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Abstract

The oscillatory character and the consequent poor convergence of the

spherical harmonics method which arises when it is applied to a dis

continuous problem is remedied by an appropriate modification. The

new method is applied to the plane Milne problem, and the results

compared with those obtained from both the conventional spherical

harmonics method and Yvon's modification.



1. It was shown recently by Kofink in the course of his profound investi

gations of the spherical harmonics method that the spherical harmonics solu

tion -j (£, h-0 of the Milne problem does not converge in the limit

L -^ c~ to the true solution ^(%,y~) ,but instead oscillates about it,

intersecting it ina denumerably infinite set of points. The angular distri

bution at the boundary ^ = o in particular is correctly given by the

spherical harmonics method only in the directions u.= u -^ , where the

l^i are the roots of the equation LU~^ >|_h (^J) *. o . Although

for finite L the points of coincidence are not determined any more

exactly by the roots of PLj_, (u ^ =• o , it is nonetheless true that the

error of the ru- approximation consists mostly of the 0-+0 spherical

harmonic. This idea will form the basis for the proposed modification of

the spherical harmonics method.

0
1~, It is most convenient to illustrate all the methods to be discussed

by their application to the Milne problem, in which a scattering medium

fills the half space ^^ o ,while the half space %>0 is empty;

the neutrons are supplied by a plane source at $ =- oo . However, it must

be realized that this particular example makes the conventional spherical

harmonics method appear in an adverse light and does not bring out its

potentialities fairly, since it imposes an excessive demand upon the

method, which after all attempts to describe the angular distribution even

at the interface by a continuous function. The exact distribution, on the

other hand, is discontinuous at u. - O • f(V^o") gives the finite

(and necessarily positive )probability that a particle will emerge in the

1. W. Kofink, Studies of the Spherical Harmonics Method in Neutron Trans
port Theory, ORNL Report 2358 (1957).
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direction y- from the scattering medium, while l(y_*o) =o indicates

that back scattering from the vacuum is impossible. The spherical har

monics method, trying to strike a happy mean, will give a continuous angu

lar distribution near w_ = 0 which will be too low in the forward di

rection, while in the backward direction it will be too high. This means

that the error of the T^- approximation changes abruptly at y = °

from a negative to a positive value; still, on either side separately it

consists mostly of the (L+ 0 spherical harmonic.

If we therefore attempt to remove the error by including the next harmonic

into the approximation, it will try to oblige both sides, and in the re

sulting compromise the overall error will not be sizeably decreased.

Thus, to obtain a marked improvement it is necessary to permit the ampli

tude of the (L+0" harmonic to be different in the forward and back

ward directions.

O. Our approach is now seen to be somewhat similar to a method due to

J. Yvon^, who uses altogether different expansions in the forward and

backward directions. We realize now that this process is quite radical

and makes the formalism unduly complicated. In order to reduce the com

plexity one has to be satisfied with a lower order approximation; but

then the gained advantage is partially lost again. It is therefore felt

that the proposed approach steers a reasonable middle course between the

poorly converging spherical harmonics method and the too ponderous method

of Yvon.

2. An explicit description of this method can, for instance, be found
in a memorandum by J. Bengston, ORNL CF-56-3-170 (1956).
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\ . The Boltsmarm equation of the plane Milne problem is:

-i

We expand 1 C^J, uJ) into spherical harmonics and terminate the series arbi-

trarily after the L term:

For the conventional spherical harmonics method, reasonable boundary con

ditions can only be obtained when U is odd. A similar effect arises in

our method; however, here L has to be even. (More generally, we can state

that in all spherical harmonics methods reasonable boundary conditions always

exist when the number of coefficients LC^) is even. Thus, Yvon's method is

feasible for all orders. ) In addition, the equations for the L-Ji) themselves

become slightly simpler here when L_ is even, because then the materials con

stants will enter directly only into the lowest order equations. We shall

therefore take L to be even throughout.

