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hxo hI'o
Biot number = - or e

constants of integration

infinite series defined in the text
first term in E

rate of internal heat generation
first term in H

heat transfer coefficient

infinite series defined in the text
thermal conductivity

roots of transcendental equation

radius

function of r alone

temperature

temperature difference =t - 1, (Tl end T, are variables)
distance '

function of x alone

thermal diffusivity = ‘—J-lé— » where p is densi‘l;y and CP is
specific heat P
time

separation constant

function of © and x, or 6 and r

Fourier modulus = a_g_ or a_g_
xo ro
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exterior dimensions of body

conditions before the step changes take place
conditions after the step changes take place
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coolant fluid
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INTRODUCTION

In a previous reportl the transient temperatures in infinite plates,
infinite cylinders and spheres during convective cooling following an
instantaneous cessation of uniform heat generation in the body were investi-
gated. It was assumed in that study that the coolant temperature and heat
transfer coefficient at the surface of the body in question was constant.
The solution was obtained in infinite series form and the actual values of

the series were evaluated for a wide range of parameters.

A more general problem, of which the aforementioned one is a special
case, is the question.of transient temperatures after a simultaneous step
change in internal heat generation rate,.coolant temperature and heat
transfer coefficient. The solution ofvthis problem involves two series.
One series is precisely the one generated in the simpler case; the second
series is one which.comes about in the study of coolant temperature change
only, with no internal heat generation at any time. This second series has
been evaluated by Prof. M. P. Heislereitm a range of variables comparable
to that used in evaluating the first series. Thus, knowing the form of the
general solution, use can be made of the already published values of both

of the infinite series to .arrive at a numerical answer.

The similarities in the development for the three geometries are
emphasized in this develomment by assigning the same mumber to corresponding
equations with merely primes or double primes distinguishing the geametry

involved.

1. L. G. Epel, Transient Temperatures in Infinite Plates, Infinite;Cylinders,
and Spheres During Convective Cooling from Initially Parabolic Tempera-
ture Profiles, ORNL-2511 (May 5, 1956).

2. M. P. Heisler, Temperature Charts for Induction and Constant-Temperature
Heating, Trans. A.S.M.E., Vol. 09, pp. 227-236, April 194T.
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THE INFINITE PIATE

Fourier's equation for this case is:

92T2 € 1 9%

Fr AL

The boundary conditions are:

9T2
— = 0 at x=0 6 =
X
8T2
h2T2 = -k 5% at x=x

(1)

(a)

()

The initial condition is obtained by solving Poisson's equation in
rectangular coordinastes and applying the boundary conditions

dTl
= = 0 at Xx=0
dTl
'thl = -k-asz— at X=Xo
This yields
2

glxo

o
T, = 2% [Bil + l] + (g - tpp) -

Assume a solution of Eq. (1) of the formm

T2(x,6) = T(x,8) + X(x).
With this assumed form Eq. (1) becomes

ET B B 1T
"

ax ax

2k T a )

8 X2

;_k at @ = 0. (c)
(2)
(3)
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The boundary conditions (a) and (b), and the initial condition (c), are
satisfied respectively by letting

T X

a_=° and 37 = 0 at x=0 =0 (a)
bl = -kﬂ:zamcih}c:-ké-’—c at x=x_ ©0=86 (e)
2 Ix 2 X 0
g.x ° g X

- Lo | 2 I _

T = =% [Bil+1]+(tﬂ-tf2)- 55— - X et 6=0 (£)
Equation (3) is broken up into two equations as:

g
ﬁgf*—f =0 (1)
ax
2T
a1 _ 1T (5)
3x2 @ 96

Thus Egqs. (4) and (5) together with boundary conditions (d) and (e) and
initial condition (f) constitute a boundary value problem equivalent to
Egs. (1), (a), (b), and (c¢). The general solution of Eq. (4) is

g o (6)

X = -_2_1-<x +clx+c2.

