3.8) sen Gy () = - sgn Wy 1 (i) = (-1)*. (1< kgn)

(r) As G2n’ P, are even polynomials, it suffices to consider only their positive

2n
Zeros.
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Hence none of e 1s a zero of G2n

M <X < T (1< k gn-1) 1. oddf Next, by comparing sgn G, (un) = (-1)" with

, and the number of zeros of G2n in the interval

sgn G, (0) = sgn P (0) = (-1)n, we infer that G, has an even number of zeros -
in O« < My . Finally, since the total number of positive zeros of G2n is n, it

follows that G2n has exactly one zero in each of the intervals +am >2X >p,l and

me>) >, (1€ kg n-1).

Theorem 3.3. Let lin) denote the largest positive zero of Gn (n >2). Then

the increasing sequence

(2)_ ,(3) (n)
(3.9) NP MY e ey e
converges to a finite limit
° = l(n) .
(3.10) X = oHg M >0
And + xo are the only zeros of the function .
l+ e z2 Z z + 1
(3.11) G(z)=—3-§ log -—7 »
cC +az
where we take the principal branch of log %—%—%.
Proof. Let
n G, (z)
(3.12) R (z) = 2—5;:;_(2)' (n>2)

Then the recurrence relation (3.2) can be written

2

(3.13) R (z) =% L : (n >2)
- z= 2n+1-R_ .(2)
n+l
Now o )
[3(1 - ¢c) - a] z5 -1
R2 (Z) =

(1 - ¢) 22 .

or




-13-

By repeated application of (3.13), we get

cC +az =1 - w2 S1. w2 .
l+az 3 - R2 (z) hw2
3 5 «R z
3
or
(3. Srez ¥ mE 9P (2-1)2 2
1+acz 3 -5 -7 - - (2n-1) - R (2) *

where w = % . Consider now the rational function

2 2 2 2 2
(3.15) s (z) =SE2Z. _fg ¥ W (ol) v s o 1L
l+az 3 -5 - - en - 1 z
The continued fraction
l_Y..e._ EYE n_12w2
3 - 5 - - (2n~-1) - °

converges to

1 1 1l +w -1
2w %81 v

uniformly in every closed region in the complex w-plane cut along the real axis from

-1 to -~ and from +1 to +m® [l; P 125]. Therefore Sn (z) converges to

c+azl . + 1\t
(3.16) S (z) = =222 _ (Z15g 2
2 2 z - 1
l+az
uniformly in every closed region in the z-plane which is disjoint from the closed
interval [-1, 1] on the real axis.
It is easy to see that the function G defined by (3°11) has no zero in the

interval [-1, 17 on the real axis. Consider now any zero z, of G. Then z, 1s also

0
a zero of S and lies outside the interval [-l, l]. According to what we have Just

proved and by a theorem of Hurwitz [7; . 119], Zq must be a point of accumulation
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of the zeros of the sequence of functions {Sn}. But, from (3.15), (3.14), and (3.12),
the zeros of Sn are also zeros of Gn, hence Zq is a point of accumulation of the
zeros of the sequence of polynomials {én}' -

Since the zeros of Legendre polynomials are all between -1 and 1, so by

(2n)
1

By Theorem 3.1, we have the inequalities (3.9) and therefore +

Theorem 3.2, + A are the only zeros of G, (n » 1) which may be outside [-1, 1].

(2n+1) are the only

zeros of G, ; (n > 1) which may be outside [-1, 1]. Hence, if G has zeros, then the

(n)

increasing sequence (3.9) must converge to a finite limit x, = 118 ll

0= n and +X

0]
are the only zeros of G.
It remains, therefore, to show that G does have a real zero > 1. Since
< % G(x) = -00, we need only to prove that G(xl) >0 for some x; > 1. ]

From the power series of log (1 + y), we have

2 3 .
log(1+y)~y+g—<3L (-1 <y <1).
Hence
2 2 2 8
log (1 + —=) - ——= + < for x > 3,
x -1 x -1 (x - 1)2 3(x - 1)3
or
(3.17) %log(l+x?1)-x}_{l+ X 5 - hx 5 <0 for x > 3.
(x - 1) 3(x-1)
Let
2
(3.18) p(x) = 1+ a x2 . X o X 5 - Ux .
c +a X b (x -~ 1) 3(x - l)3
Then (3.17) becomes
(3.19) G (x) > o(x) for x >3. .
We find
(3.20) olx) = —Ab=cloe oy,

3(x - 1)3 (¢ + a x7)
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where [ ( ]
3[3(L -c) +a
_3 2 9 - 10 3 |
(3-21) V(x)—x - 3(1—0)—8, X +3(l_c) -ca x-3l_c _ao
Take

- 36
1 3(1L-~c) ~-a

X

By (3.4), we have x, > 12 and

3[3(l-c)+a]<x_]; |9-10c| <xl
3(1 -¢c) -a 2?2 3(L-¢c)-a ~2°

3 X
3(1-¢c) -8 2

Consequently,
3 2 -
X X X X (%, (x; - 1) - 1]
s I S A N N S Ay
Y) > -5 -5 -5 = 5 >0,

which combined with (3.19), (3.20) yields

> 12.

