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ABSTRACT

This report contains a description of a series of two-

group and multigroup calculations of the critical mass of two

clean-geometry configurations of the BSR. It also contains a

description of critical experiments thart were done to determine

the validity of the calculations.

Comparison of the results indicates that the calculations

described are capable of predicting the critical mass within

about 2$ of the measured critical mass under the favorable

geometric conditions maintained in the present experiments.
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INTRODUCTION

A number of digital computer eod.es ireavailable for the purpose of

calculating the critical masses of reactors. Because of the widespread

interest in the pool-type reactor, of which the ORNL Bulk Shielding

Reactor is the prototype, the present work was undertaken te determine

how accurate three specific machine-calculation methods are for

predicting the critical mass of two clean-geometry configurations of

the BSR. In order to arrive at this evaluation the calculations were

carried out first, using the best values of the parameters available,

and subsequently critical experiments were done in order to obtain a

measured value of the critical masses for comparison with the calculations!

predictions.

The problems encountered in carrying out the calculations may be

considered to be of two types. On the one hand there are the questions

of what may be termed nuclear or of microscopic nature. This category

involves the choice of nuclear cross sections and diffusion parameters,

the question of numbers of groups to approximate the slowing-down behavior

of the neutrons, and perhaps the choice of the appropriate mathematical

machinery for analytical treatment of the physical occurrences in the

reactor.

On the other hand, there are the problems that may be termed the

macroscopic or geometric problems. The actual shape of a loading in the

BSR is usually more or less irregular, with elements missing or projecting

out of the basic configuration, further complicated by the presence of

control elements, which may or may not be partially inserted at criticality.

These configurations are not directly amenable to calculation, and some

sort of approximation must be made in order to arrive at a sufficiently

simple geometry to permit calculation. Of the two codes used for these

calculations, one code, the UNIVAC "Eyewash" code is limited to

spherically symmetric configurations. The other code, the ORACLE three-
2

group three-region code, is limited to one-dimensional calculations in

either slab, cylindrical or spherical geometry, with provision for non-

infiniteness in the first two geometries by insertion of approximate

bucklings.



Since in most calculations both nuclear and geometric uncertainties

exist, it is oot possible to ascribe these uniquely to any discrepancies
between the experiment and the calculation. Therefore, for the present

comparison, care was taken to have a simple experimental geometry,

namely a parallellepiped with only one central control rod. The control

rod was fully withdrawn at criticality in order to eliminate any asymmetries

in the flux with respect to the vertical axis. The reactor loading was

adjusted to be just critical with the control rod completely withdrawn by

use of "partial" elements in selected locations. Fortunately, in the cases

of interest, the amount of fuel was very close to the maximum loadable in

the configurations, so that the perturbation associated with the use of the

partial elements was kept to very small amounts.



I. THE CRITICAL EXPERIMENTS

New, clean fuel elements, each of which consisted of 18 fuel plates,

were available for the experiments. Each element contained a nominal

lUO g of tr^ in enrichment of 93$>- The precise weight of the IT3'' in
each element was known to within 0.1 g. In addition to these ll+0-g

elements, partial elements containing various amounts of uranium less

than 140 g were used. In these partial elements the fuel was contained

in fuel plates of normal fuel content, but some of the 18 plates present

in each element were dummy plates of pure aluminum, so that the metal

volume fraction in the partial elements was the same as that in the

normal, full, fuel elements. There was also one control-rod element

which contained only five fuel plates, three on one side and two on the

other, leaving room for two aluminum guide plates and a space for the

control rod as shown in Fig. 1. The metal volume fraction in the space

between the fuel plates had an average value equal to that of the normal

elements. This feature provided a uniform metal-to-water ratio in the

entire reactor.

