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INTRODUCTION

The solution of many engineering problems requires knowledge of temperature

fields in various solids as functions of time and bounding conditions. Many

charts of the Gurney Lurie type that aid in the estimation of temperature

profiles over a wide range of time, thermal properties, dimensions of body,

and bounding conductance can be found in the literature. In all of these

presentations, however, the assumption is made that the temperature of the

body under consideration is uniform initially.

The increased importance of temperature structures in bodies, that under

some circumstances can be considered as uniform internal heat generators, makes

an analysis of the transient temperatures during convective cooling in such

bodies desirable.

During steady state operation the part under consideration will attain an

equilibrium temperature distribution in accordance with Poisson's equation.

Subsequently, it may be caused to cease its generation of heat and if

cooling continues the temperature profile will vary with time and introduce

problems (such as thermal stress) which depend on the temperature structure

for their ultimate solution.

It is the purpose of this paper to present the evaluations of the series

which represent the solutions to the Fourier equation in rectangular,

cylindrical and spherical coordinates for the case in which the initial

temperature field is that owing to a spatially uniform heat source. In the

development, the temperature of the cooling fluid is considered to be constant.

To emphasize the similarities in the development for the three geometries,

corresponding equations have been assigned the same number with merely primes

or double primes distinguishing the geometry involved.
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NOMENCLATURE

Symbols

A area

hx hr

B. Biot number = --=-— or —r—

c constant of integration

g rate of internal heat generation

h unit surface conductance

k thermal conductivity

M
n

M
m

roots of transcendental equation

r radius

R function of r alone

t temperature

T temperature difference = t - t,

x distance

X function of x alone

Subscripts

c center

f surrounding fluid

i initial

o outside

s surface

Greek

a thermal diffusivity = —- where p is density and c is specific heat
P P

9 time

KJ-i function of 9 alone

separation constant

a (29 Ct90 Fourier modulus = —^ or —^
x r
o o

'/''" a function defined in the appendix



THE INFINITE PLATE

Initial Temperature Distribution

Poisson's equation for this case is:

4 +f - o (i)
dx

The general solution of Eq (l) is:

2

'1 " "2* " 2k
t = c. + c_x -£S- (2)

The boundary conditions are:

= 0 where x = o refers to the center of the plate
dt

dx
x=o

dx
=a(tx -tf)

x=x o
o

Utilization of the boundary conditions yields the particular solution

or

* " *f 2 x2
gxQ/2k i xo

Transient Temperature Distribution

Fourier's equation for this case is:

ft2T 1 bT
s 2 * a 99
ox

(M



Assuming a product solution T = X(x)f*©-»(9) and choosing a separation constant

of - ;\ /a the solution of Eq (k) becomes:

T=(c3cos^ x + Ci. sin
\|a

•Ace

Applying the "boundary condition that f—
QX

= 0 yields
x=o

9=9

T = c. cos J= x e" A
fa

IT
5x"

(5)

(6)

The boundary condition hT

manipulation:

x=x
becomes after some algebraic

where M =
n Ma

So Eq (6) becomes:

9=9

x=x

9=9C

M tan M = B.
n n i

•5 n -M2$
T = 2 C cos — x e n^

-, n x
n=l o

thwhere CR is a constant corresponding to the n root, M , of Eq (7)

To evaluate the C 's use is made of the initial condition:

T. = gx
l B o

1 ♦ 3H.h 2kJ
gx_
2k

OO

= L C cos — x
, n x

n=l o

M
n

(7)

(8)

(9)
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M
m

Multiply both sides of Eq (9) by cos — x dx and integrate from
A.

o

0 to x .
o

Now

M M

C cos — x cos — x dx
n x x

o o

x (M tan U - M^ tan M )
o m m n n

= C
n

M M2
m n

cos M cos M
m n

x /M sin 2 M
o . _n n

n M 2 + 5
n

if M £ M
n ^ m

if M = M
n m

From Eq (7) it is seen that the value of the integral is zero if M ^ M .

Hence, all terms but the n vanish on the right of Eq (9) after the

integration is performed.

