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ORNL TUBE-FIN RADIATOR STRESS ANALYSIS

D. H. Platus

This report summarizes the stress analysis of the ORNL tube-fin

radiator matrix. Specific problems considered include mechanical

bending stresses resulting from air pressure and gravity loads and

thermally induced stresses resulting from design and off-design tempera

ture differentials within the tube-fin matrix. In certain critical

areas where thermal stresses exceeded the elastic range of the structural

material, a plastic strain analysis was undertaken in order to predict

the structural life under strain-cycling conditions.

Air Pressure and Gravity Loads

Consider a section of the matrik free from forces so -that the tubes

are straight and parallel and tied together by fins running at right

angles to the tubes (Fig. 1). Under uniformly applied loads the-tubes

will "bend so as to remain parallel to each other as shown in Fig. 2.

Since the fins are brazed to the tubes they will wrinkle as shown such

that right angles are maintained at the tube-fin joints. The section of

fin between adjacent tubes behaves as a beam fixed at both ends subjected

to the forces and moments shown in Fig. 3. The slope of the fin, 9, at

the fixed ends is equal to the slope of the tube. The resulting force

transmitted to the tube consists only of a moment 2Mf since the forces,

P, are equal and opposite (Fig. h). An expression will be obtained for

the value of the moment 2Mf which resists bending of the tubes and is
directly proportional to the slope, 9, of the tube.

The deflection equation is

£* -^ (Px -M) (1)
dx^ vt

where Df is the flexual rigidity of the segment of fin. Integrating Eq (l)



and applying the boundary conditions y*(o) =y'(s) =9 and y(o) = y(s) = 0

gives an expression for Mf in terms of 9:

6D_9

Mf - —

The total moment, M, resisting bending of the tubes is 2M„ so that

12D.0

M = 2M,, =
f s

For n fins per unit length of tube, the resisting moment, M , per unit

length is equal to k9 where

12riD„

The problem is analogous to the classical "beam on elastic foundation"

problem where in this case the resisting moment is proportional to the

rotation of the beam.

A solution will be obtained for the general case of a cantilever beam

with a uniformly distributed load and a concentrated moment and load applied

to the free end (Fig. 5). The uniform load represents either air pressure

or weight, and the end force and moment can be coupled with the slope and

deflection of the free end for various end-support conditions. The moment

at a distance x from the free end is given by

2 pX
M(x) -MQ -Px -£|- + 1 Mxdx

Jo
where

-X

Mxdx -kj y'(x)dx =k|~y(x) -y(o)J
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so that

M(x) =MQ -Px -5|_ +kj^y(x) -y(o)J

The deflection equation is

t
dx

Making the substitution a = k/D ,

H - rrK-^-ir +̂ -kyol
dx L J

(3)

2 M 2

2 ay - D D 2D yo K '
dx

the general solution is seen to be

2 M ^

y -A sinh ax + B cosh ax + g£- + -g— + yQ --g- + -j- (5)
a k

The following boundary conditions must be satisfied:

(i) y'(L) = 0 (lii) y'(o) = 9Q
(ii) y(L) = 0 (iv) y(o) = yo

Differentiating Eq (5)* and applying the boundary conditi<ms, the-following

expressions are obtained for the slope and deflection at the free end in

terms of the applied loads:

k9 cosh aL + P(l - cosh aL) + — (aL - sinh aL) + aM sinh aL = 0 ('6)

2 2

k9 sinh aL +P(aL -sinh aL) +-(1 -cosh aL +^-g-) +aM (cosh aL-l)

+ yQak «0 (7)

-3-



Consider the ease of a free end where P = 0 and M =0. From Eqs (6) and

(7) the slope and deflection at the free end are given by

a JL |~Biah aL -aL 1 ,R.
osal [ cosh aL J *0'

w Tl - cosh aL a L i 1'o " -27 [ coshaL 2^" +aL tanlr aLJ (9)

Combining these results with Eqs (3) and (5) the maximum bending moment at

the fixed end is given by

Consider next the end condition where two tubes are tied together by a

U-bend of tubing as shown in Fig. 6. By analogy with the deflection of the

fin segment between adjacent tubes (Fig. 3), the section of U-bend will

deform as shown in Fig. 7, and produce a resisting moment, M , which is

proportional to the slope of the "free end" such that

M = k 9 (11)
o oo VJ-L'

If the curvature in the bend is neglected, the constant, k , will be equal
6d °to -^-0, as calculated for the fins;A is the distance between the ^tubes and

Dq is the flexural rigidity of the connecting piece. Right angles are main
tained as shown in Fig. 8.

The constant can be determined more accurately for two circular bends

and a straight section subjected to a force and moment as shown in Fig. 9,

From symmetry, P •2MQ/(A + 2r) and there will be no rqtation of the free
end or deflection in the y-direction. The slope or rotation of the U-bend

-1+ *&H



is equal to 8 /(A + 2r) where # is the deflection in the direction of the
X X

force P. By applying Castigliano's theorem of strain energy, <$ is given by

3X d fcds (12)

where the integral is taken over the total length, s, of -the section. The

integration yields for $ ,

Sx-T^U-^^5*^2)^] (15)
U x v o -"

where D is the flexutal rigidity of the straight section, A , and Dw is
o s r

the flexural rigidity of the curved sections corrected for the initial

curvature. The correction is

r

where

h •

W^iA D
12h2 + 10/ °

tr

2
r
m

and t is the tube wall thickness, r, the radius of bend and, r , the mean
m

radius of tube.

