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I. SURVEY OF INFORMATION THEORY

Prefatory Remarks. This chapter is a guide to Chapters II and

III, containing the basic vocabulary, and outlining the important ideas

without their algebraic derivation.

Information theory was developed by electrical engineers to dis

cover the most efficient way of expressing a message for use in trans

mission systems. A simple example of this efficient coding is the use

in Morse code of the short di-dah symbol for the often-used "A" and the

long dah-dah-di-dah and dah-di-di-dah for the seldom-used "Q" and "X."

Morse code, of course, was developed long before information theory, as

it was formulated by Shannon (19^9)•

Information theory is useful because it shows how to transmit in

a communications channel between a source and a receiver in the presence

of noise, and because it establishes rules for working within the capacity

of the system.

Information. Suppose an experimenter searches for Newton's Optiks

in a 5,000-volume library. His first random selection has an a priori

probability of 1/5000 of yielding the book. His use of the card index

will increase this probability to unity. The card catalog has yielded

12.3 bits of information. Information (in bits or binary units) is

defined here as

1

2 1/5000
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Why use the definition logo flpal for information instead of
pinitial

pfinal „
P ?^initial

Suppose the experimenter searches for both Optiks and Principia.

The initial probability will be (w^ • 'SoTJO^' the firial probability
will be unity, and the information 2k.6 bits. Thus, the logarithmic

definition doubles the information (which seems plausible) although the

probability has been squared.

This definition is appealing, because it causes the information of

successive choices to be the sum of information of individual choices,

because it bases the theory on experimentally determined or. theoretically

predicted probabilities, and because it leads directly to a successful

theory.

The Average Information per Symbol: Information Entropy. Theorists

are principally concerned with the average information/symbol, which is

the density of information in a message. This is because a highly informa

tive short message is usually more economical than an equally informative

long message. The average information per unit time is the product of

average information/symbol and average number of symbols/time. When the

symbol generating capacity of a transmitter has been maximized, it is

necessary to increase the average information content of the symbols.

There is a formula for the average information/symbol in a long

message.

Average information/symbol = H(x) = -Sp(i) logpp(i) bits/symbol.
1



Here p(i) represents the probability that the i-th type of symbol

will appear in any position x. It is the fraction of the message symbols

that are of the i-th type.

The factor - log2 p(i) is the information of a symbol with prob

ability p(i). Its coefficient p(i) is then a weighting factor. More

simply, an infrequent letter has a high information value (small p(i);

large - logr> p(i)) but is penalized for its infrequent appearance in

the message.

The statistical thermodynamic formula for entropy is

s = - k 2 p log p, where k is Boltzman's constant,

so the average information/symbol is named by analogy the information

entropy.

It must be clear from the library problem that information is a

measure of the uncertainty abolished by a choice, or briefly a measure

of the uncertainty, or a measure of choice.

If a system can exist in only one state, its information entropy

is zero, as may be verified by substituting

p(l) = 1, p(2) = 0, p(3) = 0, etc.

in the equation for entropy.

If a system exists in one of many equally, or almost equally,

possible states, it possesses a high degree of choice, and a high informa

tion entropy.

Later we will say that certain biological systems possess high

information entropy, and we will mean that they have high choice in the

synthesis of proteins.
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Conditional Entropy, Read-Off Error and Noise. The function

conditional information entropy is used as a measure of noise. Con

ditional information entropy is defined in terms of conditional prob

abilities .

Hx(y) --j^jP(i) Pi(J) 1062 Pi(«3)

Here v±(i) is the probability of a one-to-one correspondence

between the j-th symbol in place Y and some preassigned i-th symbol in

place X. For example, Pn(x) is the probability that the transmitted

Morse code "Q" (dah-dah-di-dah) will be erroneously read-off at the
o

receiver as "X" (dah-di-di-dah). There are (28) Pj_(j) for Morse code,

corresponding to (28) one-to-one correspondences between transmitted

and received signals. Read-off error is the name for the (28) - 28

types of incorrect transmission. Read-off error is the manifestation

of noise, which is, roughly speaking, a nonsense message. If there were

no noise, there would be no read-off error, and

^(y) = 0

Redundancy. Redundancy is a partial or complete repetition of

message content which often allows individual errors to be detected and

corrected.

For instance, the redundant message HELD COST A SEAT KELP LOFT AT

SEA may be correct to read HELP LOST AT SEA.

One might suppose that is impossible to transmit information in

the presence of noise, or at least in the presence of considerable noise.

(Noise is the general term applied to all the phenomena which prevent

correct transmission: static, oscillations, stray currents, inattention,



etc. Information theory deals with the effects of noise generated by

stochastic processes.) But, in fact, it has been shown possible, both

in theory (Shannon, 19^9) ancl practice to transmit in the presence of

noise. By employing sufficient redundance it is possible to transmit

enough information to reconstruct even, a badly altered message. The

greater the noise, the greater the required redundance, but transmission

is still possible.

More about Information and Noise, Information entropy Is a

measure of the uncertainty of a system. That is, if a system exists

in one of many possible states, it possesses high uncertainty. Any

description of the system eliminates someor all of the uncertainty con

cerning the state of the system, hence contains high information content.

Information entropy is a measure of available choice. If a system

possesses high uncertainty, hence high information entropy, it may exist

in any one of many states. Hence, the choice of one of these states is

highly significant.

Any process which eliminates choice, or decreases uncertainty,

destroys information. For instance, a stochastic process, which acts

upon the elements of a system, reduces choice, for a stochastic process

cannot be controlled. Hence, the conditional entropy, which is a measure

of the entropy of the stochastic process, must be subtracted from the

information entropy. This will be expressed mathematically in Chapter II.

Genetic Information. That the nuclear material is responsible for

heredity was established by the fact that in sexual reproduction the male

gamete consists almost entirely of nuclear material. Heredity has been
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traced down beyond the chromosomes, through the genes, to twenty amino

acid residues. Moreover, there is a strong possibility that the exact

order of four kinds of nucleotides is the molecular vehicle carrying

genetic information (Watson and Crick, 1955)•

Thus every cell, from our point of view, contains a communications

system in which specificity is carried from the genome to the microsomes

in the cytoplasm by means of ribose nucleic acid. There are genetic

counterparts of an alphabet, noise, and redundancy.

The alphabet is, of course, a list of all symbols used in the.

genetic message. In the genome either the twenty amino acid residues

or the four nucleotides guanine, adenine, cytosine, and thymine may

comprise the alphabet. Since there is strong evidence that the order

of four types of nucleotides determines the protein specificity (Watson

and Crick, 1953) this paper will provisionally assume that the primary

alphabet is composed of four letters.

Gamow and Yeas (1958; also Gamow, Yeas, and Rich, 1956) have

investigated the code between the four letter nucleotide alphabet and

the twenty letter amino acid residue alphabet.

Here we will describe Yockey's investigations of the effect of

aging and deleterious agents on the nucleotide symbols.

Biological Redundancy. Repetition exists in all multicellular

organisms derived from a single cell, for the genome of each cell carries

the same information as that of its neighbor. Moreover, diploid organisms

carry alternate messages in their duplicate chromosomes. There seem to

be other types of redundancy, not necessarily associated with the dupli

cation of some large nuclear structure.
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It was pointed out previously that messages may be transmitted in

the presence of noise, provided sufficient redundancy is incorporated in

the message. We will see that, from an information theory viewpoint,

cells may function in the presence of biological noise (defined below)

because considerable redundancy is inherent in the genetic transmitter.