) | _ 36
G(xl)>0 withxl-s(l_c)_a

§ 4. Two identities.
We shall now derive two identities which are needed in §2 [see (2.20), (2.21)].

Lemma 4.1. Let My denote the jth positive zero of P, - Then

2n-1 Ponq (By)
(1) gLy (2L+ 1) B (uy) ) (y) =202, (y) =50 o

Proof. This follows immediately from Christoffel's first summation formula

[2; p. 162]

m
(2.2) (y-x) L (@l+1)E (x)B () =(m+1) [Pm () By () - B(y) Pm+l(x)]'




=16~

Lemma 4.2, Let

(43) 6, () =1, 6 (W) =@1+2a12)5 () -rc+ad) W () for £>1;

th
vhere c, a satisfy (3.4). Let Ay denote the 1™ positive zero of G, . Then

2n
2n-1
(4.4) oL (22+1) 6 () B, () =
2 ‘.
N A (e + a li) L Pon (y) .
1 Y+ Ay Pop(= 2y)

Proof. Besides (4.2), we shall also need Christoffel's second formula
[2; p. 162]

m

(4.5) (x - y) %, (2L+1) 5 (¥) q, (x) =

1 @) By (90 4 (0 - By () gy (0]
Since G (A) =1 and
G (1) =(1+a ) B (-0 + Me+a 2°) [PJZ (-2) a5 (-3 - q (-x)], (4 21)

we write
2n-1 . :

2n-1
= -8 )\2 + {(1 + a )\2) + Mc +a )\2) % (- )\)} ,ng (24 + 1) Pl (-2) P,Q (y)

2n-1
- Me +a ¥) lio (21+1) B (y) g, (-2).

Then by (4.2), (k.5),
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2n-1 ' 5

2;‘0 (22 + 1) Gy (-2) E, (y) = - a 2 +

: {(1 ra®)+ e +aa?) g (-x)} 2y [y (49 Py () = By () By (-]

en P, (y)
+ ‘_y_i-g}\—— {(1 + 8 2%) Pon 1 (-2) + Mc+a }\2) CP2n-l (-2) Q (-2) - an_l(-}\)]}
)

(y
yzil-]}l {(1 +a }?) Poy (-2) + xMc +a }\2) tPZn (=2) Q% (=) - QU (-}\)]}

2n-1 )
§ (20 + 1) G, (-N 5 (y)=-ax2+3‘§3—i-£"—>‘—l+

2= 0 y+ A
en P, (y)
¥ —yf—llr {(l +a ) Py (KM + Mc +a @) L (-A)}
2n P (y)
2n-1
T3+ x - G (M-

As ), 18 a zero of G, , we have G, (-}\)-Oa.nd.

2n
W, 1 (-3)
2 2 2n-1 i
L+a X ==X (c+ad) g5y
2n 1

and the last equation becomes

en-1 o
(4.6) [éo (24 + 1) Gy (-3) B (¥) = -a X + +

P, (¥) X (c+a xi) }\ .
e R TR R Pop (= M) Wop o (= ) =Py g (= X)Wy (= )b
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On the other hand, we have

Pon Wono = Fono1 Wopo1 =

= Pop (Pop3 Q = Quq) = Popy (Poy @ - Q)

Pon-1 %n = Fop Sop.12

and, by setting x =y =- 7, m=2n-11n (%.5):

O=1-2n [P2n (- 2y) Bn-1 (- 23) - Pypy () Q) (- }‘1)]'

Hence

P2n (-Xi) wen_e (-Xi) - P2n-l (-Xi) w2n-l (—Ki) = - Er-l-

and (4.6) reduces to (&.4).