Applying boundary conditions (d) and (e) yields the particular solution

wvhich in dimensionless form is

2
X _ 2 X
x2 _[Bie+l] -xe. (7)
g20 o)
2k

The general solution of Eq. (5) is

2
T = (CBSin TT/}T X + C)cos T/}t— x) e'A °, (8)

where A is a constant to be determined.




gaxo

2k

Applying conditions (d), (e), and (£f) yields the particular solution which in dimensionless form

is

g t., -1t g
2 (—g— +1) - (_2_ + 1) + L1 F215 sin M -2 2M cos M+ (M 2. 2) sin M
g, ‘Bl Bi 2 n 2 n n n n
2 1 2 85X, Mn
OZ,E ‘ 2k J
n=1 M sin,aMn
M -M2¢
n n
cos — X e P (9)
X
o
vhere the Mn's are the consecutive roots of the transcendental equation
n*o
M, tan M = Bi, and defined as M = = (10)
Define
/ 2 1 2
(37— + 1) sin M_ - — [2M cos M + (M“ ~-2) sin M ]
312 n Mn2 n n n n Mn _Mna )
E = cos = x e (11)
P 21 M, sin 2M) o
T T
2
© sin M_ Mo -M) [/
H = cos == x e . (12)
o
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With this notation, Eq. (9) beccmes

g Ty -t g
T = _}._l E + f:l f2 H +_l ._g.._i H . (13)
g 2 P £, |Bi Bi P
g2x° 2 gexo 2 1 2 )
2k L 2k

T 8 To1 = bep €1 2 2
) —é—-l EP+ ) HP+§— -EI—-—Bi HP
g% 2 8%, 2 [P 2
2K

2
+[-§%+1]--’-{—-2-. (1)
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THE INFINITE CYLINDER

Fourier's equation for this: case is:

M1 T B 10% -
9r2 r 2r k a 20
The boundary conditions are:
T,
- = 0 at r =0 0=6 (a*)
9T.2 -
h2T2 = -k-é—r—- at r;=ro‘ 0 =0 (v')

The initial condition is obtained by:solving Poisson's equation in
cylindrical coordinates and applying the boyndary.conditions

d'Tl
a;— = 0 at r=20
‘dTl
thl = -ka-r-— at r=r,
This ylelds
8. 2 g r2
= xo | 1 .1 - I '
T = 2% [Bil * 2] + (b = bgp) =g - (c*)
Assume a solution of Eq. (1') of the form
T(r,8) = T (r,6) + R(r). (2*)
With this assumed form Eq. (1') becomes
2 .2 r k a 36 °
ar ar- :

ar  Jr
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The boundary conditions (a') and (b'), and the initial conditlon (c'), are
satisfied respectively by letting

T IR _ _ _ '
57 = 0 emd £2 =0 &t r=0 =6 (a)
- 2T = 2R = - '
hzT—-kar snd hR = -k3= at r=r ©=0 (e*)
g.r 2 g r2
_ %% |11 - _
T - 2k [Bil + 2] + (tfl - tfz) - !ik" R ate =20 (f')

Equation (3') is broken up into two equations as:

2,198 B _ (1)
2 r Jr k

ar ‘

2

2°T . 1 9T _ 1 7T '
2T ot T & 78 (5*)

Thus Egs. (4') and (5') together with boundary conditions (d') and (e') and
initial condition (f') comstitute a boundary value problem equivalent to
Egs. (1'), (a'), (b'), and (c'). The gemeral solution of Eq. (4') is

g, .
2 2
R = -qpr +Cilar+C,. . (67)

Applying boundary conditions (d') and (e') yields the particular solution
which in dimensionless form is ES

2
R __ _|L 1 _ _x "
2 “[312+2] op 2 (7*)
g2 o) o)
ok

The general solution of Eq. (5') is

2
]e'“, (8n)

T = [CBJO(/\“ r)+C,+Yo (—%.—r)

Ic3

where ,X 1s a constant to be determined.




