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NOMENCLATURE

Symbols

hx hr

Bi Biot number = -r— or -r—

C1,C2,C,,Cr constants of integration

E infinite series defined in the text

F first term in E

g rate of internal heat generation

G first term in H

h heat transfer coefficient

H infinite series defined in the text

k thermal conductivity

\\
Mnj
r radius

R function of r alone

t temperature

T temperature difference =t -tf (H?.. and T2 are variables)
x distance

X function of x alone

roots of transcendental equation

Greek

a thermal diffusivity = Tq— , where p is density and C is
specific heat p

6 time

^ separation constant
X function of © and x, or 6 and r

0 Fourier modulus = —5 or —5
x r
o o

M.

o

M 3

4/(Mn) afunction equal to J n£ JQ(£ )d£
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NOMENCLATURE (CONTD.)

Subscripts

0 refers to exterior dimensions of body

1 refers to conditions before the step changes take place

2 refers to conditions after the step changes take place

c refers to cylinder

f refers to coolant fluid

p refers to plate

s refers to sphere
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INTRODUCTION

In a previous report the transient temperatures in infinite plates,

infinite cylinders and spheres during convective cooling following an

instantaneous cessation of uniform heat generation in the body were investi

gated. It was assumed in that study that the coolant temperature and heat

transfer coefficient at the surface of the body in question was constant.

The solution was obtained in infinite series form and the actual values of

the series were evaluated for a wide range of parameters.

A more general problem, of which the aforementioned one is a special

case, is the question of transient temperatures after a simultaneous step

change in internal heat generation rate, coolant temperature and heat

transfer coefficient. The solution of this problem involves two series.

One series is precisely the one generated in the simpler casej the second

series is one which comes about in the study of coolant temperature change

only, with no internal heat generation at any time. This second series has
2

been evaluated by Prof. M. P. Heisler for a range of variables comparable

to that used in evaluating the first series. Thus, knowing the form of the

general solution, use can be made of the already published values of both

of the infinite series to arrive at a numerical answer.

The similarities in the development for the three geometries are

emphasized in this development by assigning the same number to corresponding

equations with merely primes or double primes distinguishing the geometry

involved.

1. L. G. Epel, Transient Temperatures in Infinite Plates, Infinite Cylinders;
and Spheres During Convective Cooling from Initially Parabolic Tempera
ture Profiles, ORNL-2511 (May 5, 195o)»

2. M. P. Heisler, Temperature Charts for Induction and Constant-Temperature
Heating, Trans. A.S.M.E., Vol. 69, pp. 227-236, April 19^7.
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THE INFINITE PLATE

Fourier's equation for this case is:

A.

ax

2 g2 1 ^2
a 26

The boundary conditions are:

= 0

h T
n2i2

at

dT2
IT

x = 0

at x = x

e = e

9 = 0

(1)

(a)

(D)

The initial condition is obtained by solving Poisson's equation in

rectangular coordinates and applying the boundary conditions

dT,

dx
= 0 at x =•• 0

h T
Tl

= _k_ at x = xQ

This yields

T =12

2

glXo
2k kH + <*fl - tf2)

2

2k

Assume a solution of Eq. (l) of the form

T2(x,9) = T(x,9) + X(x).

With this assumed form Eq. (l) becomes

ax2 ax2 k ~ « ae '

at 9 = 0. (c)

(2)

(3)
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The boundary conditions (a) and (b), and the initial condition (c), are

satisfied respectively by letting

^ = 0 and |^ = 0 at x=0 0=9
ax 3x

dT BXh„T = -kf and LX = -k^ at x = x 9 = 9
2' dx 2 ax o

r -
5lxo
2k

2

Bin
+ 1 + (t.

fl
tf2) ~2F

Equation (3) is broken up into two equations as:

i^ +f2. = 0
- 2 + k U
<?x

X at 0 = 0

O - i 2l
dx2 ~ a d6

Thus Eqs. (k) and (5) together with boundary conditions (d) and (e) and

initial condition (f) constitute a boundary value problem equivalent to

Eqs. (l), (a), (b), and (c). The general solution of Eq. (k) is

S2 2
X - ~ 2k x + C1X + c2*

Applying boundary conditions (d) and (e) yields the particular solution

which in dimensionless form is

g2xo
Bi,

+ 1

x
"2 *

2k

The general solution of Eq. (5) is

T = (C-sin —r x + C.cos -==- x) e"
3 fa ^ fa

where /_ is a constant to be determined.