§5. Calculation of the coefficients 0 -

This section is devoted to the solution of the system of n + 1 linear

equations
n c +a )»}2{
(5.1) k-z—-"oak}\k a -‘):;‘:-HJ—' =0, (1< Jj<gn)
and
(5.2) G+ =1;
vhich has arisen in §2. We recall that c, a here are subject to restrictions
(5.3) 0ge<l, 0gac¢3(l-ec), a2+c27£0; -

Hy> Hp > «oo > p are the positive zeros of Pen; }\l > }\2 > ese >}\n are the positive -

and

zeros of the polynomial G, M) =(1L+a k2) P (A) = AMc +a }\2) W

o1 (M
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lo = -ll. In Theorem 3.2, we have seen that
. A A ces .
(5.4) 1> H > A >0 >A >y

In the calculation below, we shall use the following notation:

n

(5.5) oy
P(l) = 311 ()\ - IJ-'j):
n
(5.6) r(x) = TH (0 -2y,
(5.7) F, () =r(d) p(-2) + x(-2) p(2),
(5.8) F_(2) = r(d) p(-2) - r(-2) p(2).

Lemma 5.1. The system of n equations (5.1) is equivalent to the system

of equations

3 2 4 2, o 1]
(5.9) na kgb @4 N - k;b % M (c +a Ak) Jgi lk‘“j = 0
» j
2 R _ -
(5.10) @ - A (e + k;) p(2) [ a r(x) % (-2)  eexcn.
MNle+a ) rt() [Og-2)p(a)) () p(-2)) ]

Proof. Equation (5.9) is obtained by summing the n equations of (5.1). If

we subtract the jth equation of (5.1) from the first equation, we get

oo lk (c +a li) )

K=0 (A, -1, ) (lk-uj)

0, (2

n
s
n
2

(5.11)

Thus (5.1) is equivalent to (5.9) and (5.11) together.
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Let

2
% X (e + e )
(5.12) b, = P()k) , (Qékgn). ‘
Then (5.11) can be written X l
n p(2,) b, p(2,) b, p(2;) ‘
13) 2 NP RS i 23 ), ‘
523 & % By~ Ggilgay) - Gy © 74 @
This system (5.13) can be solved by Cramer's rule:
A\
b, = —A-L, (2 <k gn).
We have
1 1 1
Apmhs A3=ko L~ .
n 1 1 1 i
T n
1T (1) :
i=2
1 1 1
ApmHy l3‘“n Ay

TT p(2;) | (Ag-20 - TT (“J‘“i)

_2gign 2¢«i<jgn 2<£i<j¢n
T (y-u) [] B (Ai-uj)
2¢ign 2¢ign 2<jgn

[5; p- 98], and similarly

(A-2,) - | | (o) i

2<i< jgn 2¢i<jgn




2¢i<jgn J

A=-b(-l)koTH_ (l,~>\j)' H (uy = ny)
i

1 1€1<ig
i,J #k
Thus Il
A o 215[,1 (g =25 =1y 2 J¢n (3 =2y
(5.14) b = — = Jzk Sz K , (2<kgn)
VAN T O - 1)
2<J<n J
Jfk
By (5.6) we have
5.15 1(A) = - 1), 2¢k .
(5.15) r'(d) 243'5:1 ( - 2)) (2< kg n)
J#k
Hence (5.14) becomes
b, r()) b, r(X)
1 0 ' 1\
b == ) X - X (2<k\
k r()\k)[xk-xo”)\k-)\l} <n)
Now, (5.3) implies c + a }i # 0. Therefore by (5.12) and Ay = = A, we have
(2) b. (M) b, r())
=Ty T [O o+1r1]’ pexen
)\k(c+a)‘k) }‘k‘}‘o A -]
and
B, r()\o) by () a () &y r(-2)
X - Ak N M(°+aﬁ) p(}, (Ak-x) p(-2 )0 + )| °

This yields (5.10) which solves (5.11) for @ (2< k ¢ n) in terms of « 0 O Since
(5.1) is equivalent to (5.9), (5.11) together, so it is also equivalent to (5.9) com-

bined with (5.10).
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Lemma 5.2. When the o 's satisfy (5.10), we have

(5.16) k-z:'O [ e )k (c + a }\i) ;]il )j; - “J =

) r(},) r(-3)
=nl(c+al2)a L S .
1 1 lph\l) Opz-lls
Proof. First, since )‘O = ')‘l’ we write

el

n n '()\K)
(mﬂk&[%&h+aﬁméijﬁﬂ ko%ﬁ“+aﬂimj

2y [o P () p'(-ll) n 5 P'(N)
=}»l(c+a)x 1—-(——T- P'}‘l +k§2 Ok)‘k(c+a}“k)m'
By (5.10),
n p'(N)
e G Ny o+ ey p (0
n p'(N) [ o r(y) ay v(-2)
- o My (o2 ]) oy [(xk-xl) p(0) T + %) p(-%)

or
n 5. D
(5.18) k-z_-‘z o 73{ (c + a lk) HTI?_— =

A (c+a ll) o p'(A) o r() P2 + 2D - oy r(-2) p(A)(A - X))

07 TR K2 T 5,2
k )\k-)\l
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To compute the Z-sum on the right-hand side of (5.18), we introduce
?(2) = p'(N [oy () p(-2)(x+ 2)) - ay r(-2)) p(A)(A-2))],
n
Y(2) = 3@; (A=2y) = (2-2)) r(3).

