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|l. Introduction

Recently W. Kofink [3^], [4] has applied the spherical harmonics method for

obtaining approximate solutions of the neutron transport equation. The present

paper is a mathematically rigorous exposition of the main part of Kofink's work and

is self-contained. Originally our interest was to investigate the question of con

vergence of Kofink's approximate solutions, but we have found it necessary first to

reorganize his results on a more rigorous basis. Throughout this paper, we follow

Kofink's treatment except when clarity or rigor requires modification or supple

mentary proofs. His several ingenious calculations are adopted with some occasion

al changes. Thus the only contribution of the present authors is to supply rig

orous proofs in certain derivations and thereby make it explicit and precise under

what hypothesis the results are valid.

Inf2, we describe the approximate solutions f of the Boltzmann equation

(2.1). To define these approximate solutions, several preliminaries will be needed.

First, it is necessary to investigate the zeros of certain polynomials G . This is

done in $3. Secondly, certain identities needed in §2 are derived in §k. Then the

long calculation of certain coefficients a. is carried out in §5. Only with these

§£ 3-5 is the construction of the approximate solutions given in §2 complete. Fin

ally, in the last £6, we examine the behavior of the approximate solutions.

We wish to express our thanks to Dr. A:. M. Weinberg for calling our atten

tion to Kofink's work and.for his continuous advice; to Dr. A. S. Householder for

his valuable discussions and for simplifying the proof of Theorem 3.1.
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§2. Approximate solutions of the Boltzmann equation.

The Boltzmann equation considered in this work is

;wv v\ ^ 1 3(1-7+) 1
(2.1) y ^x +f(*, 7) ="g-5 / f(x,y)dy + g-S-y/ f(x, y)y dy ,

where the unknown function f is defined for -aD<x<+c©,-l*y4l and is re

quired to satisfy the following "boundary conditions:

x

(2.2) lim ey f(x,y) =0 for y> Oj
\ X-> -00 '

(2.3) f(0, y) = 0 for-l^y<0.,

7,7 are constants, but their values depend on whether x ^ 0 or x < 0:

r>a = 7t = 1 for x > 0;
(2.U) I

Lo < 7 < 1, 0<7.^1 and not both equal to 1, for x< 0.

We refer to [3], [8j Chap. IX] for the physical meaning of equation (2.1).

In the spherical harmonics method, as an approximate solution of (2.1) we

shall take a linear combination of functions each of the form

7 2n(2.5) e ^ (21+1) G£(X) P£(y),

where P denotes, as usual, the Legendre polynomial of degree x, and where X is a

parameter.

When we substitute the expression (2.5) for f(x,y) in (2.1), we obtain

2n 2n

-Ijg^ (21+1) Gg(X) Pi(y) +J?Z0 (2£+l) GX(X) P/(y) =(l-7a) GQ(X) +3(l-7t)y ^(X).
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Using the recurrence relation

(2.6) (2j2+l)y P£ (y) =(£+1) P^ (y) +£P^ (y);

the above equation can be written

2n 2n

"xiSo Vx) (^+D Pf+1 (y)+i p^^ (y)|+^0 (2^+D G^(X) P£(y)

= (l-7a) G0U) PQ(y) + 3(l-7t) Gx (X) P± (y)i
or

IGl (X) = 7a XG0 (X)' 2G2 (X) + G0 (X) = 3 7t XG1(X)'

(2.7) J(£+1) G£+1 (X) +ZQ£ml (X) =(2i +1) XG^ (X), (2 ^^ 2n-l)
2n G2n_1 (X) = (Wl)K2n (X),

V
G2n (X) = 0.

Obviously (2.7) implies that G^ (X) =0 for 0^ I < 2n. This merely means that

equation (2.1) has no solution of the form (2.5) besides the trivial solution

f(x,y) 5 o.

To remedy this situation, we shall still consider functions of form (2.5),

but we shall require Gn to satisfy

"G0 U) =1, G]_ (X) =7aX ,

2G2 (X) + GQ (X) = 37t XGx (X),

(2+1) Gi+1 (X) +£0^! (X) = (2i+l) XG£ (X),
(2.8)

<
(2^1$ 2n-l)

Go. (X) = 0
2nV_

instead of (2.7). Notice that (2.8) is obtained from (2.7).by dropping the relation

2n G2n_1 (X) =(Wl) XG2n (X) and by adding GQ (X) = 1.
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Because the recurrence relation for 24X4 2n-l in (2.8) is the same as that

for Legendre functions, we set

'GQ (X) = 1, G1 (X) = 7a X,
(2.9) _Gl (X) =A(X) P^X) +B(X) W^ (X), (24-U 2n)

where

(2.10) W^_x (X) =P£ (X) Q() (X) -Q£ (X),

Q* being the Legendre function of the second kind (see, e.g. £2; p. 152]). If the

parameter X satisfies

(2.11) A (X) P2n (X) +B (X) Wg^ (X) =0,

then the G*'s defined by (2.9) will satisfy the relation G2n (X) =0 and the re

currence relations for 34JL^ 2n-l in (2.8). We choose A(X), B(X) in such a way

that the recurrence relation for X = 2, i.e.

3G3 (X) +2G1 (X) =5XG2 (X)

and the two remaining relations of (2.8)

Gl (x) = ra X> 2 G2 (X) + G0 (x) =37t XGl (X)

will also be satisfied. In other words, A(X), B(X) are so chosen that

G2 (X) =A(X) P2 (X) +B(X) W]L (X) =I7a 7t X2 -|,

G3 (X) =A(x) P3 (X) +B(X) W2 (X) =§7a 7t X3 -I7a X-IX.
As

P2 (X) =2^ "h P3 (X) =2x3 "2X>

wx (X) =Ix, w2 (X) =Ix2 -I,
a simple calculation yields

A(X) =1+37a (l-7t) X2, B(X) =-ill -7a +37a (l-7t) X2j.



To simplify, we introduce

(2.12) a=3 7a (l-7t), c=1-7a.

Then we can state the above result as follows:

Lemma 2.1. Let

(2.13) GQ (X) =1, G1 (X) =(l-c)x, GjL (x) =(1+a X2) P£ (x) -x(c+a X2) W^ (x)

(2^4 2n),

where a, c are given by (2.12). Then for every zero x of the polynomial Gp ,the

quantities G^ (x) (0^1^ 2n) satisfy all relations in (2.8).

In view of (2.k), the constants a, c introduced by (2.12) depend on whether

x s*0 or x < 0:

(a = c = 0 for x > 0;
(2.1*) 2 2

[0 4 c <1, 0^ a < 3(l-c) and a + c ^0 for x < 0.

