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SUMMARY

The theory of the uniform line has been treated extensively and

is well known. For many years, sections of uniform line have been

used as high-Q resonant circuits for various purposes. One of the

applications has been in the field of cyclotron engineering in which,

traditionally, a quarter-wave uniform line has been used to excite

the accelerating electrodes of the cyclotron to high r-f voltages. A

critical study of the requirements of this quarter-wave line leads to

the following question: What are the advantages and disadvantages of

using a nonuniform line for this purpose ? This study was motivated

by the above question and, for that reason, cyclotron problems are

emphasized in the work. The exponentially and linearly tapered lines

are chosen for study with emphasis on the linear line since it can be

fabricated practically.

The object of the investigation is two-fold: first, to develop the

theory of the linear line and to extend the theory of the resonant prop

erties of the exponential line with emphasis on the power and tuning

properties of both lines; second, to provide unified results comparing

the resonant properties of the exponential, linear, and uniform lines.

The classical approach employing the method of ordinary trans

mission line theory is used to develop analytical expressions for both

of the tapered lines. For simplicity, emphasis is placed upon lossless

lines. The resulting voltage and current expressions for the expo

nential line are, of course, in terms of exponential and circular functions

For the linear line, the expressions for voltage and current are in

terms of Bessel functions of the first and second kinds of orders zero

and one. Experimental data are presented to verify the mathematical

results.

Various illustrations of current, voltage, power, and input im

pedance properties are presented for the two tapered lines. Composite

curves are provided to show a concise comparison of the similarities
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and differences among the exponential, linear, and uniform lines. In

addition, the tuning properties of the tapered lines are discussed.

It is shown that quarter-wave linear (and exponential) lines can

be designed which will operate at a given frequency and which will be

either longer, or shorter, than a uniform line operating at the same

frequency. The extent to which the tapered lines are longer (or shorter)

depends on the ratio of nominal characteristic impedances at the ends

of the tapered lines only. Similarly, the results show that quarter-

wave linear (or exponential) lines can be designed which will resonate

at frequencies above, or below, the resonant frequency determined

by a uniform line of the same length.

It is shown that quarter-wave linear (or exponential) lines,

whose nominal characteristic impedance decreases from the shorted

end toward the open end, require less power to obtain a given voltage

at the open end than the comparable uniform line (where both lines are

operating at the same frequency and have the same nominal charac

teristic impedance at the open end). The ratio of power dissipated by

the tapered line to that of the uniform line is a function of the ratio of

nominal characteristic impedances at the ends of the tapered line only.

Conversely, it is shown that quarter-wave linear (or exponential)

lines, whose nominal characteristic impedance increases from the

shorted end toward the open end, require more power than the compar

able uniform line.

With respect to tuning, it is shown that linear (and exponential)

lines add considerable design flexibility, and can be used advantageous

ly, in the solution of wide-range tuning problems in which the line is

the variable parameter. The theory of the linear line is illustrated

by two examples, one of which was the cyclotron problem that moti

vated this research.
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CHAPTER I

INTRODUCTION

Definition of the Problem. --For many years, the electrical properties
of transmission lines have been employed for useful purposes in
electrical networks. Sections of line have been used for tank circuits,
voltage transformers, circuit components, frequency stabilizers,
impedance-matching devices, and many other elements. In general,
it is possible to catalog the different applications in many ways. For
convenience in this writing, the applications will be classified according
to the mode of operation. The two categories will be termed nonreso-

nant and resonant operation, respectively. Specifically, the former
will denote the absence and the latter will imply the presence of
standing waves on the section of line under consideration.

This investigation is a study of the resonant properties of the
exponentially and the linearly tapered lines. Special emphasis is
placed on the linear line and its application to one class of particle
accelerators, the fixed-frequency cyclotron.

A study of the nonresonant properties of these lines is not of
interest in this work.

History of the Problem. --Historically, the inception of the research
reported herein occurred in connection with the preliminary design of
a variable-frequency cyclotron. Since there are approximately only

*

Also known as the conventional, the cw, and the constant
frequency cyclotron.

A variable-frequency cyclotron is defined to mean a conventional
cyclotron which is capable of operating at several discrete frequencies
over a rather large range (for example, from 5 to 12 Mc/sec). It is
not to be confused with the f-m cyclotron, also known as the synchro
cyclotron, which requires the frequency to vary continuously with time
during the acceleration period of the particle. For an excellent survey
article on all classes of accelerators, the reader is referred to the
Bibliography. 1



30 cyclotrons in the United States, the engineering details are not

widely known. For this reason it seems desirable to review quite

briefly the major components of such machines. In addition, a

portion of one of the major components which is of direct interest to

this work will be described in detail.

In the past two decades since the invention of the cyclotron, the

electrical engineering problems of accelerators have not been given

adequate attention from a mature engineering point of view. This situ

ation has largely been due to three reasons. First, the financial

resources available to the educational institutions which were building

cyclotrons were never more than barely adequate. Second, the design

groups, in many cases, consisted of individuals whose primary in

terest and training were in research in the physical sciences rather

than in engineering. These factors limited the interest and motivation

for mature development of engineering problems. Third, each machine

was designed as a single installation and "tailored" to the budget,

building, and personnel available; this discouraged the process of re

ducing the engineering art to an engineering science.

Currently there is a lively interest in extending the present

limits of the cyclotron for a research tool as a result of the recent

widespread impetus toward atomic energy and nuclear science. To

paraphrase BUSINESS WEEK (April 10, 1954). . . since World War II

there has developed "a race for bigger and more powerful" accel

erators to aid nuclear research. The scientists believe "that finding

what the atom is made of . . . will unlock the secrets of the universe."

For this type of research, the cyclotron is one of the most widely-used

machines in the family of accelerators. In addition, the cyclotron has

an important function in producing isotopes for therapeutic purposes.

One recent trend in the cyclotron art is toward more versatile

fixed-frequency cyclotrons that will operate at several discrete frequen-
2 3 4cies. $ * This interest has been stimulated by the experimentalist's

need to obtain adjustable variations in particle energy at the target, as

well as by his need to accelerate several different particles with the

same machine. These needs require the cyclotron to operate at sever

al specific frequencies over a range of the order of two to one which .
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complicates the conventional cyclotron design problems considerably.
As a result many phases of the cyclotron art are quite fertile areas
for careful and precise engineering work.

For the benefit of the readers who are not familiar with the con

ventional cyclotron, the following brief review of the major components
is presented.

The cyclotron is a relatively large complex machine whose basic

purpose is to accelerate ionized particles to relatively high energies
to bombard a given target material, thereby creating nuclear reactions.
Operating on the well-known principle of the interaction between a

magnetic field and an ionized particle traveling perpendicular to this
field, the machine accelerates particles to high energies by passing the
ions repeatedly between two accelerating electrodes which are excited

by a r-f voltage. The cyclotron has four major components: a source
of ionized particles which is similar to the filament in a vacuum tube;
a vacuum chamber which provides for unrestricted movement of the

ions, and within which the source and accelerating electrodes are en
closed; a magnetic field which constrains the particles to spiral paths
so that they may be acted upon repeatedly by the accelerating voltage;
and the accelerating electrodes which impart energy to the ions each
time they pass through the accelerating gap. These four components
are indicated schematically in Fig, 1.

While the r-f circuitry is incidental to the function of the accel

erating electrodes, the apparatus used to excite these D-shaped elec
trodes to the high r-f potential required is an important practical
consideration. This apparatus is called the r-f system and is composed
of a d-c power supply, an r-f self-excited oscillator, two r-f trans
mission circuits, and the resonant dee system as shown in block

diagram in Fig. 2a. (An alternative system is shown in Fig. 2b.) The
last component is of particular interest to this study and is composed
of three elements: the accelerating electrodes, called the dees; the
shorted section of transmission line, called the dee stems and shorting
bar; and the box or liner within which the dees, the dee stems, and the
shorting bar are enclosed for r-f shielding purposes. Fig. 3 is a
photograph of the Oak Ridge National Laboratory 44-Inch Cyclotron dee
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system showing the dees, the dee stems, and the shorting bar, but

not the r-f enclosure. Fig. 4 is an artist's sketch of the same dee

system installed showing its relationship to other components of the

cyclotron.

With the above preliminary remarks, the dee system, which is

the portion of interest, is discussed in detail for a better understanding

of the problem that motivated the research. The simplified equivalent

electrical circuit for the dee system shown in Fig. 3 is indicated in

Fig. 5. Since the dees behave essentially as a large capacitance, C,

and since the desired accelerating voltage, v"DD, is quite high
(ordinarily from 100 to 150 kv for the ORNL 44-Inch Cyclotron), the

capacitance must be tuned for resonance at the operating radio fre

quency, f . To accomplish this, the dee stems and the shorting bar

must provide the necessary inductance. The conditions for this reso

nance are expressed as follows:

l/2irf C =Z tan (2irf /v<)£ C1)

where Z is the characteristic impednace of the line and v1 is the

velocity of propagation. Ordinarily for the fixed-frequency cyclotron,

the frequency and the capacitance are given and Z and L are chosen
to satisfy (1).

Then in principle, if (1) is to be satisfied at several specific

frequencies over a rather wide range, the capacitance, or the length,
5may be varied. However, it has been shown that disadvantages arise

when either Cori is used as the tuning variable. This leaves Zq as
the last possibility and raises the following question: What are the

advantages and disadvantages of using a nonuniform line for the dee

stems instead of the traditional uniform line ? Thus the problem was

born; and, although the motivation was a tuning problem, the pos

sibility that nonuniform lines might require less power dissipation was

recognized also.

Purpose of the Research.--For the purpose of studying the cyclotron

problem, the exponentially and linearly tapered lines were chosen for

investigation with the objective of correlating their resonant properties



Fig. 4. An Artist's Sketch of the ORNL 44-Inch Cyclotron.
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with the analogous properties of the uniform line.

Review of the Literature. --Although the literature on the general non
uniform line dates back to Heaviside6 (1882), the more important papers
appeared during the early part of the twentieth century. Ravut7 (1920)
obtained a general solution of the nonuniform line in the form of an
infinite series requiring the assumption that the line constants were
differentiable with respect to distance along the line. Subsequently,
Carson (1921) obtained the solution of the general case in the form of
an infinite series of integrals using the assumption that the line con
stants were integrable. This, of course, is a much less restrictive

assumption, since discontinuities are permissible. Later, Thomas9
(1929) presented a treatment aimed at simplifying Ravut1 s method.
Recently, Schelkunoff (1943) published a more comprehensive treat
ment similar to Carson's work.

Heaviside's original study of the "Bessel Cable" treated the
case in which the series inductance and shunt conductance were

neglected, and the series resistance and shunt capacitance varied
linearly with distance along the line. Heaviside obtained the solution
in terms of Bessel Functions of zero order. Later, Ballantine11
(1927) obtained a solution in terms of Bessel Functions for the case
where the series impedance and the shunt admittance varied as the same
power of the distance from the origin. Subsequently, Arnold and
Bechberger (1931) and, separately, Federici13 (1931) solved the
case in which the series impedance varied linearly with distance and
the shunt admittance was constant. Then Arnold and Taylor14 (1932)
extended the treatment of this last case by allowing the series resist
ance and the series inductance to vary linearly with distance at dif
ferent rates. Finally, Starr15 (1932) unified the treatments of ~~
Heaviside, Ballantine, Arnold and Bechberger, and Federici by ob
taining a more general solution in terms of Bessel Functions for the
case in which the series impedance and the shunt admittance varied
as any power of the distance along the line. The linear line studied

Heaviside, op. cit. , p. 172-175.

wmmmmmmwmmimmmwiimHm
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in this investigation is included as a particular case of Starr's general

solution. The series impedance varies linearly and the shunt admittance

varies inversely with distance for this line.
To

Burrows (1938) developed the theory of the exponential line

and was perhaps the first writer to hint at the resonant possibilities of
1 7tapered lines. In a more recent paper, Walker and Wax (1946)

derive a first-order differential equation for the voltage coefficient of

a nonuniform line and show how to calculate the resonant wave lengths
18

of linear lines. Selgin (1946) presented an extended treatment of

the exponential line similar to Burrows but including a section on the

properties of tuning stubs. This section on tuning stubs is pertinent

to this investigation and is the only paper known to the author which

discusses the resonant properties of nonuniform lines to any significant

extent.

19 20
Other papers ' on nonuniform lines have appeared, but none

are pertinent to this investigation. The papers of Starr, and Walker

and Wax on the linear line, and those of Burrows and Selgin on the

exponential line, are the four most directly related to this study.

Procedure Used in Research. --The method for conducting the investi

gation was decided upon at the inception of the research. It was felt

that the linear line held the most interest since it could be fabricated

practically. However, since the exponential line was known to submit

to solution (and the linear line was not known to do so), it was believed

that a development of the exponential line aimed at the solution of the

cyclotron problem would greatly aid the study of the linear line. Hence,

the procedure chosen was to attempt a mathematical development of both

lines by using the exponential line as a guide, and to provide an experi

mental study of the areas for which a mathematical solution was im

practical. A mathematical treatment using the methods of "ordinary

transmission line theory" was employed, viz,

1. The energy is assumed to be transmitted down the transmission

line in the transverse electromagnetic mode (TEM).

2. The general differential equations for voltage and current

are formulated from lumped circuit methods by defining a



-12-

series impedance and a shunt admittance per unit length of

line.

3. The differential equations are solved, subject to the boundary

conditions, for voltage and current as a function of position

along the line.

4. Harmonic functions of time are assumed since the interest

is in a-c steady state.
21 22More rigorous analyses ' using Maxwell's equations and field theory

techniques show that ordinary transmission line theory is quite adequate.

The procedure described above proved to be suitable and was

followed.

Scope of the Investigation. --This study has two objectives: first, to

develop and extend the theory of the resonant properties of the exponen

tial and linear transmission lines with emphasis on the tuning and power

problems of the cyclotron; second, to provide unified results correlating

the resonant properties of these two tapered lines with analogous prop

erties of the uniform line. The results are expected to be useful for

general application, and in addition, to serve as a guide for future

studies of the properties of other types of nonuniform line -- which

may possibly lead to elements with even more novel and desirable

resonant properties.
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CHAPTER II

REVIEW OF THE BASIC THEORY
OF THE UNIFORM LINE

Introduction. --This chapter presents the general nomenclature and sym
bolism to be used in the remaining portion of this paper. In addition, the

mathematical expressions for the uniform line, which are pertinent to
the following chapters, are listed for reference.

Nomenclature and Symbolism. --Consider the general transmission line

indicated in Fig. 6. The line has two basic parameters, namely, the

shunt admittance, y, and the series impedance, z, per unit length of
line. The square root of their ratio is called the nominal characteristic

impedance. The manner in which this quantity (Jzjy ) is allowed to
vary with position along the line defines the particular type of line to be

considered. For example, if z and j are constant with respect to dis
tance, the Jz/y is constant, and the uniform line is defined. As shown

in Fig. 6, the distance is measured from the receiving end of the line.
The voltage, current, and impedance at the sending end and the receiv

ing end are denoted by the subscripts "S" and "R", respectively. Simi

lar quantities at an arbitrary distance, x, from the origin are denoted
by the absence of subscripts.

In general,

v = v(xst) , (2)

i = i(x,t) . (3)

However, since this work is concerned with a-c steady state and not

with transient analysis, the expressions for v and i maybe written in
the customary form, *

* See, for example, W. C. Johnson, Transmission Lines and
Networks, New York: McGraw-Hill Book Company, Inc., 1950. "IJnap. 2.
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v =VWeJ** =VejaJt , (4)

i =I(x)eJc0t =IeJWt , (5)

where it is understood that only the real part of eJ is used. With the
above terminology, the partial differential equations for the general

transmission line may be formulated from Fig. 6 as follows:

[y +(?iv/<3x).Ax] - v = izAx , (6)

[i +(?> i/9x).Ax] - i = vyAx , (7)

from which

•gv/'dx = iz , (8)

•^i /zx - vy . (9)

By differentiating (8) and (9) with respect to x, the following partial dif

ferential equations are obtained:

Dv/^x = i?z/"E)x + z-oi/^x , (10)

? 2"3 i/Zx = v3y/zix + y9v/?>x , (11)

i6Ut
When (4) and (5) are used in equations (10) and (11) the factor eJ is

common to all terms and may be cancelled. The remaining expressions

are functions of x only and the partials become total derivatives. When

(8) and (9) are substituted in (10) and (11) the differential equations for

the general line become

d2V/dx2 - (dz/zdx)dV/dx - zyV =0 , (12)

dEI/dx2 - (dy/ydx)dl/dx - zyl =0 . (13)
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The Uniform Line. --As has been mentioned above, if z and y are con
stants, equations (12) and (13) become

2 2d V/dx - zyV =0 , (i4)
2 2d I/dx - zyl =0 , (15)

which are the well-known expressions for the uniform line. Since the
solutions of these equations may be found in any standard text* on trans
mission lines, they are not solved here. However, for reference pur
poses in the following chapters, the important expressions resulting
from the solution of (14) and (15) are summarized and discussed below.