® is a polynomial in X of degree € n. The coefficient of A® in o(1) is n 707 where

(5.19) 7o = 0 T(2) p(-A) - ay r(-2) p(X).

¥ is a polynomial in A of degree n, the coefficient of AP in (1) is 1; and the
Zeros kj (L< j < n) of ¥ are all distinct. Therefore we have the partial fraction

decomposition
noo(dy) 1

()
%ﬂ“‘n’o* # 7O VX

Then we have

noo(r) ?(-1) a(2,)

J = - -
j§2 y’(kj) A+ lj =17 w{-A) ‘y'(kl)(k + klj ’

Now the X-sum on the right-hand side of (5.18) is

z o(0,) a(-2) ey
k2 PRIy + 5T TP T0 TR T B ()

=075+ 0 P(A) P2 ) - o p(-0) P'(}).

Thus (5.18) becomes

n o P'(lk)
k§2 o, A (c + akk) 5(i£7-— =

2
kl (c + a kl)

= B0 B(Ay) {.nL a; (X)) p(-y) - ay r(-2;) P(ll)] +

+ oy P(2) P'(-2) - p(-1)) p'(kl{} )




oL

which combined with (5.17) yields the desired relation (5.16).

Lemma 5.3. If, in addition to (5.3), we assume ¢ >0, a > 0, and if the

a 's satisfy (5.10), then

n A (

(5:20) &2y o, % = 5 1 (e +a23) [ay x(ay) (1)) = ag r(-ay) w(ay) ]

+ & Re Eﬁ;ﬁl{éz;z__ [ai r(kl) p(-kl)(kl + 1 Vg?) + a, r(-2) p(kl)(kl-i Vg:ﬂ
7]

Proof. By (5.10),

n n

8 Ly o ki = aloy + o) ki vady o li =

E A P(y) o r(3y) g r(-2;)

5 2
=6.( [ ))‘ A ( )\) ,
%A v © TR ke T li ' () [ Oy )p(ag) (hady)(=2y)

1 1

or

2
n A, (c+a AY) n f(lk)
(5.21) a . 2 a(a, + )Ke + 1 = L
ko % M ot A/ 200) B(-2) K2

2 J

£ () (X - A0y + 9)

where

(5.22)  £(2) = A p(2) [al r(h) B(-2)(A + ) - oy r(-2) p(xl)(x-xl)].

2

f is a polynomial in A of degree < n + 2. The coefficient of A in £f() is 7o

given by (5.19). Consider the polynomial of degree n + 2

n
2
(5.23) g(2) = (X +§>E(x-xj> = (3% + 2) (A =2 T (R).
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Since ¢ > 0, a >0, the zeros )‘l’ )\2, .

Hence we have the partial fraction decomposition

)y £(x,) 1

. )‘n’ i ‘/g_, -1 \/g—_of g are all distinct.

2(1v2)

T n
(5.24) —_ =+ ; J

+ 2 Re
g(r) 0 J= g'(2,)

A - X,
J

[=]

f()‘k) n
rOY0E -2 L g

(5.25)

[}

£( —Al)

g(-2)

70

One verifies easily

(2(2) ay 2 20y B(-A)
g(-}) )‘i + 3 ’
£(,) A p(A) p(-))
(5.26) < A L7 Lo,
2}\1 g'(}\l) }»l + Y

(1F) ()

g<i

Then the L-sum on the right-hand side of (5.21) is

(x-i\/—

£(2,)

g (3 ), + 1)
f(:/%)

al r(ll) P(-Al)

R Yy

oy T(-2)) B(2))

g'(i\/g)(xl + 1\/2—) 2 r(i\/g_)

From (5.21), (5.25) and (5.26), we obtain

.

n )\(c+a)\§).

a 2 2=a.(cz+ ))\2+l
k20 % I Rl 50) B()

ll P(ll) P(-Al)

i\/g- )\l

p( /_) o rd) p(-2)) 9%

i\/g+ )‘l

o w(2)) p(-))) - ay =(-2) B(A) -

x(-1)) B(},)

Mt+a

- (og + o) R (i

/2 -

i[/g+)\l ’
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which is precisely (5.20).

