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ABSTRACT

Various approximate connections have been suggested between

the flux and slowing-down density. The validity of these approxima

tions is investigated by comparison with a particular class of

slowing-down problems in which the resonance escape probability can

be calculated exactly.
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1. In order to facilitate easy solution of the linear Boltzmann

equation three approximate expressions have been suggested connecting

the lethargy flux, 0(u), and slowing-down density, q(u). These expres

sions are all of the form

q(u) = UZs + eia)0(u), (i)

where £ is the average lethargy gain per collision, and H and .£. are
s a

the macroscopic scattering and absorption cross sections, respectively.

In the most elementary approximation 0=0, but the resulting expression

is correct only for a non-absorbing medium, i.e., -Zi =0. If the ratio

3 = IL /£. is both small and slowly-varying the effects of absorption
may be included in first or second order in 0 by setting 0 = £ or -/,

respectively, where 2y£ is the mean squared lethargy gain per collision.

Equation 1 is a series of approximations to the case in which 0 is slowly-

0
2

varying but not small, whence q and 0 are connected by the equation

q(u) =-^ 0(u) (2)

where X is given by

Lt 1 - a1^
1+P=I^= (l-x)(l-a) ' (5>

2

Here a =(A ,-i) where A is the mass of the moderating nucleus. Finally,

since dq/du =-H 0 in an infinite medium, it follows from Eq. 2 that the
resonance escape probability is approximately given by

u .

P(u) =exp (- / X.(u*)du'J (k)

1. H. Soodak, F. Adler, and E. Greuling, "Kinetic Theory of Neutrons, "
AECD-3645, p. 365 (March 1955).

2. H. Hurwitz, Jr., KAPL-706 (Nov. 1951).



In order to test the validity of these approximate formulae a

particular class of problems will be solved exactly, and comparisons

made with the corresponding approximate results.

2. The infinite medium Boltzmann equation for one element with

isotropic scattering in the center of mass, can be written as

u

P(u) + p(u)P(u) = I K(u - u')F(u') + S(u) (5a)
o

where F(u) is the scattering density, S(u) is the source density, and

K(U) = (1 -a)"1 e"U 0- U £ 6
(5b)

= 0 U > €

where <£ == ln( —I. If the absorption to scattering ratio, p(u), varies

exponentially, i.e., if

P(u) = Pe"Ku (6)

Equation 5 can be solved exactly. To carry out the solution we proceed as

follows:

If F(p) denotes the Laplace transform of F(u), etc., then after

transformation Eq. 5 becomes

F(p) + pF(p + K) = K(p)F(p) + S(p) (7)

Use has been made here of the convolution theorem, and of the shifting

effect of an exponential factor. Equation 7 can be solved by iteration

by writing

Fn+]_(p) =7(p) [s(p) -pFn(p +K) (8a)

fo(p) = 7(p)S(p) (8b)



where y(p) =
-1

1 - K(p) . The result of such iteration is the series

co n

F(p) =7(P) L (-)Vs(p +nK) TT 7(P +JK) (9)
n=o j=l

It is not possible to invert Eq. 9, of course, but the asymptotic

form of F(u) for large u can be obtained by application of the Tauberian

theorem. This theorem states that the asymptotic behavior of F(u) can

be obtained by examining F(p) in the neighborhood of its pole with the

largest real part. Since in the problem we are considering F(u)

asymptotically becomes constant, the relavant pole of F(p) occurs at

p = 0. As we shall see in the next section this pole is due to a pole of

?(p) at the origin. Anticipating this result, and noting that asymptotically

q(u) = £F(u), we can write

co n

P= lim P(u) =£. lim [pr(p)j •H (-)Vs(nK) IT r(jK) (10)
u->co p-^o n=o j=l

if the source is normalized to unity.

