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- ORNL TUBE~-FIN RADIATOR STRESS ANALYSIS

D. H. Platus

This report summarizes the stress analysis of the ORNL tube-fin
radiator matrix. Specific problems considered include mechanical
bending stresses resulting from air pressure and gravity loads and
thermaelly induced stresses resulting from design and off-design tempera-
ture differentials within the tube-fin matrix. In certain critical
areas where thermal stresses exceeded the elastic range of the structural
material, a plastic strain analysis was undertaken in order to predict

the structural life under strain-cycling conditions.

Alr Pressure and Gravity Loads

Consider a section of the matrik free from forces so -that the tubes
are straight and parallel and tied together by fins running at right
angles to the tubes (Fig. 1). Under uniformly applied losds the ‘tubes
will bend so as to remain parallel to each other as shown in Fig. 2.
Since the fins are brazed to the tubes they will wrinkle as shown such
that right angles are maintained at the tube-fin Joints. The section of
fin between adjacent tubes behaves as & beam fixed at both ends subjected
to the forces and moments shown in Fig. 3. The slope of the fin, o, at
the fixed endéﬂis equal to the slope of the tube. The resulting force
transmitted to the tube consists only of a moment 2M.f since the forces,
P, are equal and opposite (Fig. 4). An expression will be obtained for
the value of the moment 2Mf which resists bending of the tubes and is
directly proportional to the slope, ©, of the tube.

The deflection equation is

2
ay = 1 (Px - M) (1)
dx2 De

where bf is the flexual rigidity of the segment of fin. Inkegrating Eq (1)




and applying the boundary conditions y'(o) = y'(s) = 0 amd y(o) = y(s) =0

gives an expression for Mf in terms of ©:

v - 6DfO
£ - s

The total moment, M, resisting bending of the tubes is 2Mf so that

12Df0
M=2M, =
f s

For n fins per unit length of tube, the resisting moment,ka, per unit

length is equal to k@ where

k = —L (2)

The problem is analogous to the classical "beam on elastic foundation"
problem where in this case the resisting moment is proportional to the
rotation of the beam.

A solution will be obtained for the general case of a cantilever beam
with a uniformly distributed load and a concentrated momemt and leoad applied
to the free end (Fig. 5). The uniform load represents either air pressure
or weight, and the end force and moment can be coupled with the slope and’
deflection of thé free end for various end-support conditions. The moment
at a distance x from the free end is given Dby

wx2 x
M(x) =M0-Px--é-+S M, dx
o

where

i

f: M ax = kf: (e =[50 - 300)]
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so that
- -
M(x) =M - Px - - + k[y(x) - y(O)] (3)

The deflection equation is

2 2
4y 1 - - WX -
- Px - -+ ky - ky,

Making the substitution a2 = k/D ’

2
&y _ay=-2_ B _wx .2
-l Al T T~ (%)
the general solution is seen to be
2 M
WX W o  Px
y = A sinh ax + B cosh ax + 5% + ;EE + Yo - jE-+ = (5)

The following boundary conditions must be satisfied:

(iii) y' (o)
(iv) y(o)

(1) y'(L) =
(11) y(@) =

]
N

Differentiating“Eq (5), and applying the boundary conditioms, the following
expressions are obtained for the slope and deflection at the free end in

terms of the applied loads:

k6  cosh aL + P(1 - cosh al) + g (al. - sinh al) + aM_ sinh aL = 0 c§)
w a2L2
ko  sinh al + P(alL - sinh al) + " (1 - cosh alL + 5 ) + aMo(cosh al-1)
+ yoak =0 (7)



Consider the ease of a free end where P = 0 and Mo = 0. From Eqs (6) and
(7) the slope and deflection at the free end are given by

w sinh al, - alL
% " af. [ cosh aL ] (8)
W 1l - cosh alL azL? ;
Vo T o2k [ cosh aL,  ~ B2 ‘&l tanh’aL} (9)

Combining these results with Eqs (3) and (5) the maximum bending moment at
the fixed end is given by

_ W |coshal -1
M(L) = 2 [-_EBEE-EE—_ - aL tanh aL] (10)

Consider next the end condition where two tubes are tied together by a
U-bend of tubing as shown in Fig. 6. By analogy with the deflection of the
fin segment between adjJacent tubes (Fig. 3), the section of U-bemd will
deform as shown in Fig. 7, and produce a resisting moment, Mb, which is
proportional to the slope of the "free end" such that

Mo = kogo (11)
If the curvature in the bend is neglected, the comstant, ko’ will be equal
to %?O, as calculated for the fins; A is the distance between the tubes and
Do is the flexural rigidity of the connecting piece. Right angles are main-
tained as shown in Fig. 8.