Lemma 5.4. If, in eddition to (5.3), we assume ¢ = O, and if the ok's

satisfy (5.10), then

n r(x) r(-1,)
5.27) % 2.0 L. 1 .
(5:21) &y o X =N {ial 20 % EW
42 »(0) N r(:) . s r(-2)
L r(0) p(A) O p(-\)

Proof. By (5.10) and ¢ = 0, we have

a 2 2 5 B 1 P(Y) oy r(d) % r(-})
o % e T () M N D ETy |- B0g) T T+ ) B
or
n ) n doy
(5.28) T S IS I\ pp— Y
o kT Al p(a) B(-2) A ()05 - af)
with

(5:29) &0 =200 [oy 2] B (4 2) - ag =(a) 2Oy (- xl)] :

If we set

n
(5.30) V) - 2T G- ap) =20 -2 2 ),

then we have the partial fraction decomposition

Bloy 1.2 809

+

70 7 ,j’=l \ 4
¥ (2) \P(o) A ¥ (xj) SR

(5.31)

where 7o is given by (5.19). Now,
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n d () n ¢(x)

kz-:2 ny - = o , .k , =
)0 - x ) T ()0 + 2)
() do) | ¢ ()

14
ST T A 2§y

o P(3) p(-2)  p(0) o T(¥)) B(-X)) + ay T(-2)) B(})) 9 p(2;) p(-2)

]

so (5.28) becomes (5.27).
We are now ready to solve the system of equations (5.1), (5.2).

Theorem 5.1. If 0<c< 1, 0< a<3(1l-c)and if

(5.32) i\/g F_(A) F (i \/-g) -M F_ () F, (1 \/g) Lo,

then the system of equations (5.1), (5.2) has a unique solution given by (5.10) and

w0 oo [1VE 5 (1 )uayr, (14E) ]

(533) Q'l = 5 )
i\/g-— F, (}‘1) F_ (i\/-g)- )‘1 F_ (>\l) F, (i\/%_)
- .
o [ r () ()]

\/—F )\)F u a)-xlF_ (>\l)F+ (i@)

From the definition (5.7), (5.8) of F , F_, it is clear that F+ <%\/gi)is
reael and F_ <ivé§)is purely imaginary. Thus in (5.33), (5.34), each of a., o is

expressed as the quotient of two real numbers.
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Proof. According to Lemma 5.1, the system of equations (5.1), (5.2) is
equivalent to the system (5.9), (5.10), (5.2). By Lemmas 5.2 and 5.3, equation

(5.9) can be written

A
Vs re 4 10/E Y-
e —7—‘/—5:4\ [al r()\l) p(-)\l) (\)\1 M 1\/;) * % I'(')‘J_) p()‘l) \)‘1 -1 b/; ] =0,
Tii o —
N,

or, what is the same,

+ P f)r<1 )101 r(};) p(-2 )( - ié)+ 0p T(-2y) p(};) <xl + ljg)} = 0.

By (5.2), this may be written
(

5 |
o p(ng')r(ngT) ir(xl) p(-2) Dy + 1/§—> r(-2) p(3)) a’\'\xl - 1@)}
v p’ 1/? r<i /§> (,:;r(xl) p(-};) {ixl - 1@) - () B(A) (M + 1/—9}

= < x(2) p00) i \ =r<- 1/‘7\,‘{/x1 . 1\/—>+ of 1/;)r<i/§)(xl .1 §>} ,
or, according to (5.7), (5.8),

(5.35) o { ivég— F,(A) F_ (i V§;>- A F_ (M) F, <i v@i}%

we derive

L (M) F_ (1\/-5\3- M F_ (M) F, (1\/9‘} | -
r / "
= p(-2)) r(2)) i iv/g_F_ Si % Lo A F, (i.vé{)} .

PIoT -
=

Hence, if (5.32) holds, (5.35), (5.36) become (5.33), (5.34).
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Theorem 5.2. If 0L ¢ <1, a = 0, then the system of equations (5.1),

(5.2) has a unique solution given by (5.10) and

(A) r(-2)
(5.37) e L C

P( -ll) I‘( ll)

(5.38) oy = P
+ 1

Proof. Again, the system of equations (5.1), (5.2) is equivalent to the

system (5.9), (5.10), (5.2). By Lemma 5.2 and since a = 0, equation (5.9) can be

written

l

p(};)

This combined with (5.2) yields (5.37), (5.38). That F+(}\ ) # 0 can be seen from

1

Fo(2) = (2) p(-2)) + x(-2)) p(2])

n n n n
(-1)r1{11; (A -2) }2; (2 + uj) - 11; (A - w) I (A + lj)} .