Therefore

1 x
SXolh + 2T 2k

M
n j

cos — x dx
X

o

x /M sin 2 M

Cn M~ I"2" + T~
n v

(10)
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The integral on the left of Eq (10) is evaluated as:

M
n

E+2EJ Sin Mn

And therefore

sx:

2kM3 L
n

2M„ cos M„
n n

(M - 2) sin M
s n ' n

2 f^- + 1 sin Mgxo [b. J
n _ 2k

1 2 Mn cos Mn + x..n(M2 -2) sin Mn

M sin 2 M n
n n

2- + -T

Hence the final form of the solution as expressed by Eq (8) is:

ex. =1n

2k

— = L

2M cos M + (NT - 2) sin M^
n n n n

rM sin 2M "
n n
2"+ 5

(11)

M -M20
n n^

cos — x e
x

o

(12)



THE INFINITE CYLINDER

Initial Temperature Distribution

Poisson's equation for this case is:

£i +i£t +i =0 (v)
, 2 r dr k
dr

The general solution of Eq (1') is:

2t a c± + c2 In r - ^ r (2')

The boundary conditions are:

, dt
- k -r—

dr

Jr=o

- h(t - t )
r=r o

o

Utilization of the boundary conditions yields the particular solution

or

2 U i) +*f -f£

t - tf

gr2/2k "*♦
1

2 "

2
r

2r2
0

Transient Temperature Distribution

Fourier's equation for this case is:

(3a')

(3b«)

v 2 + r ^r a lQ ^ '
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Assuming a product solution T = R(r)^ (9) and choosing a separation constant

of _^2/a the solution of V becomes:

C3J.

>Tl
Applying the boundary condition that *—\ =0 yields

9=9

•& (r)

-^')'-'b (6')

becomes after some algebraicThe boundary condition hT

manipulation:

r=r

J9=9°

Xro
where M =

n fa~

So Eq (6') becomes

r=r

9=9C

J±(\)
M T /„ \ = B.
nW x

T = 2 C J —r e
n nor /

n=l V o/

(71)

(8')

thwhere C is a constant corresponding to the n root, M , of Eq (7')«

To evaluate the C 's use is made of the initial condition:

Ti= — h 2kJ
2 oo /li

^ n=l no\ro
(9')



(Mm \Multiply both sides of Eq (9') by rj — rJ dr and integrate from
V o /

0 to r .
o

Now

/M

C rJ -£ rn o\to
M A

Or2
n o

2
r

Jn(M ) J,(M )

^ JTmT "Mn JTmT
o m' o n'_ g

m n
j (m ; j (m ;
o a' oN m

JX) +4<Mn>]

ifMn^ \

if 14 = Mm
n m

From Eq (7') it is seen that the value of the integral is zero if

M_ j4 M . Hence all terms but the n vanish on the right of Eq (9f) after

the integration is performed.

Therefore

fVL

2 Ih + 2k I " ¥k~

(10')
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The integral on the left of Eq (10') is evaluated as:

3 k
gr / r \ gr

and therefore

8 iX +j'M W
gr IB. / M uM-

^ _̂ #*n> +# V

Hence, the final form of the solution as expressed by Eq (81) is:

n=l ^(Mn) +4(Mn) °lro2

fo
2k
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THE SPHERE

Initial Temperature Distribution

Poisson's equation for this case is:

d * x 2 dt . g
8 r dr k

dr'

The general solution of Eq (l") is:

= 0

c. + —
1 r

1 £^2
5 kr

The boundary conditions are:

= 0
dt

dr
-"rsso

dr
-T=T

=Xtr - tf)

(1")

(2")

Utilization of the boundary conditions yields the particular solution

or

gr.
t =

r \ r2

h+2k) +*f "fir

gr2/2k =3Bi 3"3r2
o o

Transient Temperature Distribution

Fourier's equation for this case is

«2'O + £ bT _ 1 ST
2 r ^r ~ a T&

(3a")

(3b")

(V)
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Assuming a product solution T = R(r)^ (9) and choosing a separation constant

of - A /a the solution of Eq {h") becomes:

sin A r• cos .^r r \ .2.

bTApplying the boundary condition that y1

sin &- r
W * a-A"o

T = C
3 r

= 0 yields
r=o

0=9

(5")

(6")