The constant can be detérmined more accurately for two circular bends

and a straight section subjected to a force and moment as shown in Fig. 9.
From symmetry, P = 2Mo/(k + 2r) and there will be no rotation of the free
end or deflection in the y-direction. The slope or rotation of the U-bend




is equal to Sx/(A + 2r) where §_ is the deflection in the direction of the
force P. By applying Castigliano's theorem of strain energy,ch is given by

8, = Jf %- %% as (12)

S

where the integral is teken over the total length, s, of the section. The
integration yields for c?x,

M 2 3
1 3 2
8x='7\'19§?[]3;(ﬂ:‘§_r + Trr +l|»7kr) +5]%] (13)

where Do is the flexutral rigidity of the straight section, /\s , and Dr is
the flexural rigidity of the curved sections corrected for the initial

curvature. The correction is

r \12v° + 10
where
tr
h = =3
r
m

and t is the tube wall thickness, r, the radius of bend and, T the mean

radius of tube.
M

o
The constant ko is equal to TX—:fg;xg;— or

2
k= ié + 2r) 5 (14)
1 I%_E. +1Tr5 + h7\r9+ E%

r



As r approaches zero this expression reduces to GDO/A as celculated for

the straight section only.
Applying this end condition (Eq 11) to Eqs (6) and (7), and solving

for Oo and Yo? .

(15)

e”Lk_
— (cosh aL - 1) + al sinh al. - cosh al. + 1 2.2
W K _ &l (16)
Yo T T2 ek _ )
a cosh alL + < sinh al

Combining these results with Eqs (3) and (5), the makximum bending moment
at the fixed end is given by

aeLko
- 1l + aL sinh alL + " cosh al,
ML) =5 | 1- 2K (17)
' cosh al. + * sinh alL -
M(L)ro
The maximum stress, T ,» is plotted in Fig. 10 as a function of the -

dimensionless parameter,oaL, for dimensions indicated on the figure. The
broken-line curve represents the U-bend condition, Eq (17), and the solid
curve represents the free end condition, Eq (10). It is seen from the
figure that, for the dimensions indicated, the U-bend offers no support for
values of aL gréater than 3.

For the case of a pinned end with the U-bend condition (Fig. 11),
¥, = O and the slope at the pinned end, from Eq (7), is

P(cosh aL - 1) + g(éinh al - al)

go = "X cosh aL + ako sinh al ° (18) -




M(L)

o=

The meximum bending moment at the fixed end from Eqs (3) and (5) is

k_(1-cosh aL)- £ sinh al X(cosh aL-1-al sinh aL)+k (sinh al-al cosh al)

w
+ -
a

Pl cosh aL + ak_ sinh al K cosh aL + ak_ sinh aL

The reaction, P, at the pinned end is obtained by substituting Eq (18) into
Eq (7).
22 a”Lk

aé cogh al + aL sinh aL + —f¢ 2 (cosh aL-l-%%einh al)

l-cosh alL

2ak
o]

k

(20)

(1 - cosh aL + %?sinh al) + al cosh al, - sinh alL

Consider next the case where the fins do not extend all the way to the
headers so that there is a section,.f , of unfinned tube as shown in Fig. 12,
The moment of inertia of the finned tube will be greater than that of the
unfinned tube because of the fin collar. thickness and brazing alloy. The
flexural rigidities will be represented by D and Do for the finned and un-‘
finned tubes, respectively. A solution will be obtained for the case of a
concentrated end load, P, with the U~bend boundary condition.

The deflection Eq (4) is solved for the finned span with the following

boundary conditions:

(1) o) =5, (111) (L) = ©
(11) y'(o) ® 6, =3 (1v) y'(L) = o
‘ o}

The bending moment M(L) at the end of the finned section is obtained as a

function of OL:

Moo= %[kOL + P(cosh al-1) + w(% sinh aL-L) ]- -E- sinh al - lz(cosh aL-1) (21)
. a

(19)



by

where —a%— sinh al. + cosh al
a = ; ‘ (22) .
N cosh al. + sinh al
o
The deflection at x = 0 is
P w ,1
o + (cosh aL - 1) + n (E sinhal - L) Mo 2 PL
Yo =% - % "3 -1 (@3
" cosh al + a sinh al ’
0 .

For the unfinned span, Fig. 15, the slope and deflection at the free end are

1 P}22
°L=i;(“e—+ﬂ'§ﬁ"@ (24)
{2 3 3
yL""'blo‘( ) "P% _WL}Q) (25)

and the maximum moment at the fixed end is
M, = M, -wL{ -P 6 i
Substituting Eq (24) into Eqs (21) and (23),
2
ML=-—1-—- 3‘1152—+a(coshaL-1)-sinha.L]+
lakg a 2DO
' aD
o
(27)

W aakQQL
= [_—55__— + a(sinh aL - al) - cosh aL + 1
a o

-8




2D ak
0 0

2 2 .
and P (%%— + EQEEEEE_:_%) +w 1L 4 8inh al - aL) _ M,
o D
y o

cosh aL + a sinh al
(28)

2
1 wL
-'1;(“1"1’“—2‘)
The total deflection of the free end is Yo + ¥y,

Numerical Solution

A numerical solutian is carried out for the case shown in Fig. 12,
but for four U-bends tied together as shown in Fig. 1lk. Assuming that
the four tubes remain parallel during bending, the spring constant
(Eq. 2) will be reduced by 1/ since only three segments of fin undergo
bending for the four tubes. Therefore

OnD

]

f

k = (29)

The tube dimensions are:

o.l+53.2xlo'l+ 1n1+

r = 0.08125 =

m ° -
r, = 0.06875 in. I = 0.7345x10 ~ in
r, = 0.09375 in. (unfinned tube)
re = 0.10375 in. (finned tube)

Fin Dimensions:

The tubes are arranged in a square array with 2/3 in. between centers
(Fig. 16). The section of fin (per tube) which undergoes bending is shown
by the dotted lines. The width of the section, b, is 2/3% in. and the length,
8, has been approximated by (2/3 - rf) or 0.5629 in, The fins'are a sandwich
of stainless-steel clad copper (0.0025 - 0.005 - 0.,0025 in.). Assuming the
copper has no structural value, the moment of inertia of thé section is
(from Fig. 17):




_2b, 3 3 -
I, = ?;(yz - yl) For y, = 0.005 in.
y, = 0.0025 in,
I, = h.105x10-8 in"

From Eq (29) with n = 15 fins/in.,

9nlE 6

k = = 9.845x10" E

U-bend Spring Constant:

From Fig. 9 the radii of the two bends are 5/8 in. and the. straight
section, A , is 2.625 in. The curvature correction constant is

tr_ _ (0.025)(0.625)

h = = 2'367
ri (0.08125)°
-and
D_ = _1211.2__1_}_ D = 0.8835 EI_= 0'3810x10—)+E
T \12v® +10) ° °
The constant k_ is (from Eq 14)
QA + 2r)® . 6
kK = = L40.04x10 E

o 2 3
1l r 3 2
b—;—([%-—F[rr +‘+AI‘ +BDL

0

The constant, a, which relates the fin stiffness to that of the tube, is

) -6 :
a = @ = 12—81‘—5"—10——% =  0.3661 in~t

0.7345x10  E




oy o

The bending stresses and deflections for the case shown in Fig. 12 will
be computed for L = 15 in. and A = 1.25 1in.

al. = 5.492 sinh al. = cosh al. = 121

From Eq (22), a@ = 1, and Eq (27) reduces to

1 P (k2 r ek °L |
M 1“;:1:2) [E <2Do - > *fé(azno - aL +1> (30)
2D,
(o]

Substituting the numerical velues,

M (:—L—%%) [- 2.2Uk P - 26.19 w]

- 1-260 P - 1""-71 w’ 1b-in.

From Eq (26), the bending moment at the tube-header joint is

Mp = My - viL - P}
= « 2,51 P - 33,46 w 1b-in.
The moments are in units of 1b-in., for the concentrated load P in Xb. and

a distributed load w in 1b/in. The corresponding maximum bending stresses

are given by

For the finned tubing rmax/I = 1412 and for the unfinned tubing rmax/Io = 217h.
The maximum stress in the finned tubing is:

o) 12w = - 1779 P - 20,770 w

SR
ﬂ“‘"

-11-
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The stress in the unfinned tubing adjacent to the fins is:
—aﬁo) = 217k M_ = - 2739 P - 31,980 v

The maximum stress in the unfinned tubing at the tube-header joint is:
oﬁo) = 217k My = - SUST P - 72,7h0 %

The distributed load, w, for the weight of the matrix is estimated as

follows:
Volume/

Material in. of tube Density Weight[in.
Inconel 0.01276 in’ 526 1b/ft>  0.00389 1b/in
Stainless Steel 0.0%3238 " hoo " 0.00922 "
Copper 0.03238 " 556 " 0.01042 "
NaK 0.01485 " 46 " 0.00040 "
Braze Alloy 0.00620 " 526 " 0.0018 "

(assume 0.010 in.)
Total 0.0258 1b/in

With no end support, P = O, and the corresponding stresses from the
weight of the matrix are (refer to Fig. 18)

0£f) = 536 psi u£o) = 825 psi 0}0) = 1877 psi
It should be noted that the maximum stress at the tube header joint is a
factor of 3.5 greater than the maximum stress in the brazing alloy where
the fins begin and a factor of 2.3 greater than the stress in the unfinned
tube adjacent to the fins.



The air drag load behaves as a uniformly distributed lead similar to
the weight load. Its magnitude is estimated as follows:
Flow area = 30x15% = 450 in®
Total number of tubes = 45x8 = 360
Length of tube = 15 in.

For h in. of H20 air pressure drop,

o = {nin)(6p.h 1b/£t7)(450 1n°)

53, = 3,009x10"> h(1b/in)
(360 tubes)(15 in/tube)(1728 in”/ft”)
For a design pressure drop of 8 in H20, w = 0.,0241 1b/in.

The corresponding bending stresses are
L
For bending in a direction parallel to the headers the tubes are tied

together by the fins in 5-tube groups (Fig. 19). The fin spring constant
(Eq 2) will be reduced by a factor of 4/5 so that

nD
K = 5—?—(—5-3) = 10.50x10'6E

o) csorpst o =tmpst o)) = 1753 pst

The U-bends provide no support for deflection in the direction shown so
that k_ =0, and from Eq (22) o = tanh al.

= 0.3781

al. = 5.672 and tanh alL & 1.