3. In order to evaluate Eq. 10 numerically, it is necessary to

compute 7(p), and to specify a source S(u), and to compute S(p). From

Eq. 5b it follows that

K(p) .Jfc(P +̂ (lla)
J(e)

where

-x

Thus

•VI Tl 1 =

J(€) -J[6(p +l)j

J(x) =1 "e (lib)

r(p) = ^= r (He)



With regard to the source function s(u), let us choose it to be

the source provided by a constant collision density for u •£ 0. This cor

responds to letting the neutrons slow down in the absence of absorption

until they have assumed the constant asymptotic scattering density, and

then letting them encounter a region of exponentially varying absorption

with a sharp edge at u = 0. If S(u) is normalized to correspond to unit

slowing down density at u = 0, it has the form

S(u) =^(l -a)"1(e"u -a) 0s u ^ 6
(12)

= 0 u > £

From Eq. 12 it follows that

j.s(p) „J-kfr +1>l -a?^l (13)
J(e) J(6)

For ease in carrying out the numerical calculations let us consider

the case of very heavy moderators, i.e., let £-»0, but let £p remain

finite. (This is equivalent to noting that for A >> 1, if we choose

£ as tiie unit of lethargy and 6 as tfc

in a formally identical fashion.) Then

£ as tiie unit of lethargy and 6 as the unit of p, all moderators behave

7(P) = E (HO
p - 1 + e *

where now p is measured in units of g" . Similarly

S(p) =2*-\+ e"P (15)
P

Inserting these last results in Eq. 10 gives after rearrangement



oo n-1

P = 1 L (O^V-lfT 2 (i6)
n=l ** j=l 0K -1+ e"JK

h. It is possible to evaluate the series in Eq. 16 directly for

small P, but the convergence for large P fails. In particular for K = 1,

the radius of convergence in |p| of series (l6) is unity. In this
particular case (K = l) however we can obtain an approximate expression

for the sum of the series which can be analytically continued beyond
i i -N|p| = 1. To do this we choose a value of N such that e can be neglected

in comparison with unity, and write

n-1 N-1

1T 1 = If J .n - 1 M.7)
-1 -1 N - 1 * ''j=l j - 1 + e J j=l j - 1 + e J x

where e has been neglected for n > N. Thus Eq. 16 becomes

N n-1

P = 1 H (-)n+1.pn- 2 •7T J r
n -1n=l n 3=1 j - 1 + e J

N-1 oo

-n4t fx —j—zj Z <->"V(^) (18)
d=l j - 1 + e n=N+l V /

The series in the last term of Eq. 18 can be summed using the following

well known series:

V , vn+1 n , .N p ,.n s.L (-) P -(-) f-^ (19a)
n=N+l ^

oo N

JL (-)n+1 f- -ln(l +p) -L (-)n+1 f (i9b)
n=N+l n n=l n



Hence, for K = 1,

N

p. i - l (-r1 p\ . 5-l
n=l

N

r N
.T „N+1 n nn

where

n-1

c =^7T
n n

j=l j - 1 + e

C1 = 2

5- A similar procedure is possible when K = —. In this case

n-1 1 .

7T 2
j=i

N-1

= T
1 . -, "2J Jll. , 2gj-l + e -j-l + e

-f N
where e <c^ 1. Thus

N

(n - l)(n - 2)
1 . (N - 1)(N - 2)

co

n+lQn (n - l)(n
n

n=l u A ; n=N+l

where now

n-1

j=l
n n

j-l + e

Using Eqs. 19a, 19b, and the equation

|J
c, = h

(20a)

(20b)

(21)

2)
(22a)

(22b)



oo 00

?k L (-?M-)»fcii^ (8„Z_i (") P -n =
n=N+l

we can write

N

dp
n=N+l (1 + P)'

N f /„ „xJI+l ,_ -^N+2n+l„n„
p-i-iL (-rvc.n " (N - 1)(N - 2) °N

( }n (N - 2)p"*x + (N - 5)P
(1 + P)2n=l

+ 21n(l + p)

N

2H (-)
n=l

n+1 JT
n

6. Let us finally consider the case of K = 2. In this case
n-1 N-1

JT 2j _ -TT 2J (2N - 3).'.' (2n - 2).'.'
j=l 2j - 1 +e"2J ~j=l 2J - 1 +e"2J ' ^-2)''-' ' ^n " 3).'.'

-2N
where e ^^1. Thus

N

,n+l n

co

P=i-z(-rVcn-NcN(fH-0 z (.,-
n=l ' n=N+l

x pJ>H
2n - 2

2n - 3

where

(2k)

(25)

(26a)

n-1

-±7T 2j
n n -2j

j=l 2j - 1 + e
C, = 1 (26b)

and x.'J = x(x - 2)(x - !(•) ... 2 or 1. The series 26a can be summed

explicitly with the use of the following series derived in Appendix A:



CO

r* , in+lftn 1 (2n
-^ (_) P nl2n-
n=l v

2).'J
1JTT

= 2 /YT~p arcsinh v'p - (arcsinh /p ) (27)