A2e

(d)

(e)

(f)

(*0

(5)

(6)

(7)

(8)



T r

2k

Applying conditions (d), (e), and (f) yields the particular solution which in dimensionless form

is

S(^+i) ^ > sin M
£ -1

n M2
n

2M cos M + (M c
n n v n

2) sin M

oo

E
n=l

M -M 0
n n r

cos — x e ,
x '
o

M sin 2M
_2 * n
T* 5—

where the M 's are the consecutive roots of the transcendental equation

Define

E h
P

U tan MM = Bi0
n n 2

and defined as Ms .
An

oo

(~- +1) sin M- -\Bi2 n 2
n

2M cos M + (M c
n n v n

n=l M„ sin 2M
-S i , n
2 +^+

- 2) sin M

H

oo sin M

-- E f
n

n=l
M sin 2M "

2 +^+

M -M 0
n n r

cos •—- x e

O

M -M 2 0
n n r

cos — x e
x

o

(9)

(10)

(11)

(12)

i

i
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With this notation, Eq. (9) becomes

•

r

Lg2
1 E +

P

tf-[_ - tfg gl
H + —
P g22

g2Xo
2

g2Xo
2k 2k

_2
Bi

2

1 Bi2

Thus the final solution in dimensionless form is from Eq. (2):

T2 'gl
Ls2"

i E +
P

*f1 " *f2 w glH + -=
P g2

" 2

.Bil"
2

"Bi22

g2Xo
2k

2

g2Xo
2k

Bi,
+ 1

"2 *

H . (13)

H

(1*0
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THE INFINITE CYLINDER

Fourier's equation for this case is:

2m 2_
3-^2 1 <?^2

+ —
2 r a r k

The boundary conditions are:

3T,

lj^
5 a ©

2
0 at r = 0

<?T„

h2T2 = ~kTr~ at r = r

9 = 9

9 = 0

The initial condition is obtained by.solving Poisson's equation in

cylindrical coordinates and applying the boundary.: conditions

dTa

dr"
= 0

dT,

at r = 0

hiTi = -**r at r = ro

This yields

glro
T,
u2 2k

Assume a solution of Eq. (l1) of the form

Bi 2 + ^fl "*«>

T2(r,9) = T(r,9) +R(r).

With this assumed form Eq. (l1) becomes

a2r .a^ .. i— + —_ +

a r a^ r
1I+U
«9r 5r

8c i ir
a d&

(i0

(a')

(b«)

(c«)

(2»)

(30
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The boundary conditions (a1) and (b1), and the initial condition (c'), are

satisfied respectively by letting

il
<?r

= 0 and i*

h2r =

r -

k <?r

glro
2k _B±1 2

=0 at r=0 0=0 (d«)

tU? = -k -~ at r = r 9 = 9
2 <9r o

(e«)

2
g r

+ (tfi ~ *«>> " TT " R at G- ° (f)

Equation (3') is broken up into two equations as:

jA +l £R+f2 =
3r2 r ar k

c92r, i jT = i aT
A 2 r 3r a TS
ar

(V)

(50

Thus Eqs. (k*) and (50 together with boundary conditions (d1) and (e*) and

initial condition (f') constitute a boundary value problem equivalent to

Eqs. (V), (a1), (b1), and (c1). The general solution of Eq. (h1) is

Bo p
R = "i^r +C1lnr + C

2 ' (60

Applying boundary conditions (d1) and (e*) yields the particular solution

which in dimensionless form is

R

g2ro
2k

1 1

Bi2 +2
2r

The general solution of Eq. (51) is

r •-

where a is a constant to be determined.

2 '

C, J (-i- r) +C, Yn (A. r)

(70

e f (80



T r
g2ro£
2k

Applying conditions (d'), (e'), and (f) yields the particular solution which in dimensionless form
is

8
i (=|- +1) -(2 +1} +2g2 ^BJ^ Bi,

*fl " ^2'
2

g2ro

J^V U - 1

M w
oo

E
n=l

n

2k

[Jo2<V +J>n>]

M
n

where the M 's are the consecutive roots of the transcendental equation

Define

E

J-,(M )lv n'

00

E
n=l

00

2 .,>Jl'V W
«Br +1» M

h M

A.M j^npy » Bi2 and defined as M„ a "n °
o^ n' n ~ fST '

MQ -M 20
[Jo2(Mn) +̂(Mj ^ '"To ^ Sn

n
M -M 0

T / n x n r
J (rr r) eHc - E-i I^vT^g] °kro

M -M 0
T / n \ n ^
J (— r) e
oxr '

o

(90

(ioO

(nO

(120

i

H
H
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With this notation, Eq. (9') becomes