Equation (27) reduces to Eq (30). Substituting the numerical values,

M =(:’L”:8Lo_5) [.. 2.142 P - 25,13 w] = - 1.187P - 13.92 w

Mg = -2.437TP - 3R.67Tw .
The corresponding stresses for the distributed weight load, w = 0.0258 1b/in.,
are

o£f) = 507 psi 0£9) = 781 psi oéo) = 1832 psi

The combined air and weight leoads will produce a resultant load determined
by the vector sum of the two loads. Since bending will not take place
along one of the two principal directions of the square matrix the spring
constant of the fins cannot be readily determined as in Fig. 16. Also,
bending in one of the principal directions would produce a wrinkling of the
fins which would resist bending in the other principal direction. As a
first approximation the maximum stress will be taken as the vector,sum of
the two bending stresses although both effects mentioned above will tend

to make this a conservative estimate.

oéf;ax = “(507)2 + (501)2 = 713 psi
qéoiax = q (781)2 + (771)2 = 1097 psi
qfoiax = “(1832)2‘+ (1753)2 = 2536 psi .

A curve showing the creep properties of Inconel at 1500°F is included
in Fig. 20 for an estimate of the creep life under the maximum predicted
bending stress. This data was obtained from a tensile creep test and does
not strictly apply to the condition of creep in bending. It has been
shown that during creep bending the forces redistribute themselves over the
beam cross section in such a manner as to relieve the outermost fiber
stresses and thus increase the creep 1ifel. The equivalent tensile stress
may be 70 to 80 percent of the maximum bending stress, predicted from elastic
theory, for comparable strain rates, depending on the geometry and material

properties.

1. D. L. Platus, Stress Analysis of a Heal Exchanger Tube in Creep Bending,

ORNL CF 57-2-101 (February 22i 1i57).
-l
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Thermally Induced Stresses

Consider first the stresses resulting from temperature differences
between adjacent tubes in the matrix. As the air gains heat in passing
through the radiator the driving potential for heat transfer is reduced
and there will be a temperature increase between successive tubes in the
direction of air flow, If there were no restraints from fin interactions
the tubes would deform as shown in Fig. 19 where T represents an average
temperature over the span L and ¢ is the coefficient of thermal expansion
of the tube. As a result of fin interactions, discussed in the previous
section, the tubes wilk deform as shown in Fig. 22. If we assume that
the temperature difference between adjacent tubes is constant at any point,
x, along the span of the tube, then 8ll tubes will bend so as to remain
parallel to each other., We can then isolate one tube from the matrix and
examine the bending stresaes induced in the tube from the temperature
differentials.

Consider two adJjacent tubes differimg in temperature by an amount
AT(x). If the tubes did not bend the fins would be deflected as shown in
Fig. 22 and exert a moment on the tube equal to kOt(x), where k is defined
in Eq (2), and

o (x) = & f T(x)ax (31)

b'e
Tue tubes will bend to partially relieve the stress in the fins so that the
actual slope at any point x is @(x) and the distributed moment, M., acting
on the tubes is proportional to the slope of the fin section and i1s given

by
u = k[O(x) - Ot(x)]. (%)

HFe problem is identical to that previously considered with the addition of
the term Ot(x).

-15-




The total moment acting on the tube from the fin reéction is

S: M dx = k[y(x) - y(o) - Sz ot(x')dx']

If we let AT(x) = AT = comstant, then
_aAr
6 x) = %L (1 x)

and 5
Nax = %Z l‘..)
L(gt(x)dx =5 ( -3

Neglecting the distributed load, w, and concentrated load, P, in Fig. 5,

the deflection equation becomes

dy2 . 2 Mb 2 QAT x2
—~5 -~&ay =gj -8 |¥ + — -5

From the radiator configuration shown in Fig. 14, the matrix consists of

two banks of tubes connected by U-bends. The average tube temperature in

one bank will differ from the average tube temperature in the other by
an amount Aﬂ% and, by analogy with the fin deflection in Fig. 22, the
moment exerted on the end of the tube from the U-bend will be given by

o]

M=k [9(0) - ot(o)J
where k_ is given in Eq (14) and, from Fig. 9,

(IN;ﬁL

%lo) = 7%= -



—_

Applying this boundary condition plus the condition of zero slope and
deflection at the fixed end, the solution of Eq (33) yields for the
maximum bending moment at the fixed end,
- k6 (o) + — aAm [f(l - cosh al)+ k (aL - sinh aLi]
M(L) = - oy (34)

cosh &l + —k— sinh aL

Numerical Solution

Substituting the mumerical results from the previous calculation into
Eq (34) gives the maximum bending stress in the unfinned tube in terms of

AT and /AT For the following dimensions and constants:

-bl
a = 0,3661 in~t a =107 1n/in°F I, = o.l;alzaélo'l‘inlL
L =15 in. s = 0.5629 1in. r, = 0.09375 in.
k = 9.8u5x10'6E A+ 2r = 3.875 in. k= ho.ohxlo'éE

E = 20x106 psi

(0) M(L)fo
L -1
(o]

= 55.02 AT + 0.2238 ATb .

Figure 23 gives some eatimated tube temperatures at normal operating conditionse.
Average values for AT andHAmb are on the order of 30 °F and EOOOF respectively,
which result in a value of 1700 psi for G( )

The next thermal stress problem to be evaluated is that resulting from
a condition in which the temperature of one tube in the matrixvdiffers from
the average temperature of adjacent tubes. Such a condition might occur from
mess transfer within the fluid system which would deposit solid material on
the tube wall and restrict the coolant flow. As a result, the temperature
of the plugged tube could be considerably lower than the temperature of adjacent

tubes.

2, Calculated by R. I. Gray, December 1k, 1955.