Applying conditions (d'), (e'), and (£') yields the particular solution which in dimensionless form

is
" <_ _
g , ta, =t J, (M g;
1,2 2 £1 7 Ur2ll Y1 >2
2 Gty -Gty 5 )| o - S Yy
2 1 2 gzr M
0o n 2
T 00 5% B Mn --Mn
— = 5 5 J(zr)e » (9)
Ex'o n=1 [Jo (Mn) *J (Mn)] °
2k
where the Mn's are the consecutive roots of the tmnscendentql equation
J (M) Ar
M =1-BC - Bi_  and defined as M = 20, (10)
n JoiMns 2 n ,J a
b
Define _ 1
(_2_ + l) Jl(Mn) . \Y(Mn) .
o BL, MI}V Mnh M _Mna ¢
E, = 5 5 J, () e ’ (11)
n=1 [Jo (Mn) +J; (Mn)] o
2
0 'bg I, () M -Mn2 )
B = Y (= 1) e . (12*)
c = [J 2(M) + J.°(M )] o'r,
o'n l1%nmn
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With this notation, Eq. (9') becomes

T & Ber = oo Bil1 1
— = |z |kt |5e - | B (151)
gzro 2 gzro 2 1 2

2k

Thus the final solution in dimensionless form is fram Eq. (2'):

7T g Y%t T o7 | Y, B, B
g2 (o] g2 [¢]
2k 2k
2
X 1 ] r
g3 | -5 - (141)
[312 2 op 2




THE SPHERE

Fourier's equation for this case is:

2,2 92, % _129% (")
9 r2 r Jr k a 9o
The boundary conditions are:
T,
7 = 0 at r =0 0 =0 (a")
nt = k2L at r=r o=6 (p")
22 ar o

The initial condition is obtained by solving Polsson's equation in
spherical coordinates and applying the boundary conditiomns

l — —
T - 0 at r =0
dTl
hl 1 = -k ar at r = r,
This yields
&,T 2 g r2
. Lo (_2 1 1 _ "
T, = -5 [3Bil+3]+(tfl-tf2)'Tk at 8=0. (e")
Assume & solution of Eq. (1") of the form
T(r,8) = T (x,6) + R(r) (2")
With this assumed form Eq. (1") becomes
2 .
3T+ﬁ_+_2_(i _a_._)+5g =_J:.LT. (3")
91‘2 31'2 rgr ar k a 29
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The boundary conditions (a") and (b"), and the initial condition (c"), are
satisfied respectively by letting

T IR

5% - 0 and 57 = 0 &t r=0 0 =6 (a")

I _ _x 2B - .
h*aT"kar and haR—-kg-; at r=r ©6=0 (e")

g.T -y

&Y, 2 1 1 _ ,

T == [3Bil+3]+(’°f1"°fa)"ar-3a’°9-° (£")
Equation (3") is broken up into two equations as:

9%R 2 9r 8B _ ,
2T tE <O (8")
£T .2 2T _ 12T (5")
3:r2 r 2r & 286 5

Thus Egs. (L") and (5"), together with boundary conditions (d") and (e") and
initial condition (f"), constitute a boundary value problem equivalent to
Egs. (1"), ("), (v"), and (c"). The general solution of Eq. (4") is

g C
— 22 l "
R—--6—kr +—I-_-+C2. (6")
Applying boundary conditions (d") and (e") yields the particular solution
which in dimensionless form is

2
R - 2 1 g "
-—_;—E— = [ 3 312 + 3] - - 5 . (™)
g2 o o
2k

The general solution of Eg. (5") is

A A
sin == r cos =T 2 "
T (o —F— o, AT (8"

where ,X is a constant to be determined.




Applying conditions (d"), (e"), and (£f") yields the particular solution which in dimensionless form

is
g | _ (tog-tan) g, [M 1 M -t
Bz o] [ ] T e - oo @ [ 2] [ ) 2,
T _ozo: 2LlM 1 M 2 g,r, /2k ! 2 n oTo /
2 ” T sin 2M
gaT n=1 3 !
270 M M - —m——
o T “n l n 2 ]
2
g M -M “@
0 n n
T sin—re ) (9")
o
where the Mn's are the consecutive roots of the transcendental equation
Ado
= T e, "
1-M cotM =B3Bi, and defined as M oy (19 ) '
l._l
\n
1
M
3 X _ n 3
—= t+=— -1 )einM - =— +==}cos M
oo M2 B12 n B:L2 M9> no M -M 2¢
= ¥ »1 . —<sin="r e ©° (11")
sin 2M r ?
n=1 3 M M - o
T | "n 2
@ [sinM - M cosM]r M -M2¢
= 3 2__1n 3 sin=r e %, (12")
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With this notation, Eq. (9") becomes