Consider first the case x ^0. In this case, a = c = 0, the polynomials GQ

defined by (2.13) are simply the Legendre polynomials R, . P is even and has ex

actly n positive zeros £6j p. k$]:

(o t*\ (2n) (2n) (2n)(2.15) |i£ > |i2 > *•• > ^n *

Thus we form a linear combination of n functions each of form (2.5) (ccorespondlng

to the n positive zeros of P_ ):

x

n "(i 2n-l
(2.16) fn (x,y) =^ pj e JXZQ (2i+l) P£ (Uj) P£ (y) for x>0,

where p are constant coefficients, and where we have set |i = \x. for the sake
J J J

of simplicity. Here we do not use the negative zeros of P in (2.l6) because we

want x l^m^ fn (x, y) =0 for y> 0. This condition did not appear among the boundary



:onditions (2.2), (2.3), but the equation y—'%f y^ +f(x, y) =0 (i.e. equation
cHT

-x

(2.1) for x >0) implies f(x, y) = e ^ f(0, y) for x > 0, y^ 0 and therefore

xlim (B)f(x, y) = 0 for y> 0.
P P

For x < 0, we have O^c <l,0^a< 3(1 - c) and a + c 4- 0. For n ^ 1,

the polynomial

G2n (X) =(1 +aX2) P2n (X) -X(c +aX2) W^^ (X)
is even and of degree 2n. It will be shown in |3 (Theorem 3.2) that G2 has exactly

n positive zeros which are all distinct. The positive zeros of Gp will be denoted

by

\d..L{) A > A^ > ... > Aq

The negative zero of Gp of largest absolute value will be denoted by X^ , i.e.

(2.18) X^2n) =-x(2n).

Then we form a linear combination of n + 1 functions each of form (2.5) (correspond-

. • + 4.x. ^(2n) -v(2n) •v(2n) „ _ xing to the zeros -X; ' -X; ' ... ~XV ' of G. ):
53 0 ' 1 ' ' n 2n'

x

n X 2n-l

(2.19) fn (x, y) =±Z0 a. e1pZQ (2£+l) G£ (-X±) p^ (y) for x<0,

where a. are constant coefficients and where we have set X = X^ '(O^i^n) for

the sake of simplicity. Here in (2.19), we use only the n + 1 zeros -A0>"Ai> •••>

-X of Gp . The reason for this lies in the boundary condition (2.2) and will be

come clear in the proof of Theorem 6.1.

We now have
x

n "n. 2n-l
; Z± 0j e J RZQ (2£+l) Pi(uJ) Pi(y) forx^O,

!2.20) f (x, y)
' n v ' J' \ x

: n \ 2n-l
:±ZQ cc± ei oZQ (2£+l) G^-Xp E, (y) for x<0.
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By use of §kf an alternative but identical expression for f is
n

r

(2.21) fn (x, y) = J
2n P_ (y) A B•e J * for x > 0,

J

n X I c+aX2 P2 (y) -Pp_(-Xj
,Z~ a, X, e * 1a X. + ^ ,, v1 2a .. ,, 2n M for x < 0.
i=0 i i ^r^P7 y + x,

We proceed to choose the coefficients a., B so that the function f defined

by (2.21) is continuous along the line x = 0.

Lemma 2.2. The function f defined by (2.21) is continuous along the line

x = 0 (and therefore continuous for -od < x < +co , -1 4 y < l), if and only if the

coefficients a , p are so chosen that .

(2.22)
n / c + a X, \

.Zn a. X (a X. - i = 0,

, n / c + a X

(2-23) P< = 5T"S /.. nP. /.. \ £n <*<\\ —r-77 -a\)>, (KJ<n).^ =2nP2n-l^P2>j> **> ^ ^ I Xi +̂

(1< J < n)

Proof, f is continuous along the line x = 0, if and only if the two ex

pressions in (2.21) are identical for x = 0, i.e.

n P (u )
2n PQ (y) Xn B, -2n"1 -3- =2n w/ j=l Kj y - u,(2.2U)

n I c + a x. P2n(y) - PoJ-xJ , ,

Since the left-hand side vanishes for y = -(i. (l < j <.n), the a 's must necessarily
J •*•

satisfy (2.22). Now

I c+aX2 P2n (y) -P2n (-X,)
9(y) --^ cc±x1 ja1± +jT^J

y + x,
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being a polynomial of degree ^ 2n - 1, we have the partial fraction decomposition

cp(y) , f ^ l + f v^J l

If the necessary condition (2.22) is satisfied, then we have cp(-n.) =0 (l < j< n)
J

and

n <p(|J.,)

(yT JS1 Pi (nJ y - n *

Hence, under the assumption (2.22), relation (2.24) will hold, if and only if

<p(nJ
Pj = 2n~P U ) P' (u ) U^J<n);

which is precisely (2.23).

As (2.22) is a system of n homogeneous linear equations in n + 1 unknowns

a., we shall add a normalizing condition

(2.25) aQ + 0^ = 1.

In £5, we shall solve the system of n + 1 equations (2.22), (2.25) for the a 's.

It will be shown (Theorems 5.1, 5.2, 5.3) that a 's are uniquely determined by

(2.22), (2.25) in the following three cases:

(Case 1) 0 < c < 1, 0 < a < 3(1 - c) and

i/J" F+ (Xx) F_ (i\/|") -\ F_ (Xx) F+ (l 7|~) j Oj where F+, F_ are defined

oy (5-7), (5.8).

(Case 2) 0 <. c < 1, a = 0.

(Case 3) c = 0, 0<a<3.

In each of these cases, the function f defined by (2.21), with a , B uniquely de

termined by (2.22), (2.25), (2.23), will be called the nth approximate solution

of equation (2.1).
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X3» Zeros of the polynomials G .

In £2, we have encountered (see (2.13)) polynomials G defined by

JQ (X) =1, GX(X) =(1 -c) X, Gn (X) =(1 +aX2) Pn (X) -X(c +aX2) Vl (X)

for n > 2.

Since W (X) = 1, we have actually

(3.1) Gn (X) =(1 +aX2) Pn (X) -X(c +aX2)Wn_1 (X) for n^1

and therefore the recurrence relation (same as that for P , a )

(3.2) (n +1) Gn+1 (X) -(2n+l) XGQ (X) +nG^ (X) =0 for n^ 2.

This relation together with

(3.3) Gx (X) -(1 -C)X , G2 (X) - 3(1-°) -a X2 -I

determine the G 's completely. The purpose of the present J3 is to study the

distribution of the zeros of G (n ^.1). In §2, the constants a, c are either

both 0, or they satisfy the restrictions

(3^) 04c<l, O^ a< 3(1 -c), a2 + c2 4 0.

When a = c = 0, we have G = P . As the distribution of the zeros of P is well-
n n) n

known [6j pp. 118, 121], we shall assume (3.k) throughout this £3.