In order to provide the necessary nuclear safety without perturbing

the core arrangement, a pair of "guillotinesV or control "blades" were

also used. These were two cadmium sheets, each having a 9-in. width

and a height equal to that of the core, which could be inserted between

the core and the water reflector. These blades were suspended from

electromagnets which were tied into the safety system of the reactor

controls so that any situation calling for a reactor scram would result

in their dropping by gravity into place, thereby shutting off the reactor.

The central control rod was similarly suspended so that it also would

drop in case of a scram signal. The two guillotines represented an

estimated 1.5$ £k/k, with the rod worth being about the same magnitude.

Each critical experiment was carried out with the intent of obtain

ing a configuration as close to criticality as possible with the central

control rod and the control blades fuHy withdrawn. A check was carried

out which determined that the presence of the blades in their withdrawn
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position did not affect the criticality. Three loadings were attempted:

one with 2k elements in a 6 by k lattice, one with 25 fuel elements in

a 5 by 5 lattice, and one with 27 elements in a 3 by 9 lattice. In the

5 by 5 and 3 by 9 arrangements the control-rod position was in the

geometric center; in the 6 by k configuration it was placed as close to

the center as was possible, Figure 2 shows the final loadings of the

three configurations with partial elements as indicated.

The 6 by k loading was critical with only a single partial element.
235

This partial element contained 109 g of U , and the reactor was sub-

critical to an amount judged on the basis of its period to be 0.05$

Ak/k. When a 140-g element was substituted for the partial element the

reactor was supercritical with an excess of about 0,25$ Ak/k, again

determined from the period of flux increase. Interpolation of these two

values indicates that the critical condition would be attained with 114 g

of fuel in this element, and this was taken to be the amount needed for

criticality.

The 5 by 5 configuration, which had four partial elements symmetrically

arranged, was exactly critical with this loading.

Criticality was not attained with the 3 "by 9 loading. However, an

extrapolation of the reciprocal count rate due to a source vs the mass

is given in Fig. 3, from which a rough approximation of the critical mass

was made.

The critical masses of the three experimental configurations are given

in Table 1. The assigned error of +10 g for the 6 by k and the 5 by 5

loadings is based on the +0.1-g precision with which the fuel content of

each element is known and an estimate of a +5-g accuracy in determining

the criticalities from period measurements.

In order to compare the experiments with the calculations, it was

necessary to make two corrections to the measured critical masses. One of

these was a correction for temperature. At the time the experiments were

performed the pool temperature was 20 C, whereas the temperature used in

all calculations was assumed to be 30 C It was therefore necessary to

compute what the experimental critical mass would have been at 30 C.



05

UNCLASSIFIED

2-01-058-0-53 R2

6 BY 4 LOADING 5 BY 5 LOADING 3 BY 9 LOADING

-PARTIAL ELEMENT

0

46.1 cm

* •

E
o

<\i
ro

0

38.5 cm

E
o

m

d

CONTROL ROD

ELEMENT

NOTE: ALL LOADINGS ARE 61.3 cm HIGH

Fig. 2. Experimental Critical Reactor Loadings.

i I

72.9 cm

» I

T
E

ro
<NJ



0.016

0.014

0.012

t5 0.010

3
O

° 0.008
_i

<
o

o
(Z

y 0.006

0.004

0.002

0

2500 3000 3500 4000 4500 5000

MASS OF U235 (g)

UNCLASSIFIED

2-01-058-0-44

\
\

\
*

V
\

\
\

\
>

Fig. 3. Experimental Subcritical Multiplication Curve for the 3 by 9 Element

BSR Loading.



Table 1. Experimental Critical Masses for Various Loadings
of the BSR

Critical Mass (g)

Loading Actual Corrected

6 x k 3242 -1- 10 3239 + 11

5x5 3246 + 10 3189 + 16

3x9 4600 to 4800

8
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The temperature coefficient of the BSR had been measured in this temperature

range and found to be (6 + 0.5) x 10 /C. Using this datum with the

calculated variation of multiplication with mass, a correction of +8 + 1 g

was obtained for the experimental critical mass.