-17-



The problem will be analyzed by considering the fin sections surrounding
the cold tube as circular diaphrams. As the tube contracts, each diaphram
will exert a force on the tube, tending to pull it from the header. Figure
24 shows the deflectiom of one fin section at a distance x from the header
as the tube is cooled an amount T degrees below the temperature of the
surrounding tubes. The diaphram deflects by an amountcy(x) and the tube is

displaced an amount u(x) from the cold, unrestrained position. From Fig. 24

oaTx = u(x) +§(x) (35)

If we examine an incrgmental segment of tubing we will note that the tensile
force in the tube, P(x), is increased by an amount F(x) per unit length in
the direction of the header due to the action in the fins. From Fig. 25

Fx) =-& . (36)

Since the fin force is proportional to the deflection of the fins,(f(x),

F(x) =K§(x) = - & (37)

where K is the spring constant per unit length of tube and is equal to the
product of the number af fins per unit length, n, and the spring comstant
of the individual fin diaphram, k.
From Hook's law,
P(x) = AE€(x) = AE %% (38)

where A and E are the tube cross sectional area and modulus of elasticity,
respectively, and €(x) is the strain at the position x. ‘Differentiating
Eqs (38) and substituting into Eq (37),

2
Sx) = -2 (39)

&




Combining this expression with Eq (35) gives the deflection equation for
the tube,

V\Qu = - o:ATr\Qx (40)

where
" = % - Dk (41)

The solution of Eq (L40O) is
u(x) = C, sinhnx + 02 cosh Y X + OATx (42)

The constants Cl and 02 are obtained from the end restraints on the tube.
For the first case consider a length L of finned tubing fixed at the header
and free at the opposite end. These conditions require that the displace-
ment be zero at the fixed end and the tensile force be zero at the free end.
From the first conditiem,

u(o) =0 =C

From the second condition,
P(L) = EA (%;) =0 .
X=],

Differentiating Eq (42 and applying this condition gives for Cl’

2 L]

C, = - _..g.é_ml__—-
1 " cosh ML *

The solution for displacement as a function of x is then

u(x) = o @%llc‘-g-;;lﬂ%‘; (43)

From Eq (38), the tensile stress as a function of x is

o(x) = E &

and by differentiating Eq (43),

o(x) = OEAT (} - %%E%—%%%) . (k)




It is seen from this result that the stress increases from zero at the

free end to a maximum walue at the fixed end given by
a(o) = aEAT (1 - ——-L—-—> (45)
cosh YlL

The term in parenthesis is a fraction and will approach the value of unity
as the stiffness of the fins becomes infinitely large. In the limit the
maximum stress is aEAT far a completely rigid matrix. The meximum stress
is plotted in Fig. 26 as a fumction of nL.

For a second case af end restraints we consider the configuration shown
in Fig. 12 where a small segment ,Q of unfinned tubing connects the fin
matrix to the header. If x is the distance measured from the beginning of
the finned matrix outward from the header, then the second condition of
the previous case still bolds for the free end. The first condition must
account for the deflectian @f the segment Y of tube from the action of the
constant load P(o). If Ao is the cross-sectional ares of this section of
tube (which is less then the cross-sectional ares s A, of the finned tube
by an amount equal to the area of the fin collar plus brazing alloy) then
the displacement at x = Q is given by

wo) = B alat, (46)
e}
where ATY is the temperature differential of the unfinned tube. If we take
AT!? = AT' = constant and salve for Cl and 02 from the free-end condition and
Eq (46), Eq (42) gives for the displacement
[A
o opr |2 sinhnL - 1) - sinnnL
u(x) = T |& - sinh le +
-2 cosh YIL + Yre sinh Y\L

A
F(l-Ao)cosh L-1 ]
OATY i £ - 1 } cosh rlx + QATx

Ko_ cosh rlL + Y‘P sinh YlL

(47)




I -,_vsli .

Differentiating this result, the stress in the finned portion of tube
‘ggl,is, from Eq (38),
Ao Ao
) T - ylp sinh YlL - .-A"'
g "~ a(x) = QEAT T - cosh Nx +
_ o
Tcosh YlL + V{f sinh YlL

(48)

A _
[1--5'1 cosh L -1]
'sinh Y\x+aEA£[‘

A ,
lrocosh L+ sinh L|

* oy

The meximum stress occurs in the unfinned portion and is constant over
the length J. From Eq (48),

: /) -
amax ____Kl}-_ o(o) = QEAT Zosh NL + YX sinh YlL 1 (49)
° = coshY[L + M sinh nL

Because of the reduced area of the unfinned tube, the maximum stress can
- exceed the value of OEAT which was seen to be the limiting stress im the
previous case. In the limit as A/Ao approaches unity and ,? approaches
- acro, Eq (49) reduces %o Eq (45). If the temperature differential between
the cold tube and surrounding tubes is given by some function of x along
the tube then Eq (35) becomes
X
o X AT(K)ax = u(x) +8(x) (50)
o
For the case of a linear gradient increasing from zero at the header to

AT, at x = L, AT(x) is given by

L
AT x
AT(x) = Tﬁ
and the genersal solution for deflection corresponding to Eq (42) is
: st x® oA
u(x) = C, sinh le + C, cosh le + =7 + )121' (51)




For the previous conditions of zero displacement at the fixed end and zero

tensile force at the free end, the deflection equation becomes
QAT QAT x2

QAT
L /sinh nL - L i L ) Ay
2L < ook YlL ) sinh le TQL (cosh nx 1) + —=—

u(x) =
and the maximum stress at the fixed end is

inhiL - ML
o(o) =y (AL L)

This result is plotted im Fig. 27 as a function of 7\’L.