Theorem 3.1. For n > 1, all n zeros of G are real and distinct. Further

more, when the zeros X£n'' of G and the zeros x£n+ of G .are each arranged in
descending order, they satisfy the inequalities

(3.5) x{n+1)> xW > x(n+1> > X<n> x .> x<n+1) > x<n) > x<n+1).
VJ 1 12 2 " n n n+1
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Proof. By (3.2), (3.3) and (3.^)> G (n > 1) is a polynomial of degree

n and the coefficient of Xn in G is positive. Therefore
n

(3-6> x-^co Gn (X) =+od , ^lim^ (-l)n Gn (X) =+cd .

Clearly the zeros of G-, G2 are real and satisfy X^ > X* > X^ . Assume for
i ^ n, the zeros of each G. are all real and distinct and separate the zeros of

G. ,. We shall prove that the same is true for G_ ,. Consider two consecutive

zeros xj^j, x|p of GQ. Then

(n)^ < 0.°n-! (£i) °n-l (t
This and (3.2) imply that

Gn+1 (£i) Gn+l(4n))<G>
so that G . has at least one zero, say X£ ,such that X^_|> X£ ' > k> ,

Next.
,(n),from 0 (\ ) i 0and (3-2), we have

w(4n)) <^(4a,J«>-
( n)This and (3.6) imply that G ,must change sign in the interval X^ < X < + ao .

Hence G .has at least one zero, say X^n+ ', in this interval. Similarly, Gn+1

must have a zero X^n* '< X^n'. This accounts for all zeros of G ,,.
n+1 n n+1

For the sake of simplicity, whenever only one polynomial G is involved,

its zeros will be denoted by X instead of X^ '.
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Theorem 3.2. For n ^ 1, G_ has exactly n positive zeros X (l< k < n)

and they satisfy the inequalities

(3°7) xx > ^ > x2 > ^2 > '**>Xn > ^n*

where u. (l^ k< n) denote the positive zeros of Pp ^ .

Proof. By Theorem 3.1, all 2n zeros of G„ are real and distinct. Since

G2 is even, it follows that G2 has exactly n positive zeros.

Let

Qn (X) =I [Si (X +i0) +Si (X "i0)] ' (_1< X<1}"
Then

Qn (^) =@0 (X) Pn (X) -Wn_L (X) (-1<X<1>

and therefore

©2n (^k) ="W2n-1 (^k) (l <k<n).

Since sgn @2n (nk) =(-1) [6j p. 152], we have

sgn W2n_1 (uk) =(-l)*'1 (HUn).

By (3-D,

G2n K} "^ (c +a^) W2n-1 ^

By (3-4), we have

vk(3-8) sgn G2n (uk) =-sgn W^^ (j^) = (-1)'. (l 4 k^ n)

(l) As G? , P? are even polynomials, it suffices to consider only their positive
zeros.
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Hence none of a. Is a zero of Gp , and the number of zeros of Gp in the interval

u.<X < n. (14 k^ n-l) i~ odd. Next, by comparing sgn G0 (\i ) = (-1) with
K K+J. cXi. n

sgn Gp (0) = sgn Pp (0) = (-1) , we infer that Gp has an even number of zeros

in 0<X < n . Finally, since the total number of positive zeros of Gp is n, it

follows that Gp has exactly one zero in each of the intervals +co > X>n and

Vik> X > ^k+1 ^ *= k^ n"1^

(n)Theorem 3.3. Let X^ ' denote the largest positive zero of G (n ^ 2). Then

the increasing sequence

(3-9) x[2)< x(3)< ...^U ...
converges to a finite limit

(3.10) x_ = lim X.(n) > l.
0 n-»co 1

And ± x_ are the only zeros of the function

2
/_,.\ n f \ 1+az zn z+1(3.11) G (z) = g - 2 log —- ,

c + a z

z + 1
where we take the principal branch of log r-.

Proof. Let

n G (z)

n-l

Then the recurrence relation (3.2) can be written

(n>2)

(3.13) R (z) -2p . (n > 2)
z 2n + 1 - R n(z)

n+lv

Now

[3(1 -c) -a] zd -1
R2 <z> - —z—r-2

(1 - c) z

or

2
c + a z _ n ~

1+az2 z2 T3 -R2 (z)l
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By repeated application of (3.I3), we get

or

2 2 2
c + a z . w w

= 1 - = 1 -

1 + az 3 - R (z) W2
3"5- R3 (z)

2 2 1 2 P 00
fo Tk.) c + a z _ w_ W_ 2S_ (n-IT w^113 } 1+az2 3 - 5 - 7 - "• - (2n-l);- Rn(z) >
where w = - . Consider now the rational function

(3.15, 8B(.,-^-{l.f.^.....i^li^|J (v.i,.
The continued fraction

-, sL i*2^ (n-l)2 w2
3 - 5 - "• - (2n - 1) - ••'

converges to

1 -.„ 1+wY1
s? logrr^

uniformly in every closed region in the complex w-plane cut along the real axis from

-1 to -co and from +1 to +oo [1; p. 125]. Therefore S (z) converges to

(3.16) s(z) .£^4 -(l log ^rl"1
1+ a zd \d z ~ 1J

uniformly in every closed region in the z-plane which is disjoint from the closed

interval [-1, l] on the real axis.

It is easy to see that the function G defined by (3.11) has no zero in the

interval f*-l, l] on the real axis. Consider now any zero z„ of G. Then z„ is also
-1 0 0-

a zero of S and lies outside the interval [-1, l]. According to what we have just

proved and by atheorem of Hurwitz [7; p. 119], zQ must be a point of accumulation



-14-

of the zeros of the sequence of functions isi. But, from (3«15)> (3.1+)* and (3.12),

the zeros of S are also zeros of G , hence z_ is a point of accumulation of the
n n' 0

zeros of the sequence of polynomials JG 1.

Since the zeros of Legendre polynomials are all between -1 and 1, so by

Theorem 3.2, +X^ n' are the only zeros of G2n (n >l) which may be outside [-1, l].
By Theorem 3.1, we have the inequalities (3«9) and therefore +X£ n are the only

zeros of G2 (n > l) which may be outside [-1, l]. Hence, if G has zeros, then the

increasing sequence (3.9) must converge to a finite limit xQ = ri±i$0 ^ and +xQ

are the only zeros of G.

It remains, therefore, to show that G does have a real zero > 1. Since

lim0 G(x) = -co, we need only to prove that G(x )>0 for some x1 > 1.
x-»

Hence

or

From the power series of log (l + y), we have
2 3

log (1 + y) -y+|- < 2- (-1 <y<1)

log (1 +^4-5;) -5-2-j + 2 2< 8 , for x>3,
x x x (x - ir 3(x - iy

(3=17) §log (1 +^) -^ +-j-^ -:Z^--3 < 0 for x>3.