M

The constant k Is equal to fa • gr' or

( +2r)'

r \ o

(1*0

-5-



As r approaches zero this expression reduces to 6d A. as calculated for

the straight section only.

Applying this end condition (Eq 11) to Eqs (6) and (7)> and solving

for 9 and y ,
o o

9 ak [
sinh aL - aL

ak
cosh aL + 2. sinh aL

k

w

yo = 2.
a k

*" a^Lk
, (cosh aL - l) + aL sinh aL - cosh aL + 1 2_2
k ' a L

ak "2
cosh aL + -r— sinh aL

(15)

(16)

Combining these results with Eqs (3) and (5), the maximum bending moment

at the fixed end is given by

M(L) = i

a2Lk
1 + aL sinh aL + cosh aL

1 -
ak

cosh aL + —r— sinh aL

(17)

The maximum stress,
M(L)r

, is plotted in Fig. 10 as a function of the

dimensionless parameter, aL, for dimensions indicated on the figure. The

broken-line curve represents the U-bend condition, Eq (17)> and the solid

curve represents the free end condition, Eq (10). It is seen from the

figure that, for the dimensions indicated, the U-bend offers no support for

values of aL greater than 3«

For the case of a pinned end with the U-bend condition (Fig. 11),

y = 0 and the slope at the pinned end, from Eq (7)> is

P(cosh aL - 1) + —(sinh aL - aL)
q - 2
o k cosh aL + ak sinh aL

-6-
***
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M(L)

The maximum bending moment at the fixed end from Eqs (3) and (5) is

k (1-cosh aL)- — sinh aL
o a

k cosh aL + ak sinh aL
o

a

—(cosh aL-l-aL sinh aL)+k (sinh aL-aL cosh aL)

k cosh aL + ak sinh aL
o

The reaction, P, at the pinned end is obtained by substituting Eq (18) into

Eq (7).

a2Lk
aL.

P-2
a

2_2
A T

1-cosh aL—7?— cosh aL + aL sinh aL +

2ak

-r— (cosh aL-1—^-sinh aL)

aL.-s-^ (1 - cosh aL + -s-sinh aL) + aL cosh aL - sinh aL

(20)

Consider next the case where the fins do not extend all the- way to the

headers so that there is a section, X , of unfinned tube as shown in Fig. 12.

The moment of inertia of the finned tube will be greater than that of the

unfinned tube because of the fin collar thickness and brazing alloy. The

flexural rigidities will be represented by D and D for the finned and un

finned tubes, respectively. A solution will be obtained for the case of a

concentrated end load, P, with the U-bend boundary condition.

The deflection Eq (4)- is solved for the finned span with the following

boundary conditions:

(i) y(o) a yr
M.

(ii) y«(o) * 9n -^

(lii) y(L) • 0

(iv) y'(L) a Q^

The bending moment M(L) at the end of the finned section is obtained as a

function of 9-:

^j ~ a
k9L +P(cosh aL-1) +w(| sinh aL-L) -|sinh aL --^(cosh aL-l) (21)

-J a

-7-
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where
ak

sinh aL + cosh aL

a =

ak
cosh aL + sinh aL

The deflection at x = 0 is

9_ + t- (cosh aL - 1) + t- (— sinhaL - L) !i wL^ PL
k " 2k " ky~ =

7— cosh aL + a sinh aL

Ko

(22)

(23)

For the unfinned span, Fig. 13, the slope and deflection at the free end are

(2k)*.'*;<£ +*£•>$

L »„lx 3 3y

and the maximum moment at the fixed end is

lg = Mp -vU -Pi

Substituting Eq (2*0 into Eqs (21) and (23),

^f;is^[i6 +a(coshaL-1)-
\ o/

sinh aL

w_ I" aakFL
2 2D

a L o
+ a(sinh aL - aL) - cosh aL + 1

-8

(25)

(26)

(27)



J? cosh aLp[tir +""V *) +w|Oi +sinh aL -aL^) _JJl_
and

yn »

2D

t- cosh aL + a sinh aL

o

-kh. + PL +
wL

a k D

(28)

The total deflection of the free end is y + y_ .
o L

Numerical Solution

A numerical solution ia carried out for the case shown in Fig. 12,

but for four U-bends tied together as shown in Fig. 1^. Assuming that

the four tubes remain parallel during bending, the spring constant

(Eq. 2) will be reduced by l/M- since only three segments of fin undergo

bending for the four tubes. Therefore

9nD,
k -

The tube dimensions are:

m
0.08125

rj[ = 0.06875 in.
r = 0.09375 in. (unfinned tube)

rf = 0.10375 in. (finned tube)

(29)

I = 0.^312x10 in
0 _k k
I - 0.73^5x10 in

Fin Dimensions:

The tubes are arranged in a square array with 2/3 in. between centers

(Fig. l6). The section of fin (per tube) which undergoes bending is shown

by the dotted lines. The width of the section, b, is 2/3 in. and the length,

s, has been approximated by (2/3 - r_) or O.5629 in. The fins are a sandwich

of stainless-steel clad copper (0.0025 - 0.005 - 0.0025 in.). Assuming the

copper has no structural value, the moment of inertia of the section is

(from Fig. 17):



If =y(y| - n\) For y2 «0.005 in.
y, =» 0.0025 in.