For the case of the unfinned tube section with a linear temperature
gradient, if ATR = 0 spo that the temperature differential begins at the

(52)

(53)

fin matrix, then the maximum stress in the unfinned tube from Eqs (46) and

(51) is given by
QEAT_A

. _Bo) _ LAL sinh VL -ﬁ)}:L >
max Ao Y( o cosh )IL + RK- sinh rlL
o

(54)

An expression will be obtained for the deflection u(o) as a function of the

tensile force P(o) in the unfinned tube to be used in conjunction with a
plastic strain analysis of the unfinned tube portion. If we define u(o)
as u, and use this boundary condition along with the free end condition,

the tensile force P(o) for the case of constant AT is given by
coshyL - 1
P(0) = GEAAT '%Béniﬁ_) - Y|EAu, temh NL
For the linear temperature differential,

QEAAT.

P(o) = P L Giggsgl‘ Yf\LQL) - 1\BAu, tazh ML

(55)

(56)



The spring constant, k, of a circular diaphram fixed at the inner and

outer edges is given by

11 o .2 kP 2
¥ = TEVET [a -V - 5 (111%” (57)
a

where & and b are the outer and inner radii, respectively. For a constant

thickness, t,
£

o0 ) (58)

I=

For a sandwich fin as shown in Fig. 17 where only the structural value of
the cladding is considered,
2(y3 - yi)

3(1 - #7)

and the spring constant, K, per unit length of tube is given by

A e L] e
ey - ) L a?-v° ( E (<)

(59)

I =

wiE

where n is the number af fins per unit length.

Numerical Solution

A value for the dimensionless parameter Y]L =L FEE;— is estimated for
the following dimensions:
From Fig. ;7, ¥y = 0.005 in.
¥ = 0.0025 in.
n =15 fins/in.

From Fig. 15, A, =‘W(ri - ri) = 0,01276 1n2

A =1T(r% - r%) = 0.01897 in2~
b = r, =0.10375 in. '
ry = 0.06875 in.

'IIIiI'ﬁﬁﬁﬂ
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Figure 28 is a plot of NL vs the diaphram outer radius a. The value of a

lies between the center-to-center tube svacing and the tangent circle

(Fig. 29). Selecting the value midway between these two, .
~2 _b_
a¥3 -5 = 0.615 in. .

From Fig. 28 YlL"~‘l.8 .

The maximum stress in the finned tube, if the fins were to extend to
the header, is plotted in Figs. 26 and 27 for the constant AT and linear
AT respectively. For ML = 1.8 the maximum stresses are 0.68 QEAT and
0.205 aEATL. For an uafinned tube length of 1.25 in., the maximum stresses
in the unfinned tube are, from Eqs (49) and (54), 1.01 GEAT and 0.300
aEAEL, respectively. If ,ﬁ is small compared to L, the stress in the un-
finned tube is approximately the stress in the finned tube at x = 0, in-
creased by the ratio of tube cross-sectional areas.

In the analysis above it was assumed that the section of tube between
the fin matrix and header was straight and joined the header at right angles
so that only tensile stresses were induced in the tube. In the actuwal
design the tubes penetrate the circular header radially and are bent so as
to enter the fixed matrix in parallel rovs (Fig. 30).

An axial force, P, on the tube produces a bending moment Ps where the -
maximum moment-arm s is 1 ~ 1.750 sin 300 = 0,125 in. The meximum axial
stress in P/Ao and the maximum combined bending and axial stress is
Psro/I + P/Ao cos 300. The ratio of the combined stress to the maximum
axial stress is srvo/I + cos 300 and is equal to 4%.33. Applying this
correction to the previously calculated stresses in the unfinned tube,
the maximum stresses are 4.38 QEAT and 1.30 aEATL for the constant AT and
linear AT, respectively.

Because of the relatively high stresses produced from temperature
differentials of the type considered above, the elastic stress-strain
relations no longer apply. It becomes necessary to consider the actual shape

of the stress-strain curve in order to estimate deformations and attempt.to

.l
o, LW
5 l:‘?’-\
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predict the structural life umder thermal strain cycling conditions. The
criterion presently being used to predict structural life under strain.
3

cycling conditions is based on the work of L. F. Coffin” who was able to
correlate faillure of & tensile-compressive test specimen with the tetal
accumulation of plastic strain. The total strain is made up of an elastic
component and a plastic cowponent, the magnitudes of which depend on the
magnitude of the total strain, the stress-strain characteristics and stress
relaxation properties of the material and the manner in which the strain

is applied. For very large strains per cycle (greater than 0.1 percent)
the elastic component is a negligible fraction of the total deformation.
This permits the use of simplifying approximations to the actual stress
strain curve in estimating the plastic strain per cycle and structural life.
Figure 31 is a plot of the plastic strain per cycle against the number of
cycles to failure for fine and coarse grained Inconel tubing at 1500°F. It
is seen that strains of the arder of 1 to 10 percent per cycle would be
reguired to produce failure im a relatively small number of cycles.