1

Indeed, by (5.4) we have
Moo > -y >0
ll + “j > Rl + lj+l > 0,
MR >N - >0

and therefore

(5.39) (-1)7 F, (2) >o0.
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Theorem 5.3. If ¢ = 0, 0< &< 3, then the system of equations (5.1),

(5.2) has a unique solution given by (5.10) and

(5.50) - (M) T(-2)
F_ (ll)
p(-2)) T(2)
(5.)4-1) ao = F (}\ )
- 1
Proof.

As before, the system of equations (5.1), (5.2) is equivalent to

the system (5.9), (5.10), (5.2). By Lemmas 5.2, 5.4 and since ¢ = 0, (5.9) is re-

duced to
o .
p(}) p(-1,)
This together with (5.2) yields (5.40), (5.41). We note that F_ (ll) # 0. Indeed, )

F_ () =7 (3) p(-2)) -r(-1)) (1))

L (B .n n .
- (-1) {?Je Oy = %) TL Oy rug) +TT Oy 3) -jglul-uj)},
so by (5.4) we have

(5.42) (-1)" F_(2) >o0.
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§ 6. Behavior of the approximate solutions

The nth approximate solution f of equation (2.1) has been defined by
(2.21), where the coefficients a; Bj are determined by (2.22), (2.25) and (2.23).
This 6 deals with the behavior of the approximate solutions. We shall use the

following notation:

X 2
1 n li cC + a li
(6.1) £ (x, v) = igo a; A e -a )+ ——, (x < 0)
Yy + X\
i
X 2
n X, c+axr, P, (y)
(6.2) (%, 7)== % @ A et 1 2o ; (x < 0)
1 =071 1 + 2 P, ()
y i 2n i
so that
I II
(6°5) fn (X, y) = fn (X, y) + fn (X, y). (x < 0)
Lemma 6.1. For x £ 0, we have
_— X
1 n 7\'1'
(6.4) { £ (x, y) dy =2 QQO a; e ,
X
1 n ki
(6.5) { £,(x y) yay =2 -1) Lo ¥ e
—_ e}
Proof. As Gy, (li) = 0 and P, (ki) # 0 (Theorem 3.2), we have
2\
A(c +an,) l+aX,
i’ i
Pop (34) Won-1(%4)
Thus (2.21) becomes
X X 5
n X, n A1l +ad; PU(y) - Py (-A)
2 :
(6.6) £ (x,y)=-a.2L a A\ e .Y a e * i _én , en 1‘, (x £0).
n i=0 "1 "1 i=0 "1
W (x,) v o+ AL
2n-1'"1 i
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By a classical formula [2; p. 154]

L P (y) - P (2)

dy = 2 W (z), .
21 y -z n-1
we have
1 p, (¥) =P, (-1,)
2n 2n i
= - = - A
2 " dy = 2o, () 2 Won1 (M)
Iy
Hence (6.6) implies
X X
1 2 2 M a A 2
= - <0
{ £ (x, y) dy 2a igo a A e+ 2 igo o, e (L+a A)s (x £ 0)
and therefore (6.4). .
Next, from (6.6), we have
X 2 (¥)
1 n A, 1+ aAl, 1 P, (-\,) - P, (y
2n 1 2n
[ f,(x, ¥y yay= Yo e ——— [ y- dy, (x<0).
-1 w2n-l (li) -1 vy o+ li
Since
1 P, (-r,) =P, (y) 1 P, (y) - P, (-X.)
2n 2n 2n 2n i
Yy - dy = f P2n ('}"i) - P2n (y) + }"i dy
-1 ¥y + li -1 y + li

=2 Py (3) - 20 Wy 4 (X)),

it follows that for x g O:

X
1 n X, [P, (1))
2 2
] £ (x,y)ydy=2.L. a, X\, e + (1 +a)) n_- -1
1 n 1=0 "1 "1 i AW (2, )
- L™l "2n-1 i
X -
el 2
n ki o [c + a li
=2 0. a, A e (L+ad])|—=-1
1=0 711 i+ a l? .
- i
X
n A,
i

2 (c - 1) i§o a, e




The following result describes to what extent the approximate solution

* f  satisfies equation (2.1) and the boundary conditions (2.2), (2.3).

Theorem 6.1. The approximate solution fn satisfies the following re-

" lations:
31 (x,¥) P, (¥)
(6.7 y—————mo+f (%, y)=—"——— f_ (x, 0) for x 20
d x . P, (o) ™ —
2n
3 fn(x,y) -
(6.8) y———+1f (x,¥) =5 [ £ (x,¥) ay
X -1
1 P, (¥)
1 a 2n IT
+ -é- -i—-—é- y-{ f (X, y) N2 dy + ——2—n-(—T f (X, O) E_C_)_I: xg 0.
X
. y _ . . s
(6.9) x—a o £ (x, ¥y) =0 fory >-Q, when n is sufficiently large (more
. precisely, when n is so large that A, = l§2n) > 1).
(6.10) £, (0, -p) =0 (1< J<n).