We will also see that when the noise exceeds the redundancy of the genetic

message, the cell must cease to function.

Biological Noise. Noise is the aggregation of phenomena which

prevent perfect transmission of messages.

The biological noise most easily treated by information theory is

the type which causes one symbol to mime another. Radiation, thermal

agitation, and biochemical side reactions, which are representable by

stochastic processes, may all raise nucleotides to excited states and

cause read-off error. But this noise information, i.e., conditional infor

mation entropy, decreases choice. The read-off error generated by noise

must be detected and corrected by the use of redundant information.

Hence, noise reduces the net useful information entropy of the cell.

Unless the nucleotides recover from their unusual state read-off error

accumulates. Later we will identify aging with the accumulation of

read-off error in the genome.

Read-off error may accumulate within the genome without destroying

the cell's ability to function, providing it does not exceed the redun

dant capacity of the cell. This is equivalent to saying that a cell

may resist certain amounts of radiation. It is not, however, equivalent

to the statement that the cell is not harmed by radiation; since the

read-off error accumulates, the next radiation dose, or eventually

natural aging, will be additive and may cause read-off error to exceed

the redundant capacity.
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o

If, as we believe, genomes differ in their redundant capacity

then they will appear to differ in radiosensitivity.
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II. THE MATHEMATICS OF INFORMATION THEORY

Definition of Information. Information is a measure of

uncertainty or a measure of choice.

Mathematleally,

Pf
information = logo ——• (Eq. l)

Pi

where p. and p-p are the initial and final probabilities of the

occurence of some event. This definition displays information as

a measure of change of uncertainty, or of freedom of choice.

Average Information Per Symbol. Brillouin (1956) derives the

average information per symbol in this way. Consider M different types

of symbols, 1, 2, 3> • • • 0* • • • M, occurring with frequency N-., N2,

...Nj, ...,NM and with probabilities p(l) =%/G, p(2) =Ng/G,

...PU) =Nj/G, ...,p(M) = NM/G, where G = -^"p(«)).
These are to be distributed at random among G cells, one symbol per

cell.

Each possible arrangement is a message. The number of messages is

g;

ii n.s

The probability of one particular message is then

II H,I
J J
G!

(Eq. 2)

The information of a message is

information = -loggll Hjl + log2GJ (Eq. 3)

= - logg NjS + log2Gi
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By Stirling's approximation

In 2 logg Q! - Q(ln Q -l) for Q> 100

Q
logg Qi - 2^2 (ln %~ ^

information = -Z. * (loge Nj -l) +~- (logeG -l)

-UNj loggNj +Glog2G +S. —i
In 2 In 2

.^Ij logs Nj +Glog2 G+_±_ [* Hj -OJ

Since G = £" N,

information = G logg G -£ Nj logg Nj
N N* n

information = -GX ^ log2 IT = "GZ p(o) log2P( J)
r j=i

Hence, the information/symbol of an alphabet is

information/G = -£p(i) logg p(i)

This function is named the information entropy, H(x).

H(x) = -Xp(i) logs p(i) bits/symbol (Eq. 1+)

A Lemma. We will prove the lemma

- rp(i)logg q(l) > - L p(i)logg p(i)
1 i

where p(l), p(2), . . . , p(i), . , . , p(n) is one set of probabilities,
n

Xp(i) = 1, and q(l), q(2), . . . , q(i), . . . q(n) Is another set of
i=l n

probabilities, 21 q(i) = 1. That is, q(l), . . . , q(n) is any set of
1=1

n positive fractions whose sum is unity.
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Sp(i) = Z a*1) = 1

q(i) = p(i) + u(i) - p(i) 1 +
u(i)

p(D

^u(i) = £q(i) - I p(i) =0

Define ty = 5Lp(i) logg q(i)

= £p(i) loggp(i) (l +JiiiL)
P(i)

« £ P(i) logg p(i) +s: P(i) i0g2 (i +— )
Pi

Now JL. > iog2 (1 +-|-)

where both functions are defined so

Z P(i) logg P(i) +5: p(i) logg (+Hiil) <

£ p(D logg p(i) +Z p(i) 4tt
P(i)

(Eq. 5)

(Eq. 6)

(Eq. 7)

I. p(i) logg ^(1) < ^p(i) log2 p(i)

-£ p(i) logg q(i) > -I.p(i) logg p(i) (Eq. 8)

Joint Information and Conditional Entropy. Conditional entropy was

Introduced in Chapter I as a measure of noise. This function is constructed

of the ordinary p(i) and two new probabilities, p(i,j) and Pi(j).

The joint probability, p(i,j), is the probability of the occurrence

of the i-th and j-th types of symbols in positions X and Y.

The conditional probability, v±(i)t is the probability of the succes

sive occurrence of two symbols in positions X and Y.

Thus, p(i,j) represents occurrence of symbols of the i-th and j-th

types, occurrence of the second being either independent or dependent of
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the outcome of the occurrence of the first. But pi(o) represents dependent

occurrence of symbols of the i-th and j-th type, occurrence of the second

being dependent on the outcome of the occurrence of the first.

Zlp(i,j) = I P(i,J) =1 (E<1. 9)
i «) i,J

p(i) = £ P(i,J)
J

P(J) = I P(i,J)
i

(Eq. 10)

I P(i) 'P(y) = 1 (Eq. 11)
i,J

p(i) *Pi(o) = P(i,0) (eq. 12)

The joint information entropy is

H(x,y) = -Ip(i,j) logg p(i,j) (Eq. 13)
i,J

while the informations for x alone and y alone are

H(x) = -XP(i) logg p±(j) = - I p(i,j) logg p(i)

Moreover

i,3

H(y) = -£ p(i,j) logg p(j)
i,j

H(x) + H(y) = -£ p(i,j) logg p(i) ' p(j) (Eq. Ik)
i,3

Comparing

-^ P(i,J) lo^ P^ 'P(J)

with -^p(i,j) log2 p(i,j)

and remembering the lemma (Eq. 8), we find that

H(x) + H(y) > H(x,y) (E1- ^
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The conditional entropy, IL,(y) - -J p(i) Pi(j) logg p±(j) (Eq. 16)

is the weighted average of the entropy of successive occurrences in positions

x and y.

The conditional entropy of the occurrence of any symbol j in position

y, following the occurrence of some particular symbol 1 in position x is

% = -^PjU) log2 Pi(j)
i

The total conditional entropy for all possible symbols in position

x is the summation over all possible i, weighted according to the prob

ability of each i:

My) = -^ P(l) P±(J) log2 Pi(j) (Eq. 17)
i,j

We have shown that (Eq. 15)

H(x) + H(y) > H(x,y)

We now show that

H(x) + Hx(y) = H(x,y) (Eq. 18)

For H(x) + K.(y) = -^ P(i,j) logo P(i) - "2 pU>o) logg^U)
i,j ±,3

= -^ P(i,j) log2 P(i) *Pi(J)
i,J

H(x) + Hx(y) = H(x,y)

It follows that

H(x) + H(y) > H(x) + ^(y)

H(y) > ^(y) (Eq. 19)

equality occurring when the occurrence of y is independent of the occurrence

of x.