The general expressions for voltage and current are

V(x) =V=VR cosh x fZf +IR fzjy sinh x fz^ , (16)

I(x);= I =IR cosh x (zy +VR ^y7z sinh x /zy . (17)

where VR and IR are the peak values of the receiving end voltage and
current, respectively.

The characteristic impedance, Zq, and the propagation constant,
y, are defined as

Zo - J*1? • (18)
Y ~ {*Y =a + j(3 (19)

where a and (3q are the attenuation constant and the phase constant,
respectively. By using equations (18) and (19), equations (16) and (17)
become

V = VR cosh yx + IrZq sinh Yx , (20)

I =IR cosh yx +(VR/ZoWh yx . (21)

See, for example, Johnson, op. cit. , p. 33-34.
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Then the input impedance of a length of line, x, is given by

where

Z = V/l = Z

JR
V /I

R' R

ZR cosh yx + Z
o

sinh yx

o
cosh yx + ZR sinh yx

(22)

(23)

Now for most practical lines employed in resonant applications, the line
is constructed with low losses. For simplicity and with good accuracy,

these lines are usually treated as "lossless". It is this type of line

that is to be emphasized in this work. Hence, the assumption is made

that the line is lossless, and this is defined to mean

r = 0 ,

g =0 ;

(24)

(25)

that is, the series resistance per unit length and the shunt conductance

per unit length are zero, where in general

z = r + jo>L ,

y = g + jw)C .

(26)

(27)

The characteristic impedance from (18) becomes a constant equal to the
square root of the ratio of the series inductance per unit length, L, and
the shunt capacitance»per. unit length, Cs

Z = J L/C
o

Similarly,

y =JPQ =ju)JlE

(28)

(29)
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from which

and

P = o\/LC ,
o v

V =VR cos |3ox + jIRZQ sin (3qx ,

I = IR cos PoX+j(VZo)sin PoX »

Z = Zf
ZR cos Pqx +JZq sin (3qx
Z.q cos (3qx + jZR sin |3ox

(30)

(31)

(32)

(33)

Ordinarily for applications in which large standing waves are de
sired, the terminating impedance at one end of the line is either zero
or infinite because theoretically both of these conditions yield complete
reflection. Since the following chapters will be concerned largely with
these two cases, viz,

ZR = co
(34)

it is expedient to list the appropriate equations.
The Shorted Line (ZR =0). -- Taking ZR equal to zero, (31), (32), and
(33) become

V =jIRZQ sin (3ox ,

I = I0 cos (3 x
R ro

Z = jZ^ tan p x
O rO

(35)

(36)

(37)

The Open Line (ZR =co). -Similarly by taking ZR to be infinite, the
equations (31) through (32) become

R

mwmmmwm
f*Mmwmmmmwmmmm*mm ^^W^p^i»-«ii«^aHHfc«ifst!6, ,-j,
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V = V0 cos (3 x , (38)
R o

1=j(VZo)sin Pox • (39)
Z =-jZ cot 6 x . (40)

J o ro

Power Losses in Line.--Equations (35) through (40) adequately describe

the typical resonant properties of low-loss lines except for power con

siderations. To include the expression for power loss, the method is

employed which assumes that the current distribution along the line in

the presence of small losses is essentially the same as for the lossless

case. * The power may then be obtained to a good approximation by in

tegration as shown below.

The power loss in length of line, dx, is

p =(r/2)|l |2dx (41)

and the total average power loss in length, )i , is given by

rl
P =(r/2) / |l|2dx . (42)

If the actual current distribution, I(x), is replaced by the value given

for the lossless case, then for Z_ equal to zero,

I
P =(r/2)I2 f cos2 Bxdx . (43)

O IS. I o

and for Z„ equal to infinity,

P^ =(r/2)(VR/ZQ)2 / sin2 Bqx dx , (44)
o

which simplify to the following:

Po =(r/2)IR2 (ill) +(1 /4 BQ) sin ZPoij , (45)

*• See, Simon Ramo, and John R. Whinnery, Fields and Waves in
Modern Radio, New York: John Wiley and Sons, Inc. , 1944, p. 248.



•20-

Poo =('/2)(VR/Zo)' {ill)- (1/4 B ) sin 2S I

For quarter-wave resonance,

PQ 4 =W2

Then (45) and (46) become

Po =(r/2)IR2(4/2)= (r/2)IR2(^/8)

Pqo= (r/2)(VR/Zo)2(/o/2) =(r/2)(VR/Z )V/8) .

(46)

(47)

(48)

(49)

The quarter-wave resonator indicated by (47) is normally a uniform line

open at one end and shorted at the other. Thus, (48) and (49) are ex

pressions that represent the same line where I in (48) is the current at

the shorted end and VR in (49) is the voltage at the open end. Hence,
(48) and (49) may be equated; it follows that the voltage at the open end

is equal to the product of the characteristic impedance times the current

at the shorted end; that is, with the shorted end as the reference,

S R o
(50)

The parallel resonant impedance looking into the open end is ap
proximately given by

Rp =VR2/2Poo =8Zo2/rK • (51)

Summary. --This chapter presents the differential equations for the

general line and gives the general nomenclature and symbolism to be

used in the following chapters. In addition, the expressions for the uni

form line which are significant to the work that follows are listed for

reference.

In the next chapter the analogous expressions for the experimental
lines are developed.

siymmwm&m
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CHAPTER III

THE EXPONENTIAL LINE

Introduction. --Following the nomenclature and symbolism established

in Chapter II, the theory of the exponential line is developed and dis

cussed in this chapter. For clarity, only the significant steps are in

cluded in the mathematical development. The major emphasis is on

the resonant properties of the lossless line. A detailed discussion of

the results is deferred to Chapter VI.

Additional Symbolism for Distinguishing the Exponential Line. --In or

der to distinguish voltage, current, impedance, power, resonant fre

quency, and resonant length expressions for the exponential line from

analogous expressions for the uniform line, an additional subscript

"E" is used when required. Certain quantities are defined by special

symbols at various convenient points in the development.

Definition of the Exponential Line. --The exponential line is defined as

follows:

z=(Ro+j(a3Lo) e"2 Sx =zoe-z6x , (52)
y=(Gq +j^CJ e2 6x=yQe2 Sx (53)

where the subscript o denotes values at the origin. The quantity, q ,

which indicates the impedance taper of the line (and which has the same

units as the phase constant, p ), is called the taper constant and is used

in the generic sense having both negative and positive values. For pos

itive and negative values of £, the family of exponential lines are

termed positively and negatively tapered lines, respectively. The pos

itive line signifies a decrease, while the negative line indicates an

increase, of nominal characteristic impedance with distance from the

receiving end. The definitions are illustrated in Fig. 7.
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Fig. 7. (a) The Positively Tapered and
(b) the Negatively Tapered Exponential Line.
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Thus, from (52) and (53), the exponential line is seen to be char

acterized by a nominal characteristic impedance that varies exponen

tially with distance, that is,

-iS.-x.

where

ZqE =yzTy =Zooe— , (54)

Z = v/z"7y • (55)
oo v o Jo

Mathematical Development of the Exponential Line . --The differential

equations for the exponential line are obtained by substituting (52) and
(53) above in (12) and (13) from Chapter II. The resulting equations are

d2VE/dx2 +2&dVE/dx - y2VE =0 , (56)

d2IE/dx2 - 2<5"dIE/dx - y2IE =0 , (57)

where

y={z7= /^yo (58)

which is seen to be independent of the taper of the line. Since (56) and
(57) are homogeneous linear differential equations, the voltage and the

current have the following form:

VE =e^X(C1eT,x +C2e"rX) , (59)
IE=e^X(C3eT,X +C4e""PX) . (60)

With the boundary conditions,

vE(0)=vR , (61)

IE(0) =IR , (62)
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^V^ ,

the integration constants C^ Cv Cy and C4 become

C, =

c2 =

zv

VR(r +6-) + zolR
ZV

C -^^^'^R
3 ZV

C4 =
ip(r-S) + y vR o 'R

ZV

(63)

(64)

(65)

(66)

(67)

If equations (63) through (67) are substituted in (59) and (60), the general
expressions for VE and I„ follow,

VE =(VR/r )[rcoshrx+ (8+ zq/Zr) sinhrxl e"^x , (68)

*E ={YR/t"> |CP/ZR)coshrx -((S/ZR)- yo|sinhrx|e*x, (69)
and

ZE =V^ =

where

- fs2' 2+ Y

rcoshpx+(6"+zo/ZR) sinhrx
_(r/^R)coshrx-J(6/^R)-y0jsinhpx_ e"Z6x(70)

(71)

At this point the general expressions (68) through (71) may be
simplified for study by assuming a lossless line.
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The Lossless Exponential Line.--The following discussion considers
the line to be lossless for purposes of obtaining simplified expressions

of current, voltage, and input impedance, that is,

R =0 , (72)
o

G =0 . (73)
o

Thus by using (72) and (73) in (52), (53), (55), (58), and (71), the fol
lowing equations result:

z = ju>L =jXrt , (74)
o o * o

y =j"JC = jB
yo J o J o

(75)

znn = /ITTc" . CM
oo v o o

y =ja)flT7co =j«Vv >
(77)

-Z 2r=«r.Ac . (78)
o o

where v1 is the velocity of propagation along a uniform line (with a
series inductance per unit length, LQ, and a shunt capacitance per unit
length, C , ) and is given by

o

v«=l/JlTc . (?9)
V o o

From (78), it is seen that Vmay be either real or imaginary, according
to the value of the quantity

SZ -AC . (80)
w o o

A study of equations (59) and (60) shows that, if

2 2 (81)
d > <0 Lo o
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the attenuation of the voltage and current with distance is greater than
if

rf < ^ LQCo . (g2)

Hence, for this work, interest is confined to the latter case since, for
resonant operation, minimum loss is desired. The boundary between
the two cases is given by

c2 2
0 ~ ^cLoCo (83)

so that a critical frequency is defined as follows:

*c =(|S|/2*) d/JlTCo) =(|$|/2ir)v« . (84)

This is the quantity called the "cut-off" frequency used by Burrows* in
showing that the exponential line behaves as a high-pass impedance
transforming filter. However, as Johnson** points out, this term is
misleading since energy is transmitted to the load at frequencies below
fc unless the line is very long. Hence, the term critical frequency is
used here. In addition, the following definitions are employed for
convenience:

VS& • (85)

P 5KZ~ *2 • (86)
Po5/^2l0C0=«>/v.

Burrows, op. cit. , p. 559.

**Johnson, op. cit. , p. 205.

(87)
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When (63) and (85) are substituted in (68), (69), and (70), the general
equations reduce to the following:

VE =VR[cos px+ (l/p)|̂ +(zo/ZR)jsin pxje" X ,

/P)'̂ -(yo/ZR)}sinpx]e^X ,XE =*R [C°S PX " (1

ZE~ZR

cos px + (1/P) (<$"+ zqZr) sin px
_cos px - (1/p) (6- yoZR)sm px_

-ZSy.

(88)

(89)

(90)

Thus, (88), (89), and (90) are the basic equations of the lossless ex
ponential line terminated in an arbitrary impedance, ZR. In order to
understand more clearly the resonant properties of this type of Hne, the
expressions for two particular terminations are developed. These two
terminations are called the open (ZR equals infinity) and the shorted
(Z_ equals zero) lines-, respectively.
The Open Line (Zr =co). -For this case, the basic equations, (88),

(89), and (90) become

VE =VR (cos Px +(6/p) sin PxJ e"

IE=VRtlyo/p)sillpXle^X
-2<Sx

zE =
"cos px +(&/P)sin px
(yo/P)sin px _

(91)

(92)

(93)

An additional expression, the power loss, may be calculated by
the same method introduced in Chapter II for the uniform line. Thus,

the power loss in length of line, dx, is

p = ( I *72)Rdx • (94)

The resistance per unit length, R, is assumed constant so that the ex
pression for power loss for the exponential line may be compared in
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Chapter VI with that of the uniform line. As will be shown in Appendix I,
the above assumption is easily met by using a parallel-strip* line.
Then from (92) and (94), the average power loss in length, I , is

PE =<VVP>2(R/2>/e^Xsin2pxdx , (95)

PE =(VRB0/P) (R/8) e - 1 + b tf-
o

rO 2

(^cos 2pi +psin2pi)e2 /p' (96)

Next, the resonant properties of the open line are investigated by
obtaining the expressions for the resonant lengths of line analogous to
the quarter-wave and half-wave resonant conditions of the
uniform line, that is,

(97)

and

Zp, = oo
(98)

respectively. Thus for quarter-wave resonance, the following equation
results from (93) and (97):

or

cos pa +( 6/p)sin pa =0

cot Pa = - 8/fi

(99)

(100)

For a fixed frequency, the resonant lengths for resonances analogous
to those of a uniform line, viz,

>74, 3X/4, 5)74, etc...... (2m+l)S/4

„ ,. 'Federa-1 Telephone and Radio Corporation, Reference Data fo
Radio Engineers 3rd Ed. , New York: American Book-Knickerbock
-Press, Inc. , p. 325.

r

er
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are

a_ =(1/P)
m

(m + 1 )ir - -0- (101)

(m = 0,1,2,3,...)

where

-Q-= cot "^/P (102)

Conversely, for a fixed length, a, the corresponding resonant frequen
cies may be obtained from (100) by an approximate method which will be
described later in this chapter.

Similarly, for half-wave resonances, (93) and (98) yield

:ot pb + (£/p =oo

from which, for a fixed frequency,

b = n ir/p ,
n

(n = 0, 1, Z, 3, . . . -,),

for the resonances indicated as

>-/2, 2>72, 3>72, etc...., n >/Z

(103)

(104)

For a fixed length, b, the corresponding resonant frequencies are

P = nir/b
rn

(105)

Next, the shorted line is treated in a similar manner.

The Shorted Line (Zr = 0).--For this case, equations (88), (89), and

(90) become

VE=IR|Zo/P)sinPXJ
-6: (106)
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1^ =Ip(cos px -(£/p)sin px)e °X

-2 £x

E "Rv

(zo/p)sin px
cos px - ((5/p)sin px

(107)

(108)

The expression for power loss may be obtained by the same meth

od used for (95) and is found to be

P„ = (UP /PHR/S£)E v Rro
~zSi ,
e - 1

- \5(SZ -p2)(c5"cos 2pX+ psin 2pi)

+4p£(£sin 2p^- pcos 2p^)j e2^ /p2
S**l

(109)

The quarter-wave and half-wave resonant conditions are the reverse of

those for the open line, viz,

ZE =co

and

zE= 0

respectively. By using (108) and (110), the following equation is
obtained:

cos PA -(£/p)sin pA =0

or

cot PA = (5/p

(110)

(111)

(112)

(113)

^^mt^^^mm^^mmf^m^mm^mmm^m^fm
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For a fixed frequency, the resonant lengths are

Am =(l/P)(mir+0) (114)

(m = 0, 1, 2, 3, . . . )

for the resonances,

>/4, 3hl4s 5ty4, ..., (2m+1)^/4

where -9- is given by (102). The corresponding resonant frequencies,

for a fixed length, A, are obtained by solving (113) by approximate

methods.

Similarly, for the half-wave resonances,

HZ, 2 h/Z, 3 h/Z, . . . , n >72

the condition is

cot pB = co , (115)

and for a fixed frequency the resonant lengths are

B =mr/p . (116)n r-

Conversely, for a fixed length, B, the resonant frequencies are

Pn=nir/B . (117)

The mathematical development of the essential expressions for the

lossless exponential line is concluded with equation (117). Illustrations

of some of these results are presented below in order to give a clear

physical picture of the characteristics of this type of line.
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Input Impedance vs Length. --If equation (101) for the open line is reex

amined considering o to be positive, then, since Pa is intrinsically

positive, the zeros of the input impedance are

tt - -£- Zit - -&•
> * • • ,

and from (104) the infinities of the impedance are

and

0 1 IIv> (3' p ' *• •

Similarly for 6 negative, the zeros and infinities are

-9- it +-0- 2ir + -©-_, -^
, « . . ,

0 v 2lT

respectively. After being rearranged as follows:

ZE =(pe"2°X/yQ) (cot Px+ S/p) (118)

equation (93) is sketched with the use of the zeros and infinities in

Fig. 8, for positive and negative 0 . Both the taper constant and the

frequency are held constant for each curve.