Another correction was required owing to the presence of the partial

elements in the critical loadings. In the 5 "by 5 loading there was l6l g

less fuel than there would have been if all the elements had been full

elements; in the 6 by 4 loading the difference was 26 g. Since adjoint

fluxes were not available, the small perturbations in fuel density were

weighted by the square of the flux, even though the perturbation theory

which prescribes this method applies to a bare reactor. Figure 4 shows

the flux and square of the flux (calculated as described in the next

section) as a function of radius in the fuel-bearing region of an assumed

three-region reactor with cylindrical geometry. Also shown is the volume-

weighted average value of the square of the flux. If the partial elements

are assumed to be concentrated at the points corresponding to their

centers, i.e., 2/5 of the distance out from the center of the reactor to

the edge, then a ratio of the local to average effectiveness of 1.40 is

obtained. Therefore, the effective weight value of the missing fuel is

l6l g x 1.40 = 226 g and the correction is l6l g - 226 g = -(65 + 6) g

for the 5 by 5 loading. Applying the same correction to the missing 26 g

of fuel in the 6 by 4 reactor produces a correction of -10 +lg.

The values of the experimental critical masses after the corrections

for the temperature difference and the inhomogeneity were made are shown

in the third column of Table 1.



CO

'E
3

o

.5

a

0.6

0.5

0.4

0.3

-e-0.2

0.1

0

UNCLASSIFIED

2-01-058-0-158

/EFFECTIVE LOCATION

' OF PARTIAL ELEMENTS

^*

p ^1
*2

0.18

0.16

0.14

CO

0.12 3

0.10 15
o

OJ

0.08

0.06

0.04

8 10 12 14

RADIUS (cm)
16 18 20 22

Fig. 4. Thermal Flux, oS„and Square of Flux, oj>2, in Fuel Region of
Three-Region Cylindrical Reactor as a Function of the Reactor Radius.



II. THE CALCULATIONS

Geometric Considerations

The loadings used in the experiments were parallellepipeds

completely surrounded by an effectively infinite water reflector. It

is necessary to find configurations amenable to the calculation, which,

with core compositions identical to that of the actual reactor, will

have a multiplication equal to it,

The correspondence between solution-type experiments in cylindrical

3

geometry and calculations using the Eyewash code with an assumed

spherical geometry was previously investigated by P. C. Prohammer.'

Methods of equating the spheres and cylinders included: setting volumes

equal] setting surface-to-volume ratios equal; setting bare bucklings

equal; and setting bucklings equal, including reflector savings. Since

the last-mentioned method gave by far the best correspondence this method

was used to convert the parallellepipeds to the proper geometry for the

calculations reported here.

If the parallellepiped has dimensions a, b, and c and the reflector

savings equivalent to a thick water reflector is A, then the radius, R,

of a sphere equivalent to the parallellepiped is given by

E . |-A

-where

2
B = buckling

2 / \2
+f « Y t f^>:a + 2A J \b + 2A/ \c + 2A/

The value for A, the reflector savings, used in arriving at the calculated

dimensions will be discussed in the next section.

For the case of transformation of a parallellepiped to a cylinder, a

choice is required for two parameters, the radius, r, and the length, L.

11
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In order to retain the best approximation, the longest of the three

parallellepipedal dimensions, c, is set equal to the cylinder length

(i.e., L = c). Then:

v

r - j?- A
where

2

k2 - ( * T , ( * T* - \a + 2Aj +\J> + 2Aj >

v = first zero of the Bessel function,
o

The only remaining geometric question concerns the disposition to be

made of the control-rod well which, though not containing any poison at

critieality, nevertheless represents a region of low absorption with no

fast source. Three methods of dealing with this problem were investigated.

(1) The entire core, including the control-rod well, was

homogenized, leading to a two-region calculation.