T fi-1
Lg2

E +
c

tfl " *-f2 gl
H + —
c g2

_1
Bi

1

1 M2
H

Sg*o
2k

g2ro
2k

Thus the final solution in dimensionless form is from Eq. (21):

r
T,

g2ro
&r

- 1

2k

E +
c

*f1 " *f2

ffo.
2k

Bi2 2
2r

C gg

2 '

I 1

Ml " Bi2
H

(130

(1^0
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THE SPHERE

Fourier's equation for this case is

1

a 99

a ip p o *o gp
4. _ , + _£

2 r d r k
1 3T2

The boundary conditions are:

^T0

<9r
= 0 at r = 0 9 = 9

h2T2 aT
-k — at r = r 9 = 9

3r o

The initial condition is obtained by solving Poisson's equation in

spherical.coordinates and applying the boundary conditions

= o at r = 0

hlTl

This yields

Tr

dT^
dr"

at r = r

glro
2k 3 Bi, + 3

g r

+ (tfi - *f2> - -ar at e

Assume a solution of Eq. (l") of the form

T2(r,9) = r (x,0) + R(r)

With this assumed form Eq. (l") becomes

ar2 3r2r^r+jr;+k "a 99*

= 0 .

(1")

(a")

0>")

(c")

(2")

(3")
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The boundary conditions (a") and (b"), and the initial condition (c"), are

satisfied respectively by letting

22- = 0 and — = 0 at r = 0
<9 r <9r

>& - -k£ and h0R = -k ^— at r
2 ar

9 = 9

r 9 = 9
o

r
glro

2k

1£C z*

+(tfi - W - Hsr -R at e =

Equation (3") is broken up into two equations as:

9 ^ .2 -3 R .g2
2+ ? 'S + r = °

2r

a2r . 2 ii = i n
^r2 r ^r • a a©

(d")

(e")

(f)

(V)

(5")

Thus Eqs. (V) and (5")> together with boundary conditions (d") and (e") and

initial condition (f")> constitute a boundary value problem equivalent to

Eqs. (1"), (a"), (b"), and (c"). The general solution of Eq. (V) is

go g Cl
R " - ol r +T + C2 ' (6")

Applying boundary conditions (d") and (e") yields the particular solution

which in dimensionless form is

R

g2ro
2k

2 1
+ —

3 Bi0 + 3
3r.

2 *

The general solution of Eq. (5") is

r- c,
sin

A
+ C

'3 r ' "4 x

where ^ is a constant to be determined.

(7")

cos »r\ _A20
(8«)



ffo.
2k

Applying conditions (d"), (e"), and (f") yields the particular solution which in dimensionless form
is

30t^)
+ 2 2

52xo

4 n

r M -M 20
S sin -2- re n

M
n

, sin M^ - cos M 4
Sor72k n ng2

sin 2M
n

gi M
J2L+2.
Bi.. M

1 n

where the Mn's are the consecutive roots of the transcendental equation

Define

E

H

1 - Mn cot Mn = Bi2 and defined as
n VcT

00 { M2 ^2
E
n=l

- 1 sin M
n

Mn 3-\
sq +V°-^ r „

^ o . n
sin 2M \ ' r sln r~

n \ o

El
n=1 5 M\ M-

h n
M

n

sin M - M cos Mir M
l n n nj o .

— - -— sin

n
M-

n

sin 2M
n

-M 20
n n r
-re

-M 20
n r

r e

M

Bi2 Mn
3 tfl"tf2

g2ro/

(9")

(10")

(H")

(12")

i

H

I

y
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With this notation, Eq. (9") becomes

r

52ro
2k

-i - 1
go Es +

tfl - tf2

g2ro
2k

el
H + —s g2 3 Bi, 3 Bi,

2j
H . (13")

Thus the final solution in dimensionless form is from Eq. (2")

T,

a2 o

2k

fi-ll
g2 J

l|Es +
tfl - tf2

g2ro
2k

gl
H + -=

s g2

[3 Bi2 3
3r

"2 *

3 Bi, 3 Bir
H

(lV)
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DISCUSSION

As mentioned in the introduction, the general solution in each case

involves linear combinations of two infinite series, both of which have

already been evaluated. Reference to the publications noted^ will show
that for the range of Biot numbers investigated, both infinite series are

approximated to a high degree of accuracy by the first term in the series

provided that the Fourier modulus is greater than about 0.2. This affords

a great simplification in the form of the general solution since the in

finite series can be replaced by a single term.