Proof. (6.7) can be directly verified by using the first expression of

(2.21). Also (6.10) is satisfied because of (2.22).

Let
) fn(x) y) o 1
(6'11) Rn (x) Y) =y — + fn (x) Y) -5 f fn (x) y) dy
X -1
1 a’ 1
-5 1= v [ £, (x, ¥) vy ay. (x €0)
2 l-c 21
By (2.21) and Lemma 6.1, we have
X
fieinll 2
n li c+ a li P2n(y) - P2n (-Ai)
- R (x,y)=-y.L a, e a N, +
n i=0 71 i P (l ) Y
on' i EAR T
X 2
. ) § R e}\i {a ., c+ a }\i P2n(y) - P2n (—}\i)}
i=0 71 i i
Pen(li) v+ li
X X
AL A,
i i

n
-c i; a. e +ay 1§O o A e
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or

X
n . r P, (y) ,
R_(x, y) =.% a.el(c+ak2) 1 .-
n i=0 "1 i P (}~ )
2n' i
x X )
n }”i n }”i
algoaike -ciz__loale
Hence X
n A, P, (¥)
R (x,y)=- .2 a e (c+ak?) 2n
n i=0 i 1 P (}~ )
2n i
P, (y)
= 2B f;[lI (x, 0) for x & O,
Py, (0)
and thus proving (6.8).
In order to prove (6.9), we recall }.o = - A, and the fact (Theorem 3.3) ’

1
that }‘l = k&gn) > 1 for n sufficiently large. For 0 < y £ 1, we have % + -]-}:- >1 - X
0

1
and therefore -i'—, + L > 0 for n sufficiently large. Hence, for n sufficiently large,

}”O
we have
X, X
yoOoN
x_].’111_1cme =0 for O« y<£1land 0 i g n;
which implies
X
. Yy _
x—];u-]-looe fn(X,y)—O for 0< y g 1.

In the next result, we confine ourselves to the region x £ O.

Theorem 6.2. Assume that for - < xg0, - 1<y<l, equation (2.1) has a

solution f satisfying the boundary conditions (‘2.2) and (2.3). If, for x< O,

we have
we nave 1 1
(6.12) Y { £ (x, ¥) dy = { f(x, y) dy )
and
1 1

(x, y) dy = { y £(x, y) dy
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both with uniform convergence on - @< x g 0, then:

. I
(6.14) f(x, y) = nl-J-')ma) fn (x, y) holds for x ¢ 0, 0 £ ¥ £ 1;

{
|_l
'_l
=]
H
e
<
1
o

(6.15) f£(x, ¥) = y fﬁ (0, y) | holds for x< 0, -1 <y <0,

provided' ng '(‘y_) =0 1g satisfied by at most a Ffinite number of indices n.

Proof. We rewrite equations (2.1) and (6.8) as

———

(616) y é_f"%z'}:”‘y')' + f(X) Y) = F(X, Y)) (X £0, ~lgy<g l):
3 fn(x:Y)
(6.17) vy —gpr— + I, (%, ¥) =F (%, ¥), (x €0, ~1<y<1);
where
(6.18)  F(x, y) = = flf(x £)dt + oY flf(x t) tdt
2 1 2(1L - c) 1 o
1 1 P, (¥
(6.19) F(x,¥) =< [ £(x,t) at + st £ (x, t) tat + 22" pIT (4 o).
n 2_1 n QZl-ci_{ n Pgn(o) n

From (6.16), (6.17), we have

X x S
(6.20) f(x, y) =e J [f(o, y) +-]-'}; é 4 F(s, y) ds],
_.’.‘.— x 2 7
(6.21) fn(x, y) = e J [fn (0, ¥v) + % (j)' ev Fn(s, y) ds

for x € 0, -1&£y<&1andy#0. From (6.18), (6.19), we have the identity
Ponl¥) 17

(6°22) F(X, y) - Fn(x: y) + f (X, 0) =
P2n(o)

n

1 1
=£2’. { [f(x, t) - £ (x, t)] at + é‘(‘i'%_ﬁ ‘{ t[f(x, t) - £ (x, t)] dt

for x<€ 0, -1g yg 1.
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We discuss now three separate cases according to whether y> O or y =0

or y < 0.
(Case 1) O0<yg 1. .
As f satisfies the boundary condition (2.2), we derive from (6.20)
L @3
20, y) + 5 J & (s, y) as =0 (0<ygl)
0
and therefore
1 & o x 8
fx, v) =% eV [ & (s, y) as, (x¢0, 0<y<l).
-@®