(2) The volume fraction of the control-rod well was maintained

equal in the two geometries:

v

V = — V
c v r

r

where

V = volume of the control-rod well in the configuration

used for the calculation,

V = volume of the reactor core in the configuration used

for the calculation,

v = volume of the control-rod well in the actual reactor,
c '

v = volume of the actual reactor core.
r

(3) The volume fraction of the control-rod well was weighted by

the calculated relative peak-to-average flux ratio in the
k

calculated and experimental configurations. This compensates

for the increased effectiveness of a central control*rod well

in a configuration where the flux is sharply peaked in the

center. The flux shapes assumed for the calculation were the
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fundamental mode shapes in a bare core with reflector savings.

Using the quantities defined above, the equations become

v

V = 1.078 ~ Vvr r

for the calculations assuming a cylindrical geometry and

v

V = 1.216 ~ V
c v r

r

for the calculations assuming a spherical geometry.

Table 2 presents all the dimensions that were used in the calculations.

The experimental dimensions are shown in Figs. 1 and 2.

In calculations of this type, the assumed water reflector thickness

must, of course, be as thin as is consistent with the requirement that it

be effectively infinite* In order to determine the effect of varying

the thickness of the water reflector, calculations were performed for a

32-cm-dia spherical reactor having various reflector thicknesses. On

the basis of the results, which are plotted in Fig. 5> a reflector thick

ness of 20 cm was chosen as a usable thickness that is equivalent to an

infinitely thick water reflector.

Nuclear Considerations

Two codes were available for the calculations. One was the Eyewash

code developed for the UNIVAC computer. The other was the 3G3R code
k

used for the Oracle computer. In a few of the calculations using the
5

3G3R code an auxiliary code' which circumvents the one-dimensional

character of the original code was also used. Each of these codes is

described below.

The Eyewash Code

The Eyewash code is a 30-group code with which calculations are

performed for spherical geometries with a maximum of nine spherical shell

regions, each having a maximum of seven elements. It was applied to each



Table 2. Reactor Dimensions Used in Critical-Mass Calculations

Control-Rod Well Equivalent Radius (em)

By Direct Volume

H20

Core

Configuration

5 x 5

6xk

Fraction

Method

3.35

3.28

3x9 6.kQ

5 x 5 7.58

6 x k 7-52

Core Reflector Cylinder
By Adjusted Volume Radius Thickness Height

Fraction

Method (cm) (cm) (cm)

Cylindrical Reactor

3.k8

3.kl

21,75

20.87

20

20

Spherical Reactor

Ik

23.Ik 20

8.09 26.36 20

8.02 25.79 20

61.28

61.28
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configuration as a three-region code, taking explicit account of the

control-rod well. The necessary nuclear parameters are included in

the code. This code uses Goertzel-Selengut slowing-down for the

hydrogenous moderator, which properly accounts for the energy

distribution of neutrons scattered from hydrogen, although the energy-

angle correlation is omitted. The code considers water to consist of

hydrogen and oxygen atoms; that is, it does not account for the binding

effects of the water molecule. However, the transport of neutrons in

these reactors occurs mostly as fast neutrons so that the effect is not

large. The results of these calculations are included in Table 5 at the

end of this paper.

The 3G3R Code

The so-called 3G-3R (three-group, three-region) code was used through

out as a two-group code, since good two-group constants were available.

The following nuclear data were required as input information:

T._ , Z = macroscopic absorption cross sections for fast and
f s

slow groups in each region,

»£p > *£.p = neutrons per fission times the macroscopic fission
f s

cross section for fast and slow groups in each

region,

D-,D = diffusion coefficients for fast and slow groups in

each region,

t = Fermi age to thermal,

Z ,S = macroscopic transfer cross sections for fast and
f s

slow groups in each region.