Next, the shorted line is treated in a similar manner. Thus, from

equation (114) for the shorted line with ^positive, the zeros are

Q u 2tt
5 p ' "p7"' *' * '

The frequency is understood to be above the critical frequency.

MMWtelWWlpi^H^^ IKl' 11nil!iIU^r.Wl«mii|l^|ptlW^



-33-

+ JX

UNCLASSIFIED

ORNL-LR-DWG 18030

jS,S- CONSTANT
X - INFINITIES OF Z,
O -ZEROS OFZ,
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and the infinities are

-9- tt + -e- 2tr + -e-

In a like manner for 6 negative, the zeros and infinities are

•tr 2tt
0,

P' T'

and

tt - -9- 2tt - -O-
, ... j

respectively. When the above information for the shorted line is used,
Fig. 9 shows a sketch of equation (108), for both 8 positive and Oneg
ative, rearranged as follows:

= 17. e>

E
Z_ =(zoe^ °X/p)[(l/cot px)- Sip] . (119)

Again the taper constant and the frequency are held constant.
Now if the taper constant and the length are held constant, the

input impedance becomes a function of frequency. This topic is con

sidered in the next section.

Input Impedance vs Frequency. --Since equations (118) and (119) are not
easily sketched when frequency is the variable, two pairs of curves for
the shorted line are plotted for a particular set of conditions. Only the

shorted line is so illustrated since the characteristics of the open line

are similar. Fig. 10 shows the input impedance vs frequency of a
shorted line for the particular set of conditions, viz, the length is held

at 16 feet and, two pairs of values are used for 6 , that is,

0 = ± 0. 031 radians per foot

and

&= ± 0. 062 radians per foot.

WJj^«*i#fflMi!*Sti«M***«s*^
WRP«#««BiftS*i£IWI
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In addition, all four lines have the same nominal characteristic imped
ance at the open end. Normalized scales are employed where the
ordinate is the input impedance divided by the nominal characteristic
impedance at the open end, Zog, and the abscissa is the frequency di
vided by the critical frequency, fc< Fig. 11 presents the same data
with a direct-frequency scale.

In the next section the quarter-wave resonance condition given by

(113) is discussed further.

Quarter-Wave Resonance vs Taper for the Shorted Line. --Equation

(113) may be rearranged as follows:

cot /(P^)2 -(8a/ =6A1ljuT^)Z -(6A/ (120)
by the use of equation (86). Thus, (120) is a function of p^Aj and OAj
and is of the form

tan W = W/D (121)

where

W=/(P0A1)2- (8a/ (122)

and

d=Sa1 . <123>

Also, from (54)

8ax =(l/2)loge(Z00/ZoS) . (124)

Hence, equation (121) may be solved by approximate methods for poAj_
as a function of Z /Z c, the ratio of the nominal characteristic imped-

oo oo

ances at the ends of the resonant line.
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Fig. 12 is a composite plot of

2_i vs Z /Z „ (125)
— oo oS

it/2

for o negative, and

P A,
-2-1 vs Z _/Zrtn (126)

,- — oS oo
ir/2

for £ positive, so that both ratios, ZqqIZq^ and Zq^IZqo, range from
zero to one. It is to be recalled that the quarter-wave resonant condi

tion for the uniform line is

Po4=W2 (127)

Thus, where p _ is used to distinguish the exponential line,

PoEAl
w/2

PoEAl

so that for

\-k

(128)

(129)

(that is, the resonant exponential line is equal in length to the resonant

uniform line),

Then,

P TTA1
°E„ x = f /f . (130)

P TTA1
oE i = e(z /Z 1 (131)
tt/2 g^ oo' oS' *



o 1.4

^°
<r

O 1.2

^°
II

<T 1.0

0.6

0.6

-40-

UNCLASSIFIED

ORNL-LR-DWG 1S034

- TAN W—w/n 1
z0

/
Zo I

•//////////////////////////,

h—A 1
V7vs////////;/////;;/////

/, i

h—£o 1

Z

////////////

1
Zoo ZoS z00

— -A<

oS

- UN

|
FORM LINE —1

~~—.^^ POSITIVE LINE REGION
NE GATI VE LINE REGIC)N

- (S «" n* f

I
fc

0 0.2 0.4 0.6

Zoo/ZqS
1.0 0.1 0.6 0.4 0.2

Zos/Z0o

Fig. 12. Quarter-Wave Resonance vs Taper of the Lossless Exponential Line.

-ww^rcraw^wiwiiijiiiiwiM
WWj»».im^^i'̂ pmWftlWJW«W^na*Wim«MllM)fepWMWfel^W



-41-

is either a plot of

or, for

f _/f vs Z _/Z
oE o — oS oo

oE o

a plot of

A, /£ vs Z _/Z
1 ^o — oS co

Hence, the curve in Fig. 12 may be used for either purpose.

Power Loss of the Quarter-Wave Resonant Line (Zr = 0). --The curve in

Fig. 12 may be used with equation (109) and equation (48) from

Chapter II to obtain the ratio of power loss of an exponential line to that

of a uniform line where both lines are in quarter-wave resonance operat

ing at the same frequency.

The expression for the ratio of power loss for the two lines is ob

tained by substituting (113) in (109) yielding

PoE =(IrR/8 6) (e2^Al -1-4<52/(32) (132)

and subsequently taking the ratio of (131) to (48). Thus,

[2R/8£)(e2^Al - 1- 4<S2/P2)(LtR/S^He Al - 1 - 46^/p^)
P„/P = -ii— , — . (133)

°E ° <£*4/4)

However, for the exponential line,

^R^ES^^V111^! (134)
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from (106) and (113), and, for the uniform line

^V2^ '

Thus,

oE o

(VESPe<^Al/XosinpA1)2(R/86)(e2^Al-l-4o2/p2)
(VgTz/jrTT^

where

sin PA j =plJSZ +P2

and from (86)

p' =P2 + 6Z

Also, from (74), (87), and (137)

(p /X )2 - 1/Z2
sro o' oo

Thus, after multiplying numerator and denominator by A
1

But

P tt/P =oE o

1)^Z6A1-(VESZo) (R)(A

<vsZoS>2<r><ioH2^Ai>

•6ai -i. 4(Sai/PqA1)1

6 = tt/2^

%P*mm&mm>mmAWim<wte>mw#w<K*ww.

(135)

(136)

(137)

(138)

(139)

(140)
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So, finally, the ratio of power loss is

P /P =
oE' o

(VESZo)2(R)(A1)(e=2^Al
(vszoS)2(r)<4H2£5Ai>

;2<5A1-1-4(26:A1/Tr)2(i0/A1)'

(141)

At this point, (140) maybe modified to approximate the cyclotron
problem for comparison of the two lines represented. The basis for
comparing the lines is as follows:

1. Since the accelerating voltage for the cyclotron is a

primary parameter, the two lines should have the
same voltage at the open end.

2. Since the spacing of the accelerating electrodes is
very limited so that a wide choice of values for the
nominal characteristic impedance at the open end is

not possible, the two lines should have the same
nominal characteristic impedance at the open end.

Hence,

VES/VS = VZoS = X

In addition, for convenience in comparison, let

R/r = 1

Then (140) becomes

(Al)(e-2S T
p /p = i
oE ° (I^zSaj

2^Al.l-4(2^A1/tr)2(io/A1);

(142)

(143)

(144)
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which is a function of A,/f and Z „/Z .
1 o oS oo

Thus, equation (144) may be used in conjunction with Fig. 12 to obtain
the power ratio curve

P^/P vs Z _/Z
oE o — oS oo

Fig. 13 shows a plot of this equation where the curve is obtained by
picking a value of Aj and obtaining the corresponding value of
ZoS/Zco (or the reciprocal) from Fig. 12 for the condition that both
lines are in quarter-wave resonance at the same frequency.
Summary. --The methods of ordinary transmission line theory are em
ployed in this chapter to present a mathematical development of the
general equations which describe the exponential line. These equations
(68), (69), and (70) are applied to the case of the lossless line in which
the series resistance and the shunt conductance are zero. The result
ing expressions (88), (89), and (90) are considerably simplified and
are better suited for detailed study. The power losses are obtained by
assuming that the current distribution given for the lossless case is not
significantly altered in the presence of small losses such that the power
loss of a low-loss line is given approximately by integrating the product
of the resistance and the square of the (rms) current (for the lossless
case) over the length of line involved. It is to be noted that little is
sacrificed by emphasizing the lossless line since the results are typical
for the majority of the lines used in resonant applications. That is to
say, low-loss lines very closely approximate the characteristics of
lossless lines. For lines with excessive losses, the general equations
may be used.

In addition to the development of mathematical expressions,
curves of input impedance vs length, input impedance vs frequency,
quarter-wave resonance vs taper, and power loss vs taper are pre
sented for the purpose of comparing the characteristics of the expon
ential line with analogous properties of other lines. A detailed discus
sion of these properties in conjunction with the properties of the uni
form and linear lines is given in Chapter VI.
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The results in this chapter are limited to transmission lines

whose change in spacing with respect to length along the line is small.

A detailed discussion of these limitations is deferred to Chapter VI

so that those of the linear line, which are similar, may be treated

at the same time.

wmmmmmmMWmwaHimmm
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CHAPTER IV

THE LINEAR LINE

Introduction. --In this chapter, the theory of the linear line, paral
leling the treatment of the exponential line in Chapter III, is devel
oped. Again the emphasis is on the resonant properties of the loss
less line. Adiscussion of the results is postponed to Chapter VI.
Additional Symbolism for Distinguishing the Linear Line. --Analogous
to the case of the exponential line, an additional subscript "L" is used
when required to distinguish voltage, current, impedance, power,
resonant frequency, and resonant length expressions for the linear line
from similar expressions for the uniform line.

Definition of the Linear Line. --The linear line is defined as follows:

z = (R0 +J«>Lo) [l +<x/k)] =zo[l T(x/k)J (145)

y=(Go +jo>Co)£l/{l ^x/kjps yo[y{i T(x/k)}] (146)

The quantity k which is inversely proportional to the impedance taper of
the line, is called the taper constant. Unlike 6~ for the exponential line,
k appears as a positive number for both positively and negatively tapered
lines. However, the terms positive and negative line retain the same
general meaning established in the last chapter for the exponential line,
viz, a positive line signifies an increase, while a negative line indicates
a decrease, of nominal characteristic impedance with distance from the
sending end of the line.

From (145) and (146) the linear line is observed to be character
ized by a nominal characteristic impedance that varies linearly with
distance, that is,

ZoL^ =Zo£ ~(*^)] (147)
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for the positive line, and

*oL =*,„[' +<^»] • (U8)

for the negative line, where

Z = z /y
oo V o 'o

(149)

Mathematical Development of the Linear Line. --The differential equa
tions for the linear line are obtained by substituting (145) and (146) in
(12) and (13) from Chapter II. The resulting equations are

d2VL/dx2 +[l/(k - x)]dVL/dx - y2VL =0 (150)

d2IL/dx2 - [l/(k - x)]dIL/dx - y2IL =0 (151)

for the positive line, and

d2VL/dx2 - [l/(k +xJIdVj^/dx - y2VL =0 (152)

d2IL/dx2 +[(l/(k +x)]dIL/dx - y2IL =0 (153)

for the negative line.

At this point a change of variable is introduced for convenience.

Let

u = k-x (154>

for (150) and (151), and

u=k + x <155>

^n^WoWW)ii««l»^a^awnPii
MWMMWBIBWJWffWWBWIW &jtma&$mimim&®lito®&*®"'
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for (152) and (153). Then (150), (151), (152), and (153) b
ecome

where

d2VL/du2 - (l/u)dVL/du - y2VL =0 (156)

d IL/du^ +(l/u)dIL/du - y2IL =0 (157)

d VL/du2 - (l/u)dVL/du - y2VL =0 (158)

d2IL/du2 +(l/u)dIL/du - y2IL =0 (i59)

y = {^y ={^y0 • (i6o)

Thus, (156) and (157) are seen to be identical in form to (158) and (159).
Hence, the solutions are identical in form also. It is to be noted that
y is independent of the taper of the line.

Equations (156) through (159) are forms of Bessel's equations and
have the following solutions, respectively:*

VL =uICj Jj(Gu) +C2Y1(Gu)

IL= [C3Jo(Gu> +C4Yo<Gu>

(161)

(162)

where Jq(Gu) and Jj(Gu) are Bessel functions of the first kind, Y (Gu)
and Y2(Gu) are Bessel functions of the second kind,** C., C C and
C4 are integration constants, and

G= J~yZ (163)

See, for example, Eugene Jahnke and Fritz Emde, "Tables of
Functions with Formulae and Curves," 4th ed. , New York- Dover
Publications, 1945, p. 146, 7(1).

Also, called Neumann functions.
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u = k + x

For the boundary conditions s

x = 0

u = k

V = V
VL R

XL = IR

ZR ~ VR/JR

the constants become

Cj =(irG/2)

C2 =-(TfG/2)

VRYQ(Gk)± (z^/GlYjfGk)

VRJQ(Gk) ± (zQIR/G) Jx(Gk)

C3 =* (V/2) VRYo(G\L)±(zoIRlG)Y1(Gk)

VRJQ(Gk)± (z^/OJ^Gk)C4 = + (iryok/2)

(164)

(165)

(166)

(167)

(168)

(169)

(170)

(171)

(172)

(173)

Using (170) through (173) in (161) and (162), the general expressions

for VT and I result,

VL =u(ttG/2)J VRYo(Gk)±(VR/G>Yl<Gk> Jj(Gti) (174)

VRJo(Gk)±(zQIR/G)J1(Gk) Yj(Gu)

;V^&*»*SHM*#*W BJ1p»S^^-»«^!il«l«^*i«^R3W«<V^i^«W*!-3W^*"i~ •



JL =±(^yok/2)-

and, of course,

ZL =V^
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VRYQ(Gk)±(zoIR/G)Y1(Gk)

VRJQ(Gk)± (z^/OJ^Gk)

Jo(Gu) (175)

YQ(Gu)

(176)

At this point the expressions may be simplified for study by assuming a
lossless line.

The Lossless Linear Line. --The following discussion considers the line
to be lossless for purposes of obtaining the current, voltage, and input
impedance, that is,

R = 0
o

G = 0
o

Thus, using (177) and (178),

zo=jCOLo=jXo

yo =j o)co = jBQ

Y=J^/iTc0=JP0 =j*VV

oo
= Jlu /CV o' <

^"i/W

G= -y = 0

(177)

(178)

(179)

(180)

(181)

(182)

(183)

(184)



and

VL =u(1rPo/2)

I_ = ±(iry k I2)<
)

ZL =VL/XL

•52-

VRYo<Pok>±tzoIR/P0)Y1(P0k)

VRJo(P0k)±(zoIR/Po)Jl(Pok)

VRY0(P0k)d=(zoIR/Po)Y1(P0k)

Vo^ ± <ZoVWV^

Jx(P0u)

Y^u)

J (N)OlrO '

Y (pu)
oxro '

(185)

(186)

(187)

Equations (185)s (186), and (187) represent the general expressions for
a lossless linear line terminated at the origin by an arbitrary impedance,

ZR'
Similar expressions for two particular terminations, the open and

the shorted lines, respectively, are developed in the next section.

The Open Line (Zr = oo). --For this case the basic equations (185),

(186), and (187) become

since

-mmmtmrnmrnmsmmim

VL= (*V2)(ZoL/Zoo)(Pok)(YokJl - JokYl)

h. =± j(*V2) <Pok/Zoo> (YokJo " JokYo>

zT = •$ jZ T
L + J oL

YokJl " JokYl
Y.J -J,Y

ok o ok o

ZR=oo 'k-0

(188)

(189)

(190)

(191)

hv**w*S(p8((M*ia|^
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Pou =fl ^(x/k)]Pok =(ZoL/Zoq) PQk ,

u /k = 1 -(x/k)= Z /Z
oL oo

u/k = 1 +(x/k)= Z T/Z
oL oo

P /y = - j ,/z y /y = - jZ
"o'o J i o'o'o J oo

Y (p k) S y .
oxro ' ok

J (P k) = J ,
oiro ' ok

YlV=Yl • Jl(PoU>=Jl

(192)

(193)

(194)

(195)

(196)

(197)

The power loss in length, dx, assuming the line to have small

losses, is

P = ( 72) Rdx (198)

When the method previously used in Chapters II and III is employed, the

power loss in length, X , is
.1

2

where

P =R/2 I, dx (199)

is obtained from (189). Since the author was unable to ex

ecute the general integration analytically, graphical methods were used

for particular conditions. This topic will be discussed more fully later

in this chapter.