A Measure of Noise. If x is the transmitter, and y is the receiver,

Pj(j) is the probability of correct transmission of a symbol when i = jand
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the probability of incorrect transmission when i 5^ j. Then H(x) is the

information entropy of the fptgrce, and H(y) is the information entropy

of the receiver.

For a noiseless transmission Pi(j) = 0 for all 1 ^ j so that H^y) =

0, H(y) ^ 0.

For a completely noisy transmission, the transmission has no effect

on the reception, and

P(J) - Pi(0)

Shannon (19^9) has proved that BL(y) is the proper measure of the

deleterious effects of noise generated by stochastic processes. We have

already explained that noise destroys uncertainty (or choice). Hence the

choice that remains after a stochastic process is measured by

T = H(y) - H^y)

which we will call the net entropy.

This is equal to

T = H(y) + H(x) - H(x,y)

or, by Eq. 13 and Eq. ik

T = - 2" P(i,d) logs P^ 'p^ + ^ P(i»J) 1°82 PC1^)
i,j i,j

Hence T > 0 always.

In particular, if p(i,j) = p(i)»p(j), Pt(j) « p(j) and T = 0.

Thus T = 0 for the completely noisy case.
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III. YOCKEY'S CONTRIBUTIONS

Introduction. In this chapter we will show that information entropy,

conditional entropy, read-off error, and other information theoretical

ideas have counterparts in genetic systems.

In order to present an undistorted picture of Yockey's work, we will

present more than is necessary for our own calculations, but we will not

attempt to justify hypotheses which do not provide the background for our

own work.

A Genetic Alphabet. Certain biochemicals occur universally in nucleic

structures. Yockey looked to these for his genetic alphabet, applying

information theory to the Watson-Crick DNA model. Although the genetic

alphabet may be Identified with the twenty amino acid residues which exist

in proteins (Gamow, Yeas and Rich, 1956; Gamow and Yeas, 1958), Watson and

Crick (1953) have suggested that the four nucleotides which occur in nucleic

acid constitute the genetic alphabet.

Yockey's theory does not depend on a deep understanding of the behavior

of these nucleotides, but on the knowledge that there are four, that they

occur in various orders (Watson and Crick, 1953)> and that they may exist

in tautomeric states (Yockey^ 1956).

The Watson and Crick model gives concrete meaning to the idea of

genetic words. According to this model, a DNA molecule (the word) is a

double helix with nucleotides (the symbols) located at various sites.

From our viewpoint different nucleotide orders spell out different words.
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The Measure of Biological Noise. Yockey postulates that the four

nucleotides ordinarily exist in unexclted states SA, SB, Sc, Sp, with

probabilities p(A), p(B), p(c), p(D); 2 p(i) - 1. When the nucleotides

are excited by ambient energy (from thermal fluctuations, chemical side

reactions, radiation, etc.) they are apt to assume tautomeric states, and

the probability of the transition S± —„ Sj* is clearly a conditional

probability. Moreover, he assumes that the tautomeric state often mimes

an unexcited state. That is, its symbol imitates one of the three normal

symbols, so that S$*^ S,. This results in an incorrect transmission, the

manifestation of noise, whose measure is the contitional entropy

H„(y) = -X P(i) Pi(j) log2 Pi(j)

But pi(j) is the probability of the process S± —*- S^, and the

function is defined for thermal-, chemical- and radiation-induced noise,

or, more precisely, for noise generated by some stochastic process which

approximates them.

Accumulation vs. Elimination of Read-Off Error. Read-off error must

accumulate in the cells, for tautomeric forms cannot return to ground state

until raised to still higher energy states.

Since thermal agitation, chemical side reactions, and radiation are

ubiquitous and more apt to produce error than correct it, read-off error

must increase with the age of a nucleus. Consequently biological communi

cations systems become noisy and fail to direct normal cell functions such

as metabolism, reproduction, and recovery from injury. Radiation above

background can only aggravate the noisiness of the channel. In this sense

radiation is equivalent to accelerated aging.
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Aging seems to occur in both the somatic cells and in the germ cells.

A number of experiments bear on the two competing processes of accumulation

and elimination of error from the germ line. Lansing (19^7, 19^8) demonstrated

that the viability of rotifer offspring depends on the age of their parents

(hence, the age of their parent's germ cells). Hatching of eggs laid late in

the life of these parthogenetic animals leads to extinction within a few

generations. But this trend is reversed by hatching of the eggs of the

young daughters of old parents. Thus, artificial selection, combined with

the natural germ-line error correction, restores vigor.

Equivocation. The number of symbols in its alphabet and their p(i)

determine the maximum entropy of a system via Eq. k. For the genetic system

/ x 1with its four symbol alphabet, if all p(i) = if, the maximum entropy is

2 bits/symbol. However, read-off error reduces choice and conditional

entropy, which is called equivocation by Shannon (1949), must be subtracted

from the maximum entropy. We will later display Yockey's interesting proof

that all the members of an ensemble must accumulate appreciable equivocation.

Now it is clear that organisms may sustain a certain amount of equivo

cation. X-ray induced mutations provide evidence for this. Nevertheless,

organisms must die, or at least cease to function, when their equivocation

becomes too great. In other words, organisms do not require 2 bits/symbol

of entropy to survive and function; some of the 2 bits/symbol is associated

with redundancy.

We stated earlier that cells may continue to function in the presence

of noise until the accumulated noise exceeds the inherent redundancy of the

genome. According to theory, the number of uncorrected errors may be made as

small as desired by using sufficient redundancy. Thus, the amount of redundancy
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required depends not only on the amount of accumulated noise, but also on

the number of uncorrected errors that are tolerable.

If a cell must survive in an extremely hostile environment, it cannot

tolerate many errors. Hence, it cannot afford to lose as much entropy as a

cell functioning in an ideal environment. We say then that a cell possesses

a lower entropy limit, E^, which is environment dependent.

The idea may be extended to the organism constructed of the individual

cells, in which case H^ is an average value. Incidentally, "death" has an

indefinite meaning. In bacteria death is the inability to reproduce; in

mammals death is a sharp decrease in body temperature.

Biologists are often puzzled by the abrupt death of an apparently

healthy animal. This phenomenon may be interpreted from an information

theoretical viewpoint.

Initially the animal's communications system must possess some

equivocation. This equivocation is counteracted by the redundancy inherent

in the system, and the animal is heallhy. With increasing age, the equivo

cation increases, but is counteracted by correspondingly more redundance.

Thus the animal displays no signs of weakness, for increasing equivocation

never exceeds the correction capacity of the system. Eventually, however,

the animal's net entropy falls below Hfl, i.e., equivocation abruptly exceeds

redundancy, and the animal dies.

Ensembles of Organisms. Since his theory is statistical, Yockey

introduces the statistical mechanical idea of ensembles of organisms. He

shows that although members of an ensemble may be isogenic, they must vary

in net genetic entropy content. That is, members of an isogenic ensemble have

suffered, at any time, various amounts of equivocation. Later we will show

that organisms afflicted at birth with the same equivocation remain equal in
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equivocation until they die - simultaneously. This, and the experimental

fact that offspring of the same parents die at different ages, establishes

that equivocation is distributed unequally at birth, and remains unequally

distributed. Of course, this is equivalent to a distribution of net entropy.

Yockey has shown by the following reductio ad absurdum proof that

equivocation must become appreciable in the genome.