The macroscopic absorption cross sections for the slow group were

obtained from data in BNL-325 (Ref, 7) adjusted to average over a

Maxwellian distribution at a temperature corresponding to 2200 m/sec

and multiplied by 1/1.017 to convert them to a temperature of 30°C, which

was assumed to be the pool temperature when the critical experiments were

performed. The u^ cross sections were further adjusted for non-l/v
behavior, according to the curve in BNL-325. The values of these cross
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sections were calculated under the assumption that the volume fractions

of aluminum and water in both the core and the control-rod well were:

aluminum, 0.^23; HpO, 0.577« The reflector was assumed to be pure water.

The macroscopic absorption cross sections for the fast group were

set equal to zero; that is, it was assumed that all of the fast group

neutrons were removed either by leakage or by transfer into the slow group.

This assumption essentially neglects resonance absorption and thus would

tend to give too large a multiplication constant. However, the macroscopic

fission cross sections for the fast group were also set equal to zero so

that this combination of assumptions corresponds to the assumption that

ep = 1.0, where e is the fast fission factor and p is the resonance

escape probability.

The diffusion coefficient for the slow group in the reflector (water)

was taken to be

D = ~ = 0.l60 cm

Sr &BJ0.
2 tr

where the value of the transport cross section, £„ rt = 2.08 cm" , was
^2°tr

Q

taken to be that reported by McMurray. The diffusion coefficient for

the fast group in water, calculated from D(E) values weighted by the
9 10

spectrum given by Brooks and Glick, was taken from a paper by Webster.

The diffusion coefficient for the fast group in the core is obtained

in the same manner and from the same source as the diffusion coefficient

for the fast group in the reflector.

The diffusion coefficient for the slow group in the core was also
Q

obtained from data reported by McMurray and was calculated from the

equation

1
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where E. is the transport cross section of the i-th component of the

core and the contributions from the i components are summed. For this

calculation the core is assumed to consist only of water and aluminum.

The value of S. was again taken to be 2.08 cm" , and Z. was
•rH_0 trAl

-1
taken to be 0.084 cm . These values are for the pure substances and

were weighted for the proper volume fractions in the core.

The macroscopic transfer cross sections for the slow group are

zero. Those for the fast group were calculated by the equation

°f

Xf " T~

where t is the Fermi age to thermal. The age to thermal in the core
11

was given by McMurray taken from curves presented by Dismuke and
12 1^

Arnette. The age in pure water was reported by Glasstone. J

Table 3 gives a summary of the nuclear parameters used in the

3G3R calculations.

When cylindrical geometry was assumed in the calculations with the

3G3R code the finiteness of the cylinder was taken into account by a

buckling for each energy group in the axial direction, which forms part

of the input to the code. This buckling must take into consideration

the height of the core and the effect of the reflector capping the ends

of the cylinder. Two methods were tested. In the first method the

axial buckling for the fast and slow groups was assumed to be equal and

was calculated as follows:

B =
h + 2A'

where

h = height of reactor,

A = (Df /D )M ,
c r

D„ = diffusion coefficient for the fast group in the core;
c



Table 3. Nuclear Parameters Used in Critical-Mass Calculations with 3G3R Code

Absorption Cross Section (cm" )

Thermal, Z^
a

s

Diffusion Coefficient (<

Fast, Df Thermal,

2m)

D
s

Fermi

T(cm )

Transfer Cross Seotion (cm" )

Region Fast, Z
af

Fast, Zxf Thermal, Zx
s

Control-rod well 0.0

Core 0.0

Reflector 0.0

0.01619

0.01619 + z25
s

0.01916

1.31

1.31

1.19

0.269

0.269

0.160

64.0

64.0

33.0

0.02062

0,02062

O.O363

0.0

0.0

0.0

H
VO
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D_ = diffusion coefficient for the fast group in the reflector,
r

M = migration length in the reflector.