If - If.l05xl0"8 in*

From Eq (29) with n = 15 fins/in.,

9nI_E /-
k m—-±- . 9.81*5x10 E

U-bend Spring Constant:

From Fig. 9 the radii of the two bends are 5/8 in. and the. straight

section, A , is 2.625 in. The curvature correction constant is

h = tr g (0.025)(0.625) =2.367
r^ (0.08125f

and

D a/12h 4- 1\ = 0.8835 EI - 0.3810x10"^
r Vl2h2 +10j °

The constant k is (from Eq 1*0

k _<* +2r)2 = HO.OtacA

The constant, a, which? relates the fin stiffness to that of the tube, is

?^5X10"6? - 0.3661m-1a= "D
0.73^5x10 E

•lO-'



The bending stresses and deflections for the case shown in Fig. 12 will

be computed for L = 15 in. and X » 1-25 in.

aL = 5A92 sinh aL = cosh aL = 121

From Eq (22), a = 1, and Eq "(27) reduces to

*"fc¥)"
P / k 2 -\ M/ak 2L
il2Do J a2l ^o

aL + 1 •(30)

Substituting the numerical values,

\ =(l^5o) ["2.2^P- 26.19 w]

- - 1.260 P - 14.71 w lb-in.

From Eq (26), the bending, moaent at the tube-header joint is

Mrt - M^ - w|L - PJ?

- - 2.51 P - 33.^6 w lb-in.

The moments are in units, of lb-in. for the concentrated load P in lb. and

a distributed load w in lb/in. The corresponding maximum bending stresses

are given by

Mr
max

max I

For the finned tubing r„ /l » 1412 and for the unfinned tubing r /l = 217k.

The maximum stress in the finned tubing is:

0^ =lkJ2 1^ =-1779 P-20,770 w

vm

-11-



The stress in the unfinned tubing adjacent to the fins is:

,(0) 2174 ML = -2739 P - 31,980 w

The maximum stress in the unfinned tubing at the tube-header joint is;

4°) -2174 Ma --5457 P-72,740 w

The distributed load, w, for the weight of the matrix is estimated as

follows:

Material

Volume/
in. of tube Density Weight/in.

Inconel 0.01276 in5 526 lb/ft5 O.OO389 lb/in

Stainless Steel O.03238 " 492 " 0.00922 "

Copper 0.03238 " 556 " 0.01042 "

NaK 0.01485 " 46 " 0.00040 "

Braze Alloy
(assume 0.010 in

O.OO620 "

.)
526 "

Total

O.OOI89 "

0.0258 lb/in

With no end support, P = 0, and the corresponding stresses from the

weight of the matrix are (refer to Fig. 18)

M 536 psi 40) 825 psi ;o) 1877 psi

It should be noted that the maximum stress at the tube header joint is a

factor of 3.5 greater than the maximum stress in the brazing alloy where

the fins begin and a factor of 2.3 greater than the stress in the unfinned

tube adjacent to the fins.

-12-



The air drag load behaves as a uniformly distributed load similar to

the weight load. Its Magnitude is estimated as follows:
2

Flow area = 30x15* =» 4-50 in

Total number of tubes - 45x8 = 360

Length of tube =15 in.

For h in. of ILO air pressure drop,

y.(h in)(62.4 lb/ft^)(450 in2) =j^xio"5 h(lb/in)
(360 tubes)(15 in/tube)(1728 in^/ftO

For a design pressure drop of 8 in H^O, w = 0.0241 lb/in.

The corresponding bending stresses are

c£f =̂501 psi a^ =771 psi aj°) -1753 psi
For bending in a direction parallel to the headers the tubes are tied

together by the fins in 5-tube groups (Fig. 19). The fin spring constant

(Eq 2) will be reduced by a factor of 4/5 so that

-¥(=$ 10.50x10" E

The U-bends provide no support for deflection in the direction shown so

that k = Q, and from Eq (22) a = tanh aL.

a = D
10.50x10

Ko."'1-'"-'.7345x10"
0.3781

aL = 5.672 and tanh aL— 1.



Equation (27) reduces to Eq (30). Substituting the numerical values,

ml =(17^5) r 2"lk'2 p"25,15 w = "1*187 p"15,92 w
M| • - 2.437 P - 32.67 w .