Now we have to determine the £,;(£} . Since there are Ul of them, they

will be the solutions of U+i- differential equations. U-t-l equations are

obtained by taking the first U-t-l harmonic moments ( *-M-r^(pO ^^,1^ -°
of the Boltzmann equation:

u-i < u-i •

*• un-0 •i [ [± ■♦ a\)*~ f. ] •* \ <*r ?^(^ • fuf^



Another equation is found by forming the expression [jyftyJ)f($,K)-[V^)Ftb*Vc>:

l-o 0 * 'I

o

O 0 '

where we have introduced the abbreviations

The integrals are all elementary and can be evaluated easily.

M .f - V - Or ^CfO Vt^

0

-s
a. * +

C_0^^ | f a 'I at, ^(>-t~—'

i-*P-' (oc-(i)(at4^0 [(^/^ ),']' i1* 0-&~X~

N^ - V •^ m n*(y~) 'pf^

1̂ -(i| o-JU, iwt ^ I

4^ -

v

fcQJC*'^ ^^Q 4 ftffr+Q
oi.

I O I

a~*p (*-|l-0(^ +'X«*p)(*+p+A) [(^/(J.);]1- f

s o<-l
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Written down explicitly, our system of equations will then appear as follows

4^L+-0 M»L fu * 0

4(Xlh) NL|U (^ „ o
1'^ofo + 2. Mut f, -t .... +(M.*l)Mt(L(^ 4>(jh-+-i) HL|L fu -o

In the box we have the equations of the conventional spherical harmonics

method; there the bordering elements all vanish, since one assumes that

\+ = \- ) i'e't fu =- ° • We will now calculate an example and see that

actually L is far from being zero.

>-

J

J, For L»^- , the system of differential equations is

Vl» * {' + f?v = o

H'* d + %(-' + i £ * 0

i f' - (>- - f £ - 0

H-' + *,.{. - f ^' - ^ -- 0

If we now put f„ «A; e ,we obtain four linear homogeneous equations for
the A^ which have a non-trivial solution only if

7C
^1

A

1 ' *q X



As long as V -^ ' the lowest pair of roots is given by

we see that the first two coefficients in this expansion are correctly

given by this approximation. The next two roots are expressed by

7? * - CI+ t + ^*- nf )

k2 , Since the lowest root of the secular equation rules the behavior of

the approximate solution inside the scatterer, it is instructive to com

pare how accurately it is given by the different methods. The number of
pa

correct coefficients in the expansion ?iv =- ^ c*^ rvj"' is always equal

to the number of Legendre polynomials employed in the approximation; thus

the conventional T\ - method (which uses the four expansion functions

*fc>C^ •" "i C\^) ) gives the first four coefficients oc0 - o ex., -- 3
iv iv ..

oi, =• - — , «, - correctly.

On the other hand, the order of the secular equation in X , which is a

fair measure of the complexity of the approximation, is equal to the num

ber of expansion coefficients. Thus the conventional 'P,- method, Yvon's
_ 3- t
'-Ct-0 "" me_thod, and our modified ru_, -method are comparable in com

plexity. We expect, therefore, that inside a scattering medium with ab

sorption the modified ^P|__| -approximation will not be materially worse

than the *PU'method, especially for large L , while Yvon's equally

complex Ti (u-i) -method will trail far behind in accuracy.
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For further comparison, we tabulate the lowest root -which is inversely

proportional to the mean free path - as given by the different methods of

equal complexity for a black absorber.

TabLe 1. Lowest root X for a black absorber.

1.

Method Exact p3 p2' *12

X 1.000 l.l6l 1.199 1.267

We shall now complete the solution for the case of a pure scatterer, so

that /^ =- 0. Then the lowest eigen value vanishes, and the corresponding

exponential solution degenerates into a straight line. We find

^±0,^- a..* +40-eu.M ^A. **'SM1 *(I - i.°7t4^cr)4PjryJ )f*

while on the vacuum side

•+.'il3'5r * 1 iqw > r f. i l 0 5fa*°,r) - C, e •^*3'S(_i+ 1.903? <p((r) ^p^).i )

The coefficients of the spherical harmonics in these expressions are essenti

ally the A;, which were calculated from the system of equations in S5" .