Net message entropy is H = Hq - Hx(y), where HQ is the initial

entropy and H^y) = ^L p(i) Pj^(j) logg p^j), the equivocation. The
i,j

derivative with respect to \ , some measure of time or other deleterious

agent, is

dH ±* zTp(D * Pi(j) +P(i) Uj) 1° pi(j)d> - Tn"2 f^W dX *iU' +*^ d>?i

+Pi(J)3XP(i) mPl(j)J
L (Eq. 20)

Some read-off error must always occur, for background radiation,

thermal agitation, and chemical side reactions are ubiquitous. In fact,

there is evidence that both somatic and genetic mutations occur. Hence,

dPi(j)
— 4 0. Moreover, p(i) ^ 0.

d A

Nevertheless, it might be supposed that Pi(j) for 1 ^ j never becomes

large enough to cause appreciable loss of net entropy. In other words, that

Pi(j)—*• 1 for i = j, pi(j) —*- 0 for all 1 / j, and ^ = 0.

But consider the term P(i)-rr P-jU) In p^j) in Eq.20. The In p4( j)

will become Infinite for the case 1 ^ j and its coefficient p(i) w. Pj_(j) is
dH

non-zero. Thus, for the errorless ease —-**• - oo instead of zero.
d>

Hence, enough error must accumulate in all genetical messages to cause

dH
an appreciable rr.
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The Entropy Probability Distribution. Since the net entropy of each

member of an ensemble is time-dependent, the distribution of entropy is

itself time-dependent. Such a function for a very large ensemble is shown

below (Figure I); it is almost continuous.

First, the distribution is bounded on the left by H = H<j, and on the

right by H = Hmax "1 2 bits/symbol.

Second, es A increases the function moves leftward, perhaps changing

shape.

DISTRIBUTION

FUNCTION

DEAD LIVING

H

UNCLASSIFIED

ORNL LR DWG. 29395

H

2 BITS/SYMBOL

Figure I. A Time-Dependent Entropy Distribution
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We have already explained that the lower entropy limit is set by the

minimum entropy required for survival in any given environment. In Figure I

the vertical line H = H^ is a boundary between the organisms in the ensemble

and those that have left it. The upper limit is, of course, about 2 bits per

symbol.

It is easy to see why the curve moves leftward. Every point on the

curve corresponds to the entropy of one or more organisms. As the organisms

lose entropy their points shift to lower H values. If all animals in the

ensemble lose entropy at the same rate, the curve will suffer a displacement;

if they lose entropy at different rates, the curve will be distorted as well.

Moreover, as the curve shifts leftward its left edge crosses Hd and

a fraction of it leaves the ensemble. This represents the death of a

fraction of the ensemble.

Thus, aging is represented by the continuous leftward movement of the

curve, and death as the passage of the curve across the vertical boundary

Yockey's distribution function is the probability distribution^ (H,A ).

This function of H and A is defined by

(Eq. 21)3&X~f{B*>X) d>
Hd

Here / is the number of living organisms in the ensemble, so that

•57 -r4 is the rate of change of probability of survival. Since — is the rate
X dA ° dA

at which a point on the curve shifts leftward, 25 is the rate at which

Hd
the curve crosses the boundary H^,
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Time Dependence. Since the Pi(j) are explicitly time dependent,

H = Hq +^ p(i) Pi(j) log2 Pi(j)
i,J

is implicitly time dependent. Although many researchers must have

recognized this implicit dependence, Yockey was the first to point it out

in print.

Yockey represents the^ —». S, transition as a first order chemical

rate reaction so that

^Pi(j) =-J (*) P±(d) +Cid (Eq. 22)
i>0

He explains (1958):

The first term represents the loss of nucleotides
resposible for the S.,—- S^ transition. The
second term represents the gain in nucleotides engaging
in the (i,j) transition coming from other nucleotides
altered by the deleterious agent.

He simplified the expression,

d ,,x d2fep±(J) - hi*-™ = -2J±J W Pi(d) + 2 o±A
j j *•» j

o = -IJ^W Pi(j) +Icij

o = -^ Ji<3(>) Pi(j) + £ C±J
i>«3 i>J

Employing average values for J., and ^.«(>•)

0 = -J(x) J P±(J) + cC\) II

0 = -k J(A) + 16 C(A)

C(A) = ij(A)
k

~^- =-J(A) Pt(j) +£j(A) =-J(a) 1p±(J)-J (Eq. 23)
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j(A) may be expanded in a power series.

J(\) = J0 +J-JX+ Jg^ +•••
in which successive terms on the right represent first order, second order,

third order, . . . actions of the deleterious agents.

2
For instance, for haploid organisms Jq >\> J3A, JgA>

Thus,J(X) represents a first order action with small higher order components^

2 ^

For diploid organisms J^A^ Jo* J2A.> JoA> •••s° tna"t J00

represents a second order action with small higher and lower order components.

Thus, the leading order of the action depends on the ploidy and not on

the deleterious agent, so that

J(\) = J0 (haploid case) (Eq. 2k)

J(\) = J A (diploid case)

The numerical values of J and J^ will, of course, be greater for

radiation aging than for natural aging.

It is important to appreciate that J(A) and /(H,A) are the embodiments

of uniformity and individuality. The physico-chemical radiation interaction

takes place in all organisms of an ensemble in the same way. The genetics

of the ensemble is represented byy? (H,A); this function is a description of

the fact that members of an ensemble (even an isogenic one) differ in net

entropy (or in accumulated equivocation).

There is another way of saying this: The members of an ensemble react

in the same way to radiation, on the molecular level, but appear to differ in

radiosensitivity, because some are better endowed with genetic entropy than

their fellow members.
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Explicit Time Dependence of H and dH/d>>. In Appendix III we derive

the explicit time dependent forms of H and _ , starting with the integra-
dA

tion of Pl(j) = -J(A) L(j) -i
In general

Hq +|(1 -uZ) logg (1-uZ) +i(1 +3uZ) logg |(1 +3uZ) (Eq. 26)

dZ

H

where

z = exp -fj(A)dX

and u = 1 - kg, g « 1.

These substitutions illustrate that an organism's aging depends on

-J J(A) dA . The aging time scale of an haploid organism depends on

e-JA ; the aging time scale of a diploid organism depends on exp -g Jx>

Owen and Mortimer (1956) experimented on both haploid and diploid

/ kt\
yeast. They found an exponential survival curve (e ) for x-ray killing

of haploid yeast, and a sigmoidal survival curve (e ) for x-ray killing

of diploid yeast (Figure II). Thus, yeast seems to live, on an exponential

or sigmoidal time scale depending on ploidy - just as suggested by theory.

Thermal killing of diploid yeast also produces sigmoidal survival

curves (Figure III) (Wood, 1951*, 1956). This is predicted by theory which

says that since thermal killing and radiation produce the same nucleotide

reactions they must produce survival curves of the same shape.

The Shape of Survival Curves. The probability distribution was

defined by Eq. 20:

1 dS 1 di * /„ vn dH
S dT = / d* ^^dA) £A

Hd
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Fig. II Percentage Survival for Yeast (Owen & Mortimer, 1956)
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Fig. Ill Thermal and Radiation Killing of Yeast (Wood, 195^, 1956)
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The left-hand side is the rate-of-change with A of the survival

probability. That is, — represents the rate-of-change of survival, while
d A

- — represents the probability of dying per unit of A.
S d A

The right-hand term may be explained with the aid of Figure IV.