The corresponding stresses for the distributed weight load, w = 0.0258 lb/in.,

are

o£f) - 507 psi o*0) = 781 psi ai0' = 1832 psi
The combined air and weight loads will produce a resultant load determined

by the vector sum of the two loads. Since bending will not take place

along one of the two principal directions of the square matrix the spring

constant of the fins cannot be readily determined as in Fig. 16. Also,

bending in one of the principal directions would produce a wrinkling of the

fins which would resist bending in the other principal direction. As a

first approximation the maximum stress will be taken as the vector sum of

the two bending stresses although both effects mentioned above will tend

to make this a conservative estimate.

4fmax - \|<507)2 +(501)2 - 713 psi

aL°> - \ (781)2 +(77D2 =1097 psi
L max

.(0)1 max = 1(1832)2 +(1753)2 -2536 psi .

A curve showing the creep properties of Inconel at 1500°F is included

in Fig. 20 for an estimate of the creep life under the maximum predicted

bending stress. This data was obtained from a tensile creep test and does

not strictly apply to the condition of creep in bending. It has been

shown that during creep bending the forces redistribute themselves over the

beam cross section in such a manner as to relieve the outermost fiber

stresses and thus increase the creep life . The equivalent tensile stress

may be 70 to 80 percent of the maximum bending stress, predicted from elastic

theory, for comparable strain rates, depending on the geometry and material

properties.

1. D. L. Platus, Stress Analysis of a Heat Exchanger Tube in Creep Bending,
ORNL CF 57-2-101 (February 22, 1957).22^957)



Thermally Induced Stresses

Consider first the stresses resulting from temperature differences

between adjacent tubes in the matrix. As the air gains heat in passing

through the radiator the driving potential for heat transfer is reduced

and there will be a temperature increase between successive tubes in the

direction of air flow. If there were no restraints from fin interactions

the tubes would deform as shown in Fig. 19 where T represents an average

temperature over the span L and a is the coefficient of thermal expansion

of the tube. As a result of fin interactions, discussed in the previous

section, the tubes will deform as shown in Fig. 22. If we assume that

the temperature difference between adjacent tubes is constant at any point,

x, along the span of tbe tube, then all tubes will bend so as to remain

parallel to each other. We can then isolate one tube from the matrix and

examine the bending stresses induced in the tube from the temperature

differentials.

Consider two adjacent tubes differing in temperature by an amount

AT(x). If the tubes di* not bend the fins would be deflected as shown in

Fig. 22 and exert a moment on the tube equal to k9.(x), where k is defined

in Eq (2), and

<*t(x) -|| T(x')dx' (3D
x

Tue tubes will bend to partially relieve the stress in the fins so that the

actual slope at any point x is 9(x) and the distributed moment, M , acting
X

on the tubes is proportional to the slope of the fin section and la given

by

\ [~9(x) -9t(x)l . (32)
-problem is identical to that previously considered with the addition of

the term 9.(x).

•15-



The total moment acting on the tube from the fin reaction is

TMxdx =kTy(x) -y(o) -J9t(x)dx|

If we let AT(x) = AT = constant, then

et(x) = 2£E (l -x)

and

f 8t(,w -«(* -4)
Neglecting the distributed load, w, and concentrated load, P, in Fig. 5,

the deflection equation becomes

dv2 2 o 2

J ?
- ay = T - a

dx

OAT
y +
'o s L-4) (33)

From the radiator configuration shown in Fig. 14, the matrix- consists of

two banks of tubes connected by U-bends. The average tube temperature in

one bank will differ from, the average tube temperature in the other by

an amount AT. and, by analogy with the fin deflection in Fig. 22, the

moment exerted on the end of the tube from the U-bend will be given by

M = k
o o I ']9(o) - 9t(o)

where k is given in Eq (l4) and, from Fig. 9,

et(o)
OAT-L

A + 2r

-16



Applying this boundary condition plus the condition of zero slope and

deflection at the fixed end, the solution of Eq (33) yields for the

maximum bending moment at the fixed end,

k,
- k9.(o) + —-

M(L) «—2-^— 2-1
-(1 - cosh aL)+ k (aL - sinh aL)
av o*

ak

cost. aL + -!-— sinh aL

(34)

Numerical Solution

Substituting the numerical results from the previous calculation into

Eq (34) gives the maximum bending stress in the unfinned tube in terms of

AT and At" . For the following dimensions and constants:
b

a=0.3661 in"1 a«10~5 in/in°F IQ »0.4312x10" in
L « 15 in. s = O.5629 in. r - 0.09375 in.

k=9.845xl0"bE Ji +2r =3-875 in. kQ =40.04xl0" E

a)>vU ° = 55.02 AT + 0.2238 AT.
M(L)r(

|_ - — = -JJ ,\JG £-U. T \J.CCJW "J-l.

6
E - 20x10 psi

2
Figure 23 gives some estimated tube temperatures at normal operating conditions .

Average values for AT and AT, are on the order of 30°F and 2O0°F, respectively,
(0)

which result in a value of 1700 psi for cr£ .
The next thermal stress problem to be evaluated is that resulting from

a condition in which the temperature of one tube in the matrix differs from

the average temperature of adjacent tubes. Such a condition might occur from

mass transfer within the fluid system which would deposit solid material on

the tube wall and restrict the coolant flow. As a result, the temperature

of the plugged tube could be considerably lower than the temperature of adjacent

tubes.