The previously considered elastic problem is now analyzed from a
consideration of the amount of plastic strain that would be induced in a
tube which undergoes a temperature change with respect to surrounding tubes
in the matrix. It was found that such a temperature differential praduces
a maximum tensile force in the hnfinned tube in the region of the header and
that large bending streases could result if the tube has a slight degree of
curvature where it Joins the header as shown in Fig. 30. The elastic
bending stress at the header connection was found to be a factor of four
greater than the axial stress in the straight section of tube for the geometry
shown. If the maximum-atress at the header exceeds the elastic limit then
yielding will be confimed to & very small region adjacent to- the header and
relatively large strains can occur for & given deflection of the tube.

Expressions were previously obtained for the relations between the force

3., L. F. Coffin, "A Study of the Effects of Cyclic Thermal Stresses on a
Ductile Metal", Trans. ASME, 1954, p. 931.
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and deflection of a tube at the edge of the fin matrix for a given
temperature differential and are given by Egs (55) and (56). A
similar expression or "spring constant'" will now be derived for the .
curved section of tube shown in Fig. 30 assumed in the elastic- plastic
state. The two expresaions can then be coupled to obtain the tempera- -
ture differentials required to produce a given plastic-strain or structural
lifetime.
A typical stress-strain diagram for a ductile material at high
temperature is shown in Fig. 32 (solid line).
For strains of the magnitude considered-above, the elastic portion
of the curve can be neglected, and the curve can be approximated by the
tangent line sBhown dotted in Fig. 32. The stress-strain law is then given
by

0 =0, + B¢ ’ (61)

which assumes that no yielding takes place until the stress reaches the
intercept value co. Thereafter, stress is linearly proportional to strain
and the constant of proportionality, Et’ is the slope of the tangent line,
referred to as the tangent modulus. Deflection of the elastic portion of
the tube will later be taken into account in determining the total de-
flection of the tube se that the idealized stress-strain law (Fig. 32)
applies only to the plastic region.

Consider the section of tube shown in Fig. 33 subjected to a distributed
bending moment, M(©), produced by the force P. The applied moment at any
point must be resisted by tensile and compressive forces ac%ing over the
cross sectional area of the tube so that ‘

M(8) = f o(A)ydA (62)
aresg,

where y is the distance measured from the neutral axis to any incremental

area acted upon by the force o(A)dA. According to the idealized stress -




strain law, no deformation of the tube will result until the bending
moment reaches some critical value. In the region where the moment
exceeds this value plastic deformation will result and the deflectien
equation is obtained from Eq (62) by substituting for stress the
equivalent strain relation, Eq (61).

M(e) = Lrea I:ao + Et(e(y)] yoa (63)

Assuming that plane sections remain plane during bending,

- d
“e(y)-=}é=yag ’ (64)
where 1/0-or dg/ds is the curvature or change of slope with distance s
along the curve and Eq (63) becomes

M(0) = &, f yaa + 2, 38 J y2aa (65)
area _ area

The first integral on the right is the first area moment and the second

integral is the moment of inertia, I, of the cross sectiqn. If the

product of the first moment and ¢ is set equal to M _, then Eq (65) can

be written

ag BM(O) - M,

ds E T

(g,< 0 <x) (66)
. ,

and the problem reduces to that of an "elastic” problem with the modulus
of elasticity replaced with the tangent modulus. If the maximum moment
is less than M no deformation will result.

Assume that the moment produced from the force P in Fig. 33 reaches
the value of Mo at some point along the tube defined by the angle ¢ = Ge.

-
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In the region Oe <6< \{/ psi the bending moment exceeds Mo s> and the tube
deforms according to Eg (/66). The bending moment is given by

M(@) = PR(1 - cos ©)
so that the angle at which plastic deformation begins is

M
0, = cos™t ( - -ﬁ%) (67)

The deflection of the tube in the direction of the force P is
obtained from the strain-energy relation

1A M M

w =35 - S s e (68)
]

where the integral is taken over the length of tube defined by the angle

ep, and the moment is

M('O) - M, = PR( cos 6, - cos e) (69)

Deflection of the elastic portion of the tube can be included to give the

total deflection uo = “e + u,p.
Substituting Eq (69) into Eq (68), the plastic component of deflection

is given by
u =-:P-1£ f (cos ©_ = cos O)2 ae
P E I e
t
O
(70)
PR LS

_ R’ 2 ' Y % .1
= E I [(kl/-ee)‘cos e, - (sin\{!- sin Oe)2 cos 6 + 5 + K(sin 2y~ sin 2 Qe)]

The elastic component of defléction is obtained from a similar integration
and is equal to

3 sin 2 @
PR
ue =B [% Oe - 2 sin Oe + —T_E] (‘71)

=28~



The maximum plastic strain occurs at the fixed end and is given by

) M(x) - Mo]ro

- max EtI

From Eqs (67) and (69),
PRro(cos 0, - cosy) r

. - = o - -
ax = F I E T [PR(l cosly) Mb] (72)

From the curve of Fig. 31 a value of plastic strain per cycle can be

€

selected for a specified lifetime. The force, P, required to produce
this strain can be obtained from Eq (72) and the corresponding deflection
from Eqs (70) and (71). The temperature differentials necessary to pro-
duce the calculated force and deflection can then be obtained from the
matrix "spring constants", Egs (55) and (56).