Next, the resonant properties of the open line are investigated by

obtaining the resonant lengths of line analogous to the quarter-wave and

half-wave resonance conditions of the uniform line, that is, for

ZL = ° (200)



•54-

and

ZL = co , (201)

respectively. Thus, for odd-multiple quarter-wave resonances, the

following equation results from (187):

YokJl " JokYl = ° • <202>

The approximate solution of (202) may be obtained from the literature.

The solution will be of the form

Then

so that

(6 u) = n ~°°5, irK (203)
o n n1 -(k/uj|

(n = 0, 1, 2, 3, . . . ) „

A discussion of K is given later in this chapter. From (154) and (155),

for x equals JL> ,

u =u = k + L . (204)

k/u = i—- =ZQO/Z , (205)
1+lk/u) °° °S

<Pou)n =^n* = • n° °°5 I *Kn ' (206)° n °n 1 -(k/-u) n

Jahnke and Emde9 op, cit. 9 p. 206-209o

m£&HK**WKK&IKIIH*lll*^^



-55-

When both sides of (206) are multiplied by A/ and divided by u,

(PJ.i = i n"°-5 irK . (207)

but

° n I — i I n
u - k

u-k=k + /fr-k = :f,/£

So, equation (207) becomes

(Po)n2 =(n-0.5)7rKn

Now

(208)

(209)

(n - 0. 5) it , (210)

for

n = 1, 2, 3, . . ., (211)

is seen to be the successive odd-multiple quarter-wave resonant lengths
in radians of the.uniform line, that is,

•rr/2, 3it/2, 5ir/2, . . .

Therefore, the quantity Kn in (209) is recognized as the ratio of the
quarter-wave resonant lengths (in radians) of the linear line to those of

the uniform line. Thus, (209) may be written

((> ) I =Kn <212>

where the subscript "L" is introduced to indicate B for the linear line.
o
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Actually, since the left hand side is a ratio of products, it may be re

written as follows:

(i3oL/f)n -K (213)(S I ) n • K ]
iro 'C'o'n

Hence, for a linear line and a uniform line operating at the same

frequency (fQL = fQ)

J^L- =Kn ; (214)
/t/on

that is, the quantity K is the ratio of the resonant lengths of the two

lines. Similarly for two lines of the same length (X = JO )

(P T ) (f T ), oLn = )r°yn =K (215)
Wl f n V '
^ro'n on

which states that K is the ratio of the resonant frequencies. As may
n

be seen from the reference mentioned above, K is a function of the
n

ratio

Z _/Znft (216)
oS oo

and has been plotted (for n = 1, 2, 3) in Fig. 14 for both positive and

negative lines. The ratio, Z g/Z for the former, and z00/z0g for
the latter, is used for convenience. This allows the abscissa for each

line to range from zero to one instead of from zero to infinity otherwise

required.

*Ibid., p. 207.

mfmm*»t¥m-»m^»»mmmm IIHPWliWHili^'MW.WWWWW^^
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For half-wave resonance, the following condition results from
(201) and (190):

Y,J - J , Y = 0
ok o ok o (217)

The approximate solution of this equation is found in Jahnke and Emde

on page 205, as a function of the ratios

p Tk
roL f3 TUoL

or

roL
p Tk
roL

(218)

according to which is greater than unity. From (205) these ratios are
either

k/u= Z /Z _
oo oS

or the reciprocal. The roots of (217) are given by

*Zoo/ZoS> " 2 (P Tu) = a
,roL 'n n

for the positive line, since

P Tk
roL

P Tu
roL

k/u = Z /Z _ > 1
oo oS

fZnc/Z ) - 1 (PrtTkL =oS oo oL n n

for the negative line. Equation (220) may be written

u (k/u) - 1 tfolA*^

(219)

(220)

(221)

(222)

(223)

mwmwmmiwmwmmmm
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or

(P°L^)n =(l/nu) -sJL-. =an/n7r (224)
nir k - (k - X)

which is a function of Z /Z c. Similarly, equation (222) may be
oo ob

written

k [(u/k)-l] (PoL£)n=ani . (225)

or

(Po:L^)n =a /rnr (226)
nir n

which is a function of Z e/Z . Then (224) and (226) may be seen to
Ob OO

represent the ratio of the electrical length of the linear line to that of
the uniform line for integral-multiple half-wave resonances, since

(P i ) =ntr (227)
xro ^o'n

for the uniform line. The equations (224) and (226) may be rewritten

as follows:

CoL ^'n / (??9.\(ft 9 ) =an/niT (228)
xro ^o'n

so that for

I =lQ , (229)

a plot of a /nir vs Z /Z e (or the reciprocal) represents the ratios of
* n — net nSn

the half-wave resonant frequencies when the two lines are the same length.
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Similarly, for

P T = ProL ro

-60-

(230)

the same plot represents the ratio of the resonant lengths of the two

lines,, Fig. 15 is such a plot for both the positive and negative lines for

n = 1, that is

a./ir vs Z /Z- ( or Z„/Z )
fcl oo oS oS oo'

(231)

The shorted line is considered in the next section.

The Shorted Line (ZR = 0). --For this case, equations (185), (186), and

(187) become

VL =* J(W2)(IRZoL)(Po;Lk)(YlkJ1 - JlkYl) (232)

since

and

IL =(W2)(IR)(PoLk)(YlkJo- JlkYo)

ZL=:fJZoL
YlkJl
Y..J

Ik o

ZR = ° —VR = °

JlkYl
JllrY
lk o

Z =-p /y =-jp Z
o roL 7o J1oL oo

•P T = y zroL Jo o

Jl^oLk>HJlk Yl<PoLk>SYlk

^wniwpiEMiwirowffls^^

(233)

(234)

(235)

(236)

(237)

(238)

I^IWIi^iWW'**'**^^
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Jl^oLU>HJl Yl^oLU^Yl

The power loss in length, Z , is:
J

2PL = (R/2) dx

(239)

(240)

This expression is identical in form to (199) and was obtained in the

same manner. The details of the graphical solution are taken up later
in this chapter.

The quarter-wave and half-wave resonant properties of the short
ed line are obtained from the condition

ZL = co (241)

and

zL = o , (242)

respectively. Thus, the following equation is obtained from (234) fo:
quarter-wave resonance:

Y„ J -J..Y = 0
Ik o Ik o (243)

This is seen to be identical in form to equation (202) with the arguments
of Jq and Yq interchanged with those of Jj and Yj . Therefore, the so
lution for this case will be of the form

(P TU)xroL 'n

<PoL>n ^ =

mmi-mim. M*mmmm*mmmwwmmmm§mwm

n - 0. 5

|(k/u) - 1

n - 0.5

u

ttK
n

(244)

Tt Jt K
n

(245)

t<-'-m*m#mwmmm'wmmmmm



or

K =
n

(PoL^n
(n - 0. 5)ir

63-

(246)

which, of course, is the same result obtained in (209). Hence, the quan

tity K is either the ratio of the quarter-wave resonant frequencies for a

linear line and a uniform line of the same length, or the ratio of the

quarter-wave resonant lengths of a linear line and a uniform line oper

ating at the same frequency.

Similarly, for half-wave resonances, from (242) and (234)

YlkJl " JlkYl = ° (247)

Several of the roots of this equation are tabulated in Jahnke and Emde

as a function of k/u and u/k for the positive and negative line,

respectively. The roots are given by

(Z C/Z )
x oS oo'

1 (P _u) =A
vroL n n

for the positive line, and

(Z C/Z ) - 1
v oS oo'

(P ,k) = A
xroL 'n n

(248)

(249)

for the negative line. Equation (248) may be rearranged as follows:

or

(Z C/Z ) - 1
x oS oo' <PoLU)n=[<k/u)-\

<eoLi>n
nir

= A /mr
n

(PoLi)n^ =A„i. (250)
n

(251)



Similarly, for (249)

<PolJ>n A,
— • = A /nir

nir n

•64=

(252)

Thus, (251) and (252) are seen to be of the same form as (224) and

(226). While they have analogous meaning to (224) and (226),

a 4 A
n ' n

(253)

Hence, (251) and (252) are plotted in Fig. 16 for n = 1.

The mathematical development of the linear line is concluded

with equation (253). Illustrations of some of the above results are pre

sented and discussed in the next several sections in an attempt to pro

vide a more complete picture of the physical properties of the linear

line.

Input Impedance of the Shorted Line vs Length. --Equation (234) repre

sents the input impedance of the shorted line. Rearranging the equation

by normalizing with respect to the nominal characteristic impedance at

the open end, the following equation results:

ZN= ZL/ZoS =+j(ZoL/ZoS)
YlkJl JlkYl
Y„ J - J„ Y

Ik o Ik o

(254)

With the frequency held constant, Z^ is plotted in Fig. 17 as a function

of the normalized length, x/Z , for two values of Z ,,/Z
s oS oo

Input Impedance of the Shorted Line vs Frequency. --Fig. 18 is a sketch

of the input impedance of a fixed length of shorted line as a function of

frequency for two values of Z 0/Z , viz, 0. 138 and 7. 250 which cor-
n ] oS oo' ——

respond to values of taper constant of 18. 56 and 2. 56, respectively.

Reference curves for the uniform line (with characteristic impedance

values equal to the two end values of nominal characteristic impedance

for the linear line) are included. Thusf Fig. 18 serves to show the

trend of the impedance with taper constant and to show the difference in

the general shape of the curves compared to the uniform line.
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Voltage and Current Standing Waves on the Shorted Line. --To illustrate
the difference in the general shape of the standing waves on a linear
line to those on a similar lossless uniform line, impedance .#» ratio

contours of voltage and current are plotted in Fig. 19 and 20 from equa
tions (232) and (233) after normalization as described below. First,
from (232) for quarter-wave resonance

-I (255)

and

VLS =* j(W2) (IRZoL) (f3olk) YlkJl(PoIu) - JlkY1(PoLu) (256)

where

u k + i =kZ „/Z
oS oo

(257)

V o is the voltage at the open end of the shorted line When the value
of I from (256) is substituted in (232) and (233)5 the two equations be =

R

come (after some algebraic manipulation)

W«fe4
oo

'oS

YlkJl " JlkYl

[Wi^oi^ - JikYi<Poi*M (258)

and

YlkJo ' JlkYo

^ifW^s* YlkJl^oLU)"JlkYl^oLU!)
(259)

Then the normalized values are defined as

VN ~ VL/VLS
(260)

•a •!«sw^e'«eTO«*w*»«««*5i.iui«i.t. %jn~-^m«**&**;w»a*p« t^amw^mumm^mm
mmmwwmmmwm B«pil»te#i*J**J#mt»*
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lN= VLS/ZoS
L (261)

These expressions may be obtained as a function of the normalized
length, xjB, , for chosen values of Zoo/ZoS. This is true because, for
a fixed frequency, (260) and (26l) are functions of ZqqIZqS from

K,

Pol" =<*/2> JT-Tz-J^l

K,

PoLk =<*/2> [1 -(ZoS/^OQ)J

PoLU = (lT/2)Kl t1-<ZoS^oo>j"(X//)

for the positive line, and similarly, from

and

roL

p Tk
roL

(3 Tu
roL

(262)

(263)

(264)

(265)

(266)

(2 67)

(which are functions of Z C/Z ) for the negative line.
x ob oo

Power Loss of the Quarter-Wave Resonant Line (Zr = 0). --The power

loss of a shorted line operating in quarter-wave resonance may be ob

tained by graphical integration of equation (240) as previously noted.
This equation may be expressed in the following form for the positive

line:



where

• 72-

•v>

? J$\Y\ir3n- JiiY 1 d(|3 Tu)

[%Jl(PoLu)-JlkYl<PoLu)]

5(R/2PoL.'(VLS/ZoS» *

roL

* - ?<,!» •

(268)

Then the ratio of (268) to equation (49) from Chapter II is

oL o
(R/2Pol"WZqS>2*
(r/ZPo)(VsIZo)Z(rrl4) (269)

which is the ratio of power loss of the linear line to that of the uniform
line. This ratio becomes

PoL/Po=<R/rHP0/PoL)(VLS/Vs)^(Zo/ZoS)2(4/ir)K . (270)

For the negative line, the ratio is given by the same expression with
the limits of integration reversed. Now, if

R/r = VT <?/V<; = ZJZ c = P /P T = 1Lb S o oS ro "oL

then the ratio becomes

J? [Tlk-
PoL/Po =<4/*>

Jo"JlkYo] d^oLU>

YlkJl^oLU);JlkYl(PoL^

e»«m«>iM^KUM^H-^iew^#< -mm-^mmmmmmm

(271)

(272)



•73-

The composite curve for both the positive and negative lines is plotted

from (272) as a function of ZoSIZqq for the positive line, and z00/z0g
for the negative line, in Fig. 21.

The development and illustration of the theoretical results are

concluded with this section.

Summary. --A mathematical treatment paralleling the method used in

Chapter III is employed in this chapter to develop the general equations

which describe the linear line. These equations, (174), (175), and

(176), are in terms of Bessel functions of the first kind of orders zero

and one and Neumann functions of orders zero and one.

Emphasis is placed upon the lossless and low-loss lines since

the interest is in resonant applications. Similar to the development in

Chapter III, the theory for both the open and shorted lossless lines is

given. In addition, the characteristics of the shorted line are illus

trated from theory with a variety of graphs. These graphs include

quarter-wave and half-wave resonance vs taper, input impedance y_s

normalized length, input impedance vs frequency, voltage impedance vs

standing waves vs distance, and power loss vs taper. A detailed dis

cussion of the linear line is deferred to Chapter VI.

The results in this chapter are limited to transmission lines

whose change in spacing with respect to length along the line is small.

These limitations are considered in Chapter VI.

Experimental verification of the theory is presented in the next

chapter.
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CHAPTER V

EXPERIMENTAL RESULTS

Introduction. --To verify the theory in Chapter IV, five linear lines
were constructed. Two problems arise when the correlation between
theoretical and experimental results is to be determined. One, the
theory neglects transmission line -end effects". Two, the experimen
tal results are subject to inherent measurement errors. Both of these
difficulties tend to confuse the observed agreement between theory and

practice.

In order to circumvent these difficulties in part, it was decided
to construct four uniform lines very similar to four of the linear lines
mentioned above. Since the intrinsic agreement between theoretical
and experimental data for the uniform line is known to be quite precise,
discrepancies between measured and theoretical results for the four
uniform lines could be ascribed to measurement, geometrical, and end
effect errors. Thus, from this procedure, two pieces of information

resulted. One, data from the uniform lines indicated the correlation
to expect assuming complete agreement between theoretical and experi
mental data for the linear lines. Two, the correlation between the
measured and theoretical data for the uniform lines yielded information

on the accuracy of the measurement technique.
Although the interest was not in precise absolute data, consider

able care was exercised in the design of the experimental lines and in
the choice of measurement apparatus to obtain accurate results.
Description of the Experimental Lines. --The four uniform lines men
tioned above were obtained from the apparatus shown in Fig. 22. Each
of these lines consisted of a sheet of copper foil 0. 005 inch thick which
was mounted parallel to a r-f ground plane. Such a system was obtained
by covering the underside of a plywood sheet with foil and supporting
it above the surface of a similarly covered table top. At the radio
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Fig. 22. Experimental Uniform Strip Line
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frequencies involved in the measurements, 3 to 31 Mc/sec, the r-f
current traveled essentially on the surface of the copper so that a

thickness of 0. 005 inch was sufficient to confine the electromagnetic
field between the parallel surfaces. Some fringing existed, of course,
but the spacing of the conductor above the ground plane was kept small
compared to the width of the conductor to reduce this effect. The foil

was 30 inches wide and 8 feet in length, whereas, the ground plane
was 48 inches wide to insure that the fringe field was confined to the
table top.

By the image principle, the geometry described above yielded a
type of line known as a "strip line" which had a characteristic imped
ance that was a direct function of the spacing between the ground plane
and the conductor (strip). Specifically,

Zo = 377 d/w (273)

(w >> d)

where w is the width of the strip (30 inches) and d is the spacing men
tioned.

Due to the condition on (273), spacings of the four uniform strip
lines constructed were 1/2, 1, 1 1/2, and 2 inches, respectively.
Thus, d/w ranged from 1/60 to 1/15. The smallest spacing (1/2 inch)
was chosen as a compromise between an effort to minimize end effects

and an effort to avoid significant errors in spacing. (End effect errors
approach zero as the spacing approaches zero, whereas, errors in

spacing approach zero as the spacing approaches very large values. )
The accuracy of the spacing of the strip above the ground plane

was estimated to be better than 3 per cent at the nominal value of 1/2

inch and proportionately better at the other three values. This was ac

complished by establishing the desired nominal spacing with accurately
dimensioned 1/2 inch thick strips of lucite placed at intervals of one
foot along, and transverse to, the length of plywood sheet. As shown in
Fig. 23, the plywood was stiffened and ultimately supported by three
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Fig. 23. Method of Support for the Experimental Uniform Strip Line.
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two-by-fours. Studs attached to the ends of the two-by-fours pro
vided a means of clamping the plywood to slotted lucite supports which
were attached to the edges of the table. Thus, with the clamps in
itially loosened, the plywood was allowed to rest on the accurately
dimensioned lucite strips. The clamps were then tightened. Finally,
by carefully checking each strip and adjusting the plywood sheet until
each spacer barely touched the strip of foil as the spacer was removed,
the line was accurately spaced to an estimated 0. 010 inch.