To obtain the remaining undetermined quantities in the expressions for

•f l<S^ 0, p.") and ^to,J we match these at $*o ,and then compare
the coefficients of the different spherical harmonics. Such a procedure is

equivalent to an application of Mark's boundary condition which, however,



cannot be generalized to cover our case since it is based on a special

property of the Legendre polynomials; the effect of Mark's condition is

to reduce the system of linear equations for the undetermined coefficients

to two separate systems of half as many equations. This is an advantage

which we cannot obtain; on the other hand, we do not have to make any

partial use of our intuitive knowledge of the behavior of the exact

solution. From the system

^cu0 ~ I.07 I 4 A0

0. ^ri 1 Ao

- r, T>r7 1 A-,

\.^0Z8 C, + x.oX^i Cv

4.-M 33 c, - 4-. ?777 Cv

I, io- v7 c, 4- {, i<5 "U c^

\-

j

and the normalization condition to unit forward current,

1* lT \ <*r r fc"0ir^ r *2-°^i+tf^ 43,niu, +- 1.1-7 s»rv0j
o

we find

cu0 * - O. ;nf 0 9 C, » 0. O7i.il

4„ - 0.16^1 C, * 0,0^641

Ao - - 0. 0 "2>O0 r

This gives us the angular distribution at the boundary

Cr r -O. O I07^CO,rl , 0,l^o 4 0.273c r + PJr) ^ o|6|b ,
and the flux in the medium

a,mis
1

4>c*) - a.«r f^r (^.^ *' °<7r6ri 40,5311. - 0,09^*
The back current is 0.86$, and the extrapolation distance

& - -
^ Co-)

ft*
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O. The obtained angular distribution is plotted in Figure 1; for comparison,

the exact distribution3 is also shown. It is seen that the agreement is quite

excellent in the forward direction. In the backward direction the accuracy of

the approximation is less impressive; this is not too surprising, for one

could not expect one high harmonic to cancel completely the combined effect

of all the others - which are, after all, orthogonal to it.

In Figure 2the error of the regular 1^- and the modified Vj -methods are

plotted on a larger scale. In both directions the Vj- method represents a

considerable improvement. Incidentally, it can be checked directly by means

of this plot that the error of the ?%- approximation consists mostly of the

Legendre component TV ( ^ ) .

For further comparison, we have calculated the mean square error of the dif

ferent approximations:

Table 2. Mean square error 1 fd^ [^ (o,<u) -£***** (0,̂ ]

4±
•> o

IG4 ,7 * io'

\1 . 3 * 10
-^

a_o .7 10
-4

*-
>c 0

^ 1. x

1 8 2. K

0

_^

In the forward direction, the V^ _ method is seen to be better than Yvon's

method; of course, it cannot compete in the backward direction, where - by

an ad hoc construction - Yvon's method is exact. Indeed, it is quite for

tuitous that the "P,3" _approximation - which approximates the exact distri

bution by a straight line on both sides - does not show a larger error. If

3. Taken from Case, DeHoffmann, and Placzek, Introduction to the Theory
of Neutron Diffusion I, Los Alamos 1953. (Renormalized to unit current. )
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we had included a certain amount of absorption, the true distribution would

have been much more strongly peaked forward, and the r( -approximation

would have been quite inaccurate, while our method would have given good

results since it also includes a quadratic term.

Finally, we tabulate the extrapolation distances obtained by the different

methods.

Table 3. Extrapolation distances.

Exact p3 P 'r2 *i2

a 0.710U O.69I+9 0.7022 O.7H3

Here, the r, ^method is quite clearly superior.
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