The boundary condition hT

manipulation:

r=r

9=9C
dr

becomes after some algebraic

ArQ
where M •-

So Eq (6") becomes

r=r

9=9C

1 - M cot M = B.
n n l

eo

T = S C_
n=l

sin

M

r~r -M^
o n'

e
n r

where C is a constant corresponding to the n root, M, of Eq (7")

To evaluate the C 's use is made of the initial condition:
n

*L -£(*♦£) -£-£«.
M

n
sm — r

r
o

(7")

(8")

(9")
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M

Multiply both sides of Eq (9") by r sin — r dr and integrate from
o

0 to r ,
o

Now

r

0 M M
C sin — r sin — rdr
n r r

o o
o

r sin M sin M

n d jd. m mn n' n'm

n ~ m

r / sin 2 M \

Cn 2T (Mn "—2—') if Mn =Mm

From Eq (7") it is seen that the value of the integral is zero if"M £ M .

Hence, all terms but the n vanish on the right of Eq (9") after the

integration is performed.

Therefore

f^o fl V\ gr2l , Mn
) [— U +2ky - fe-Jr sin- r dr =

r / sin 2 M \
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The integral on the left of Eq (10") is evaluated as:

3?It (*fsln Mn" ^cos **"8in "*)+ *(sin ^"Mn cos Mn^
n \ n

And therefore

C. .< "^L^r- m ♦i-l) sin »a -(^ ♦ i) cos J (XI")
'n 2k 3Mn(Mn -£****>

Hence the final form of the solution as expressed by Eq (8") is:

(j-.H--.-(H>--,.,, ^
2k ^ '
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Discussion

The numerical evaluation of the series in Eqs. (12), (121) and (12")

for the dimensionless temperature was performed on the IBM 70^ digital

computer. The results for a wide range of parameters are shown on Figs. 1

through 6. Due to certain characteristics of the infinite sum, it was

possible to present all the information on two charts for each geometry

chosen. The first chart for each geometry leads to the temperature at the

center of the body; the second chart yields the temperature at any other

point.

It will be noticed that the dimensionless temperatures are given by

the sum of an infinite series of three factors. The first factor in each

term is a function of the Biot number, the second factor depends on the Biot

number and position in the body, the third factor is determined by the Biot

number and the time. When the dimensionless temperature is plotted against

time for any given Biot number and position in the body, the result is in
°" -M2$ •(->,

general a curve representing the series Z.. K e n^ where K is the n"1

constant depending only on Biot number and position in the body. Reference

to the temperature-time charts for the center temperatures indicates that

over the range considered the curve so obtained is in fact, a straight line.

This can only mean that the series converge so rapidly that the first term

alone adequately describes the infinite series1.

The lines were discontinued when the time was so small that the second

term in the infinite series for the center temperature became about
one percent as great as the first term.
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This leads to a convenient method of expressing the values of these

series for the range reported. Considering only the first term in the

infinite sum, Eqs. (12), (12*) and (12") become

(j2- +1) sin M1 -—^ \mx cos M1 +(M2- 2) sin M-]
i M.

__ ______

__. + _.

M-x

'cos( )e
-rify

(13)

_

2k

fs
2k

_

2k

r(^ + D'B.
l

J1(M1) Y(M1J

j2^) +4(Ml)
V -M20

J~ ( ) eo x r
o

\t
1 i\ •-- - 1) sin
Bi Ml- lBi V

cos Ml'

|m1(m1
sin 2Mi)

2 '
.

— sin ,
r r

M-r -M^0
(r—^ e

where M1 in Eqs. (13), (13') and (13") represent the first root of the
transcendental Eqs. (7), (7*) and (7") respectively . The factor in brackets

in each of these equations is cumbersome to evaluate and so their values have

been computed on the electronic computer and are reported as F , F and F

respectively,

become

Substituting F's for the terms in brackets, the equations

2. The first six roots of Eqs. (7), (7') and (7") can be found in Appendix
IV, tables I, III and II respectively of Conduction of Heat in Solids, H. S.
Carslaw and J. C. Jaeger, Oxford University Press, London, 1st edition, _9^7>
PP 377-379-

(13')

(13")



.21*.

t - t^. Mnx

f - -~(=M_ F cos
2 p vx

ff^ o
2k

-40 (1*0

t - t
f

M-r -M?0
=F J^ (—)e T (lV)

2 c o vr

__£
2k

t _ r _ .M., r

2

£_£
2k

...... x -M?0
-P8-£8in(j3_.)e X (IV)

The temperature for values of Biot number, position, and time not shown in

Figs. 1 through 6 is determined by finding F from Fig. 7 and using Eqs. (14),

(iV), or (lV), The only restriction is that times less than those used

in Figs. 1 through 3 for any particular Biot number should not be considered.