In a time increment dA the curve moves leftward, sweeping an incre-

dHmental area f> (H^,A) dH from the ensemble. Hence, P (Hd,A) ^r

represents the rate at which area crosses H-,.

Eq. 20 says that the rate of change of survival probability is equal

to the rate at which area beneath the P vs. H curve crosses from one

domain to the other.

/>(H,X)

Hd ^-dH

UNCLASSIFIED

ORNL LR DWG. 29391+

H

Fig. IV Increment of Area About to Cross H<j

%
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2u

in S. f * P(%,A) S? dA

Hd

The important point, however, is that there is a genetic entropy

distribution, and that it shifts leftward, crossing a boundary line H^.

The leftward movement of the curve is actually the leftward movement

of each point; it represents the accumulation of read-off error in a

member of the ensemble, and the consequent movement towards lower values

of net entropy. As long as the organism remains to the right of H,,

it is living. When the organism crosses H^, its net entropy falls below

that required to exist in its environment, and it dies.

Thinking again in terms of the entropy distribution curve, rather

than the individual points, it is clear that the distribution traces out a

survival curve, or mortality pattern, as it crosses Hd. In fact, what we

measure directly in a mortality experiment is the J> (Hd,A).

The shape of the survival curve is then dependent on J> (Hj,a) which

itself depends on all intermediate f> (H,A) back to P (H,0), the shape of

the entropy distribution curve at "birth."

As soon as an ensemble is born, entropy distribution commences its

leftward shift, for aging produces equivocation immediately. This shift

may be hastened by irradiation of the ensemble. However, since aging

and irradiation produce* the same type of first order chemical rate reaction

in the nucleotides, the ensemble will simply age on a faster time scale.

The entropy distribution, proceeding towards H^, will assume the same inter

mediate configurations under radiation as under aging, but it will move

faster under the influence of radiation.
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Consider two identical infinite (very large) ensembles born simul

taneously. If the first ensemble is given an acute radiation dose, it will

move ahead of the second ensemble in its leftward shift. It it were possible,

however, to "freeze" the aging of the first ensemble while the second aged

normally, the second ensemble would eventually assume the same entropy

distribution as the first. It will have achieved by aging what was given

to the first by irradiation. If the ensembles are then allowed to age

normally, they will trace out exactly the same mortality pattern in crossing

Of course, we cannot actually freeze the aging of the first ensemble,

and so the second will never overtake it. However, the second ensemble

differs from the first only in a time displacement; it exactly duplicates

the behavior of the first - at some later time. Hence, the mortality patterns

of the ensembles will differ only in a time displacement.

This type of reasoning can be applied to the description of a mortality

experiment. Consider an experimenter who is attempting to duplicate a

mortality experiment performed on a large number of pure-bred mice. He

expects that the mortality curves will be identical.

This experiment corresponds to the following behavior of the entropy

distributions:

An ensemble is born and traces out a mortality pattern. An identical

ensemble is born at a later date. Since it suffers the same aging effects

as the first, it traces out a mortality pattern identical with that of the

first in every respect save mean time of death. The second mortality pattern

will have the same dispersion, the same skewness, the same flatness, but its

mean time of death will differ from that of the first by the difference in

their birthdates.
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The points on the first mortality curve, which represent individual

organisms, may be called, starting from the left, a-j_, b-^, c-^, . . . and

for the second mortality curve, starting from the left, a2, bg, Cg, . .

If the ensembles are identical, then a-^ is interchangeable with a2, etc.*

If the first entropy distribution curve crosses E& in the order a1,

b-L, clf . . . , then the second entropy distribution curve will cross in

the order a2, bg, c2, . . . The behavior of the organisms of the first

ensemble determines the behavior of their counterparts in the second ensemble.

Therefore, each point in the mortality pattern of the first ensemble

has a counterpart on the mortality pattern of the second ensemble. Since

corresponding organisms die in the same order, their points in the mortality

pattern represent the same percentage mortality, but different times of

death.

We can therefore say that organism a± has suffered a certain life

shortening relative to a2, that bi has suffered a certain life shortening

relative to b2, etc. But organisms a-^, b,, c-j_, . . . have suffered the

same life shortening, since the mortality curves of the two ensembles do

not differ in dispersion, skewness, or flatness. Hence, every organism in

the first ensemble has suffered essentially the same life shortening as his

fellow members,

Jones (1956) has formulated a phenomonological theory of aging based

on an analysis of the Gompertz function. He points out that 1 roentgen

diminishes the human life span by 15 days.

There is nothing in Jones' theory to indicate whether this is an

average of 15 days/r. or exactly 15 days/r. for every member of the irra

diated population. Yockey's theory, however, shows that this must be the

life shortening for every member, rather than an average over the irradiated

members.
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Thus, Yockey's theory supports Jones' work and strengthens Jones'

conclusions.
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IV. ANALYSIS: PROCEDURE AND RESULTS

Prefatory Remarks. It is very encouraging to discover regularities

in mortality curves, such as the uniform life shortening of 15 days/r.

pointed out by Jones. Regularities are often unnoticed until predicted by

theory. We will later examine the regular behavior of the skewness and

flatness of mortality patterns and discover a previously unnoticed regu

larity. It is especially encouraging that this regularity is predicted by

both Jones' phenomonological theory and Yockey's information theory.

We will now describe a statistical test which verifies the prediction

that acute radiation causes a uniform life shortening.

An Hypothesis. We have shown that acute irradiation should produce

uniform life shortening in every member of an ensemble, so that the. ensemble's

mortality patterns, which is an asymmetrical (in general) bell-shaped curve,

is displaced in time without distortion.

This displaced, undistorted mortality pattern must have the same

dispersion, flatness, and skewness (within experimental fluctuations) as

the control mortality pattern. The calculated second, third, and fourth

moments about the mean, and their functions <T} B-l, Bg must be identical

(within limits of error). See Appendix I for definitions of the moments

and their functions.

An Ideal Experiment. The best experiment for testing our hypothesis

would have these characteristics:

1. Its members must be derived from the same strain.

2. Its members must be of the same age.

3. Its members must contain an unbiased sample of the strain
at each dose level.



-33-

k. Males and females must be studied separately.

5. Its members must suffer exactly the same dose at each
nominal dose level.

Numbers (l) and (k) are required to guarantee genetic similarity.

Number (2) is required because this is an aging experiment. Number (3)

is required to assure that the lower end of the entropy distribution (con

sisting of poorly endowed organisms) is not discarded. Number (5) is

required because a dispersion of the doses at one nominal level will

produce a spurious dispersion, or "smearing" of the mortality probability

pattern.

One experiment which satisfies requirements (l) and (k) and approximates

(3) will be analyzed in this paper. Operation Greenhouse, performed at the

Pacific Proving Grounds in the spring of 1951, was a study of the late effects

in mice of a nuclear detonation.

Operation Greenhouse. In Operations Greenhouse's gamma ray experiments

(Cronkite, et. al., 1955) mice were stationed at various distances from the

hypocenter of a detonation and shielded to receive a high flux gamma radiation

with a very small component of fast and slow neutrons.

In the neutron experiments (Carter, Cronkite, and Bond, 1953) mice

were stationed at various distances from the hypocenter and shielded to

receive a high flux of above thermal neutrons with a very small component of

gamma rays.