It is to be noted that the strip line was chosen because of the
linear dependence of Zq on the spacing which permitted simple fabrica
tion and easy conversion to different lines. Four linear lines were
obtained from this apparatus merely by inclining the plywood with re-
spect to the ground plane, a particularly convenient technique. Accurate
spacings were obtained by the method described in the previous para
graph. The spacings at the open end of three of the linear lines were
1/2 inch, while the spacings at the shorted end were 1, 1 1/2, and
2inches, respectively. The fourth line was spaced 1inch at the open
end and 2 inches at the shorted end. One of these linear lines is shown
in Fig. 24.

In addition to the lines described above, three open-wire lines,
one of each type, were constructed. Fig. 25 shows the exponential line.
Each of the three Unes was 10 feet in length and was constructed from
0. 102 inch diameter copper wire spaced 12. 75 inches above the ground
Plane. The spacing between conductors at the corresponding ends of the
exponential and linear Unes was the same, namely, 4. 95 inches and
0. 255 inch. The spacing of the uniform line was 0. 255 inch. These
three lines were constructed for comparison with the strip lines de
scribed above. The input impedance was obtained for the uniform and
linear lines but, due to the limitations of the measurement apparatus*
above the critical frequency (12. 1Mc/sec), the input impedance of the
exponential line could not be obtained.

*

To be described subsequently.



Fig. 24. Experimental Linear Strip Line.
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Description of the Measuring Equipment. -~The two characteristics of

the linear line considered sufficient to show the correlation between

theory and practice were the resonant frequency and the input

impedance vs frequency of the shorted line. These characteristics

were chosen because they were the two most readily obtained with the

highest accuracy. The properties of the shorted line were chosen for

two reasons. One, the end effects of the line (which was neglected in

the theory) could be reduced to some extent at the shorted end. Two,

the shorted line permitted input impedance (reactance) measurements

of low-loss lines up to quarter-wave resonance with a precision

capacitor, as well as with an impedance bridge. The capacitance

method permitted measurements on the open-wire lines which did not

have a grounded terminal and, therefore, were not easily measured

with a bridge.

Frequency, impedance, and length were the primary quantities

measured. A Collins Radio Communications Receiver Model 51 J-3

was used to measure frequency. This instrument covers the range

from 540 Kc/sec to 30. 5 Mc/sec and can be read to an accuracy of the

order of ±300 c/sec. Thus, frequency was measured to an accuracy

of the order of ± 0. 001 per cent. Due both to the upper frequency limit

of the Collins receiver and to the decreased accuracy of impedance

measurements at higher frequencies, most of the data were taken at or

below the quarter-wave resonant frequency of the individual lines. All

of these freqtiencies are below 31 Mc/sec. This limitation of data is

not a serious restriction since Fig. 14 shows that linear lines, which

are operating at odd-multiple quarter-wave resonances above the first

(n = 3, 5, . . „ ), have characteristics that very closely approach those

of the uniform line, Hences the interesting properties of linear lines

are exhibited at frequencies up to the quarter-wave value.

The initial impedance measurements of the strip lines were made

using the General Radio Type 916-A R-F Bridge which covers a fre

quency range of 400 Kc/sec to 60 Mc/sec. The estimated accuracy of

reactance measurements made with this bridge was ±(2% + 1 ohm).

wwswtw^Mwwiwwww^^ ^mmmmmmmiiHisiiimmm Iltixty *A|'M*Slfc *«
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Auxiliary instruments used with the 916-A bridge were a General

Radio Type 605-B Standard Signal Generator and the Collins receiver

mentioned above. Since the impedance level of the strip lines was

low, the bridge method led to large measurement errors. Hence,

another technique was employed to measure the reactance of the ex

perimental lines.

A Measurements Corporation Model 59 Megacycle Meter

operated as a grid dip oscillator was used to detect resonance of the

circuit formed by the shorted line in parallel with a standard capaci

tance. A General Radio Type 722-N Precision Capacitor was em

ployed to supply the standard capacitance, while the Collins receiver

was used to measure the frequency of the megacycle meter. Thus,

the measurement of the input reactance of the line was obtained by the

following procedure:

1. The megacycle meter was adjusted to a selected frequency

and loosely coupled to the resonant circuit.

2. The Collins receiver, with the use of its beat frequency

oscillator, was adjusted to zero beat with the megacycle

meter.

3. Finally, the precision capacitor was adjusted to provide

resonance at the selected frequency.

The proper setting of the capacitance was obtained by noting that as

the circuit approached resonance the megacycle meter frequency was

pulled slightly from its selected value thereby producing an audio

signal in the receiver. At resonance the megacycle meter returned to

its selected frequency and a null indication was obtained. From the

frequency and the standard capacitance readings, the input reactance

of the line was obtained. However, for precise results a correction

was required. Without altering the leads to the capacitor, the input

terminals of the line were shorted. The procedure outlined above was

repeated for the circuit formed by the standard capacitance and the

residual inductance due to the connecting leads. The frequency and

capacitance readings determined the capacitive reactance which was

set equal to the residual inductive reactance. This quantity was then
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subtracted from the original reading of input reactance as a correction.

Since the precision capacitor has an accuracy of ± 1 mmf +0.1 per cent,

and since the frequency error was negligible, the results were very

good. The minimum value of the capacitance was 100 mmf. Hence,

the accuracy of the reactance measurements is of the order of ± 2 per

cent or better. However, this method was not suitable for the open-

wire exponential line. As previously mentioned, the critical frequency

of 12. 1 Mc/sec required the input reactance measurements to be above

that frequency. The minimum value of the precision capacitor reso

nated with this shorted exponential line at 7. 6 Mc/sec. Hence, mea

surements could not be obtained above 12„ 1 Mc/sec. This difficulty

illustrates the principal disadvantage of this method, namely, for the

given shorted line the range of measurements was restricted to the fre

quency range determined by the minimum and maximum values of the

available precision capacitance. With the standard capacitance re

moved, the quarter-wave resonant frequency was obtained by the above

technique for all of the strip and open-wire lines.

Experimental Results. *-Fig. 26 shows the agreement between theo

retical (solid lines) and experimental (circles) data for the four uniform

strip lines. The measured data include the experimental errors and,

therefore, indicate the correlation to expect for the similar linear

lines. Fig. 27 shows the deviation (computed value minus measured

value divided by computed value) for the two types of data. Taking

into account the ±2 per cent measurement error, the agreement is

quite good indicating that errors due to geometry are small.

Fig. 28 presents similar data for three of the linear strip lines.

A uniform line is included for comparison. The spacing at the open

end of all of these lines was maintained at 1 /2 inch to keep end effects

at that end, constant. The deviation, shown in Fig. 29, indicates that

the linear line theory compares quite favorably with that of the uniform

line. It is noted that, as the average spacing increases, the linear

lines are more susceptible to fringing and end effect errors. Since the

most accurate comparison is expected from the two lines with the

smallest average spacings, Fig. 30„shows the results for these lines.



-85-

50

40

30

UNCLASSIFIED

ORNL-LR-DWG 18044

1 1

/ c /

/ ^/
/ u

_ - 8ft - |

"s 1 d
— y//////////////////////////)////,. I

STRIP LINE WIDTH —30 in. / // /

^^ i

S 1 v^x

i i i

THEORETICAL

° EXPERIMENTAL

20 —

10

12 16 20

f (mc/sec)
24 28

Fig. 26. Input Impedance vs. Frequency of the Uniform Strip Lines.

32



o

>
LU
Q

h-
Z
UJ
o

(Z
UJ
Q_

-86-

UNCLASSIFIED

ORNL-LR-DWG 18045

3 C
'

—

2 ^"Q —

1

0

~d=lV2in.Q \ —

^N>d= V2in.
-1

-2 —

d == 2 in.
d = 1 in.

-5

-4

" , , ,

8 12 16 20

f (Mc/sec)
24 28

Fig. 27. Deviation vs. Frequency for the Four Uniform Strip Lines.

mmmm^mmsm^immmmmmmmimm^



60

50 —

40 —

ZLS 30

20

10

0

O

JS -o

STRIP LINE WIDTH-30 in.

THEORETICAL

o EXPERIMENTAL

-87-

8 12 16

f (Mc/sec)

UNCLASSIFIED

ORNL-LR-DWG 18046

0.333

0.500

1.000

24

Fig. 28. Input Impedance vs. Frequency for the Four Linear Strip Lines.



h-
<

>
UJ

Q

UJ

O

or

UJ
a.

8

•88-

UNCLASSIFIED

ORNL-LR-DWG 18047

12 16

f (Mc/sec)

= 1.000

24

Fig. 29. Deviation vs Frequency for the Four
Linear Strip Lines.



o

g2
>
UJ

Q 0

UJ
u

or
UJ
0_

4 —

8

-89-

UNCLASSIFIED

ORNL-LR-DWG 18048

o UNIFORM STRIP LINE: d = V2 in.
A LINEAR STRIP LINE: d0=V2 in., ds =

Z„<;/Z =0.500
OS/ 00 .

12 16 20

f (Mc/sec)

in.

24 28

Fig. 30. Deviation vs. Frequency for a Linear and a Uniform
Strip Line.



•90-

Fig. 31 and 32 present similar results for the open-wire lines„

Again, the agreement is seen to be good.

Inaccuracies, which result from the application of the theory to

physical systems having relatively large end effect and geometrical

inaccuracies; are common to both theories.

Table I shows the comparison between measured and computed

values for the quarter-wave resonant frequency for all of the eight

strip lines. As is expected, the deviation in frequency (defined in

Table I) is smallest for the uniform strip line with the smallest

spacing (Z = 6. 28 ohms), A similar statement is true for the linear

strip lines. In both cases, the increase in deviation with increase in

average spacing is attributed essentially to end effects which are not

constant but depend upon the geometry of the line.

Principally for the purpose of determining what might be ex

pected from experimental data, the velocity of propagation is com

puted from the measured frequency, f , and the measured length,

( X/ + d/2), and is included as the ratio, v/c, for interest. (The

actual velocity, of course, is assumed to be equal to the speed of

light. ) This computed ratio has the same trend as the frequency devi

ation since it is computed by using the measured frequencies. All of

the strip lines are considered as having essentially the same velocity

of propagation.

Finally, Table I presents similar results for the three open-

wire lines. As is obtained from the uniform line, the computed ve

locity of propagation is seen to be 98. 7% of the velocity of light. The

experimental open-wire lines have two errors besides those possessed

by the strip lines. One, as shown in Fig. 25, the spacing of the lines

is maintained by lucite supports which affect the average velocity of

propagation. Two, the spacing as a function of position is not exact

since the line tends to consist of a series of straight segments

(between supports) instead of the required continuous curve. These

errors make the open-wire line less desirable for checking theory.

However, the data presented tend to indicate the results that can be

expected with open-wire lines.
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TABLE I

COMPARISON OF MEASURED AND COMPUTED QUARTER-WAVE FREQUENCIES

Uniform Strip Lines Linear Strip Lines A B

ZQ 6.28 12.56 18.84 25.12 -— --- __. ... 184#6 _--

Zos '"" "" — — 6°28 6-28 6.28 12.56 --- 184.6 184.6

Zos/Zoo '"" — "- — °°500 0-333 0.250 0.500 —- 0.337 0.337

fom 30-55 30'34 29'64 29.37 26.49 24.25 22.87 26.19 —- 18.90 18.84

fo 30-68 30.59 30.48 30.42 26.61 24.52 23.27 26.61 --- 19.10 19.10

%Ef -0.43 -0.82 -2.70 -3.40 -0.45 -1.10 -1.70 -1.58 --- -1.05 -1.36

v'/c 0.996 0.992 0.973 0.965 --- --_ ___ ___ 0.987 --- —- ^
i

A - Uniform Open Wire Line

B - Linear Open Wire Line

C - Exponential Open Wire Line

f0 = computed quarter-wave resonant frequency = c/X Mc/sec.
W = measured quarter-wave resonant frequency in Mc/sec.
>» =4[£ +d/2) in feet.

ji = length in line in feet.

d = spacing between conductors at shorted end in feet,

c = speed of light in feet per second.

%Ef = (fQ - f0m)/f0 x 100 = frequency deviation in per cent.
= ^ forn " computed velocity of propagation.v'
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Discussion of Errors. --As previously mentioned, the three primary

quantities that were measured were lengths frequency, and impedance

(reactance).

The lengths of the lines were measured to an estimated accuracy

of ± 1/8 inch with the use of an ordinary steel tape measure. Since the

lines were all 8 feet or greater in length, the accuracy of these meas

urements was of the order of ± 0.1 per cent. The spacing of the strip

lines was estimated to be within 0. 010 inch of the nominal spacing

determined by the lucite strips. All of the lucite strips were integral

multiples of 1/2 inch within 0. 001 inch as determined by a micrometer.

Thus, since the smallest nominal spacing was 1/2 inch, the accuracy

of these values was of the order of ± 3 per cent or better. Spacing of

the open-wire lines at the lucite spacers was accurate to ± 0. 003 inch.

Hence, the accuracy at these points was of the order of ± 1 per cent

since the minimum nominal spacing was 0, 255 inch. However, since

the open-wire line between spacers tended to be a series of straight

segments instead of a continuous curve, the accuracy of the spacings

at the supports was not particularly indicative of the accuracy of the

entire line.

As noted in a previous section, frequency was measured with the

Collins receiver to an accuracy of the order of ± 0. 001 per cent. This

was the estimated accuracy of all frequency measurements.

The accuracy of impedance measurements was estimated to be

± (2% + 1 ohm) for the 916-A bridge method and ± 2 per cent for the

722-N precision capacitor method. Due to the higher accuracy, the

latter method was used to obtain all of the final data.

Discrepancies between measured and theoretical results were

not directly indicated by the inaccuracies of the measurements of the

primary quantities above. For example, the error between the meas

ured and computed values of the input reactance for a given line was

not only related to the measurement error but was also related to the

errors due to the assumed values for the line parameters used in the

computation, as well as to errors due to end effects. Since the last

two types of errors mentioned were functions of the particular line,

!»l»MWt»!»«»ll»Wt«»M^ WWWWIWWIIWKWWIW
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and since it was beyond the scope of this work to embark upon a lengthy
study of errors associated with particular line geometries, an effort

was not made to separate the different types of errors. Emphasis was

placed upon reducing end effect and spacing inaccuracies to obtain

reasonably accurate data. The correlation of results was based upon
the comparison of data from linear lines with that of similar uniform

lines which were subjected to comparable errors.

Summary. --The procedure and apparatus used to verify the theoretical
results obtained for the linear line in Chapter IV are described in this

chapter. Experimental data are presented in the form of input
impedance vs frequency and quarter-wave resonance vs taper for five
linear lines. In addition, experimental data for comparable uniform ^
lines are presented to correlate measurement errors.

Experimental data for one exponential line are included for

completeness.

A discussion of the results presented in the two preceding
chapters, including a discussion of the limitations of the theory, is
given in the next chapter.
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CHAPTER VI

DISCUSSION OF RESULTS

Introduction. --Results from Chapters III and IV are consolidated in

this chapter by correlating the resonant properties of the exponential,

linear, and uniform lines. The principal objectives are to present and

discuss composite illustrations comparing analogous properties, as

well as to consider the limitations of the theory.

In the interest of time, it was found necessary to limit the num

ber of illustrations for discussion to those judged sufficient for indi

cating the typical similarities and differences. For this reason, em

phasis continues on the lossless shorted line. Since lossless open

lines have relationships similar to those existing among the shorted

lines, a discussion of the significant properties of the shorted lines will

suffice for pointing out the general characteristics of the tapered lines.

Following the procedure used in Chapters III and IV in which the

tapered lines were compared to the uniform line, composite results,

comparing all three lines simultaneously, can be obtained by super

position. Thus, the following characteristics are presented to illustrate

the relative similarities and differences:

1. Relative voltage and current standing waves on a shorted

quarter-wave line.

2. Normalized input impedance of a lossless shorted line as

a function of length, and of frequency.

3. Relative resonant lengths for the three lines, operating at

the same frequency, as a function of the taper.

4. Relative resonant frequencies for the three lines of equal

length as a function of taper.