2. Calculated by R. I. Gray, December 14, 1955.

-17-



The problem will be analyzed by considering the fin sections surrounding

the cold tube as circular diaphrams. As the tube contracts, each diaphram

will exert a force on the tube, tending to pull it from the header. Figure

24 shows the deflection of one fin section at a distance x from the header

as the tube is cooled an amount T degrees below the temperature of the

surrounding tubes. The diaphram deflects by an amount o(x) and the tube is

displaced an amount u(x.) from the cold, unrestrained position. From Fig. 24

oATx = u(x) +<£(x) (35)

If we examine an incremental segment of tubing we will note that the tensile

force in the tube, P(x), is increased by an amount F(x) per unit length in

the direction of the header due to the action in the fins. From Fig. 25

.*<*)--§ • (36)

Since the fin force is proportional to the deflection of the fins, (J(x),

F(x) =Kc$(x) . -g (37)
where K is the spring constant per unit length of tube and is equal to the

product of the number «f fins per unit length, n, and the spring constant

of the individual fin diaphram, k.

From Hook's law,

P(x) = AEfe(x) « AE |£ (38)
where A and E are the tube cross sectional area and modulus of elasticity,

respectively, and e(x) is the strain at the position x. Differentiating

Eqs (38) and substituting into Eq (37),

<?M -"f4 (39)
dx

-II



Combining this expression with Eq (35) gives the deflection equation for

the tube,

2

*H_ _y^2u m-otATr^x (40)
dx

where

2 _K_ nk
*l " EA = EA (M)

The solution of Eq (40) is

u(x) •C^ sinhyix +C cosh y^x +g&Tx (42)

The constants C., and C„ are obtained from the end restraints on the tube.

For the first case consider a length L of finned tubing fixed at the header

and free at the opposite o"f»T These conditions require that the displace

ment be zero at the fixed end and the tensile force be zero at the free end.

From the first conditi«H.,

u(o) » 0 = Cp .

From the second condition,

P(L) •ffi (eL" ° •
Differentiating Eq (42) and applying this condition gives for C1,

r CHAT
ui " " y\cosh i\i *

The solution for displacement as a function of x is then

From Eq (38), the tensile stress as a function of x is

- v _ duCT(X) - E^

and by differentiating Eq (43),

-19-



It is seen from this result that the stress increases from zero at the

free end to a maximum value at the fixed end given by

\ cosh Y\LJ<j(o) = oEAP (1 - (45)

The term in parenthesis is a fraction and will approach the value of unity
as the stiffness of the fins becomes infinitely large. In the limit the

maximum stress is OEAT for a completely rigid matrix. The maximum stress

is plotted in Fig. 26 as a function of TJL.
For a second case o£ end restraints we consider the configuration shown

in Fig. 12 where a small segment $ of unfinned tubing connects the fin
matrix to the header. If x la the distance measured from the beginning of
the finned matrix outward from the header, then the second condition of

the previous case still holds for the free end. The first condition must

account for the deflection of the segment Jl of tube from the action of the

constant load P(o). If AQ is the cross-sectional area of this section of
tube (which is less than the cross-sectional area, A, of the finned tube
by an amount equal to the area of the fin collar plus brazing alloy) then
the displacement at x =• 0 is given by

u(o) a^^l -aJ0AT. (W)

where At^ is the temperature differential of the unfinned tube. If we take
Aty »AT mconstant and solve for c^ and CQ ftom the free-end condition and
Eq (46), Eq (42) gives for the displacement

A

-£(y{t sinhv^L -1) ->|4 sinhY|L
u(x) = oAT

OATJ?

o cosh yj L+ Y|i sinh flL
A

(1 - -j-) coshyiL - 1

-~ cosh Y\L + YjJ? sinh WL

sinh X +

n

(*7)

cosh Mx + neATx
1



Differentiating this result, the stress in the finned portion of tube

4^",is, from Eq (38),
A

cr(x) » OEAT M a sinh Y|L - rjr

n•—coshViL + nr sinhY^L
cosh Yl x +Yp

OflEATflJ?
1 r- cosh L - 1

A
sinh Ylx + aEATn

•7- cosh L + sinh L
A

(48)

The maximum stress occurs in the unfinned portion and is constant over

the length i. From Eq (48),

a mf- a(o) - aEAT
max A v '

o

cosh y\L + Y[& sinh Y\L - 1

-2- cosh Y|L + y\° sinh Y) L
(^9)

Because of the reduced area of the unfinned tube, the maxinwin stress can

exceed the value of oflEAT which was seen to be the limiting stress in the

previous case. In the limit as A/Aq approaches unity and Xapproaches
aero, Eq (49) reduces to Eq (45). If the temperature differential between

the cold tube and surrounding tubes is given by some function of x along

the tube then Eq (35) becomes
rx t /

a Z\T(x)dx - u(x) +<?(x) (50)
Jo

For the case of a linear gradient increasing from zero at the header to

ATL at x =L, AT(x) is given by

AT(x)
ATLx

and the general solution for deflection corresponding to Eq (42) is

aATLx
u(x) = C- sinh Yjx + Cg cosh fix +-^

OAT.