In the second method the axial bucklings for the fast and slow groups

were calculated separately as follows:

B
fast h + 2A '

where

Af - (Df/Df)Lf,
err

L = fast-group diffusion length in the reflector
r

-AAV
xf = fast-group transfer cross section in the reflector;

B - *
slow ~ h + 2A '

s

where

A = (D /D )L ,
s v s ' s ' s '

err

Ds * Ds = slow-Sr°up diffusion coefficients in the core and reflector,
c r

L = slow-group diffusion lengths in the reflector.
sr

The first method, which will henceforth bepalled the "migration length

assumption," was suggested by Bogart and Valerino. The second method

will be referred to as the "diffusion length assumption." The thermal-

group reflector savings used in this calculation was also applied in the

geometric transformations described above. Its valueis 4.86 cm.

In order to check the applicability of the 3G3R code as a two-group

code, calculations were performed for comparison with experimental reactors

which were spherical in shape and therefore did not require that geometric
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ORNL-2499 Erratum

On p. 21, line 23, the equation for B should be written as follows;

B =

2rL2
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transformations be made for the calculations. The experimental reactors

were five spherical, water-reflected solution-type critical experiments

for which calculations previously were performed by the Eyewash code, as

well as by an earlier 30-group code known as Medusa, which does not

include Geortzel-Selengut slowing down. The results of the several

calculations are given in Table 4.

The Modified 3G3R Code

A few calculations were performed by means of an auxiliary code to
5

the 3G3R code proposed by M. L. Nelson^ which circumvents the one-dimensional

character of the original code. In these calculations it was assumed that

the reactor was a completely reflected cylinder. First, a one-dimensional

radial calculation was performed, using a first guess for the axial buckl

ing. A value of k, the multiplication constant, was thus obtained. An

equivalent bare buckling in the radial direction was then obtained as

follows:

k

k - °°
(1 + tB2)(1 + L2B2)

where

k = infinite medium multiplication constant in the core,
COj

B = buckling,

L = diffusion length for the thermal group in the core,

t = age to thermal in the core.

2
Solving this for B gives:

B2 = V
2TL2

where

2
M = migratien area in the core,

T2= L + t.



Table 4. Comparison of Values of the Multiplication Constant k
Calculated by Various Methods

Reactor

Temperature

(°c)

k

Reactor

Radius

(cm) Experimental Medusa Eyewash 3G3R

13.2 27.5 1.000 1.130 0.992 0.970

13.2 39.5 1.000 1.133 0.992 0.974

13.2 74.0 1.000 1,148 1.007 O.986

13^2 85.5 1.000 1.152 1.001 0.991

16.0 54.0 1.000 -.- 1.010 O.982

22
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Expanding the square root in series and retaining third-order terms in
k

gives:
k

k

B'

_oo

2

M2

2
T2/k \ / _2 \ / k

7~^ J W v-

This last equation was used by the code to calculate an equivalent bare

radial buckling. This buckling was then used as input datum for a slab

calculation in the axial direction, and the k so calculated was used in

the same way to calculate an equivalent bare buckling in the axial

direction. This process was then iterated until the k values calculated

in the two directions agreed to within predetermined errors. The

bucklings so calculated were used as input to the code for both the fast

and the thermal groups.

This method also is applicable to a parallellepipedal reactor

directly. In this case calculations are made in slab geometry in each

of the three directions in cyclic order, and the sum of the bucklings in

the other two directions is used as input datum at each stage. The

iteration proceeds in cyclic rotation until all three directions give the

same k value. This method has been used on the configurations of interest

in this report in three ways; (l) as two-region cylinders, i.e., with

homogenized core, (2) as three-region cylinders in the radial direction,

with homogenized core in the axial direction, and (3) as homogenized

parallellepipeds»



III. EXAMINATION OF RESULTS

Table 5 presents the critical masses calculated by each method and

also the percent difference between the calculated and measured critical

masses. A cursory examination of this table shows that the best methods

yielded results within about 1,0$ of the experimental critical mass. It

must be remembered that the critical masses were calculated by assuming

three different masses and calculating the multiplication for each. The

three mass values chosen were 3400 g, 3100 g, and 2700 g, and the critical

mass was obtained by graphical interpolation. It is difficult to assess

the magnitude of the error associated with the input parameters and the

effect each would have on the critical mass; therefore, it is impossible

to give an error with any precision. It is, however, reasonable to suppose

that the uncertainty is of the order of 2$ in mass, This uncertainty is

relative to the experiment and does not apply to relative variations

between the calculations which use the same parameters.