One then finds

N

P = 1 £ (-)n+V
n+l„n„

n
NC

(2N - 3)''
N (2N - 2):;

N

L
n=l

1 + p
arcsinh p

n=l

,n
f 4 v. a^2 T /• \n+l P (2n - 2).'.'(arcsinh, p)-!,(-) - jgn .3\,, (28)

6. In order to evaluate P from Eq. k it is necessary to calculate

f X,(u)du, where X. is given by
o

1+pe"Ku =J^(1->>X!
J(e) e-o

e - 1
(29)

and where the limit as €-»0 is taken in a manner similar to the limits in

Eqs. Ik and 15. X is thus measured in units of 6 . It is possible to

change the variable of integration from u to X. by use of Eq. 29, obtaining

00 X . d feX -l)
(30a)

* J ' e* - 1 . 1
o

/' ,(u)du =± J dX ,^_^

where

1 + p = 0 DAr (30b)

Expansion of the integrand in series and term-by-term integration gives

OD

/ X(u)du = -

o

2 3 4
K X X
0.0. o

X +o + 6~ + 5S + l55o " 16200 " 51555 + (3D



7- Plotted in Fig. 1 is an exact calculation of P vs p for K = 1,

as well as four approximate calculations based on Eqs. 1 and k. The

curves labelled "Fermi," "Wigner," and "Goertzel-Grueling" correspond

to Eq. 1 with 0 = 0, £, and y(~ - £), respectively. The curve labelled

"Hurwitz" corresponds to Eq. k. For P >0.20 the Hurwitz and Goertzel-

Greuling approximations are essentially exact and represent a substantial

improvement over the Wigner or Fermi approximations. For 0.20 jr P >-0.03

all of the approximations based on Eq. k fail to some extent, although

that of Hurwitz is best. For smaller values of K and the same P for K = 1

one would expect better agreement with Hurwitz approximation since the

ratio i*J2i,a is smaller and more slowly varying. As K increases one
a. S

might expect the curve labelled "exact" to approach Wigner's approximation,

since the latter is correct for a very thin absorbing spike. Figure 2,

which is similar to Fig. 1, except that K = 2, shows this effect clearly.

Here the curve labelled "exact" lies above the Hurwitz approximation,

whereas in Fig. 1 it lies below it.

The resonance escape probability P is a better index of the applicability

of the Hurwitz approximation than the absorption-to-scattering parameter,

p. For K£ 2 and P £ 0.20 Hurwitz' approximation is probably adequate.

For K^ 1 and P 2. 0.20 it gives essentially exact results. Considering

that K = 2 corresponds to a cross section which falls by a factor of

e(=2.7l8) in a lethargy interval £, one sees that the applicability of
the Hurwitz approximation is very wide indeed.
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APPENDIX A

Consider first the function S(x) defined by

co

_/ x r> (2n - 2).*.' 2n ,. .
S(X) =̂ fen" l)H X (A,1)

It is easily verified that

oo

,3 /£tx dS = r. (2n - 2)11 . 2n . 2n+2 _ , ,_ 2 , ,
x dx ^ (2n - 3).'.' 2n -1 X ~SW x ^A'2'

Differentiation of Eq. A.2 yields the inhomogeneous first order linear

differential equation

dfl | ?S(x) x
dx + , 2 .. ~ 2 . ^A-3)

x(x - 1) X - 1

An integrating factor for the homogeneous equation is

1=-6,/^fe; iA-k)
The integral can be carried out by the method of partial fractions and

Eq. A.k gives for I

+ 2
I=x"3(l -x2) 2 (A.5)

A particular solution of the inhomogeneous equation is

s(x) .-x+5(i -x2)" 5/ax i^_zj£li (A.6)
2

x
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The integral can be evaluated with the help of the substitution x = sine

which yields

2 3
S(x) = £ + - -arcsin x (a.7)

1 -x |
(1 - x2)2

which can be verified by direct expansion. Finally setting x = i/y~
yields

5

Y (2n - 2).'.' / vn+1 n y / y ^2 /— , rtX^ (2n I\)l I(^ y =IT7-(rfij arcsinh/y- (A.8)

which can again be verified by direct expansion. From Eq. A.8 it follows

that

3co y f — |

=2 /± +y arcsinh/y -(arcsinh, y)2 (A.9b)

2
if one makes the substitution y = sinfe z and integrates by parts. Equation A.9b

can again be verified by direct expansion.
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