It is obvious that,as the surface conductance becomes infinite, t
7 s

approaches t„. For this reason the evaluation of series (12), (12') and

(12") was carried out with B.-—e°. This corresponds to the case in which

the temperature of the surface of the body instead of the temperature of

the surrounding fluid is known. The temperature at any point within the body

at any time can be found by considering t_ to be equal to the known surface

temperature and utilizing the charts for B.~-~oo. This one additional

evaluation then yields the solutions to the many problems which involve

cooling from an initially parabolic temperature distribution while the surface

temperature is kept fixed.
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One further application of the charts merits comment. In many practical

applications, the body being studied may be clad with a material having, in

general, different thermal properties than the rest of the solid and not

generating heat within itself at any time. Temperatures within the body can

still be found from the charts if one adopts the viewpoint that the clad is

part of the film resistance. With this artifice in mind it is only necessary

to redefine the surface conductance to be the reciprocal of the sum of the

resistances of the clad and film and to proceed as before. This concept can,

of course, be extended to encompass the cases in which there is more than

one layer of clad, one over the other, bonding materials between clads, surface

scales, insulation, etc. For convenience, the formulae for the pseudo-

surface-conductance are listed below for the three geometries.

h' =

** — z zr-* z (15)
ax- *b xc xn 1

a d c n

r r r r. r r r r r
o,a o,b O-C o,n o /•,r-t\ln + ln + ln +..o+_ln +__ (15.)
a o d a c b n n-1 n

ro<ra - ro} ro(rb - ra} ro<rc " rb> . . ro<rn " rn-l> . ro
r r k r r,k, r.r k r _r k 2,
oaa abD bcc n-1 n n r h

n

In Eqs. (15), (15') and (15") the subscripts a, b, c, ... n, stand for
•f-Vt

the first, second, third, ... n layers of material. It should be noted that

these formulae are based on the surface area of the generating material

(subscript "o") even though the surface conductance is generally appropriately

applied to the surface at which the film acts. This was necessary because

of the way the surface conductance boundary condition is applied in the analysis.
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Illustrative Example

For those who do not wish to concern themselves with the mathematical

analysis presented in the foregoing pages, but simply want to make use of the
results, an illustrative example is included to point out the general method.

Consider a 3/U in. diameter fuel rod operating in a gas-cooled reactor

under steady state conditions. The heat generation rate in the fuel (U02)
is constant over the cross section of the cylindrical element and equal to

2x10^ Btu/ft^hr. The surface conductance is invariable at 180 Btu/hr ft °F.
There is a 20 mil stainless steel clad (assume no contact resistance between

fuel and clad) and a scale deposit on the outside of the clad which has an

effective conductance based on the fuel surface of 2000 Btu/hr ft F. If the

thermal conductivity, specific heat, and density of the U02 are 1.23 Btu/hr ft F,
0.085 Btu/lb°F, and 650 lb/ft3 respectively, and the thermal conductivity of
the stainless steel clad is 14.8 Btu/hr ft°F, determine the difference between
the fuel center, fuel surface and the coolant temperature one minute after

heat generation ceases.

Solution - To enter the charts, all that is required is the value of the Fourier

Modulus and Biot number.

0=9g ______ 1>23 ** 2=0.380
r pc r 650 O.O85 (0.03125)
o p o

In order to evaluate the Biot number first calculate the effective surface

conductance based on the fuel outside diameter. From Eq. (151) vith just

one layer of material, the clad, the surface conductance is:

,» -

r r 1 a r t "0.03125 -_ 0.03292 , 0.03125 , 1
_____ ln _£__._ + 2_. + _J: 14.8 ln 0.03125 + 0.03292(lB0) + 2000
k , •, r rn,h h n
clad o clad scale

0.0001098 +0.00527^ +0.0005000 =17° Btu/ft to F
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_ _h'ro _170 0.03125 _..pBi-__ __ _ 4.32