5. Relative power dissipation as a function of the taper for

quarter-wave lines operating at the same frequency.

pSS^^WSwmw^^^liWtlppi^WW'W^W^
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6. Relative input resistance at resonance of a quasi-

lossless line as a function of taper.

In addition, the principal equations describing the respective

lines are listed in Appendix II for comparison.

Comparison of the Three Lines. --Before proceeding with a discussion

comparing the lines, it is necessary to define the basis for comparison.

Unless specifically stated otherwise, the conditions for which the lines

are compared are as follows:

1. All lines are assumed to be shorted at one end and open

at the other. Ordinarily the shorted end is designated

as the receiving end for convenience.

2. Voltage and current distributions are normalized and

related to each other by requiring that the voltages and

the nominal characteristic impedances at the open ends

are equal for all three lines.

See Fig. 33 for a schematic representation of the above conditions.

Relative voltage and current distribution curves are presented in

Fig. 34 showing the typical shapes of the exponential and linear lines

for tapers of z0g/z00 equal to 0.395 and 6. 250 compared to cosinusoidal
(L.) and sinusoidal (V--) distributions for the uniform line. Fig. 35 is

included to show more details of the current distribution of the linear

line, while Fig. 36 shows the approximate boundary* curves for current
and voltage. Curves for the exponential line, analogous to those in

Fig. 36, are shown in Fig. 37.

The relative magnitude and shape of the current curves for the

positive exponential line (Z C/Z is less than unity) are very nearly
————^———— oo oo

equal to those for the linear line as is indicated in Fig. 34. However,

the limiting current curve (not shown) in this region is for Z _/Z
oS oo

equal to 0. 135 which can be shown to correspond to the condition that

the operating resonant frequency is equal to the critical frequency for

the line. Thus, none of the curves to be shown exist for values of

Z „/Z less than 0.135, since this would require an operating frequency

* .
That is, Z _/Z equal to very large and very small values.
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Fig. 33. Basis for Comparing the [a] Uniform, [b]
Linear, and [c] Exponential Lines:

VS = VLS = VEsiZ0=Z1=Z2.
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Fig. 34. Composite Relative Voltage and Current Distribution
Curves vs Normalized Length for the Linear and Exponential Lines.
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Fig. 35. Relative Current Distribution vs Normalized Length
for the Linear Line.
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below the critical frequency. A careful study of Fig. 35 and 37 indi
cates that the curve marked ZnJZnn equals 0. 200 (Fig. 35) roughly

OO oo

approximates the limiting curve corresponding to ZoS/Zqo equals 0. 135
for the exponential line. As a comparison, the analogous limiting

curve for the linear line is obtained for the value zoS/z00 equal to
zero (Fig. 35) which corresponds to 1^ equal to zero. For ZqQIZqo
equal to unity, all three lines have the same curve, of course.

In the region of the negative line, the shapes of the linear and

exponential lines are essentially the same except the magnitudes
diverge (Fig. 34). In the limit, x/i- equal to zero, the magnitude of
the current for the linear line approaches 1.93 (ZqS/Zoo approaches
infinity) while that of the exponential line increases without limit

(Fig. 36 and 37).

The corresponding voltage curves, as is indicated in Fig. 34,
are essentially the same for both lines except for very large values of

Z _/Z .
oS oo

The normalized input impedance of a lossless shorted line, which

is the ratio of voltage to current in Fig. 34, is considered next.

Fig. 38 shows the impedance curves for the same values of ZoS/Zqo
used in Fig. 34. The curves are similar in general shape to a circular
tangent (Z „/Z equals unity) but deviate from this curve as shown,

° * oS oo

As may be expected from studying the voltage and current (Fig. 34),
the impedance for the positive line has the same shape and magnitude
for both types of tapered lines. However for the negative line, the
similarity in shapes continues, but the magnitudes begin to diverge as
Z „/Z becomes large. The data in Fig. 38 is replotted in a different

oS oo
manner in Fig. 39 by changing the scale of the abscissa. This scale in
Fig. 38 is a relative length as referred to the total length of line.
(Specifically, it is the distance, x, along the line divided by the total
length of the line. ) This total length is understood to be the value for
quarter-wave resonance for the given value of ZoS/Zqo and the given
frequency -- all lines being resonant at the same frequency. In Fig. 39
the scale is changed to an absolute scale as referred to the length of the
uniform line. The asymptotes of the individual curves indicate the

resonant lengths of the different lines relative to that of the uniform line.
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Normalized Length for Lossless Linear and Exponential Lines.
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To clarify the above statements, consider a uniform line operat

ing in quarter-wave resonance at 24. 6 Mc/sec. The free space wave

length is 40 feet. Thus, the quarter-wave length of the uniform line is

10 feet. Then, x/}]LQ equal to 1.000 corresponds to 10 feet absolute.
From this information it is easy to determine that x/X-0 equal to 0. 822

corresponds to 8. 22 feet. Therefore, a tapered line (either an exponen

tial or a linear line when the curves are coincident) with Z „/Z equal
' oS oo ^

to 0. 395 will be 8. 22 feet in length when in resonance at 24. 6 Mc/sec,

As a further illustration, consider the value of the normalized input im

pedance of a section of this line defined by x/jl/r, equal to 0.400 which

corresponds to 4. 00 feet. At this abscissa, ZM is equal 1. 62. Then if
the nominal characteristic impedance at the open end, Z _, is equal to

100 ohms at 24. 6 Mc/sec. A corresponding length of uniform line with

the same characteristic impedance (100 ohms) will have an absolute in

put impedance equal to 74 ohms at 24. 6 Mc/sec.

It is to be noted that the scale factor, X>/Jl/0 , by which the ab
scissa of Fig. 38 is multiplied to obtain that of Fig. 39, is taken from

the curves in Fig. 40. It is especially to be noted in Fig. 40 that, for

values of Z /Z „ above 0. 200 for the negative line and for values of
oo oS —§

Z _/Z above 0.300 for the positive line, the two curves are essential™
oS oo —

ly coincident. That is, for all practical purposes over the range of

Z /Z _, and Z ,-,/Z described, the exponential and linear lines behave
oo oS oS oo > t-

identically with respect to resonant lengths or resonant frequencies.

Hence, a shorted linear and exponential line, which have equal lengths

and equal Z „/Z ratios, will resonate at the same frequency. The

resonance is a function of the impedance ratio and is independent of

whether the nominal characteristic impedance varies linearly or expo

nentially from Z to Z _. This suggests, but does not prove, that all

lines whose impedance may be made to vary monotonically from Z to

Z _ and to lie between the linear and exponential curves may exhibit

the same resonant properties. The range specified, including both

negative and positive lines, is substantial. That is, expressed as

follows:

0.3 £ Z _/Z £: 5.0.
oS oo
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Fig. 40. Quarter-Wave Resonance vs. Taper of the Lossless Linear and Exponential Lines.
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A line with Z ^/Z equal to 5. 0 represents an appreciable change in
impedance from one end to the other. Hence, the range over which this

interesting property is valid is not trivial. As for the regions

0. 0 ^ Z /Z a <=: 0. 2
oo oS

for the negative line, and

0. 0 £. Z C/Z £ 0.3
oS oo

for the positive line, the curves diverge. The divergence, however, is

very small for the positive line and not great for the negative line un

til Z /Z e is below 0. 1. Thus, the two types of tapered lines have re-
oo oa }C c

markably similar quarter-wave resonance properties over most of the

range of Z 0/Z
° oS oo.

Fig. 41 presents power loss curves in the same manner as the

resonant curves of the preceding figure. The ordinate represents a

ratio of the power loss in a quarter-wave tapered line to that of a uni

form line where both lines have the same voltage and nominal charac

teristic impedance at the (Spen end, have the same constant resistance

per unit length, and are operating at the same frequency. The coodi-

nates (1.0, 1.0) represent the uniform line. It is seen immediately

that the power losses in a positive line rapidly diminish from that of

the uniform line as Z „/Z departs from unity. For example, at

Z 0/Z equal to 0. 6 the power ratio is 0. 55. Hence, the power loss
oS oo ^ c ' r

in the tapered line is 55 per cent of that in the uniform line.

The curves in Fig. 41 also represent the ratio of resonant im

pedances of the uniform line to the tapered line as seen at the open end

of quasi-lossless lines. This is true since the power ratio already dis

cussed may be shown to be equal to the reciprocal of the resonant im

pedance ratio, That is,

P t =(V C)2/2R
oL v oS' p

*ef^*W»-s*Wi»is**«**5stMft*w««!*!*
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where VqS is the peak voltage at the open end and R is the equivalent
parallel resistance at resonance as seen at the open end of the line.
Hence,

(V )2/2PnT
r /r = —22, 2h =p /P

P P° (V )Z/2P ° oL

which is the reciprocal of the power ratio. As an illustration, consider
the example mentioned above in which the power ratio was 0. 55. Thus,

Rpo/Rp =1/°-55 =i-82

and the resonant resistance of the tapered line is 1. 82 times that of the
corresponding uniform line.

The next group of curves presented in Fig. 42 and 43 shows the
normalized input impedance of the shorted lossless lines as a function

of frequency with both normalized and absolute scales similar to the
presentation in Fig. 38 and 39. A study of Fig. 38, 39, 42, and 43

shows that the normalized input impedances are very similar whether
a function of frequency or of length. The impedance curves for the ex
ponential line are not shown for frequencies below the critical frequency
corresponding to the value of Z JZnn involved. This feature is the

OO oo

principal difference between the two sets of impedance curves, one vs
frequency and the other vs length.

Generally speaking, the linear line exhibits voltage, current,
impedance, and power characteristic quite similar to those of the ex

ponential line. Both types of tapered lines have properties significantly
different in detail from those of the uniform line.

As a final illustration, Appendix II lists the principal equations of
the three lines for comparison. A study of this list serves to indicate
the reduction in complexity obtained by emphasizing the lossless case
as a basis for comparing the analogous properties of the three lines.
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Limitations of the Theory. --The preceding mathematical development
of the tapered lines presents general equations for voltage and current
which are subject to the following assumptions:

1. The analysis of the lines by ordinary transmission line
theory is valid.

2. The lines have the assumed variations in the line

constants, R, Ls G, and C.

Simplified equations are obtained from the general equations by the ad
ditional assumption:

3. The lines are lossless, that is,

R = G= 0

Approximate expressions for the power loss of low-loss lines, defined
by

R « 00 J,

G = 0,

are developed with the further assumptions:

4. The current distribution for the low-loss line is the

same as that for the lossless line.

5. The power is given by integrating the square of the

r-m-s current times the resistance per unit length

of the line.

6. The resistance per unit length of the line is constant.

The first assumption involves the relationships among the voltage
drop per unit length, the current, and the series impedance per unit

length of line, and similarly, the change in current per unit length, the
voltage between conductors, and the shunt admittance per unit length of
line. This implies a transverse electromagnetic mode (TEM) of propa
gation to insure that neither an electric nor a magnetic field component
exists in the direction of propagation. As a result, this mode permits

the definition of a series impedance and a shunt admittance per unit
length of line.

The second assumption merely requires that the assumed varia

tions in the line constants are physically realizable in general.
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These first two assumptions are basic and will be discussed fur

ther below. The remaining assumptions (3 through 6) are forced condi

tions used to obtained simplified approximate results. In general, they

are the same assumptions well known in the literature on uniform lines'

and will not be discussed further.

To determine the order of magnitude of error introduced by the

first two assumptions, consider a cylindrical wave guided by two semi-

infinite conducting planes enclosing an angle (j) , as shown in Fig. 44,
such that there is no variation inEj, or H in the x direction. Then

the electric field lines are along arcs of concentric circles and the

equipotential planes are along radii and pass through the x-axis. The

analysis of this type of wave propagation by Maxwell's equations in

Appendix III shows that the solutions for the electric and magnetic field

intensities may be modified and expressed as total voltage and current

expressions. Furthermore, the resulting forms of these equations are

identical, respectively, with those obtained for the general lossless

linear line in Chapter IV. Hence, Fig. 44 illustrates the geometry of

a particular linear line; however if the geometry in Fig. 44 were used

in connection with the theory in Chapter IV, two differences would be

noted. One, the field lines in Chapter IV would be chords instead of

arcs of circles as shown. Two, the distance t_ from the origin to the

particular field line (arc) would not be the same as the distance u from

the origin to the equivalent field line (chord). Thus, since the analysis

by field theory techniques is essentially exact, the theory in Chapter IV

is in error. The magnitude of such errors may be estimated by the

method which follows.

When the potential differences between corresponding points P.

and P_ are assumed to be the same for both methods of analysis, the

error in nominal characteristic impedance may be obtained. From the

field theory analysis

Zor =377 (^ r/w) > <274)

*See, for example, W. C. Johnson, Transmission Lines and
Networks, New York: McGraw-Hill Book Company, Inc., 1950. p. 145.

^sm^e^mmm0^^i^m^>^^^m'«9mm^
»WiWlliPW!W»
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where s is the distance between conductors along an arc at radius £ and

w is the width of the conductors. Similarly, when the parallel strip

line equation is used (with the notation of Fig. 44)

Z = 377(d/w) (275)
ou x

where d isthe distance between conductors along the chord at position u,

From (274) and (275), the error in nominal characteristic impedance is

Z - Z = (377/w) (s - d) . (276)
or ou

From trigonometry,

s = <j)r (277)

and

so

and

sin((f>/2) =d/2r (278)

d =r-[<j>- 2sin (<j>/2)] (279)

E =(Z - Z )/Z =|l - 2Si» I* /2)j . (280)
Z ' or ou' or

Hence, for small (f>

*

Ez^ 0.

Next, consider the difference in the length of a section of line using the

two methods. From the notation in Fig. 44, the length of the line,

wmw$mm>wmm
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X, is

u2 - Uj =/

by the method of Chapter IV while the comparable quantity from the

field theory method is

r2 - r2 =I .

Now,

Ul/rl =u2/r2 =cos((t)/Z) (281)

hence

u2 "ul =(r2 " rl) cos ^/2) <282>

and

III =cos(tf>/2) (283)

so that the error is given by

E„ S i^Z^) =[l "coS((j>/2)] . (284)
"i 1

Although equations (280) and (284) are developed for the linearly tapered

Strip line, they may be used to estimate the error for other types of

tapered lines, both strip and coaxial. (The equations will be less

accurate for open wire lines. )

Consider an incremental length of line as shown in Fig. 45. In

the plane containing the axes of the two conductors, the electric field

lines will approximate arcs of circles. Hence, (280) and (284) may be

applied over the increment. The total error, E o , over the length of
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line

I =U2 -Uj

may be obtained as follows:

Au/Ar =cos (<(> /2)= Au/ J(Au)2 +(1/4) (Ay)'

AE; = (Ar - Au) /Ar
'I

(dr - du) (du/dr)E
I

or

AJo

El ~ fj1 - 1/Jl + (1/4) (dy/du)' du

Since

dy/du = f(u)

(285)

(286)

(287)

(288)

(289)

(290)

(289) may be integrated in principle to obtain E g . The development

above may be summarized by saying that the results presented in this

investigation apply to tapered lines whose rate of taper with respect to

wave length is small. This statement is essentially equivalent to saying

that <j> in (280) and (284) is small.
It is necessary to note the manner in which both E„ and Ep affect

the accuracy of the results. Errors in the nominal characteristic im

pedance produce errors in the results predicted by the theory approxi

mately directly proportional to E~. That is, if E„ is equal to 1 per cent,

the input impedance will be in error by approximately 1 per cent also.

The effects of errors in length, however, are not easily determined

since they depend upon the rate of change of input impedance (voltage

or current) with length and therefore depend upon the manner in which

the mathematical functions describing the behavior of the line are affected.
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Near quarter-wave resonance, for example, a given error in length

corresponds to a much larger error in input impedance than for the

case in which the line length is remote from resonance. In general,

the errors described herein are related to the variation in spacing of

the conductors and are only indirectly a function of the variation in im

pedance. For a strip line, of course, the variation in spacing and im

pedance with distance are identical.

To conclude the discussion, consider the arbitrary condition that

the error in incremental length must be kept below 10 per cent. Thus,

from equation (284)

0.10 =[l ~coa((f>/2)] (291)

or

cos( <t>/2)= 0.90 (292)

and

(p/2 = 0.45 radian . (293)

For the incremental length, Au,

tan($/2)= Ay/2Au =0.48 . (294)

Finally,

dy/du = 0. 963 . (295)

Hence, the section of tapered line whose taper, dy/du, reaches 0. 963

has an error of 10 per cent per unit length. The total error, which is

the summation of the errors for all the sections, depends upon the man

ner in which the line tapers. When a linear strip line is assumed, the

spacing between conductors may be written

y=yo [l +(u/k)] . (296)



Then

dy/du = y /k

From (295), for u equals L ,

y /k = 0.963
1 o

1/k = 0.963/y
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(297)

(298)

(299)

Thus, the taper constant of the linear strip line for which the error per
unit length is 10 per cent is given by (299), where 1/k is the taper
constant and jQ is the initial spacing at u equals 0. The total error in
length is by equation (289)

i

Et ='I 'I1 - 1/^1+ (1/4) (yQ/k)' du (300)
o

1 - 1/. 1 + (1/4) (0.963)' i =0.10^

Hence, the effective length of the line is 1.1^ instead of the measured
length, Xj .