(51)
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For the previous conditions of zero displacement at the fixed end and zero

tensile force at the free end, the deflection equation becomes

2
oatt / . . T AT\ adTT aAT_x

"W -S? ( Tost^J ^ Y- T^ (cosh 1x -«+-it- (52)
and the maximum stress at the fixed end is

«•> •^tl ('ffJEh-ff) (5'>
This result is plotted in Fig. 27 as a function of T^L.

For the case of the unfinned tube section with a linear temperature

gradient, if 4Tn = 0 so that the temperature differential begins at the

fin matrix, then the maximum stress in the unfinned tube from Eqs (46) and

(•51) is given by

>IL '+ ^ sinh Y[l'max AQ * r|LAQ Icosh ^-+M£ sinh mt

OEMT.

«•> - -mr rzx m'H - v*» *-* il <56)
T

o

An expression will be obtained for the deflection u(o) as a function of the

tensile force P(o) in the unfinned tube to be used in conjunction with a

plastic strain analysis of the unfinned tube portion. If we define u(o)

as u and use this boundary condition along with the free end condition,

the tensile force P(o), for the case of constant AT is given by

P(o) =aEA4T ("gj^ >) -r,EAuo tanh ,|L (55)

For the linear temperature differential,



The spring constant, k, of a circular diaphram fixed at the inner and

outer edges is given by

1 1
k * IbTffll

2 .2 4a2b2 ( a
(57)

where a and b are the outer and inner radii, respectively. For a constant

thickness, t,

.3

12(1 -}/*)

For a sandwich fin as shown in Fig. 17 where only the structural value of

the cladding is considered,

2(y| -y?)
I a —J i- (59)

3(1 - ir)

and the spring constant, K, per unit length of tube is given by

K

3(1 -^) y£ ^a2b2
"I2!2a -b

\2

M)32lTnE(y^ -y£)

where n is the number of fins per unit length.

Numerical Solution

A value for the dimensionless parameter y|L =L ^i— is estimated for
the following dimensions:

From Fig. 17, y2 " 0.005 in.
y_ a 0.0025 in.

From Fig. 15,

n a 15 fins/in.

Ao "^o "ri^ =°*01276 in2
A =7r(r2 -rf) a0.OI897 in2
B r. • 0.10375 in.

rjL =0.06875 in.
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Figure 28 is a plot of r|L vs the diaphram outer radius a. The value of a

lies between the center-to-center tube spacing and the tangent circle

(Fig. 29). Selecting the value midway between these two,

^2 b - /-1C .&<=— - ^ = O.0I5 in.

From Fig. 28^^1.8 .

The maximum stress in the finned tube, if the fins were to extend to

the header, is plotted in Figs. 26 and 27 for the constant AT and linear

AT respectively. For TIL a 1.8 the maximum stresses are 0.68'aEAT and

0.205 aEATT. For an unfinned tube length of 1.25 in., the maximum stresses

in the unfinned tube are, from Eqs (49) and (54), 1.01 aEAT and 0.300

aEATT, respectively. If J. is small compared to L, the stress in the un-
L

finned tube is approximately the stress in the finned tube at x - 0, in

creased by the ratio of tube cross-sectional areas.

In the analysis above it was assumed that the section of tube between

the fin matrix and header was straight and joined the header at right angles

so that only tensile stresses were induced in the tube. In the actual

design the tubes penetrate the circular header radially and are bent so as

to enter the fixed matrix in parallel roys(Fig.;30).

An axial force, P, on the tube produces a bending moment Ps where the

maximum moment-arm s is 1 - 1.750 sin 30 a 0.125 in. The maximum axial

stress in P/A and the maximum combined bending and axial stress is

Psr /l + P/A cos 30 • The ratio of the combined stress to the maximum
00

axial stress is sr A /l + cos 30 and is equal to 4.33. Applying this

correction to the previously calculated stresses in the unfinned tube,

the maximum stresses are 4.38 aEAT and 1.30 aEATL for the constant AT and
linear AT, respectively.

Because of the relatively high stresses produced from temperature

differentials of the type considered above, the elastic stress-strain

relations no longer apply. It becomes necessary to consider the actual shape

of the stress-strain curve in order to estimate deformations and attempt;to
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predict the structural life under thermal strain cycling conditions. The

criterion presently being used to predict structural life under strain
3

cycling conditions is based on the work of L. F. Coffin who was able to

correlate failure of a tensile-compressive test specimen with the total

accumulation of plastic strain. The total strain is made up of an elastic

component and a plastic component, the magnitudes of which depend on the

magnitude of the total strain, the stress-strain characteristics and stress

relaxation properties of the material and the manner in which the strain

is applied. For very large strains per cycle (greater than 0.1 percent)

the elastic component is a negligible fraction of the total deformation.

This permits the use of simplifying approximations to the actual stress

strain curve in estimating the plastic strain per cycle and structural life.