Let

(3-18) cp(x) =
P

1 + a x x x k-x
2 x - 1 / nx2 ^/ ,x3

c + a x (x - 1) 3(x - 1)J

Then (3.17) becomes

(3.19) G (x) > q>(x) for x >3-

We find

(3.20) <p(x) = M1 %c) 'a g V(x),
3(x - 1)^ (c + a vl)
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where

o 3[3(1 - c) + a]

Take

By (3.4), we have x > 12 and

3[3(1 - c) + a] x±
3(1 -c) -a *^ 2~> 3(1 -"cV- a<"2"' 3(1 -c) -

Consequently,

36
Xl=3Tl^r

9 - 10 c

a

x.

<
a - 2 *

_ x.. x_

y(^) > x3 --A- --i- - ci xi [xi(xi ~^ " x]
>o,

which combined with (3.19)> (3-20) yields

G(xx) > 0 with x, = J&
1 3(1 - c) - a

> 12.

$k. Two identities.

We shall now derive two identities which are needed in|2 [see (2.20), (2.21)].

Lemma k.l. Let \i. denote the j positive zero of Ppn. Then
2n

2n-l

(k.l) £Q (2iU 1) ^ (n )P^ (y) =2n P2n (y) P2n-1 ^t1)
y - u

j

Proof. This follows immediately from Christoffel's first summation formula

[2j p. 162]

m

(k.2) (y -x) jjL Q(2i +1) P£ (x) P^ (y) =(m +1) P (x) P .(y) -P (y) P^,(x)lm . .' m+1 w mw' m+1^ 'J
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Lemma 4.2. Let

(4.3) GQ (X) =1, G£ (X) =(1 +aX2) P£ (X) -X(c +ax2) W^ (x) for £>1;
thwhere c, a satisfy (3.4). Let X. denote the i positive zero of Gp. Then

(*.*)
2n-l

^Z0 (2i +1) Gg (-X±) Pg (y) =

2, rX (c + a X )

aXi +-TTT—
F2n <^

Proof. Besides (4.2), we shall also need Christoffel's second formula

[2j p. 162]

(4.5)
m

(x -y) £Z0 (2£ +1) P£ (y) 0^ (x) =

=1-(m +1) [Pm+1 (y) 0^ (x) -Pm (y) ^ (x)].
Since GQ (x) =1 and

G^ (-X) =(1 +aX2) P^ (-X) + X(c +aX2) [p^ (-X) QQ (-X) -Qg (-X)l, (1 >1)
we write

2n-l

^ (24 +1) G£ (-X) P£ (y) = £l

2n-l

aX* + (l +ax')+ X(c +af) 0^ (- x)| ^ (2JL +1) P£ (-X) P£ (y)

2n-l

- X(c +a X*) ilQ (21+ 1) P (y) Q (-X).

Then by (4.2), (4.5),



-17-

2n-l p
£Z0 (24 +1) G^ (-X) P£ (y) - - a \d +

+[(1 +aX2) +X(c +aX2) %(-X)j ^ [p^ (-X) P^ (y) -P^y) P^-X)'

+x^c^x2) r_2n ^ (y) w (_x) _p^ (y) ^ (_x)j|
^2 X(c + a X2)

= - a X + -* r—' +
y + X

2n POM (y)
+

y
f^} 1(1 +aX2) P^ (-X) +X(c +aX2) ^ (-X) ^ (-X) -Q^-X)]!

x2) [p2n (-x) %(-x) .^ (-x)]J- nyTx (̂i +ax2) P2n ("x) + x(c +a
or

2n-l 0 ^/ , ,2v£ 0 (2£+ 1) G£ (-X) Pi (y) - - a X2 +^TY^ +
2n P0 (y)

+

y

' (y) f 1fV [d +aX") P2n-1 <"X> + X<C +aX") W2n-2 <"X>j
2n P2n-lM

s Grt (-X).y + X "2n v '

As X. is a zero of G„ , we have G_. (- X ) = 0 and
i 2n* 2n v i'

i ^ t,2 , / ,2* W2n-1 ("V1+a X± =- 1± (c +a X±) p^ (.^

and the last equation becomes

2n-l X (c + a X2)(4.6) ^ (2i+ 1) G^ (-Xi} P£ (y) . - a X2 +1 y+^ 1 +

P2n (y) \ (c +a X2)
+ 2n / a v — i—— I P (- X ) w (- X ) - p (. X ) w (- Ml

p2n ("V y + \ | 2n * 2n~2 i 2n_1 i 2n-l i (



On the other hand, we have

P W - P W
2n 2n-2 2n-l 2n-l
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= P2n ^P2n-1 %"^2n-l^ "P2n-1 ^P2n S) " ^2n^

= P.
2n-1 ^2n " P2n ^n-l'

and, by setting x=y=-X.,m=2n-lin (4.5):

0-1-2n [P2n (- X±) Q^ (- X,) -P^ (- X±). Q^ (- X±)].

Hence

P2n <"V W2n-2 <"V "P2n-1 W W2n-1 <"V ="S

and (4.6) reduces to (4.4).

£5« Calculation of the coefficients a. .

This section is devoted to the solution of the system of n + 1 linear

equations

and

(5-2) aQ +ax =1 ;

which has arisen in %2. We recall that c, a here are subject to restrictions

(5-3) 0< c< 1, 04 a< 3(1 -c), a2 + c2 4. 0 ;

u. > Hp> •••> H are the positive zeros of Pp ; X > X > ... > X are the positive

2 2zeros of the polynomial G2 (X) = (l + a X )p (X) - X(c + a X )W (X) ; and



•19-

X = -X . in Theorem 3.2, we have seen that

(5.M

(5-5)

(5.6)

(5-7)

(5-8)

X, >1> a1>\> n2> >->\> nr

In the calculation below, we shall use the following notation:

n

p(x) = JJl (X -iij),
n

r'(X) = JJ2 (X -Xj),

F+ (X) = r(X) p(-X) + r-(-X) p(x),

F (X) = r(X) p(-X) - r(-X) p(x)

Lemma 5»1. The system of n equations (5«l) is equivalent to the system

of equations

(5-9)

and

(5.10) 0^ =

n n

nak£o "k \ - kSo \\(c + a

o n

\^i

Xx(c +aX2) p(Xk) a.I r-(X1) ao r(-xi}
X^c +aXk) r<(\) [(Xk-X1)p(X]_) (\+\) ^"V-

= 0

(2 ^ k ^ n),

Proof. Equation (5.9) Is obtained by summing the n equations of (5.1). If

,thwe subtract the j equation of (5.1) from the first equation, we get

(5.11)
n OkXk(c+aXk)

k°(Xk^l} (Xk"^j)
« 0,

Thus (5.1) is equivalent to (5*9) and (5.11) together.