An examination of the results shows the following concerning the

3G3R results only: (l) The calculations for a spherical geometry yield

results about 5 or Ofo higher in critical mass than those £>r a cylindrical

geometry, (2) Homogenizing the core leads to results that are too low

by about 3 to 4$ when compared with the three-region calculationsi (3)

As would be,expected, the two-region sphere calculations yield deceptively

good agreement due to the partial cancelling of 1 and 2. (4) The diffusion

length assumption appears to give results about 2$ lower than the migration

length assumption, and the former is the better approximation. (5) As

would be expected, the calculations for a two-region cylinder using the

migration length method for axial bucklings give deceptively close agree

ment due to the partial cancelling of the errors associated with the two-

region calculations and the migration length assumption, (6) The effect

of the adjustment in the control-rod volume ratio to weight by the flux

shape is not large enough to indicate clearly the better method, but the

adjusted value seems to be somewhat better.

It can be concluded that the best approximation with the 3G3R code

is the three-region cylinder with axial buckling calculated by the

diffusion length method and with an adjusted control-rod volume ratio.
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Table 5. Comparison of Calculated Critical Masses with BSR Experiments

Number

of

Regions

Control-Rod

Volume

Ratio

Assumption

Axial

Buckling
Assumption

Calculation

Method

5 by 5 Loading 6 by 4 Loading

Assumed

Calculation

Geometry

Calculated

Critical Mass

(g)

Difference

From

Experiment

(*)

Calculated

Critical Mass

(g>

Difference

From

Experiment

(*)

Sphere 2 3G-3R 3164 -0.8 3183 -1.7

3 Direct Eyewash 3269 +2.5 3264 +0.8

3 Direct 3G3R 3384 +6,2 3418 +6.1

3 Adjusted 3G3R 3442 +7.9 3480 +8.2

Cylinder 2 L 3G3R 3078 -3.5 3151 -2.7

2 M 3G3R 3162 -0.8 3227 -0.4

2 Mod. 3G3R 3094 -3.0 3155 -2.6 ro

VJV

3 Direct L 3G3R 3177 -0.4 3269 +0.9

3 Direct M 3G3R 3250 +1.9 3343 +3-2

3 Adjusted L 3G-3R 3182 -0.2 3266 +0.8

3 Adjusted M. 3G3R 3261 +2.2 3356 +3.6

3 Direct Mod. 3G3R 3135 -1.7 3253 +0.4

Parallelle

piped
2 Mod. 3G3R 3043 -4.6 3082 -4.8

L designates the "diffusion length method" of calculating the axial buckling in the one-dimensional cylinder
calculations; M designates the "migration length method" of calculating the axial buckling in the one-
dimensional cylinder calculations,

3G3R is the three-group, three-region ORACLE code used as two-group code; Mod* 3G3R is the iterative method
proposed by M. L. Nelson for use with the 3G3R code for calculations in several dimensions.
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Indeed, these two calculations agree with the experiment within less than

1$ in critical mass, which corresponds, according to the slope of the

curve of multiplication vs mass, to about 0.25$ in multiplication.

The modified 3G3R method gives results which are slightly lower in

mass than those using the diffusion length assumption, but the difference

is not sufficiently clear cut to determine the better method. Therefore,

the five- to eight-fold increase in computing time needed with the

modified method does not appear justified. The parallellepipedal

configuration in the two-region approximation shows the error of about

-4$ which is associated with the two-region approximation and was

displayed in all the two-region calculations.
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