: g t, -t g : :
m Y e P |EARCEE
2k 2k

T2 _[ﬁ_l]E | B Beel +ﬁ[ 2 2 }H
2 e s 2 s g.|3Bi % Bi s
85T, 2 85T, 2 1 2
ok 2k
2
2 1 r
+ —_— = - . (14")
[BB:L2 3] 33:‘2
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DISCUSSION

As mentioned in the introduction, the general solution in each case
involves linear combinations of two infinite. series, both of which have
already been evaluated. Reference to the publications noted5 will show
that for the range of Bilot numbers investigated, both infinite series are
approximated to a high degree of accuracy by the first term in the series
provided that the Fourier modulus is greater than about 0.2. This affords
a great simplification in the form of the general solution since the in-

' finite serles can be replaced by a single term.

Let the first term (n = 1) in-the infinite series denoted by E be
represented by F, and the first term in the infinite series denoted by H
be represented by G. Egs. (1), (14'), and (14") can.then be written

respectively to a great degree of accuracy as

2
T [& e |82 2)+tf1't~f2 o colexe'M1¢
— 2 " \le. - p |e ‘Bi, TBL VT2 ]| Yp x_
gsz' 2 2 1 2 g2x° [e]
ok Bk
2
2 X
+[§i—+l]-<;;- , (15)
2 o}
2
To Gl & .1 1 Tey = Yo M) -, 9
=(|=—~1|F + (= - ) + GYJT(=1r)e
> 2 8 c 8 Bll 312 r 2 cf "o'r
€75 &xTs
5K ok
.
1 1 l,r '
+['§§+-2']~2(;;) ’ (151)

5. L. G. Epel, op.cit., p. 22 and M. P. Heisler, op.cit., p. 232.
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2
o ) [:Ei - l] F_+ El (-—2—- . ) + e Bl 2 G, fQ sin gi r e-Ml ?
2 " Vleg s g, '3 Bi 3 Bi 2 s{ r r
8%, 2 2 1 2 85T, o
2k 2k
2
2 1.1z "
+ [ 5 Bi2 + 5 ] 5 (ro) ) (15 )

where the subscripts on F and G refer to the geometry in question. To
facilitate computations, the F's and G's are presented as functions of 312
in Figs. 1 and 2. Thus, the temperature at any point in the body under
consideration at any time for any combination of initial and boundary con-
ditions is found by obtaining F and G from Figs. 1 and 2, and then utilizing
Egs. (15), (15') or (15").

The case in which the Biot mumber becomes infinite is included for

consideration since this is equivalent to fixing the surface temperature

of the solid at the same temperature as the cooling fluid. If it is desired
to specify the temperature at the surface of the body rather than the fluid
temperature this is accaomplished by assigning the surface temperature to the
fluid and considering the Biot number as infinite. This artifice may be
used either before or after the step change occurs, or both before and after
it occurs. Care should be taken to adjust the proper'Biot number and fluid
temperature (subscript 1 or 2) in order to simulate the problem properly.

Finally, it should be pointed out that the problem in which the body
is covered with one or more layers of cladding, bondlng materials, surface
scales, insulation, etc., can be solved easily by use of Figs. 1 and 2.

It is only necessary to consider the layers of the various materials as
comprising fractions of the total film resistance and finding the total ef-
fective resistance that this imaginary film affords to the flow of heat
emanating from the heat generating body. The reciprocal of this total
resistance is then the effective pseuvdo-heat-transfer coefficient applied
at the surface of the generating portion of the configuration. For easy
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reference the formulae for:these coefficients are:presented below. for the

three geometries:

1
h! = - : ‘ E)
X X X
a x'b c n 1
-1{—+-k—b+-k—-+ e s 000 ressROeee +F+E (16)
a c n
h' = = , (16%)
ro ra ro rb ro rc ro rn ro
_J_n.—'i'—]_n.—'i'—]_n—'i' aoeneoe +—]n 4 —
ka I‘o kb ra kc I"n kn rn—l rnh
1
h! = " )
2 ‘ 2 2 2 2
r, (ra-ro) T (rﬁ-ra) r, (rcsz)_ r, rn-rn_l) r,
k r r r r k toeeeet 3 r k =3
I‘o ra a a’b kb P "e.’c n-1 "n"n rn h
(16")

where &, b, ¢ «.s. n,:istand for the first, second, third, .... th'layers
of material.
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ILLUSTRATIVE EXAMPLE

The foregoing analysis may appear somewhat abstract to the user who
does not wish to follow the derivation.in detail, but simply wishes to
make use of the results. For this benefit.an example is included here to

present the procedure in solving a problem in general.

Consider a B/M-in—dia fuel rod operating in a gas-cooled reactor
under steady state conditions. The heat:.generation rate in the fuel is
constant over the cross section of the cylindrical element and equal to
2 x lO6 Btu/ftahrg the heat transfer coefficient is 180 Btu/hr £t2 °F.
There is a 20-mil stainless steel élad;(assume‘no contact resistance be-
tween fuel and clad) and a scale deposit on the outside of the clad which
has an effective.conductance based on the fuel-surface area of
2000 Btu/hr ft2 °F. The thermal conductivity, specific heat, and density
of the fuel are 1.23 Btu/hr £t °F, 0.085 Btu/lb °F, and 650 1b/ft3
respectively, and the thermal conductivity of the stainless steel clad is
14.8 Btu/hr £t °F. At a given time the reactor:power is halved, the coolant
flow 1s decreased so that the heat transfer coefficient is subsequently
120 Btu/hr ft2 °F, and the covlant temperature decreases 100°F. Estimate
the temperature difference between a point 1/10 of the way fram the center
of the fuel rod and the new coolant temperature 1 min after the pertur-
bations take place. Assume that the changes take place simultaneously and

instantaneously.

The solution is given formally by Eq. (15'). To use this form it is
necessary to know Bil, Bie, and . To ascertain.the Biot numbers one must
know the effective heat transfer coefficients based on the fuel outside
diemeter. To this end use is made of Eq. (16') as follows:




' 1
hl = r r r
- 0 1n clad + o) - + - 1
clad Ts Telad ™1 “scale
- L = 170 Btu/ft° hr °F
0.07125 | 0.0%292 0.03125 L1
15.8 ' 0.0%3125 * 0.0%202(180) = 2000
1
h2 = r r . r
- o) 1n ;lad + o] + 1
clad o) rclad. 2 scale
- L = 117 Btu/£t° hr °F
0.03125 1n 0.0%292 . __0.03125 L 1
1k, 0.03125 = 0.03292(120) ' 2000
Hence
1
h r
., _ 1 o _ 170(0.0%125) _
Bll = m = 15 = 4,32
h 1]
r
_ 2 “o _ 117(0.03125) _
Bi, = —x = 1,53 = 2.97
Also
¢ - ag - - 1.23 (1/60) = = 0.580
T 650(0.085)(0.0%125)

Notice that the values of F and G that must be used are the ones cor-
responding to Biz. In this case Fc = 0.90C and Gc = 1.42 from Figs. 1 and
2 respectively. M1 is found by iunterpolation in 'L'.za.'bles)+ to be 1.7830.

4, See for example, Carslaw and Jaeger, Conduction of Heat in Solids,
Oxford University Press, London, 1947, Dp. 577-379.
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Substituting: into Eq. (15')

2
T rg t,, ~t -M. @
2 '8 1,1 1 £1 " Vg2 1
- I l] Fo * g (Bi - Bi )+ 2 Go Jo(?_ r) e
&t | 2 2 1 2 8T,
Bk K
. 2
1 1] 1,r
+['B-i;+§J -3
o
T2 ) [2'x106_l}0'900+ 2x106-_(1 1y
10° x 0:03125° 10° wo W3R 2T
2 x 1'25
2
e\ | 1142 ) J_(1.7830 x 0.1) o~ 1+7830%(0.380)
10° x 0.03125 °
2 x 1l.23

Therefore, the point in question is seen to be 443°F above the new fluid
temperature.
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