With the known Biot number and Fourier Modulus enter Figs. 2 and

5 to obtain

g = 0.190

fa
2k

t - t

I— =0.261 -— rand - 1— = 0.261 for — = 1.0
c f o

Since

and

gro 2xl06(0.031251 _7Qli o
2k ~ 2 x 1.23 fy

2

^o ot - tf - 0.190 ~ - 0.190 x 794 - 151 F

t - t t - t t - t

___ =- 1_ x _ = 0.261 x 0.190 = 0.0496 for — = 1.0
gr2, *c **f gr| ro
2k~ 2k

Hence

2
gr

t - t. - 0.0496 x^~ = 39.^ °F for — - 1.0
O
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Rather than using the charts, use can be made of Fig. 7 and Eq. (14*)

For the center temperature, Eq. (l4') becomes

c f - e~Ml0
2 c

!_£
2k

F is seen to be O.798, from Fig. 7, and VL^ is approximately 1.9342 as obtained
from the tables by straight line interpolation.

Therefore

*c-^-£K^
-794 (0.798) e-^-^2)20.380

152°F

For the temperature at ~ = 1, Eq, (14') becomes
o

t - t

J- -F J (M- ) e""1'
2 c o v ly

•M?0

Therefore

f_£
2k

2.

*"*f -ST Fc Jo <Mi> e
^ - -m|0

-794(0.798)0.262 e^1'^2^380

= 39.8°F

The results as obtained by both methods agree with each other

to within about one percent.
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Appendix A

Values of the Function W(M )

¥<v
M

3Wdf
M

n y (wn) M
n t<Mn>

.00000 .000000 I.7887O 1.340736

.19950 .000393 1.90810 1.575035

.28140 .001517 I.9898O 1.725860

.34380 .003391 2.04900 1.829397

.39600 .005952 2.09370 1.897031

.44170 .008864 2.12860 1.949582

.61700 .033606 2,15660 I.981496

.74650 .067967 2.17950 2.008923

.85160 .111716 2.25090 2.087761

.94080 .160651 2.28800 2.II8985

1.01840 .212427 2.32610 2.143121

1.08730 .266530 2.34550 2.152089

1.14900 .326606 2.35720 2.156356

1.20480 .382473 2.38090 2.161790

1.25580 .U44693 2.40480 2.163777

1.59940 .985691
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•yog-
M

( n X r

4 Jo(f «?
0 '

M
n

?(Mn) !__ ^(Mn)

3.83170 -II.872452 4.29100 -22.742893

3.83690 -II.9II503 4.46340 -27.743086

3.84210 -II.9507II 4.60180 -31.765594

3.84730 -II.99OO77 4.71310 -34.919163

3.85250 -I2.O2960O 4.80330 -37.371275

3.85770 -I2.O69279 4.87720 -39.28O7I5

3.88350 -12.579701 4.93840 -40.759262

3.90910 -13.098296 4.98970 -41.945465

3.93440 -13.623727 5.03320 -42.846311

3.95940 -14.155567 5.17730 -45-524829

3.98410 -I4.693368 5.25680 -46.701640

4.00850 -15.236694 5.34100 -47.627169

4.03250 -15.784066 5.38460 -47.972593

4.05620 -l6.33606l 5.41120 -48.121088

4.07950 -I6.891698 5.46520 -48.363988

5.52010 -48.4479-8



M
n

7.01560

7.01840

7.02130

7.02410

7.02700

7.02980

7.04400

7.05820

7.07230

7-08640

7.10040

7.11430

7.12820

7.14210

7.15580
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M

t(Mn>

30.741407

30.836806

30.936473

31.032098

31.132001

31.227855

32.708265

34.197018

35.687593

37.185926

38.678881

40.166087

41.659909

43.160162

44.646991

M
n

7.28840

7.41030

7.52010

7.61770

7.70390

7.77970

7.84640

7.90510

7.95690

8.14220

8.25340

8.37710

8.44320

8.48400

8.56780

8.65370

59.298149

72.863893

84.486221

95-322164

104.225950

112.191688

118.505445

124.220734

129.057090

144.187917

151.692018

158.103497

160.567626

161.833925

163.601609

164.235955
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M

Y(Mn)= [ 53jo(?)af

M M
n

-52.761884

n

10.36580

x * n'