Numerical Solution

From Fig. 30: 1r =3° , R =0.933 in.

R(1 - cos 5o°)= 1-1.1750 sin 5o°

For the unfinned tube: T, = 0.09375 in., ry = 0.06875 in.

I, = 0;&312x10'h inh s \f yaA = 6.65hx10-h ind .
B
The tangent modulus approximation to the stress-strain curve for Inconel at

1500°F gives for the intercept and slope (Fig. 32),

g, = 18,800 psi E = 2.7§x10'h psi

The minimum bending moment required for yilelding to take place is

A



s
?

If we select a value of 10 percent fo; ép which, from Fig. 31, corresponds.
to approximately 40O cycles to failure, then the required axial force P of
105 1b is obtained from Eq (72). 1In this equation e .  1is one-half the
strain per cycle of 5 percent. From Eq (67), the angle 6, which locates
the point of transitiom from elastic to plastic deformation (Fig. 32) is
0.5106 radians or 29.26°. This corresponds to a plastic region of enly
0,73O or, in terms of tube length, 0.0121 in. Since the angle Oe'differs
from Yy by such a small amount, the plastic component of deformation

(Eq 70) can be more readily calculated by approximating the trigonometric
functions of this incremental angle by the first two terms of their series
expansions. If © represents this difference then Eq (70) reduces to

up = -g%: [-(%9-22 sin2 Oe - Sé_g.ﬁ sin Oe cos OeJ
Substituting the above values for P and A6 into this expression gives for
up, l.25x10-5 in. The elasﬁic component of displacement is calculated
from Eq (71) to be 1.85x10 in. The temperature differentials required
to produce these displacements are obtained from Eq (55) and Eq (56). 1In

terms of total displacement, u,» and axial force, P, the temperature
differentials are givem hy

N

AT = 0.387 P + 1.68x10 u
) N
AT = 1.29 P + 5.59x10"u_

for the step AT and linear AT respectively. For uy and P equal to
1.98x10;§ in. and 105 1lb, respectively, the above temperature differentials
are 44°F and 147°F, respectively, corresponding to about 4O thermal cycles
to produce failure. If the calculations are repépted for 1 percent plastic
strain per cycle corresponding to a structural life of approximately 300
cycles, the required temperature differentials are 42°F and 141°F for the
step AT and linear AT, respectively. The sensitivity of "the number of

cycles to produce failure with temperature difference is a consequence of

-30=-



“" il 1

the lack of strain hardening at these high temperatures. Once plastic
ylelding begins very large strains can be realized from a slight inecrease

in the stress level as evidenced from the relatively small slope of the
stress-strain curve in the plastic region. The slope is alse quite dependent
on strain rate at these temperatures. This effect was not included in the
above analysis so that these results would only strictly apply to a condition
where the rate of application of the temperature differential is equal to

the strain rate of the tensile specimen from which the stress-straim curve
was obtained.

Another thermal stress problem considered was the effect of a temperature
differential between the header drum and adjacent fins. The unfinned portion
of tubes shown in Fig. 34 will be subjected to bending as a result of this
temperature differential. Assuming that the fins are rigid, an individual
tube will deform as showa in Fig. 35. From symmetry, the length f/2
behaves as a fixed-ended cantilever beam subjected to an end load which
results in a maximum displacement of GATL/4. We are interested in determining
the allowable dimensionms, { and L which will enable the unit to withstand
strain-cycling conditions for a predicted temperature differential, AT.

The problem is analegous to the one previously considered where a
cantilever beam is stressed beyond the elastic range so that a portion of
the beam undergoes plasiic deformation. If Qe and fp are the lengih of
the elas&tic region and plastic region respectively, then the deflection at
the free end is given by

py> 3 IQE
y(o) = s +E—1;[-@52+—;J (73)

where plastic yielding is described by the tangent modulus approximation
(Fig. 32). The maximum strain at the fixed end is

Pﬂ r
—b0

max = EtI (74)



M
=440 =2, (75)

where Mo was shown to be equal to the product of the intercept, Oy
of the stress-strain tangent curve and the first moment of the tube
cross sectional area about the neutral axis. If y(o) is set equal to
the maximum displacement, QATL/4, and combined with Eqs (74) and (75),
the following expression is obtained which relates the dimensions { and

L to the maximum strain and temperature differential:

2 2 )
ATsema.XQ [l-—l—- 1 ]+ emax.LELj [ 1 ] (76)
31Lr0 2B 232 BaLrOEBQ B -1
where

€ B I
BE 1+ max t

M r
o ©

This result is plotted in Fig. 36 for 1 percent strain per cycle
(em&x = 0.005) corresponding to approximately 300 cycles to failure

from Fig. 30. The modulus of elasticity and tangent modulus were taken
as 18x106 psi and 2.73x10h psi, respectively; the coefficient of thermal
expansion was taken as 10-5 1n/in°F and the moment of inertia and tube

outer radius correspond to 3/16 in., 0.D. x 25 mil wall tubing.
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