Figure 31 is a plot of the plastic strain per cycle against the number of

cycles to failure for fine and coarse grained Inconel tubing at 1500 F. It

is seen that strains of the order of 1 to 10 percent per cycle would be

required to produce failure in a relatively small number of cycles.
The previously considered elastic problem is now analyzed from a

consideration of the amount of plastic strain that would be induced in a

tube which undergoes a temperature change with respect to surrounding tubes

in the matrix. It was found that such a temperature differential produces

a maximum tensile force in the unfinned tube in the region of the header and

that large bending stresses could result if the tube has a slight degree of

curvature where it joins the header as shown in Fig. 30. The elastic

bending stress at the header connection was found to be a factor of four

greater than the axial stress in the straight section of tube for the geometry

shown. If the maximum-stress at the header exceeds the elastic limit then

yielding will be confined to a very small region adjacent to the header and

relatively large strains can occur for a. given deflection of the tube.

Expressions were previously obtained for the relations between the force

3. L. F. Coffin, "A Study of the Effects of Cyclic Thermal Stresses on a
Ductile Metal", Trans. ASME, 1954, p. 931.
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and deflection of a tube at the edge of the fin matrix for a given

temperature differential and are given by Eqs (55) and (56). A

similar expression or "spring constant" will now be derived for the

curved section of tube shown in Fig. 30 assumed in the elastic- plastic

State. The two expressions can then be coupled to obtain the tempera

ture differentials required to produce a given plastic-strain or structural

lifetime.

A typical stress-strain diagram for a ductile material at high

temperature is shown in Fig. 32 (solid line).

For strains of the magnitude considered above, the elastic portion

of the curve can be neglected, and the curve can be approximated by the

tangent line khown dotted in Fig. 32. The stress-strain law is then given

by

a = ao + Et€ (6l)

which assumes that no yielding takes place until the stress reaches the

intercept value a . Thereafter, stress is linearly proportional to strain

and the constant of proportionality, E , is the slope of the tangent line,

referred to as the tangent modulus. Deflection of the elastic portion of

the tube will later be taken into account in determining the total de

flection of the tube so that the idealized stress-strain law (Fig. 32)

applies only to the plastic region.

Consider the section of tube shown in Fig. 33 subjected to a distributed

bending moment, M(0), produced by the force P. The applied moment at any

point must be resisted by tensile and compressive forces acting over the

cross sectional area of. the tube so that

M(9) »J

-2

a(A)ydA (62)
area

where y is the distance measured from the neutral axis to any incremental

area acted upon by the force cr(A)dA. According to the idealized stress



mk **•!

strain law, no deformation of the tube will result until the bending

moment reaches some critical value. In the region where the moment

exceeds this value plastic deformation will result and the deflection

equation is obtained from Eq (62) by substituting for stress the

equivalent strain relation, Eq (6l).

M(9) =f aQ +Ett€(y) ydA
Jarea L -1'area

Assuming that plane sections remain plane during bending,

(63)

'e(y) •-$ - y§f , (64)

where l/p or d0/ds is the curvature or change of slope with distance s

along the curve and Eq, (6,3) becomes

M(9) -tfo I ydA +Et gf y2aA (65)
area area

The first integral on the right is the first area moment and the second

integral is the moment of inertia, I, of the cross section. If the

product of the first moment and 0 is set equal to M , then Eq (65) can

be written

-a M(9) - M
g « , t- <« •< *> (66)

and the problem reduces to that of an "elastic" problem with the modulus

of elasticity replaced with the tangent modulus. If the maximum moment

is less than M no deformation will result.

Assume that the moment produced from the force P in Fig. 33 reaches

the value of M at some point along the tube defined by the angle 9 a 9 ,
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In the region 9 < 9 < \ll psi the bending moment exceeds M , and the tube

deforms according to Eq (66). The bending moment is given by

M(9) a PR(l - cos 9)

so that the angle at which, plastic deformation begins is

9e = cos (1 -m (67)

The deflection of the tube in the direction of the force P is

obtained from the strain-energy relation

W

UP "J?
M *>M An (68)

where the integral is taken over the length of tube defined by the angle

9 , and the moment is
P*

M(9) - M = PR(cos 9 - cos 9)
o e

m

Deflection of the elastic portion of the tube can be included to give the

total deflection u » u. + u #

Substituting Eq (69) into Eq (68), the plastic component of deflection

is given by

,3 ft
PR-

up"V
9

(cos 9 - cos 9) d9
e

(70)

3 r Y " ® i "1
"•FT (f-°e^ cob2 ®e "(sin1/- sin Ge)2 cos Ge + 2* +VB±n 2*" sin 29e|]

The elastic component of deflection is obtained from a similar integration

and is equal to

3 rPR
U a ——-
e EI

fr 9 - 2 sin 9 +
2 e e

-28-
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The maximum plastic strain occurs at the fixed end and is given by

M(x) -Mo]rQ
max E.I

From Eqs (67) and (69),

PRr (cos 9g - cosl/() rQ
max = EJJ E^Te PR(1 -cos y) -MQ (72)

From the curve of Fig. 31 a value of plastic strain per cycle can be

selected for a specified lifetime. The force, P, required to produce

this strain can be obtained from Eq (72) and the corresponding deflection

from Eqs (70) and (71). The temperature differentials necessary to pro

duce the calculated force and deflection can then be obtained from the

matrix "spring constants", Eqs (55) and (56).