10.17350 -8T.O71554

10.17540 -52.924936 10.45660 -111.912698

10.17740 -53.098614 10.54230 -134.322891

10.179^0 -53.272398 10.62230 -156.041683

10.18130 -53.435740 10.69640 -175.875991

10.18330 -53.609913 10.76460 -192.346814

10.19310 -54.470445 10.82710 -207.929774

10.20290 -55.333507 10.88420 -222.l6l84l

10.21270 -56.198835 10.93630 -234.754100

10.22250 -57.066327 II.13670 -278.899383

10.23220 -57.925199 II.26770 -303.253220

10.24190 -58.786034 11.42210 -326.264932

10.25160 -59.648781 11.50810 -335.641756

10.26130 -60.513338 11.56210' -340.575259

10.27100 -61.379601 II.6747O -347.679947

11.79150 -350.221217
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M

Y<v- | ^ Xw?

M. M.
n ¥ v"n' n x x n

13-32370 93.908921 13.47190 145.495282

13.32520 94.167195 13.54340 183.266079

13.32670 94.425551 13.61250 216.579050

13.32820 94.684006 13.67860 249.204956

13.32970 94.942542 13.74140 280.950832

13.33120 95.201165 13.80080 311.491321

13.33870 96.495532 13.85660 339.704487

13.34620 97.791906 13.90900 365.677540

13.35370 99f090319 13.95800 386.570814

13.36110 100.369834 14.15760 476.722064

13.36860 IOI.671913 14.29830 531.852869

13.37610 102.975737 llKk7480 588.954011

13.38350 104.260344 14.57740 6i4.454l68

13.39100 105.567451 14.64330 627.219892

13.39840 106.855172 14.78340 647.194770

14.93090 654.504819
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Appendix B

Values of the Function F

B.
l

F

J?
B.

1
F
J_

0.02 101.00096 0.80 3.5209369

0.03 67.668003 0.90 3.2447681

0.04 51.001599 1.00 3.0239^34

0.05 41.002000 1.50 2.3625499

0.06 34.335519 2.00 2.0324363

0.07 29.573973 3.00 1.7022194

0.08 26.002912 4.00 1.5366648

0.09 23.225620 5.00 I.4369781

0.10 21.003791 6.00 1.3703489

0.15 14.338765 8.00 1.2866407

0.20 11.006945 10.00 1.2362181

0.30 7.6766723 15.00 1.1686135

0.4o 6.0126293 20.00 1.1346527

0.50 4.6859648 50.00 1.0732329

o.6o 4.3506265 100.00 I.0526516

0.70 3.8763919 00 1.0320501



Values of the Function F

B. F B,

0.02 50.501076 3.00 0.89662616

o.o4 25.506464 4.00 0.81555377

0.06 17.171535 5.00 0.76689009

0.08 13.004749 6.00 0.73387078

0.10 10.513592 7.00 0.71076465

0.20 5.5106619 8.00 0.69269638

0.30 3.8545841 9.00 0.67954061

0.40 3.0248618 10.00 0.66842967

0.50 2.5298840 15.00 0.63354819

O.60 2.2022478 20.00 0.61575298

0.70 I.9693062 30.00 0.59772871

0.80 1.7914034 40.00 0.58862252

0.90 I.6569183 50.00 0.58311772

1.00 1.^59509 100.00 0.57210521

2.00 •'1.0554381 00 0.56093505
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Appendix D

Values of the Function F.

B,
fi li H 8

0.02 137-69647 0.80 0,83333272

0.03 75.415130 0.90 0.73350941

o.o4 49.279643 1.00 0.65702198

0.05 35.465949 1.50 0.44712195

0.06 27-l44l06 2.00 0.35432307

0.07 21.665154 3.00 0.27062359

0.08 17.838883 4.00 0.23233081

0.09 15.037234 5.00 0.21044358

0.10 12.914998 6.00 0.19626427

0.15 7.2377709 8.00 0.17893964

0.20 4.8388229 10.00 0.16872653

0.30 2.7873053 16.00 0.1536231a

0.40 1.9133671 21.00 0.147691*07

0.50 1.4450420 51.00 0.13664370

0.60 1.1588410 101.00 0.13285092

0.70 0.96821242 CO 0.12900622
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