After early mortality had been recorded, these mice were transported

to Oak Ridge with a set of control mice which received almost identical

handling. At Oak Ridge another set of mice received x-ray exposures.
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The mice were placed in Individual cages, randomized in one large

room where they were kept until death. Sick animals were killed in extremis.

Furth, et. al. (195M remark:

A significant shortening of life span resulted even from
doses well beneath the threshold for acute lethality.
This reduction of longevity was caused mainly by degen
erative and neoplastic diseases induced or exaggerated
by radiation. ................
The reduction of longevity in proportion to dose and
the observed hastening of the development of many neoplasms
by irradiation suggest that ionizing irradiation accelerates
the aging process. Neither aging nor radiation damage is
well understood^ however, the study of both and their
possible interpretation is worth pursuing. Noteworthy in
this connection is the observed hastening by irradiation
of hereditary iris atrophy, cataract formation, vascular
"and interstitial sclerosis and their late sequelae, and
nephrosclerosis. It is difficult to dissociate the aging
process from that of injury, and most alterations attributed
to aging may be those of accumulated injury. Neoplasms
frequently arise in aging or injured organs. Isolated cells
grown in1tissue cultures do not appear to age.

Over 1+500 mice of the LAF-l strain were raised at the test sit© and

acclimatized. At the time of exposure the mice were six to eight weeks old

and sexually mature.

Mice were assigned to groups on the basis of age (which affects

radiosensitivity) but not weight (which affects radiosensitivity slightly).

That is, after the sexes were separated, mice of a given age group were

allowed to mix freely in a large container. Then the proper number was

selected at random so that each dose level would contain the same proportion

of each age. All other factors thought to affect radiosensitivity were

evaluated and controlled as far as possible.

Mice were irradiated simultaneously in 28 cylindrical containers which

protected them from the blast, thermal radiation, and radioactive dust.

Physical and biological dosimeters (film packs, Sievert ionization chambers,
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Tradescantia, and spleens and thymus of other mice) were used. Tissue

equivalent ionization chambers were calibrated to permit direct determina

tion of tissue rep dose.

The individual times of death at each dose level are sufficient data

for a test of our hypothesis. In tabulating the gamma ray data, the experi

menters lumped together the mice at the first eight stations (920r to 7llr;

weighted average fk^r), the second three stations (687r to 556r; weighted

average 622r), the third four stations (l+91r to 3l8r; weighted average

396r) and the last two stations (287r, 192r; weighted average 2lf0r). This

lumping undoubtedly smeared the mortality pattern. Nevertheless, the

Greenhouse data provides the first test of our hypothesis and we will see

that despite its few less than optimum features it furnishes strong evidence

in favor of the theory.

Explanation of Tables. In the last section we showed that our hypothesis

is equivalent to the requirement of the constancy (within experimental fluc

tuations) of 0", B-,, Bg. We described the Greenhouse Experiment, and pointed

out that in many respects it is a good approximation to our ideal experiment.
4

In Table 1 are tabulated the x, 0", B-j_, Bg and their standard errors

for the gamma experiments, which contain 200 to 300 members. In Table 2 and

3 are tabulated the x and CTand their standard deviations for the neutron

experiments and laboratory x-ray experiments. The relatively small number

of members at each dose level in the neutron and x-ray experiment invalidates

(we feel) any tests of hypotheses on B-, and Bg.

Consistency of Values. Let V^, with standard error s-|_, and Vg, with

standard error s2, be the calculated values for different mortality patterns

of eithercT, B^, or B?. Then, by hypothesis, the difference V-^ - Vg is due
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to experimental fluctuations. According to theory the standard deviation of
/ 2 2

the difference, s-l 2, is equal to y Sx + S2 (Worthing and Geffner, 1943,
vl " v2

p. 198). Hence non-zero values of the parameter Z = —-jp g— are, by
/Si + s2

hypothesis, due to statistical fluctuations.

If we believe that the differences Y1 - V2 fluctuate normally about

zero, then the probability that the two values are consistent, p(Z), may be

read from a table of the tails of the normal distribution (Yule and Kendell,

19^8, p. 533).

We are not certain that the differences in CT, ^1 and Bg are normally

distributed, but we will paraphrase the statistician who said that everyone

believes in the normal law of error: The experimentalists think it is

theoretically valid; the theorists think it is an experimental fact!

Actually, it is almost universally accepted that whether or not errors

are believed normally distributed a Z value exceeding 2 or 3 is an indica

tion of inconsistency.

Evaluation of Results. Tables k, 5 and 6 show Z and p(z) for the

gamma ray data, and the analysis indicates consistency of CT, B-]_, and B2

in most cases. Although in some cases Z exceeds 2.0 or even 3.0, in others

it is smaller than 1.0. Moreover, the extremely poor values and the

extremely good ones seem to follow no pattern. We believe that the gamma

ray data would appear even more strikingly consistent had the mortality

patterns not been smeared when the seventeen stations were lumped together

to form four nominal dose levels.

Tables comparable to k, 5 and 6 have not been prepared for the neutron

and x-ray data, since inspection of tables 2 and 3 indicates that the data

are strikingly consistent.

We feel that acute irradiation with gamma rays, neutrons, or x-rays

does not alter the shape of the mortality pattern.



Female

Dose N

Control 307

240r 210

396r 290

622r 293

7^9r 266

Male

Control 302

240r 210

396r 316

622r 302

7^9r 264

UNCLASSIFIED
ORNL LR DWG. 29620

TABLE 1. x, a, Pl, P2 GREENHOUSE GAMMA RAYS

Mean - s. e.

123.3388 - 1.4454

106.61+30 i 1.8689

IOO.9655 - 1.841+0

87.2355 - 1.4564

73.1580 - 1.3213

126.3079 - 1.5431

121.0475 - 1.9249

112.990 i 1.7510

101.1424 - 1.4813

86.667 - 1.3927

s. e.

25.30 - 1.022

27.06 - 1.321

31.37 - 1.304

24.91 i 1.030

21.53 - .933^

26.80 i 1.094

27.87 t 1.3608

31.10 - 1.2376

25.72 i 1.0478

22.61 i .985

1 - s. e.

0.6436 i 0.l800

0.1522 - .12225

0.313^ - .10404

O.1892 - .12279

O.7269 - .1922

0.7235 - .2533

0.2066 - .11050

O.3906 - .26119

0.3392 - .1779

0.4212 - O.O3634

P2 - s. e.