(2 < j<n)
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Let

(5=12) bk =
"k \ (c + a V

(0 <J k ^ n),

Then (5.11) can be written

v p(V(5'13) & \ (\-^)(\-^)
b0 p<*o> \ p(xx)

(Xq-Uj^)(x0-n.) " (x1-ii1)(x1-ii.) '

This system (5-13) can be solved by Cramer's rule;

We have

n

A =i=2
p(X.)

n

i=2

(xjL-n1)

Al

k ~ A '

X2"^2

Xg-ji-

X0-u
2 ^n

x3-n2

X3^3

x3-nn

TT pUJ I I (X.-X.) • IT (nrM
2 $ i ^ n 2^i<j^.n J 24i<jqi J

FT (xiV TT TT (xr.J
2 ^ i4 n 2<;i^n 2j? j< n

I I (X.-X.) * (n.-M.)II IT ' " 1 "t '

24i<j<n J 2.<i^j^n J

[5J P. 98], and similarly

Xn"^2

Xn^3

X -u.
n 'n

(2 j n)

(2 4 k^n),
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^k - -*o ^l)k O^iLUn <\ "V ' 2TT<n <"J "^
i,j^l,k ^ K

\ ('1) l<KJ«n (Xi • V ' 24iij4n v"d ~"i
i,J ^ k

(u. - n-), (2^ k^ n).

Thus

By (5«6) we have

(5-15)

Hence (5>l4) becomes

-b
0

2fiV
(K - x ) - b J I (x^ - x )

O J 1 24j4n 1 J
JM

24 j^n

J J* k

<Xk - v

r'(X )- (\ - X ),
k 2<'j^n K J

j 7* k

k rTO
bo ^xq)
\-xo

bl *(*!>
Xk"Xl

, (2<k<n)

(2< k^ n)

(2< k ^n).

Now, (5.3) implies c+a X ^ 0. Therefore by (5.12) and XQ = - X^, we have

and

p(xk)
^^Tx? Xk (e +a Xk)

bQ r(XQ) bL r(Xi)

u\ Xk"Xl .

c^ r(Xj_)

(24 k 411)

_T____^ ao^r('xi)
P(x1)(xk - xx) " p(-x1)(xk + X^

This yields (5»10) which solves (5«H) for a^ (2 4 k 4. n) in terms of aQf a . Since

(5.1) is equivalent to (5.9), (5.11) together, so it is also equivalent to (5.9) com

bined with (5.10).
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Lemma_5_12. When the a 's satisfy (5.10), we have

(5.16) j0 "k \ (c +aV jSi YT7

- n X (c + a X )
' r(X1) r(-X1)
ai TT\) - ao pT^T

Proof. First, since X = -X , we write

n

<5-"> kSo °k \ <c +a# |i vhr 7 „ x r x2^ P'(^)- kSo °k \ (c +aV pry

= Xi (c + a Xx)
• p'(y p'(-y
ai pT\r - ao pTV

n 2 P'(V
+kS2 <TCXk(c +aVilXj

By (5-10),

n

or

n

2 p,(V
k§2 "k xk (c +a \) Frrr

v 2 P"V
=k52 \ (c +a \) r"TU

2, p'<y
^•18) & \ \ <c +a y ptxI

ax r(X1) aQ r(-X1)

cvy p(y' (\+ y p(-y

\ (c +a X*) n p'(Xk) c^ r(Xx) pt-X^^ + X^ - aQ rf-^) p(\)(\ - \)
p(\) p(-\) k^2 r*^ry X2 . X2

k 1
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To compute the Z-sum on the right-hand side of (5.18), we introduce

cp(X) =p'(X) [a1r(X1) p(-X1)(X+ Xx) - aQ r(-Xx) p(X1)(X-X1)],

^(X) = TJ (x-Xj) = (X-XL) r(X).

cp is a polynomial in X of degree ^ n. The coefficient of Xn in cp(X) is n 7 ,where

(5-19) 70=a1r(X1) P(-Xx) -o^rf-X^ p(xl).

^ is a polynomial in X of degree n, the coefficient of Xn in^X) is lj and the

zeros Xj (1 4 j<c n) of V are all distinct. Therefore we have the partial fraction

decomposition

<PU) y <p(XJ) 1
fCXT " n 7o + jk FTxTT x - x. •

j j

Then we have

g cP(Xj) _j. <P(-X) 9(XX)
0=2 r(Xj) x+Xj ~n 7o "i^xy ' v'(^1)(x +xx)

Now the Z-sum on the right-hand side of (5.18) is

y y(\) <p(-y q>(y
kk r(xk)(x1 +xk) -n yQ -fr^j - 2x1 r(\)

= n 7Q + aQ p(X1) P'(-Xx) - o^ p(-X1) p'(X1)

Thus (5-18) becomes

v , 2 p,<ykfe °k Xk (°+ ^ pTX^I" =
2 rX1 (c + a X1) j r _

P(x1)p(-x1) [ nL ai r<y p(-y - «0 r(-xi} p(yJ +

+ccQ p(X1) P'(-X1) - 0^ p(-X1) p'(X1)i ,
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which combined with (5-17) yields the desired relation (5-l6).

Lemma 5.3. If, in addition to (5-3)> we assume c > 0, a > 0, and if the

a, 's satisfy (5.10), then

n X f^•2°) \50 \ 4=P(xx) p(-xx) I <c +a# [°l r(y p(-y -%r(-y p<y

+ a Re
p\i v a

i/F
°ir(XX) P(-X1)(xi +i\f) +a0 r^) P(X1)(xi-i |/fj

Proof. By (5-10),

n 2 2 n 2
a kS0 °k xk • a(ao+ y xi+ a kS2 w =

=a(QQ +a±) X +a X (c +a X) ^ -^ ——
c+a Xk r'(Xk)

or

(5-2D *k50 <\\ =

where

2 X1(c+a X±) n
i(aQ + a1)X1 + ,Z,

Oj_ r(Xx) aQr(-X1)

(xk-x1)P(x1) (xk+x1)P(-x1)

f(\)
p(X1) p(-X1) k=2 r'(Xk)(X2 - X2)(X^ +£)

(5.22) f(X) = X p(X) c^ r(X1) p(-Xx)(X + Xx) - aQ r(-Xx) p(X1)(X-Xl)

n+2
f is a polynomial in X of degree <c n + 2. The coefficient of X in f(X) is 7

given by (5-19)- Consider the polynomial of degree n+2

(5.23) g(x) =(x2 +£)TT (x -X)=(x2 +|) (X -X)r(X).a J=1 J a 1
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Since c>0, a>0, the zeros X^ X2, ..., Xq, i^", -i |/|~of gare all distinct.
Hence we have the partial fraction decomposition

f(X) n f(X.) 1
(5.24) =7Q + Z± __J +2Re

8(x) - -g.(V x-x. g,(l^(x.lv|-j

Then the Z-sum on the right-hand side of (5.21) is

b4)f i

f(y «\)
(5-25)

k=2 r' (y^ -x2)^ +S) ~^ g. (xk)(x1 +y

f(x1) <*£)
= 7

0

f(-y
2 Re

2Xi e-(y «'(^(>i +i^7
One verifies easily

(5-26) <

f(-Xx) ^aQ Xx p(x1) p(-X1)