Let the first term (n = l) in the infinite series denoted by E be

represented by F, and the first term in the infinite series denoted by H

be represented by G. Eqs. (ik), (lV), and (lV) can .then be written

respectively to a great degree of accuracy as

T,

«<
g2Xo
2k

T,

=

g2ro
2k

- 1

L*2

S-i

F +
P

F +
c

g2 ^

2

Bi,

g2 H

+ 1

Bi2 +2

2 Ieg^
2k

2

- (~)vx '
o

±_, rti" tf2 •

2 lg2ro
2k

2 Kt ' '

G

G.

M

>cos
/ X

x e

-M^0

(15)

M, -M,20

o

(150

3. L. G. Epel, op.cit., p. 22 and M. P. Heisler, op.cit., p. 232.
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g2ro
2k

=

sl
-= - 1
go

F +
s
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2 -./*«." *-f2\g

Mlg2 ^3 Bi1 3 Bi2

2k

3 Bi0 + 3 5 (—; >

'o . Ml "M
G )— sin —'res[ r rQ

(15")

where the subscripts on F and G refer to the geometry in question. To

facilitate computations, the F's and G's are presented as functions of Bip

in Figs. 1 and 2. Thus, the temperature at any point in the body under

consideration at any time for any combination of initial and boundary con

ditions is found by obtaining F and G from Figs. 1 and 2, and then utilizing

Eqs. (15), (150 or (15").

The case in which the Biot number becomes infinite is included for

consideration since this is equivalent to fixing the surface temperature

of the solid at the same temperature as the cooling fluid. If it is desired

to specify the temperature at the surface of the body rather than the fluid

temperature this is accomplished by assigning the surface temperature to the

fluid and considering the Biot number as infinite. This artifice may be

used either before or after the step change occurs, or both before and after

it occurs. Care should be taken to adjust the proper Biot number and fluid

temperature (subscript 1 or 2) in order to simulate the problem properly.

Finally, it should be pointed out that the problem in which the body

is covered with one or more layers of cladding, bonding materials, surface

scales, insulation, etc., can be solved easily by use of Figs. 1 and 2.

It is only necessary to consider the layers of the various materials as

comprising fractions of the total film resistance and finding the total ef

fective resistance that this imaginary film affords to the flow of heat

emanating from the heat generating body. The reciprocal of this total

resistance is then the effective pseudo-heat-transfer coefficient applied

at the surface of the generating portion of the configuration. For easy
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reference the formulae for these coefficients are'presented below for the

three geometries:

h'

x- *b x

a d c n

r r r . r. r r r r r

a o d a c b n n-1 n

, (160

V(ra-ro) , ro2(rb-ra> +r<ftr<ftrb>- roVn.i) V '
r r k r r, k, r. r k ' r , r k 2,
oaa a b Hd bcc n-1 n n r h

n

(16")

where a, b, c .... n,tstand for the first, second, third, .... n*11 layers
of material.
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ILLUSTRATIVE EXAMPLE

The foregoing analysis may appear somewhat abstract to the user who

does not wish to follow the derivation:in detail, but simply wishes to

make use of the results. For this benefit, an example is included here to

present the procedure in solving a problem in general.

Consider a 3/^-in-dia fuel rod operating in a gas-cooled reactor

under steady state conditions. The heat=generation rate in the fuel is

constant over the cross section of the cylindrical element and equal to

2x10 Btu/ft5hrj the heat transfer coefficient is 180 Btu/hr ft2 °F.
There is a 20-mil stainless steel clad (assume no contact resistance be

tween fuel and clad) and a scale deposit on the outside of the clad which

has an effective,conductance based on the fuel surface area of

2000 Btu/hr ft °F. The thermal conductivity,tspecific heat, and. density
of the fuel are 1.23 Btu/hr ft °F, O.085 Btu/lb °F, and 650 lb/ft5
respectively, and the. thermal conductivity of the stainless steel clad is

14.8 Btu/hr ft °F. At a given time the reactor;power is halved, the coolant

flow is decreased so that the heat transfer coefficient is subsequently

120 Btu/hr ft °F, and the coolant temperature decreases 100°F. Estimate

the temperature difference between a point l/lO of the way from the center

of the fuel rod and the new coolant temperature 1 min after the pertur

bations take place. Assume that the changes take place simultaneously and

instantaneously.