3.162 i .3251

3.037 i .4296

1.915 - .1^69

2.057 i .1233

2.986 - .3081

3.592 i .5758

2.644 - .2569

3.819 - .9932

3.327 - .5667

2.i4o i 1.1396

1

—j
1
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TABLE 2. x and a - GREENHOUSE NEUTRuir? - EASY AND GEORGE SHOTS

Female
+ +

Dose Test N Mean - s. e. a - s. e

Control 307 123.339-1.50 25.3O i 1.02

40 rep G 30 107.567 - 4.59 25.13 - 3.25

70 rep G 29 H5.586 - 5.18 27.88 i 3.66

140 rep G 18 99-111 - 4.179 17.72 - 2.953

l&O rep G 26 87.462 - 6.25 31.87 i 4.42

450 rep G 29 76.069 i 6.48 34.89 ± 4.58

Control 307 123.339 - 1.50 25.30-1.02

48 rep E 25 109.280 i 4.46 22.32 - 3.16

139 rep E 24 91-375 - 6.29 30.84 - 4.450

269 rep E 23 92.398 t 5.234 25.08 i 3.70

Male

Control 302 126.308-1.54 26.80 - 1.09

48 rep E 25 117.320 t 6.334 31.67 i 4.48

139 rep E 24 H5-333 - 6.200 30.38 i 4.383

269 rep E 22 107.41 - 5.480 24.44 ± 3.68
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TABLE 3. x AND a - GREENHOUSE LABORATORY X-RAYS

Female

Dose Mean - s. e.
+

0* - s. e. N

1

1

Controls 123.3388 t l.kk^k 25.30 - 1.022 307

92 r 118.856 i 2.If49 2^.98 i I.73 10lf

if03 r 95.135 - 3.092 26.59 i 2.19 7^
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TABLE 4. Z AND p(z) FOR a - OPERATION GREENHOUSE - GAMMA RAYS

FEMAT.re

Controls

240r

396r

622r

749r

MALE

CONTROLS

Z = 1.05

P = -315

z = 3.16

p = .00158

z = 0.371

p = 0.72

Z = 2.60

p = 0.0093

240r

z = 2.33

p = 0.023

z = 1.09

p = 0.27

z = 3.43

22§2

z = 3.36

p = 0.00067

z = 2.32

p = 0.00057 P = 0.021

622i

z

p

2.95

0.0034

Controls

240r z = 0.632

P = 0.53

396r z = 2.59

p = 0.0093

z = 1.75

p = 0.08

622r z = 0.609 z = 1.25 z = 3.32

P = 0.55 p = 0.21 p = 0.00097

749r z = 2.90 z = 3.13 z = 5.37 z = 2.18

p = 0.0037 p = 0.0017 p-»o p = 0.028
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UNCLASSIFIED
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TABLE 5. Z AND p(Z) FOR HL - OPERATION GREENHOUSE - GAMMA RAYS

Female Controls 240r 396r 622r

Controls

240r Z = 2.23
p = 0.025

396r Z = 1.6l
p = 0.110

Z = 1.00

P = 0.317

622r z = 0.747
p = 0.45

z = 6.82
p—JO.O

z = 0.826

p = 0.42

749r z = 0.327
p = 0.74

z = 0.071

p = 0.94
z = 3.15
p = 0.0016

z = 0.768
p = 0.45

Male

ontrols

240r Z = 0.641

P = 0.53

396r Z = 1.33
p = O.183

z = 0.650
p = 0.52

622r z = 0.929

P = 0.37

z = 0.633
p = 0.53

z = 0.514
p = 0.61

749r z = 2.72
p = 0.0069

z = 1.49
p = 0.13

z = 6.46
p—•» 0.0

z = 1.65
p = 0.099
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UNCLASSIFLED

ORNL LR DWG. 2962$

TABLE 6. Z AND p(z) FOR ^2 - OPERATION GREENHOUSE - GAMMA RAYS

Female Controls 240r 396r 622r

Controls

240r z = 0.231
p = 0.82

396r z = 3.51
p = 0.00048

z = 1.83
p = 0.072

622r Z = 3-35
p = 0.00097

z = 2.18
p = 0.026

z = 0.275
p = 0.80

749r z = 0.391
p = 0.69

z = 0.095
p = 0.92

z = 3.10
p = 0.0019

z = 2.78
p = 0.0055

Male

Controls

2i+0r Z = 1.64
p = 0.10

396r Z = 0.200

p = 0.841
z = 1.15

p = 0.25

622r z = 0.329 z = 1.11 z = 0.432
p = 0.74 p = 0.27 p = 0.66

749r z = 2.47 z = 1.78 z = 1.68 z = 2.08
p = o.oi4 p = 0.072 p = 0.089 p = 0.036
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V. DISCUSSION

It is remarkable that radiation should produce the samelife shortening

in all members of an ensemble. Perhaps the most remarkable aspect Is that

the first animals to die suffer hemorrhages or gastro-intestinal disturbances,

while the last animals die of neoplastic disturbances. It is almost as

amazing that the mortality curves for normal aging in the control group

should parallel the mortality curves for acute radiation killing at the

LD 50 level (30 days). Yet these effects are demonstrated clearly by the

Operation Greenhouse data.

Yockey's theory predicts certain regularities in the chronic irradia

tion mortality pattern. Here an organism is subjected to constant low-level

irradiation until its death.

The chronic irradiated ensemble experiences an accelerated aging time

scale from birth to death. Thus, it not only out distances a control ensemble

in the leftward shift, but also passes across H$ more rapidly than the

control ensemble. Hence, the mortality pattern of the chronic irradiated

ensemble will be narrower than that of the control ensemble. Each of its

moments will be smaller than that of the control ensemble. The measure of

dispersion, O", will be reduced, for it is a function of the second moment

only. However, the measures of skewness and flatness, p, and £p, will remain

the same, for they are functions of either the third or fourth moments and the

second moment, defined in such a way that they are independent of a change

in time scale.

Neary, Munson and Mole (1957) have published chronic irradiation data

for the mouse. We hope to undertake an analysis of the mean, dispersion^

skewness and flatness of this data sometime in the near future.
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APPENDIX I

Moments and Their Functions

The k-th moment about the mean of grouped data is

% - £ £ *i fi
1=1

where x± is the deviation from the mean of the grouped data to the class

mark of the i-th interval, h is the number of intervals, t± is the frequency

for the i-th interval, and n = y f±.

Calculations are often simplified by taking moments about a convenient

class mark xQ (the working axis) and later converting to moments about the

mean. Moreover, to reduce the magnitude of the numbers entering into cal

culations the new variable

XI - Xq

ui • T~

is used, where x^ is a class mark, xQ is the working axis, and c is the

class interval.

Then the i-th moment about the mean is

mj, = ck
k k"l „ k-2.

^ui f1-ku 2 "i fl + k(k-l) ^2 5 ^i fi
n n 2 n

v *

+ (-D u

where u = 1 ui (Hoel, 1947, p. 17).
n

Yule and Kendall (1948, p. l6l) advise the use of Sheppard's correction

for grouping:

„<„> =
1̂2

mo (corr) = m^

/ \ 14 78m4 (corr) = i%--cm2+ _J_c
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A measure of central tendency is the mean

X = Xg + cu .

A measure of dispersion about the mean is <T, the standard deviation

f«T

A measure of skewness, the asywietry, is

2

h
m3

3

A meaBure of kurtosis, the flatness of a distribution, is

P2 =
mp

In general, mo and m^ are dependent on the dispersion of the distri

bution, but Pi and p2 are independent of the dispersion. For example, the

Gaussian (normal) distribution has Pi = 0, P2 = 3 regardless of its

mean or standard deviation.

We will study the functions 0", p-j_, and p2 for two reasons. First,

the probable errors of the functions have been tabulated by Pearson (1930).

Second, pj and P2 are independent of changes in dispersion caused by changes

in time scale.