Numerical Solution

From Fig. 30: f =30° , R=0.933 in.
R(l - cos 30°)» 1 -1.1750 sin 30°

For the unfinned tube: rQ a0.09375 in., ri =0.06875 in.

I -0.4312x10 in , fydA =6.654x10" in5 .
o

A

The tangent modulus approximation to the stress-strain curve for Inconel at

1500°F gives for the intercept and slope (Fig. 32),
-4a = 18,800 psi Et » 2.73x10 psi

The minimum bending moment required for yielding to take place is

M a a \ dyA = 12.§1 lb in.



If we select a value of 10 percent for e which, from Fig. 31, corresponds,

to approximately 40 cycles to failure, then the required axial force P of

105 lb is obtained from Eq (72). In this equation c„ov is one-half the

strain per cycle of 5 percent. From Eq (67), the angle 9 which locates

the point of transition from elastic to plastic deformation (Fig. 32) is

0.5106 radians or 29.26°. This corresponds to a plastic region of only

0.73° or, in terms of tube length, 0.0121 in. Since the angle 9 differs

from i|i by such a small amount, the plastic component of deformation

(Eq 70) can be more readily calculated by approximating the trigonometric

functions of this incremental angle by the first two terms of their series

expansions. If 9 represents this difference then Eq (70) reduces to

>5 Viac±\5 o MorPR-

up=v
[Mil siB2 8 .M.,ln8 cos S 1
|_^ 3 en e ej

Substituting the above values for P, andA9 into this expression gives for

u , 1.25x10 in. The elastic component of displacement is calculated
p -4
from Eq (71) to be 1.85x10 in. The temperature differentials required

to produce these displacements are obtained from Eq (55) and Eq (56). In

terms of total displacement, u , and axial force, P, the temperature

differentials are giveBvhy

AT a 0.387 P + 1.68x10 uQ

ATT = 1.29 P+5,59xlo\i
li o

for the step AT and linear AT respectively. For u and P equal to
-4 °1.98x10 ™ in. and 105 lb, respectively, the above temperature differentials

are 44°F and l47°F, respectively, corresponding to about 40 thermal cycles

to produce failure. If the calculations are repeated for 1 percent plastic

strain per cycle corresponding to a structural life of approximately 300

cycles, the required temperature differentials are 42 F and l4l°F for the

step AT and linear A,T, respectively. The sensitivity of the number of

cycles to produce failure with temperature difference is a consequence of
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the lack of strain hardening at these high temperatures. Once plastic

yielding begins very large strains can be realized from a slight increase

in the stress level as evidenced from the relatively small slope of the

stress-strain curve in the plastic region. The slope is also quite dependent

on strain rate at these temperatures. This effect was not included in the

above analysis so that these results would only strictly apply to a condition

where the rate of application of the temperature differential is equal to

the strain rate of the tensile specimen from which the stress-strain curve

was obtained.

Another thermal stress problem considered was the effect of a temperature

differential between the header drum and adjacent fins. The unfinned portion

of tubes shown in Fig. 34 will be subjected to bending as a result of this

temperature differential. Assuming that the fins are rigid, an individual

tube will deform as showa in Fig. 35. From symmetry, the length i/2
behaves as a fixed-ended cantilever beam subjected to an end load which

results in a maximum displacement of oATL/4. We are interested in determining

the allowable dimensions, i and L which will enable the unit to withstand
strain-cycling conditions for a predicted temperature differential, AT.

The problem is analogous to the one previously considered where a

cantilever beam is stressed beyond the elastic range so that a portion of

the beam undergoes plastic deformation. If j3 and i are the length of
the elastic region and plastic region respectively, then the deflection at

the free end is given by

where plastic yielding is described by the tangent modulus approximation

(Fig. 32). The maximum strain at the fixed end is

H r
1* (74)e

max E.I

^^fc^



and the relative tube lengths are defined by

M

'P
1.-1-L -£, (75)

where M was shown to be equal to the product of the intercept, a,

of the stress-strain tangent curve and the first moment of the tube

cross sectional area about the neutral axis. If y(o) is set equal to

the maximum displacement, QEATL/4, and combined with Eqs (74) and (75),

the following expression is obtained which relates the dimensions $ and

L to the maximum strain and temperature differential:

(76)
e 9

AT a maX
3aLrQ ._ ^K 2p- j jxLrvp'-

where

i i 1, WV2 r i 1
"2P ' PR2 J ™.r F*2 IP" lJ

„ , €maxEtI
Bs 1 + -M-T-

o o

This result is plotted in Fig. 36 for 1 percent strain per cycle

(€ - 0.005) corresponding to approximately 300 cycles to failure
max

from Fig. 30. The modulus of elasticity and tangent modulus were taken
6 4

as 18x10 psi and 2.73x10 psi, respectively; the coefficient of thermal

expansion was taken as 10" in/in F and the moment of inertia and tube

outer radius correspond to 3/16 in. O.D. x 25 mil wall tubing.
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