The solution is given formally by Eq. (l5')« To use this form it is

necessary to know Bi , Bi2, and 0. To ascertain.the Biot numbers one must
know the effective heat transfer coefficients based on the fuel outside

diameter. To this end use is made of Eq. (l6') as follows:



Hence
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. ' 1
n =

1 r r n , r ,
o - clad. , o,J.In + __ +

k , , r r , , h., h ,
clad o clad 1 scale

2

0.03125 0.03292 0.03125 1 "17° Btu/ft to °F
l57£T m 0.03125 0.03292(150) 2000

1

h.
2 r r , , r ,

o , clad o 1In r-^r + z—,— +

kclad ro rclad h2 hscale

0.03125 0.03292 0.03125 1 117 Btu/ft hT F
IO~ m 0.03125 0.03292(120) 2000

th - ^l r° - 170(0.03125) _k ,P
^1 ~ ~~k " 1.23 " °

»

m _ h2 ro _ 117(0.03125) _pQ7
m2 ~ k ~ 1.23 yi

0 _ oe „ i»23 (1/60) =0>38o
r 650(0.085)(0.03125)

Notice that the values of F and G that must be used are the ones cor

responding to Bip. In this case F = 0.900 and G = 1.^2 from Figs. 1 and
2 respectively! IL is found by interpolation in tables to be I.783O.

h. See for example, Carslaw and Jaeger, Conduction of Heat in Solids,
Oxford University Press, London, 19^-7, pp. 377-379.
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Substituting into Eq.. (15 0

T„

52ro
2k

/rfl
^ U2

F +
c

gn ;; (JL -
gg'^ij.

Bi2 + 2

In , /*«. " *f2'
Bi,/ 2

g2ro
2k

2 lrJ '
o

M. -H, 0G.}jo(^r)e X
o

T2
106 x 0w031252

2 x 1.23

=

2 x 10

1F~
0.900 +

2 x 10 / 1 1 n

TJJJ5 ^¥732 "2.97;

100

106 x 0.031252
2 x 1.23

1 +i
2.97 2

1
1.42 J(1.7830 x0.1) e-l-7830^0.380)

1 (±)
2 W '

T2 = t2 - tf2 = 443°F.

Therefore, the point in question is seen to be 443°F above the new fluid

temperature.



'-/



1. J. F. Bailey
2. D. S. Billington

3. F. F. Blankenship
4. E. P. Blizard
5. A. L. Boch

6. C. J. Borkowski
7. G. E. Boyd
8. E. J. Breeding
9. R. B. Briggs

10. H. E. Seagren
11. C. E. Center (K-25)
12. R. A. Charpie
13. F. L. Culler
14. L. B. Emlet (K-25)

15-19. L. G. Epel
20. D. E. Ferguson
21. A. P. Fraas

22. J. H. Frye, Jr.
23. W. T. Furgerson
24. W. R. Grimes
25. E. Guth
26. D. C. Hamilton

27. C. S. Harrill

28. H. W. Hoffman
29. R. S. Holcomb
30. A. Hollaender

31. A. S. Householder
32. S. Jaye
33- W. H. Jordan
34. G. W. Keilholtz

35- M. T. Kelley

\ \

-27A
ORNL-2597

Physics and Mathematics
TID-4500 (l4th ed.)

INTERNAL DISTRIBUTION

•36.
37.
38.
39-
40.

41.
42.

43.
44.

45.
46.

47.
48.

49.
50.

51.
52.

53-
54.
55.
56.
57-
58.

59-60.
61.

62-81.
82.

83.

J. A. Lane

R. S. Livingston
H. G. MacPherson

W. D. Manly
J. R. McNally
K. Z. Morgan
J. P. Murray (Y-12)
M. L. Nelson

P. F. Pasqua
A. M. Perry
C. A. Preskitt

G. Samuels

H. W. Savage
A. W. Savolainen

E. D. Shipley
M. J. Skinner

A. H. Snell

J. A. Swartout

E. H. Taylor
A. M. Weinberg
C. E. Winters

Biology Library
Health Physics Library
Central Research Library
Reactor Experimental
Engineering Library
Laboratory Records Department
Laboratory Records, ORNL R.C.
ORNL - Y-12 Technical Library,
Document Reference Section

EXTERNAL DISTRIBUTION

84. Division of Research and Development, AEC, ORO
85-692. Given distribution as shown in TID-4500 (l4th ed.) under Physics and

Mathematics category (75 copies - OTS)


	image0001
	image0002
	image0003
	image0030