Similarly, from (6.9) and (6.21), we infer that

X s
- X -
1
t(x y) =2e¥ [ el F (s, ¥) as, (x<0, 0<ygl)
-® (21’10) )
holds for all n > Ny where n, is so large that kl > 1. Hence
X x 5 - .
I II 1 |
(6.23) f(X, y) = fn (x, y) + fn (X, y) + v € Y f ey [F(S: y) - Fn(s: Y)J ds
-
is valid for x £ 0, 0< y<< 1 and n » Nye
When n > no,'we have % + % >0 for 0gign, 0Oy« 1l; and therefore
i
X S(i+%. ALY X(£+-i—)
] e v M g5 = e ¥ M forogign, 0<ygl.
- Y + A,
i
Hence, according to the definition (6.2) of fil,
X EII n ai(c+a}\§) X s(£+%_
L £ (s, 0) ds = = Py (0) iZO — e 7 1 ds
-® - P, (1) -®
2n *'1 -
X
% nooo Ay (c + a k?) ii -
=-vye Py (0) iZ e

=0 (y+ M) Py ()




or

II L TR Py (v ox 2
(6.24) £ (x, ¥) = 7 e yo.=2 ;& £, (s, 0) as
Py, (0) -®

holds for x ¢ 0, 0K y< landi n>»n_.

o Then (6.23) can be written

-

(6.25) f£(x, y) = lim {fi (x, y) +

-= x
e 7V [ e
-®

<o

P, (3)
[ﬂs, y) - F (s, 3) + 22 g, o)} ds},

P2n (0)

+
<

(x¢ 0, 0<ygl).

Using (6.22) and the uniform convergence in (6.12), (6.13), we have

8

x = . P
nl—jiuh) ,C';) ey [F(S) y) - Fn (s, ¥) +

on (V)

P, (0)

fil (s, o)] ds = 0,
2n

(x< 0, 0<ygl);
which combined with (6.25) yields the desired result
R I
f(x) Y)=nl_3;%fn (X, y) (xgo, O(Yél)°

(case 2) y = 0.

From (6.16) - (6.19), we write

f(x, 0) = F(x, 0) - Fn(X, 0) + fn(39 0)
1
- g I [f(x, £) - £ (x, t)] at - £17 (x, 0) + £ (x, 0)
or
I 1
£(x, 0) = £ (x, 0) + % [ [f(x, t) - £ (x, t)] at.
-1

Then by (6.12), we get f(x, 0) = nJ-‘-)i% i‘i (x, 0) for xg O.
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(Case 3) -1« y< 0, and Gppy (y) = 0 is satisfied by at most a finite
number of n's. ¢
By (2.3), £(0, y) = 0 for y < 0. So (6.20), (6.21) imply

X
(6.26)  £(x, y) = £ (x, ) - eV 2L (0, ¥) +

g
o
‘<lb<

[F(s, y) - F_ (s, y)] as + &% 2 (x, y) - £ (0, Y[

+
(4]

R

O -

(xg 0, -1 y<0).

on? Then § + %. # 0 for 0 £ 1 ¢ n (where
i

If y £ O is not a zero of G

Ay = }\§-2n)) and by (6.2):

n a.(c+a l?) X s(l + =

S
L &
e £ (s, 0) ds = - By (0) L [ e ¥V M g
0 P, (3;) 0

n a,(c+a l?) A, ¥ X(i + % )
= - Py, (0) [T, = ER e Y Mg
Pn(}\i) Yo+

Hence, if y « 0 is not a zero of G2n’ then

<<H><

P, (y) *2
P2n (0) ‘(‘)‘ ey f:r[lI (s, 0) ds = ¢ (X) y) - f (O) ¥), (X$ 0).
n

(6.27)

<+

Combining this fact with (6.26), we infer that

- X
(6.28)  £(x, y) = Lim, £2 (x, y) - e ¥ £l (0, ¥)

X s ‘
Y 3 Pop (V) 11 .
e é e F(s, y) - Fn(s, y) 4 ———— L3 (s, 0) | ds

P2n (0)




-39-
holds for x £ 0, - 1 £ y <« 0, provided Gop (y) = 0 is satisfied by only a finite
number of n's. Finally, in view of (6.22) and the uniform convergence in (6.12),

(6.13), the desired relation (6.15) follows immediately from (6.28).
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