The results presented in the previous chapters are discussed and

the limitations of these results are considered in this chapter.

The conclusions formulated as a result of this research are pre-
sented in the next chapter.
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CHAPTER VII

CONCLUSIONS

Introduction. --The results discussed in the preceding chapter permit

certain interesting conclusions pertaining to the resonant character

istics of linear and exponential lines. A recapitulation of the most

significant data, with appropriate conclusions, is given in this chapter.
Resonant Properties. --The information displayed in Fig. 34 and 40
represents the most important results which show the similarities and
differences in the resonant properties of the three types of lines.

In general, the relative current and voltage standing waves

(Fig. 34) are somewhat similar in shape on a normalized length scale.
The most important difference in these characteristics is in the

relative magnitudes of current required to obtain a given voltage at the
open end. This property will be discussed further in the next section

in connection with power dissipation.

The difference in standing waves (IN and VN) between the two
tapered lines is small for values of ZoS/Zqo less than 0.4 but becomes
appreciable as this ratio increases. (For example, as Z g/ZQQ ap
proaches 6. 25, the maximum value of the current for the exponential
line becomes approximately 40 per cent greater than that for the linear

line. )

The universal curves presented in Fig. 40 are concise represen

tations of the quarter-wave resonance properties of the three types of
(lossless) lines. The curves indicate that the ratio of length of the
quarter-wave tapered line to that of the uniform line depends only upon

the impedance ratio, Z „/Z . Alternatively, the curves show that
__ x— _ oS oo

the ratio of quarter-wave resonant frequency of the tapered line to that

of the uniform line depends only upon the impedance ratio, z0^z00-
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In addition, the curves in Fig. 40 show that all negative lines are

longer (or operate at a higher frequency) at quarter-wave resonance

than the uniform line. Conversely, it is shown that all positive lines

are shorter (or operate at a lower frequency) at quarter-wave resonance

than the uniform line.

Except for the range of Z /Z „ from 0. 0 to 0. 2 for the negative

line and Z „/Z from 0. 0 to 0.3 for the positive line, the curves in
ob oo

Fig. 40 for the two types of tapered lines are essentially identical.

(Hence, for quarter-wave resonance over the range

5.0 > Z C/Z > 0.3 ,
— oS oo

the simpler analytical expressions for the exponential line can be used,

when desirable, for solutions of linear line problems. )

The above discussion permits the conclusions that are formulated

and discussed below.

It is concluded that negative linear and exponential quarter-

wave lines can be used to replace comparable uniform lines

for cases in which the physical length of the line is desired

to be lengthened.

The significance of this property of negative lines is indicated by a

problem of the type that follows. Consider the cyclotron problem in

which the size of the dees, the dee-to-ground spacing, and the desired

frequency combine to give a capacitive reactance of the dees sufficiently

large so that the physical length of the uniform line (that would normally

be used) is undesirably short. Then, in accordance with the above

conclusion, a negative line can be used to increase the length of the dee

stems. The nominal characteristic impedance of the tapered line will

be equal to that of the uniform line at the dees and will decrease toward

the opposite (shorted) end. The extent to which the dee stems will be

lengthened will depend upon the achievable ratio of impedances

Z _/Z .
oS oo
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It is concluded that negative linear and exponential quarter-

wave lines can be used to provide transmission lines of

fixed length which will resonate at frequencies above the

frequency determined by a uniform line of the same length.

To illustrate this property of tapered lines, consider the type of prob
lem that follows. Currently, the ORNL 63-Inch Cyclotron operates at
a frequency approximately one to five per cent below the nominal design
value. Partly because of the physical limitations of the frequency ad

justment mechanism, the desired operating frequency can not be ob

tained. Since the dee stems for this system consist of a pair of tubular

conductors in a rectangular shield, direct modification of this uniform

line to a negatively tapered linear or exponential line is not practical.

However, in principle this can be done and, in accordance with the

above conclusion, will result in an increase in operating frequency.
(Since the results in Fig. 40 show that the frequency ratio depends only
upon the ratio of impedances, Z /Z g, it is appropriate to note that
these results for the linear and exponential lines strongly suggest that
a possible, and practical, solution to the above problem would be to

decrease the spacing linearly between the r-f shield and the two tubular

conductors so that the nominal characteristic impedance varies in a

logarithmic manner along the line. The resulting negative line would
most surely increase the operating frequency. )

It is concluded that positive linear and exponential quarter-
wave lines can be used to replace comparable uniform lines

for cases in which the physical length of the line is desired

to be shortened.

This conclusion is the converse of the first and applies to problems in
which the uniform line (that would normally be used) is undesirably
long. As an illustration, the ORNL 63-Inch Cyclotron requires dee
stems of greater length (16 feet) than is desired because the operating
frequency is relatively low (5 Mc/sec). Thus, according to the above
conclusion, the use of a positively tapered line would result in a de

crease in the length of the dee stems. The amount of this decrease in

'ianpwwnw»wii»*MW
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length would depend upon the value of Z „/Z that can be obtained.

It is concluded that positive linear and exponential quarter-

wave lines can be used to provide transmission lines of

fixed length which will resonate at frequencies below the

frequency determined by a uniform line of the same length.

This, of course, is the converse of the second conclusion and will not

be discussed further.

Besides the conclusions given above, one additional conclusion

pertaining to the resonant properties of the linear lines can be formu

lated from the data in Fig. 14.

It is concluded that the novel resonant properties of linear

lines are of interest for short lengths of line near quarter-

wave resonance.

That is, Fig. 14 shows that the quarter-wave resonant characteristics

for the linear line approach thQse of the uniform line as the number of

standing waves on the line increases.

The power considerations of quarter-wave lines are discussed

in the next section.

Power Properties. --The most important results which compare the

power dissipation characteristics of the three types of lines are pre

sented in Fig. 41. These curves are derived on the basis that the

voltages and nominal characteristic impedances at the open end are

equal for all lines. In addition, all lines are operating at the same

frequency and have equal (and constant) resistance per unit length.

An examination of the data in Fig. 41 shows that negative

quarter-wave lines dissipate more power than the comparable uniform

line. This results from two properties of the negative line. One,

negative quarter-wave lines are longer than the uniform line as shown

in Fig. 40. Two, the magnitude of the current distribution for the

negative line is greater than for the uniform line (Fig. 34).
Conversely, the positive quarter-wave lines dissipate less pow

er than the comparable uniform line because they are shorter and the

magnitude of the current standing wave is smaller than for the uniform

line.



-126-

The power curves for the two positively tapered lines (Fig. 41)
are essentially identical while, for the negatively tapered lines, the
curves diverge for values of Zqo/ZoS below 0. 7. The principal reason
for this divergence is due to the corresponding divergence of the mag
nitudes of the respective current standing waves (Fig. 34).

The above discussion permits the following conclusion:
It is concluded that positively tapered quarter-wave lines
can be used advantageously in place of comparable uniform
lines for cases in which the power loss is to be minimi zed.

An illustration of the significance of this property of positive lines is
presented in Chapter VIII.

The tuning properties of the three lines are discussed in the
next section.

Tuning Properties. --In order to justify the conclusion which will be
formulated below, it is first necessary to discuss Fig. 46 and 47.

Consider several of the possible lines that can be derived from
the strip line indicated in Fig. 46. As shown, the line is a positive
linear line. If the spacing, ds> at point A is held fixed and the line is
pivoted about Auntil the spacings at points 0 and B become equal to
dg, a uniform line results. Alternatively, if the spacing, d , is held
fixed and the line is pivoted about B until d becomes equal to d
another uniform line results. In the first case the uniform line has a
low characteristic impedance determined by dg, while in the second
case it is much higher as determined by dQ. Finally, if the spacing,
dm, is held fixed and the line pivoted about _0 until d and d exchange
values, a negative linear line results. This last line is, of course,
the same line as shown in Fig. 46 with the short at the opposite end.
At the point in the process of pivoting the line about _0 in which the
spacing at points Aand Bare equal to dm, a third uniform line results.
The characteristic impedance of this line is the average of those
determined by dg and dQ. Fig. 47 shows the input reactance for the
five lines just described. For clarity, numerical values are used.
The length of each line is 16 feet and the characteristic impedances,
determined by dg, dm> and dQ, are 15.7, 68.4, and 114. 0 ohms,

to*^*MMW*^»f^
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respectively. Superimposed upon these five curves, without regard to
sign, are capacitive reactance curves for four values of capacitance.

The points of intersection of the two groups of curves correspond to

resonances obtained by the assumption that the capacitance involved is

terminating the line at the open end. Thus, if Line I is pivoted about
0 while connected to 50 micro-microfarads of capacitance, the tuning

range is determined by the points P and PL If Line I is pivoted about

A, the tuning range is determined by points P and Q and is approxi

mately 82 per cent of PPL If the terminal capacitance is 100 micro-

microfarads, the tuning range RR1 of Line I pivoted about A is essen

tially the same as PQ. Next, if the spacing of Line II is maintained

uniform but gradually changed to that for Line IV, the tuning range is

determined by the points S and SJ if the terminal capacitance is 200
micro-microfarads. With this value of capacitance, Line I tunes over

the same range, TS', when pivoted about A.

The preceding discussion leads to the following conclusion:

It is concluded that linear and exponential lines add

considerable flexibility to the solution of wide-range

tuning problems in which the line is the variable

parameter.

It is noted that the exponential line is included in the conclusion above

although it is not discussed in Fig. 47. This is permissible when it is

recalled that the exponential line has analogous characteristics similar

to those (Fig. 47) of the linear line.

Summary. --To accomplish the objectives of this investigation, analyt

ical results to develop and extend the theory of the resonant properties

of the tapered lines are presented in Chapters III and IV. These sepa

rate results for the exponential and linear lines are brought together to

provide a common basis for comparison with similar properties of the

uniform line in Chapter VI. Finally, the most significant results are

summarized, with appropriate conclusions, in this chapter.

The next chapter presents two applications of the theory of the

linear line.
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CHAPTER VIII

APPLICATIONS

Introduction. --This chapter presents two examples in which the prop
erties of the linear line are applied to practical problems. The first
example presents a solution to the cyclotron tuning problem which
stimulated this research. The second example considers the results
obtained by replacing a uniform line with a linear line in the solution of
a wide range tuning problem.

Wide-Range Tuning of a Cyclotron Dee System. --Consider the problem
of designing a dee system which must handle hundreds of kilowatts of

power and which must be adjusted to several specific frequencies from
6. 7 to 11.8 Mc/sec. For practical reasons, which are not discussed
here, the given parameters of the system are as follows:

1. The effective dee-to-dee capacitance is 300 micro-
microfarads.

2. The desired length of the dee stems is approximately
16 feet.

3. The largest practical value of nominal characteristic

impedance of the dee stems, at the dees, is 15. 7 ohms.

It is shown in Chapter I (Fig. 5) that three possible tuning param
eters exist, namely, the length, JL , the characteristic impedance, Z ,
and the terminating capacitance, C_. For purposes of comparison, all
three of these possibilities are considered below.

Fig. 48 indicates the solution obtained by changing the length of
a uniform line. As the length is changed from 32. 2 to 16. 0 feet, the
system tunes from 6. 7 to 11.8 Mc/sec.

Fig. 49 shows the solution for which tuning is accomplished by
adding capacitance at the dees. If 1550 micro-microfarads are added,
the system covers the prescribed range.

,. .„-;^..,... •-v,|,r,11,..)r...,l.r.r., -•- iTji-TirtiMTtWilffiM^ mi -, ——ii-mmiiim-ir r"-»-— - • „e_ .,.„,,. _ __
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Fig. 48. Tuning (6.7 to 11.8 Mc/sec) by Varying the Length of a Uniform Line.
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Finally, Fig. 50 presents a solution which employs a linear line.
If a series of linear lines are obtained by pivoting Line I about point
A such that the impedance at the shorted end assumes all values be
tween 15. 7 and 114. 0 ohms, the desired tuning range is obtained.

With the assumption that the lines used in the three solutions
are strip lines, the relative power dissipations can be estimated by
the method that follows. From the above assumption, all of the lines
have the same resistance per unit length since this quantity depends
upon the width of the strip and not upon the spacing.

At the lowest frequency, 6. 7 Mc/sec, the electrical length of the
line in the first solution is found to be 78. 8 degrees. The current
standing wave, from the shorted end, is the portion of a cosine wave
between 0 and 78. 7 degrees. This is expressed as follows:

I(x) = Im cos pox (301)

(0 4 p x ^ 78.8°)

The peak value, I , is established by the conditions at the dees. That
m

is,

I(i)=V„r,/X =1 cos pi (302>J-V/U ' DD cm ro

where V is the dee-to-dee voltage and X is the reactance of the
DD c

dees. It follows from (301) and (302) that

t/ \ VDD cos s x (303)^ = X cos 0 I C°S "V
c o

For the case in question, pQl is 78.8 degrees and Xc from Fig. 48 is
78 ohms. Therefore,

I(x) =0. 0626 VDD cos pQX (304)

(0 ^ (3 x £ 78.8°)
x o
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i-.-i.i-. ,-= ••-'•.-•>*-^.-isawwsBPs^^ ••-•^^jmmm^mmtii'immmm^ii,
^^*^t*&«^^mw&wmmmmm»>)m i»ws».Mhfi!S^Wf«M'*]**J«sv^.f^^ i



-135-

Similarly, for the second solution at 6. 7 Mc/sec,

I(x) = 0.0810 Vnn cos (3 x
v ' DD ro

(0 - p x - 39.2°)
o

(305)

where X is 16 ohms. Finally, the equation for the current standing

wave for the third solution is

I(x) = (VDD/ZoS)
YlkJo " JlkYo

Y„ J. (p u) - J,. YJp u)
Ik 1 ,ro ' Ik lvro '

(306)

from (259), where X> , k, u, and Z ^ are 16.00 feet, 18.56 feet,
2. 56 feet, and 15. 7 ohms, respectively. For brevity (306) may be

written as follows:

I(x) = (Vdd/ZqS) f(x) (307)

where f(x) is the quantity in the brackets.

As shown in previous chapters the power dissipation is given by

• AJJL,

P. = (R/2) I. 2d£ (308)

O

For the three cases described above, the power expressions become

.32.2

P1 =(0.0626)2(VDD/2)2R

P2 =(0.0810)2(VDD/2)2R

and

V(VDD/ZoS> (R/2)

(1 + cos 2(3 x) dx ,

•16.0

(1 + cos 2|3 x)dx ,

•16.0

r(x)dx

(309)

(310)

(311)
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The first two integrals are easily obtained. The results are

Px =0.0359(VDD)2R (312)

and

P2 =0.0452(VDD)2R . (313)

Although the third integral is not as easily obtained, it can be approxi
mated closely enough to permit comparison with (312) and (313). From

Fig. 35 it is noted that f(x), which is equivalent to IN(x/1 ), never ex
ceeds the value f(0). Hence, for purposes here, let f(x) equal f(0).
Then since

f = 6. 7 Mc/sec ,

u = k - / = 2. 56 feet ,

x = 0

u=k-x = k = 18. 56 feet ,

(3 = 0.0428 radian /foot ,
o

(3qu = (3Qk = 0. 795 radian ,

P u = 0. 110 radian
o

Ylk =Yl((3ok) =~ °'980

J = J (p k) = 0.846
o o ro

Jlk =Jl^ok)=°'367

Y = Y ((3 k) = -0.087
o o o

J, = J. (p u) = 0.055

iBWfWtWiWFIWPffPlip^^
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Y., J - J.. Y
Ik o Ik o

f(0) = _ =0.354 . (314)

YlkJl<Pou>- JlkYl<Pou)

If (314) is substituted in (311), the result is

P3 =0. 0041 (VDD)2R . (315)

It is noted that the actual power is less than that given by (315) since

f(x) is e

follows:

f(x) is equal to or less than f(0). The ratios of P and P~ to P, are as

P,/P3 =8.6 (316)

and

P /P =10.8 . (317)

This shows that the linear line permits a considerable savings in power

at 6.7 Mc/sec. For frequencies between 6.7 and 11.8 Mc/sec, the

power ratios approach unity as the frequency approaches 11.8 Mc/sec

since the lines are identical at the latter frequency.