^-X-l) ,2 c
Xi + -
1 a

f(xx) c^ xx p(X1) P(-x1)

2X1 g,(X1) X + -
1 a

£ a p(i 4) <\ H\) P(-X1) aQ rf-X.^ p(X1)

V. 6\/i)(\ +^> ^(l^) ^^l ^H

From (5-21), (5-25) and (5-26), we obtain

n

ak5o \ \ "a(ao +ai) Xl +
2 Xx (c + a Xx)

o^ r(Xx) p(-Xx) -aQ A-\) v{\) -
P(x1) P(-x1)

xlP(xx) P(-x^ p(nf)
— - Re —; =-(aQ + o^) -^

X-, + —
1 a

Oj_ r!X1) p(-X1) aQ J^-^) p(X1)

i i/| - X ii/^+ X.,
r a 1 " a 1
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which is precisely (5-20).

Lemma 5.4. If, in addition to (5-3)> we assume c = 0, and if the a 's

satisfy (5.10), then

n

(5-2T) k§0 \^ =XJ Q,

r(Xx)

p(y

+ X'
P(0)

a.

°i

r(-Xx)

p(-y

r(X ) r(-X )

+ %

Proof. By (5-10) and c = 0, we have

P<VV ^ ( \ ,2 ,3 y 1 !iV& \ \ =(ao +Qi) xi +xi k§2 x^ PTV
Oj_ r(Xx)

(xk - xx) p(X1) "(\ + x1) pt-X^

or

n

(5'28) k5o °k ^ =(ao +ai) xi +
i(\)

aQ r(-Xx)

n

k52P(xx) P(-xx) ^ \r'(\)(^ -xi)

with

(5-29) $(X) =p(X) L r(xi) p(-Xx) (X +Xx) -aQ r(-X1) p(X1) (X -X^l

If we set

(5-30) \p(X) =xTT (x -x)=X(X -X)r(X),
j=l J

n

then we have the Partial fraction decomPosition

(5.31, Am. 7o +Jm ±+1 I1V. _^_,
f(X) ° f(0) X J"1 J'(Xj) X-x^

where y is given by (5-19)• Now,



n

y
ki£

= ?0 "

i<y
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xk r,<v<^ -x")" k=2 ^(ycy+y

$(-xx) $(0)=y ^ 1 i <y
0 J(-Xx) J'(0) Xx 2X1J.(X1)

«0 P(X1) p(-X1) p(0) o^ r(X1) p(-X1) + qq r(-Xx) p(X]_) c^ pfX^ p(-X;L)
X, r(0)

= 70 - (aQ + a±)
p(X1) p(-Xx) p(0) c^ r(X1) p(-Xx) + aQ r(-Xx) p(X1)

X. r(0) Xn

so (5-28) becomes (5-27).

We are now ready to solve the system of equations (5-1), (5-2).

Theorem 5-1- If 0 <. c < 1, 0 < a < 3(1 - c) and if

(5-32) ivf F+ (Xx) F_ (i \fl) -̂ F_ (Xx) F+ (i 4) /0,
then the system of equations (5-1), (5-2) has a unique solution given by (5.10) and

(5-33) a,

(5-34) aQ =

yr(-y[ivf F_(i^r)+xlF+ (i^)_p(:

^'+(y'. (i^")-^F.(y f+(i4)
P(-x1)r(x1)[iyrF_ (ivf)-x1P+ (±vf)_
ivf f+(x1)f. (iyfJ-H'-^y 'h-^)

From the definition (5-7), (5-8) of F ,F,it is clear that F li J- lis
/ F\ + ' +l ^real and F_ fi \J- Iis purely imaginary. Thus in (5-33), (5-34), each of ql, a, is

expressed as the quotient of two real numbers.
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Proof• According to Lemma 5-l> the system of equations (5.1), (5-2) is

equivalent to the system (5-9); (5-10), (5«2). By Lemmas 5>2 and 5-3> equation

(5-9) can be written

f
P :1 V

Re^- a
il/f Kr<v p<-v (h *^,)*% r<-v p<v (xi -*i/i)] -°-

or, what is the same,

*£̂ H-1 ^j fi r(xi) p(-xi} (xi+^y ao r{-xi} p(v (xi -iv/i)]
+p(-1N^)r(1\^)[0i r(Xl} P("Xl)(Xl "i>/|")+ %r("XJ p(Xl> (Xl +i^l/j
By (5-2), this may be written

r

°L P^rf1^) j^ p("Xl) (Xl +ijtj- r<"Xl> P(Xl) iXl "^
+c^p,- i^f) *(i^))r(\) V(~\) [\ -i\/fj - r(-X^ V(\) (\ +i^

=-r(-Xx) P(XX) [p(iuf)r(- ivf)(^ "*t/l)+p(" ivf) *fl/f) (*i +̂
or, according to (5-7)> (5«8);

(5-35) oa | iyf F+ (Xx) F_ (i^f)- Xx F_ (Xx) F+ U^
-P(yr(-y (i^F.^^F^I^)}.

,, ^,, nd (5-2), we derive

(5-36) a0 (ivf F+ l^) F_ (lyf)- Xx F. (^ F+ (i„f|
From (5-35) and (5-2), we derive

-Pl-X^ r(h) [1,/fF. fiyf) -hF+ Jl^jj
Hence, if (5.32) holds, (5-35), (5-36) become (5-33), (5-3>0-

= 0.
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Theorem 5«2. If 0<c <1, a = 0, then the system of equations (5.1),

(5-2) has a unique solution given by (5.10) and

(5-37)

(5-38)

Proof. Again, the system of equations (5>1)> (5-2) is equivalent to the

system (5-9)> (5-10), (5-2). By Lemma 5.2 and since a = 0, equation (5-9) can be

written

r(X1) r(-Xx)
ol a = 0.

aP(xx) %(-y

This combined with (5-2) yields (5-37), (5-38). That F (X ) 4 0 can be seen from

F+ (X1) = r(Xx) P(-Xx) + r(-Xx) V(\)

°i"

p(y r(-Xx)

F
+
(y

p(-y r(X1)
ao •

TT (x - \) •TT (\ + n«) -TT
kk-2 j=l x a k=l " j=2

=(-Dn|jr (\ -\) •k (xi+ y - jr (xx - y •tt (^ +y

Indeed, by (5-4) we have

Xl " Xk > Xl " Vl > °' (2 4 k 4 n),

Xl + ^j > Xl + Xj+1 > °> (1 < j 4 n - 1),

X., + u > Xn - [x > 0:
In 1 "n '

and therefore

(5-39) (-DnF+ (X1) > 0.
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Theorem 5.3. If c = 0, 0 < a < 3, then the system of equations (5-l)>