A study of the first and second solutions shows other practical

difficulties. The length required in the first solution is considered ex

cessive from a practical viewpoint for two reasons. One, dee stems

of this length require an unusually large vacuum tank. Two, such a

length, when terminated by large dees, presents difficult mechanical

problems even if the stems are suspended vertically to circumvent the

cantilever problem. The large capacitance required by the second so

lution also presents difficult practical problems. The plates of such a

capacitor must be spaced several inches apart to hold voltages of the

order of hundreds of kilovolts. This factor, combined with the large
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capacitance required, leads to a capacitor of considerable size. It is
5

shown in the literature that such a capacitor reduces the effective volt

age amplification of the line and results in increased power dissipation.

It is concluded that the use of a linear line, pivoted at the dees,

offers the best solution to the problem,

Wide-Range Tuning of a Tank Circuit. --As a second example, consider

the problem of designing an amplifier tank circuit to cover the range

from 120 to 3 00 Mc/sec with a fixed capacitance greater than 20 micro-
23

microfarads at the tube. Meyerhoff and Graham present a solution

which employs a section of uniform line and requires the capacitance

values shown in Fig. 51. This circuit actually tunes from 100 to

300 Mc/sec, a. frequency ratio of 3:1. Rather than to present a formal

solution to the problem, it is of more direct interest to consider the

tuning range obtained by substituting a comparable linear line for the

uniform line in Fig. 51. In this manner, the linear line may be com

pared with the uniform line for a particular case. That is to say,

unlike the first example in which the competition was among three

different types of circuit components, this case offers competition be

tween the linear and uniform lines =• all other parameters are held

constant. Consider the linear line parameters to be chosen arbitrarily

as follows:

1. The length of the line is the same as that of the

uniform line, 14 centimeters.

2. The nominal characteristic impedance at the mid

point of the line is equal to the characteristic im

pedance of the tmiform line, 100 ohms.

3. The ratio of Z /Z is equal to 0. 250.
os oo ^

From the above values it follows that Z and Z are 40 and 160 ohms,
os oo

respectively.

Equation (187) in Chapter IV can be written as follows:

ZL = - (*/k){P0/yo)
A , J, - B . Y.

ok 1 ok 1
(318)

^3^g«WW^BSOT«l»^^
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Fig. 51. Power Amplifier Tank Circuit which Tunes from 100 to 300 Mc/sec.
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for a positive line, where

and

A , = Y . + (z /p ZD) Y.,
ok ok v o ro R' Ik

B . = J . + (z /p ZD) J.,
ok ok v o 'o R Ik

ZR = " jXR = " j (1^U)C2)

The conditions at the low end, u) . , and the high end, u) , of the tuning

range can be expressed as follows:

1/oJjCj = Zh(a)l, C2 ) (319)

and

l/u^Cj = ZlS <*>2' C2 J (320

where C_ and C- are 60. 7 and 4. 67 micro-microfarads, respectively.

If (319) and (320) are solved by approximate methods, the lower

and upper frequencies are found to be 51 and 298 Mc/sec. Thus, the

tuning range has been increased from a ratio of 3:1 to 5.8:1, which is

a substantial gain.

Although the above discussion does not consider the possible

differences in line geometries and other factors which may present

space or fabrication problems, it is presented for the purpose of

demonstrating that, in principle, the application of short tapered lines

is not limited to cyclotron problems.

Line Geometries. --Since the preceding work has made repeated refer

ence to the strip line geometry, it is appropriate to make a few re

marks regarding practical line geometries.

"^XTJIIilWWPWWi.ilMWWWaWW *M^«S«»MWii»9 «IW«NtWP
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First, for most applications in which resonant transmission lines

are used, the frequency is sufficiently high that shielding of the line
is necessary. Second, since the concern is with tapered lines, the
spacing between conductors must vary with length. This second con
dition presents practical fabrication problems, especially for the case
in which the line sections are several feet in length. Shielded parallel
wire lines utilizing conductors of small cross section are relatively
easily fabricated into exponential and linear lines. This is not true,
of course, for similar lines with conductors of large cross section.
However, the strip line offers a comparatively simple geometry that
can be used to approximate a shielded linear line quite easily. Fig. 52
shows the evolution of such a line. The linear line results from a

linear change in the spacing, d, which is readily obtained with conduc
tors of large or small cross section. Since no line geometry known
to the author permits easy fabrication of exponential lines with con
ductors of large cross section, the emphasis is on linear lines. This,
of course, reflects the author's interest in cyclotron applications since
transmission lines of large cross section are inherent to the cyclotron
problem.

Conclusions. --In addition to the general conclusions given in the pre
ceding chapter, the following statements are made pertaining to the
cyclotron problem that stimulated this research:

1. It is concluded that the linear line has important

practical advantages for application to cyclotron

power and tuning problems as illustrated in the

first example above.

2. In particular from example one, it is concluded

that the best solution to the tuning problem of a

large variable frequency cyclotron is obtained by
using a positive linear line for the dee stems.

The author's recommendations for further work in this field is

discussed briefly in the next and final chapter.
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Fig. 52. (a) A Parallel Strip Line, (b) a Double Parallel
Strip Line, and (c) a Shielded Coaxial Line
Approximately Equivalent to a Strip Line .
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CHAPTER IX

RECOMMENDATIONS

Introduction. --Some suggestions for further work on the resonant

properties of nonuniform lines are presented in this chapter.

Suggested Extensions. --An important area for further work of a nature

similar to this research is with the type of nonuniform lines which can

be obtained by a linear variation in the spacing between a cylindrical

conductor and a ground plane. Since the characteristic impedance of

such a geometry is a logarithmic function of the spacing, the general

equations for the line are not easily solved analytically. However,

with modern computing methods, the labor should not be prohibitive.

The results of such a study should prove quite useful for design

and analysis purposes. Since many uniform lines of this form are in

existence, the results should be important for interpreting the effects

of inhomogeneities in the uniform line. In addition, since nonuniform

lines of this geometry are easily fabricated, it appears likely that they

may find wide application for problems in which only a modest "taper"

is required. Due to the logarithmic variation of the impedance with

spacing, this type of line is expected to present the greatest interest

in the region for which Z /Z is near unity.
OS oo J

As an illustration, the results of the study suggested could be

applied to the case of an existing quarter-wave uniform line resonator

consisting of a pair of tubular conductors in a rectangular shield. It

has been the author's experience that it frequently becomes desirable

to raise or lower the resonant frequency range by a modest amount.

This can be done by changing the spacing of the tubular conductors at

one end relative to that at the other. In most cases, it is not possible

to obtain a large value for Z /Z (or Z /Z ).
° os oo v oo os'



-144-

A second and more ambitious study related to this work would be

a comprehensive investigation of a considerable number of different

types of nonuniform lines with the object of determining the general

trends of the resonant properties as a function of the different types of

lines.

The general method suggested for conducting either of the studies

indicated is outlined briefly in the next section.

Suggested Method of Attack. --Consider the two basic transmission line

equations. They are

dV/dx = - z(x)I(x) (321)

and

where

and

dl/dx = - y(x)V(x) (322)

z(x) = z + z(x) (323)
3.

y(x)=y +y(x) . (324)
a

z and y in (323) and (324) may be regarded as the average value of
ct 3.

z(x) and y(x), respectively. That is

and

Then

z
a

{III) J z(x)dx , (325)

•I

ya =(i/i) / y(x)dx , (326)

dV/dx = - z I(x) - z(x)I(x) (327)
cL.

— iiii.il - —--~——..M~~.„. ,„..,-.„...,.•.•»..«,, _ I, rmrj -nriHtwnit^iif>wi~~~",-,**'*"finTiiiWMWirK,iriMiBiTV<Tii iBiiiiran lir 'M ini I— il' i - -1 -1 -i • • •'- 17 'TtiTirrr""~fr~',*Ti"iii,f v



-145-

and

dl/dx = - y V(x) - y(x)V(x)

4 0are shown by Schelkunoff to have solutions of the form,

and

where

and

V(x) = V (x) - / z(a)I(a) cosh yjx - a) da

+Za/ Y(a)V(a) sinh ya(x - a) da

rI(x) =IQ(x) +(1/Za) / z(a)I(a) sinh ya(x - a) da
'o

y(a) V(a) cosh yo(x - a) da
a.

VQ(x) = Vq cosh yax - ZJ.n sinh Y,x
a o

Io(x) =Io cosh yax - (VQ/Za) sinh yax

Z :
a = /» /yy a 'a

Ya = V Zaya

V =
O

=V(0) ,

Io =1(0)

(328)

(329)

(330)

(331)

(332)

(333)

(334)

(335)

(336)
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The above integrals may be calculated by the method of successive

approximations. Thus,

V(x) = XT V.(x) (337)
i = 0

and

where

and

I(x) = XI L(x) , (338)
i = 0 X

%

V. +1(x)=-/ z(a)I.(a) cosh ya(x - a) da (339)
'o

+Za / y(a)Vi(a) sinh ya (x - a) da

I.+1(x)=(l/Za) / z(a)I.(a) sinhya(x- a) da (340)

%

y (a) V. (a) cosh y (x - a) da .
X ex

For a more comprehensive discussion of this method, the reader is
8 10

referred to Carson's and Schelkunoff's works.

Concluding Remarks. --In conclusion, it is hoped that the results of this

research will find application to a variety of resonance problems and

will stimulate further work in this field.
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THE PARALLEL-STRIP LINE

The uniform strip line consists of two flat conductors of

width, w, whose adjacent parallel surfaces are spaced a distance, d,

apart as shown in Fig. 52. For d very much less than w, the system

propagates a TEM wave analogous to the principal wave propagated

between parallel planes of semi-infinite extent. The specified condi

tion (d << w) is equivalent to neglecting fringe effects of the electro

magnetic field. The field plot at any cross section transverse to the

direction of propagation has been shown to be a rectangular grid.

That is, the gradient of the electric field is a constant equal in mag

nitude to the voltage divided by the distance between conductors.

The current is uniformly distributed across the conductors such that

the r-f resistance per unit length, of line is the skin effect resistance

divided by w. Specifically, the resistance is independent of the spacing

between conductors. Hence, if this uniform strip line is modified

slightly by inclining the planes of the two conductors with respect to

each other, a linear line results. Then to the first approximation,

the field plot at a typical cross section has not changed significantly

and the resistance per unit length is approximately the same as before.

Thus, the assumption that the resistance per unit length of a. linear line

is constant is easily obtained with, a practical line.

E. C. Jordans Electromagnetic Waves and Radiating Systems,
New York: Prentice-Hall, XHc~J. , I9i>0, p... 188. ——

Simon Ramo and John R. Whinnery, Fields and Waves in
Modern Radio, New York: John Wiley and Sons, 2nc.T""l944, Chap. 9.
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II

LIST OF EQUATIONS FOR THE UNIFORM,

EXPONENTIAL AND LINEAR LINES

The voltage and current equations for the three types of lines

are listed to facilitate comparison.

General Equations

Uniform Line: V = VR [cosh yx + (Z /ZR) sinh yx
Exponential Line: V£ =VR [cosh vx+(( £/t)+ (zq/v ZR)jsinh-r xj e"
Linear Line: VL =VR(irGu/2) J [YQ(Gk) +{zq/GZr) Y^Gk)] J^Gu)

- [jo(Gk) +(zo/GZR)J1(Gk)] Yx(Gu)

Uniform Line: I =IR [cosh yx +(Zr/Zq) sinh yx]
Exponential Line: IE =1 fcoshrx ~|( d/ll-'y Z /r) sinhrx J e

Linear Line: IL =±IR{iryok/Z){[zRYo(Gk)±(zo/G) Y^Gk)] JQ(Gu)
- [zRJo{Gk)±(zQ/G) Jx(Gk)] YQ(Gu)

Lossless Line Equations

Uniform Line: V =VR [cos Pqx +j(ZQ/ZR) sin pQx]

s

Exponential Line: V£ =VR [cos Px +j( 6~/P)+{zo/P ZR)jsin px"| -ox

Vok*<zo^oZR)Ylk] Jl(PoU)Linear Line: VL =VR(-rrP u/2)^

Jok^VfW^k

tmemmM9im»fmf^m9^^^m^^-m'



,151-

Uniform Line: I =IR [cos Pqx +j(ZR/ZQ) sin Pqx J
Exponential Line: I£ =IR [cos px -i( £/p)-(yQ/p ZR)jsin px J e°X
Linear Line: IL =̂R^Y0^m^RY^(zJ^Y^] J^u)

-[Vok^V^lk ] W^

Lossless Shorted Line Equations

UnifoTm Line: V = jVe sin p x
" S o

oxExponential Line: V_ =VES[(e°^/sin p£ ) sin pxj e'

YlkJl^o^-JlkYl^oU)"
YlkJl<^>-JlkYl<^>

Linear Line: VT = VT 0(Z T /Z _)
L Lb oL ob

Uniform Line: I = L, cos p x
R o

Exponential Line: I_ =I_ [cos px - ( 8/p) sin Pxj e

Linear Line: IL =IR (uPQk/2) [YlkJo(P0u) - J^Y^u)]
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III

DEVELOPMENT OF EQUATION (274)

Consider the propagation of a radial wave guided by the two

semi-infinite conducting planes shown in Fig, 44. For propagation of

such a wave in a dielectric medium, there is no variation in the field

components in the x direction,

E =E = H =H^=cr = 0 , (341)
r x r © v /

where E , E , H , H^ are the maximum values of the field compo-

nents in the direction indicated by the respective subscripts and o- is the

conductivity of the propagating medium. Then, if the electric and mag

netic field intensities are harmonic functions of time,

£=£* E^ e^1 (342)

H = a H eJ , (343)

it can be shown by direct application of the two (Maxwell's) equations

curl E=i+ dg/dt (344)

curl H = - 3B/'3t (345)

that the following wave equation results

d2E/dr2 +(l/r)dE0/dr - fl/r^n£(A32] E0=O <346>

See for example, Hyper and Ultrahigh Frequency Engineering,
R. I. Sarbacher and W. A. Edson. John Wiley and Sons, Inc. , p. 231-232.

to-aWWIiitSBMPHKW^^
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where jjl and £ are the magnetic inductive capacity and the electric

inductive capacity of the propagating medium. The quantity oo is the
angular frequency of the field components. Equation (346) is recog
nized as Bessel's equation in cylindrical coordinates and has a

solution of the form

E0=ClJl(Por) +C2Yl<V> (347)

where C, and C2 are constants of integration and, J^p^^r) and
Y,(0 r) are Bessel functions of the first and second kind of order one.

1 vro '

Also,

Po = oOj^i . (348)

Similarly, it can be shown that

hx=j ^n [cjj^^zW)] <349)

where J (P r) and Y (P r) are Bessel functions of the first and second
o o ' o o

kind of order zero.

From electromagnetic field theory, the current density at a posi

tion r at the inner surface of the conducting plane, 0 = 0, is

J=nXH (350)

from which

J =-H . (351)
r x

The total current at the surface, in a strip

x, - x. =w (352)



mmwmmmmwMm

units wide, is

I = J w = - wH
r x
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jw /€7? ClJo<'3or) + C2Yo^or)

The voltage between the two planes,

0=0

0 =0

at a distance r_ from the origin, is

S

V = - E0ds

where

s = 0r .

Since E^ is not a function of 0,

V=-E0s =-0rE0

=-0r [V^rj +C^^r)] .

Byusing the following boundary conditions in (353) and (354)

V(rx) = 0

1^)=^

mmmmmmmmmmm mmwmw^,'»mmmfmm

(353)

(354)

(355)

(356)

(357)

(358)

mmmmmmmmmm mmmmmmmmi
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and, by using the following equality from the theory of Bessel functions

Wl* Yl<Porl> - Jl<fVl>Yo(Porl> ="2/^orl

the expressions for voltage and current become

V=jdru ^rir/2w) [y^P^) J^r) -J^P^) Y^r)]

I =-(1^/2) [Y^P^J^P^J-J^r^Y^p^)]

The ratio of (360) and (361) is

Z = V/I

which is seen to be of the form

Z = -jZ
or

Vorl>Jl^r>" Jl(^rl)Yl(Por)"
^WW^WTm7?

where

Zor = '^fe (^r/w)

For an air dielectric,

and

fpl =377

Z = 377 0r/w
or

(359)

(360)

(361)

(362)

(363)

(364)

(365)

(366)
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Equation (363) is seen to be identical in form to equation (246) in

Chapter IV. Thus, from (363), Z corresponds to Z T in (264).
or oL

Hence, the conducting planes (of width w)in the above field theory

analysis are one form of a linear line.

m*m\ inwii iiwiiwmwiw
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