(5-2) has a unique solution given by (5-10) and

(5-40) c^ =
p(X1) r(-Xx)

F. (Xx)

(5-41) aQ =
P(-X1) r(xi)

F_ (Xx)

Proof. As before, the system of equations (5>1)> (5-2) is equivalent to

the system (5-9), (5.10), (5.2). By Lemmas 5.2, 5-4 and since c = 0, (5-9) is re

duced to

•r(X ) r(-X )
ql + an = 0.
n-p(x1) °P(-x1)

This together with (5-2) yields (5-40), (5-4l). We note that F_ (X^ 4 0. Indeed,

F_ (X^ =r(Xx) p(-X1) -r(-X1) p^)

=(-Dn ItT (\ - \) *TT (\ +n«) +~IT (\ +y ' TT (\ -nJf ,
|k=2 j=l J k=2 X K J=l JJ

so by (5«4) we have

(5-42) (-DnF_ (Xx) >0.
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§ 6. Behavior of the approximate solutions

_ th ,
The n approximate solution f of equation (2.1) has been defined by

(2.21), where the coefficients a., £. are determined by (2.22), (2.25) and (2.23).

This §6 deals with the behavior of the approximate solutions. We shall use the

following notation:

— 2T n X. f c + a X. \
(6.D f\ (x, y) =.Z0 a.V1.aV y+/ )> (x 40)

-£- 2
TT n X. c + a X. P0 (y)

(6-2) f*1 (x, y) -- -£, V^1 -i- -Si— ; (, <0)
y + X. P_ (X.)
J i 2n v i'

so that

(6.3) fn (x, y) =f* (x, y) +f*1 (x, y). (x 40)

Lemma 6.1. For x < 0, we have
_x_

1 n X.

(6.4) / fn (x, y) dy =2^ a. ex ,

x

1 n XT
(6-5) / fn (x, y) ydy =2(c -1) .Z0 a. X. ex

-1

Proof. As G2n (X.) =0 and P2 (X.) ^ 0 (Theorem 3-2), we have

2 v 2
X.(c + a X. ) 1 + a X.

P0 (X.) Wc ,(X.)
2n v x' 2n-lv i'

Thus (2.21) becomes
x x

n 2 X n XI + a X P n(y) - P2n(-X.)
(6.6) f (x, y) - - a L. a, X* e x - J. a. e x i- -^ ,_JS i_, (x <.o).n 1-0 1 1 i-O 1 ( } x_

2n-lv i' ' 1
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By a classical formula [2; p. 154]

we have

i r (y) - PnU){ -2 £— dy . a„ (,),
-1 y - z

1 P (y) - P?n(-X.)

-1 y + X.

Hence (6.6) implies

x

n X. n X.

/ f (x, y) dy = - 2a ,Zn a, X. e 1 + 2 ,Z_ a, e x (1 + a X.), (x ^ 0)
n i=0 i i i=0 i

and therefore (6.4).

Next, from (6.6), we have

2L 21 n X. 1 + a X 1 PP_(-X ) - Pp (y)
/ f (x, y) ydy - Zn a. e x i- / y•-S 1 £H dy, (x « 0).

W2n-l<y -1

Since

/ y dy = /
-l y + x, -l

P0 (-X.) - P„ (y) + X.
2n v l' 2n w' l

p2n(y) -p2n(-y

y + x.

2 P_ (X.) - 2X. W0 . (X.),
2n v x' l 2n-l x x"

it follows that for x 4 0:

1 n XT 2
/ fn (x, y) y dy =2 .Jq a. X. e (1 + a X.)

x

n XT 2=2 .j0 a± \ eX(1 +aX.)

x

n 17
2 (c - 1) .£_ a. X. e x

v ' 1=0 1 1

P0 (>••)2n 1

x. w0 , (X.)
• 1 2n-l 1'

c + a X.

1 + a X.
1

- 1

dy
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The following result describes to what extent the approximate solution

f satisfies equation (2.1) and the boundary conditions (2.2), (2.3).

Theorem 6.1. The approximate solution f satisfies the following re

lations :

d fn(x,y) T (y)
(6.7) y 2 + f (x, y) = — f (x, 0) for x £ 0.

Sx n P2n (0) n —

5 f (x y) 1
(6.8) y n +f (x, y) =| / f (x, y) dy

d x n -1 n

la ,X P2n(y) TT+2l^ y_{ fn l*> y> ydy +P^OT fn l*> °)
'2nv

x

for x ^ 0.

(6.9) lim ey f (x, y) = 0 for y > 0, when n is sufficiently large (more
x—t> — qu n ——— • ————___——— "

precisely, when n is so large that X, =X^ '> 1).

(6.10) fn (0, -up =0 (1< j4 n).

Proof. (6.7) can be directly verified by using the first expression of

(2.21). Also (6.10) is satisfied because of (2.22).

Let

3 fn(x> y) n x(6.11) Rn (x, y) =y 2 +f (X; y) .| / f (x, y) dy
d x -1

"I I?c" y ^ fn (x> y) ydy* (x 40)
By (2.21) and Lemma 6.1, ye have

— 2n X f c+ a X P (y) -P (-X )Rn (x, y) =-yiSo a, e* aX, +—-±- -§S ^L_i_
xl P2n(Xi' y+Xi

T 1 ** f , C+aXiF2n(y) -?2n(-Xi)]- .L- a. X. e < a X. +
i=0 11 1 „ /. X ..I P2n(y y+x J

X X

n X. n X.

-c i5oaie 1 + ay iS0ai xie x
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x

n Xi 2
Rn (x, y) = iSo ai e (c + a y

n

X

2 X.
- a .Y, a. X. e - c .Zn a. e

i=0 i i i=0 i

Vy)

Vxi)

n

Hence _x_

n Xi 2 P2n (y)
R (x, y) = - .Z. a. e (c + a X.)
n

^-^ 1? (x, 0)
P2n<°>

1 P0 (x.)
2n x l

x

X.

for x 4 0,

and thus proving (6.8).

In order to prove (6.9), we recall X = - X. and the fact (Theorem 3-3)

(Pn ^ 111
that Xn = X; ' > 1 for n sufficiently large. For 0 < y < 1, we have - + =- ^ 1 - T

11 ° 1
and therefore - + T > 0 for n sufficiently large. Hence, for n sufficiently large,y XQ
we have

x x

y + \.
lim e

X—*• - 00
= 0 for 0 < y < 1 and 0 ^. i 4 nj

which implies
x

lim _ ey f (x, y) = 0
x—* - co n v ' J '

for 0 < y 4- 1.

In the next result, we confine ourselves to the region x ^ 0.

Theorem 6.2. Assume that for - co<x40, - l^y^l, equation (2.1) has a

solution f satisfying the boundary conditions (2.2) and (2.3). If, for x ^ 0,

we have

(6.12)

and

(6.13)

1 1

n^4Sb * fn (x' y' dy =' f(x> y) dy

n^iPnn ^ y fn (X> y' dy = ^ y f(X> y' dy
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both with uniform convergence on - od<x^: 0, then:

(6.14) f(x, y) =^Jjji^ f* (x, y) holds for x4 0, 04y<1;

(6.15) f(x, y) =nl^ fn (x, y) -eyf* (0, y) holds for x^O, - 1 4 y < 0,

ProyiAed G (y) =.0 is satisfied by at most a finite number of indices n.
2n

Proof. We rewrite equations (2.1) and (6.8) as

(6.16) y*flx'y) +f(x, y) =F(x, y),
~5x"

(6.17) y

where

d f (x,y)
n

~5x"
+ tn (x, y) = Fn (x, y),

c ,K, _, ay 1

(x4 0, - 1 4 y 4 1),

(x ^ 0, -l<y^l)j

(6.18) F(x, y) =I / f(x, t)dt +g(* * c) / f(x, t) tdt,

p 1 a v l p?T1(y) TT(6.19) F (x, y) = § / f (x, t) dt + o/la y , f f (x, t) tdt + — f11 (x, 0)' nx ' J' 2 J nv ' ' 2(1 - c) J nv ' ' _ , ^ n v ' '
-l -1 r2n{uj

From (6.16), (6.17), we have

(6.20) f(x, y) = e

_x

"y

(6.21) fn(x, y) = e
_x

"y

f(0, y) + i / ey P(s, y) ds
y 0

s
x —

f„ (0, y) +i / ey F (s, y) ds
^ 0

n

for x 4 0, - 1 4 y 4 1 and- y 4 0. From (6.18), (6.19), we have the identity

P2n(y) TT(6.22) F(x, y) -F(x, y) +-^— ff (x, 0) =
poJ0) n
2nv

=I /|"f(x, t) -fn(x, t) dt +
a y

2(1 - c) _[I t n(x, t)]f(x, t) - f dt

for x$0, - 1 ^ y 4 1.
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We discuss now three seParate cases according to whether y > 0 or y = 0

or y < 0.

(Case 1) 0 < y ^ 1.

As f satisfies the boundary condition (2.2), we derive from (6.20)

n -OD *
f(0, y) + ± / ey F(s, y) ds = 0 (0<y<l)

and therefore

y 0

1 -" X "f(x, y) =- e y / ey F(s, y) ds, (x ^ 0, 0 < y4 1)•
* -CD

Similarly, from (6.9) and (6.21), we infer that

1 "- X ~fn(x, y) =-ey / ey Fn (s, y) ds, (x 4 0, 0<y4 1)
(2nQ)

holds for all n > n , where n is so large that X, > 1. Hence

x s
- x — r

(6.23) f(x, y) = tl (x, y) + fl1 (x, y) +i ey / ey
n

-co

F(s, y) -Fn(s, y) Ids

is valid for x .4. 0, 0<1 y^l and n ^ n .

When n > n_, we have - + T > 0 for 0< i<:n, 0< y^l; and thereforeo y a^ —

x s(- +i ) X. y x(- +i )
/ e y x ds = -i—r— e y i for 04 i4 n, 0< y4 1.

-od y + j_

Hence, according to the definition (6.2) of f ,

rX I II n a. (c +aX2) x B(± +i)
/ ey f11 (s, 0) ds =-P. (0) .Zn -i X / e y Xi ds

-od n 2n 1=0 P2n (X.) -od

2 -
— n a. X. (c + a X.) X.
Jd r^ v 1 x_ 1 <= xy ey P (0) Z _—: = e

' 1_° (y+Xi)P2n(Xi)
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1 ^y P2n ^
s

x —

/ ey fj1 (s, 0) ds
P2n(0) -OD n

holds for x 4 0, 0 < y 4 1 and n ^. n . Then (6.23) can be written

(6.25) f(x, y) =nl^jo if* (x, y) +
_x_ s

+i e y /Xey
y

P2n (y) TTF(s, y) -F„ (s, y) +-^ f*1 (s, 0)
n

P2n(°) °
ds

(x^ 0, 0 < y 4 1)

Using (6.22) and the uniform convergence in (6.12), (6.13), we have

ds = 0,

s

,x y
n->

-CD

P2n (y) TTF(s, y) -Fn (s, y) +-2- f^1 (s, 0)
P2n <°> n

which combined with (6.25) yields the desired result

f(x, y) =nl£k fI (x, y) (x 40, 04y41)•

(Case 2) y = 0.

From (6.16) - (6.19), we write

f(x, 0) = F(x, 0) -Fjx, 0) + fn(x, 0)

(x^ 0, 0 < y^ 1);

1 r -1\ / |^f(x, t) -fn(x, t) dt - f11 (x, 0) + f (x, 0)
n n

or

f(x, 0) =i\ (x, 0) +§/[f(x, t) -fjx, t)l dt.

Then by (6.12), we get f(x, 0) = nl^t) f (x, 0) for x^ 0.
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(Case 3) - 14 y < 0, and G? (y) = 0 is satisfied by at most a finite

number of n's.

By (2.3), f(0, y) = 0 for y < 0. So (6.20), (6.21) imply

(6.26) f(x, y) =fj (x, y) -eyfj (0, y) +

s
x —

+ e 'ij''h y) -Fn (s, y) ds +ey fJ1 (x, y) -fj1 (0, y) \ ,

(x4 o, - 14 y < o),

If y <£ 0 is not a zero of G? , then - + r- ^0 for 04 i4 n (where

Xi =Xi2n)) and by (6,2):

x v II 5 ai(c + a Xi> rX S(v + xJ/ e* S? (s, 0) ds --P2n (0) £ * *
0 P0 U-) °2n v x'

n a.(c + a X.) X. y
- - p0„ (0) ,Zr x x x

2n v ' i=0 P2n(x.) y+x± u

Hence, if yi 0 is not a zero of G , then

x(i + 1 )
s vy xt;

ds

(6.27)
P2n <y> ;
P2n (0) 0

x £

ey fj1 (s, 0) ds
x

e"7 fn (x, y) ff (0, y),

Combining this fact with (6.26), we infer that
_ x

(6.28) f(x, y) =^ Jf£ (x, y) -eyf* (0, y)

+ — e v J e

y 0

x x s

y / jr p (y)
F(b, y) -F (s, y) + -S f^fs, 0)

F2n<°>
ds

(X4 0)
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holds for X40, -14 y <£ 0, provided G2n (y) = 0 is satisfied by only a finite

number of n's. Finally, in view of (6.22) and the uniform convergence in (6.12),

(6.13), the desired relation (6.15) follows immediately from (6.28).
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