Tables 7, 8 and 9 illustrate the calculation of x, 0* , &±, and p2, as

well as the calculation of their probable errors.
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TABLE 8. SPECIMEN CALCULATION OF x, a, Pl AND P2
(Continued)

Efu = 820
2

Efu = 10,683

Efu3 = 41,943
k

Efu = 774,810

u =

u = 2.6678

u2 = 7.1172
u3 = 18.9873
uk =50.6543

819
307

2.667752

x = 310
o

c = 5

n = 307

-o 1 2
m2=-c

2 - -2
Efu - 2u Efu + rru

2530? |^10,683 -2(2.6678)(819) +(307)(7.H72)
= 692.0295 (uncorrected)

307

"3 = ic3
n

125 I41,993 - 3(2.6678) (10,683) +3(7.1172)(819) - (18.9873)(307)

- 12,988.375 (uncorrected)

Efu3 - 3u Efu2 + 3u2 Efu - nu3

\= i Efu - 4u Efu3 + 6u2 Efu2 - 4u3 Efu + n u
J

625 |774,8l0 - 4(2.6678)(41,943) + 6(7.1172)(10,683) - 4(18,9873)(819) + (307)
307

(50.6543) = 1,499,948.125

Sheppard s Correction

m2 (corr.) = mQ - |^ = 692.0295 - 52.0833 = 639-9462

m (corr.) = m = -12,988.375 -12,988.375

14 .7 8
m h (corr.) = mh - | cV, +^c = 1,499,948.125 - 228,045.287

1,271,902.837
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c, a, §1 — P-
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TABLE 9. SPECIMEN CALCULATION OF x, a, *»1 AND ^2
(concluded)

Mean = 110 + 5(2.667752) = 123.33876

a = \[~m~~ = \ 639-946 = 25.30

m.5 i.687 x 10"
Pl ="mg3 = 2.621 x 10Q = 0.6436

P J%.= 1-295 x,10* = 3>l62
m2 4.095 x KT

Referring to Pearson s Tables, pages 12 - 13, and taking into account

n = 307, a = 25.30

p. e. mean = (0.03850)(25.30) = 0.77405

p. e. a = (0.02722)(25.30) = O.68867

or

s. e. mean = °'ffi)°? = 1.4452
0.68867 , noias. e. a = —g~r ' = 1.021o

Referring to Pearson's Tables, pages 12-13, 68-71, and taking into account

n = 307, P-l = O.6936, P2 = 3.162

p. e. px = (0.03850)(3.15) = 0.121275

p. e. P2 = (O.O3850)(5.69) = 0.219065
or

0.12127c
s. e.. a - °-1212T5 _ n Tfinn

. O.219065 n ,OI-ns. e. P2 = ^ ^—* = 0.3250
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APPENDIX II

A Derived Entropy Distribution

Yockey's theory does not predict the entropy distribution in an

isogenic ensemble. We propose that the distribution may be calculated by

information theoretical means via the calculus of variations.

Consider an infinite ensemble or organisms with a continuous distri

bution of information entropy. Because of fortituous gamete combinations

(in sexual reproduction) or uneven division of inforjpation in fission (in

asexual reproduction) daughters may be produced that have a higher informa

tion entropy than their parents.

Equivocation accumulating in the genome of parents will reduce the

information transmitted to daughters. However, natural selection will tend

to remove poorly endowed daughters.

Thus, although the entropy distribution is unstable and may change

shape from generation to generation, the average information entropy is

constrained to be constant.

Although we cannot describe the process, we believe that a stable

distribution may be reached such that individual entropy variations do

not affect the distribution.

Inbreeding will prevent a pure-bred strain from achieving stability.

This is accomplished by selective breeding, the successive application of

yes-no decisions. This is clearly the expenditure of information. (We

distinguish between the bound genome entropy, which is contained in DNA,

and the free inbreeding entropy, which exists in the mind of the inbreeder.)

The inbreeder, if he knew the correct steps (if he had enough Information)

might produce a pure strain from the wild strain. Obviously he could more

easily restore a slightly mongrellzed strain to purity, for he would expand

less free entropy.
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This suggests that the stable distribution of bound entropy is the

one which maximizes the free entropy. The problem is then to find p(x)

to maximize

H(free) = fp(x) log2 p(x) dx

This problem in calculus of variations arises in other information theory

problems, and its solution (Goldman, 1953, P° 129) Is

p(x) = i Exp
A

-Ax

which jaiximized free entropy subject to the constraint that A, the average

bound entropy, is constant.
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APPENDIX III

Explicit X Dependence of H and dH/dX

We will now integrate Eq. 23 and substitute the result in Eqs. 17

and 20.

We have derived

for

dp.(j) ,
-fe- - J(x)|_-Pl(j)+i

Integrating,

j ,frft» =S-j(x) dX

lim lim

In [Pi(j) '\
J lim

•JjU)
lim

(Eq. 23)

dX

Now the integral on the right depends on the ploidy of the organisms,

JM = J0

J(X) = J \

(haploid case)

(diploid case)

(Eq. 24)

(Eq. 25)

The upper limit in both cases is X = X, p.(j) = p.(j).

The lower limit in both cases is X = 0, p.(j) = p. (j).

There are sixteen different p. (j), the initial values of p.(j).

It is convenient, however, to assume that for i j= j all p. (j) = g<<< 1,

and for i= j Pi(j) =1 - 3g*»l«

For the haploid case, i ^ j,

In _P±(j) -J]
P,(j)

J0dX

X=0
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ln Jox

i i "^o^Pi(j) - tj = (g - -%) e

Pt(j) - | +(g - I) e °

P±(J) =I[l +(*« "1) e"J°
p (j) = £|l-ue~°-J~Vi

^(j)
dX

1T -V
iJoue

where u = 1 - 4g

For the haploid case i = J

i = i

P±(J) -Tf

(l-3g) - |
-J X

= e

P±(J) = 17
r -Jox1 + 3(1-%) e °

P±(J) = |
r "JrNXl
1 + 3ue °

dX U

,he diploid case i ^ j

P±(J) = t
- i J X2 -,2 J1A*

1 - ue

Pi(j) = Tf
1

1 + 3ue " 2 jxx2"

(Eq. 28)

(Eq. 29)

(Eq. 30)

(Eq. 31)

(Eq. 32)

(Eq. 33)
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The calculated p.(j) may be substituted in Eq. 17 and Eq. 20 to

yield, after simplification, H and dH/dX as explicit function of X. The

substitution is made below for the haploid case.

H-HQ = S p(i) P±(J) log2 Pi(j) +^ p(i) Pl(j) l0g2 PjQ) (Eq. 3k)
1 N ± = i

1 ~^n^ 1 ~^r}"=j- (1 -ue u)lo^ ^ (1 -ue u) Z p(i) +

i / J

-J X -J X

£(1 +3ue °)logg J(1 -ue °) L p(i)
1 = J

-J X -J X

H-HQ = | (1 -ue °)logg I(1+ 3ue °)+ (Eq. 35)

^ (1 +3ue u)log2 ^ (1 +3ue u)

S = 1S2 {i?j p<*> -ix- +ijj *w ln p±cj) s %^ +^ 36)
i f^ J l ^ J

*^ V^>ln p^) Vip(i) ^ +iVj ix*JJ

1?J p(i) mPi(j) ^ Pl(j) +±e3 Mil Pi(j) mpi(j)j
1 = j i = J

Remembering that Z Pj;1' =|- Zp(i) =0

3tt 1 • -> —J^X ,, —J^X ., —«T„X

S2{fJ0ue +lJ0ue m^d-ue °)+0

^JQue u - I JQue u ln ^ (1 +3ue U) +oj

dX ln2

-J„X , "Vg . I Ve °log, ^f^ (Ea. 37)
1 + 3ue o
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a. Summary of X Dependence: Haploid Case

i / J

V±U) = l (1 -ue °)

i = i

lim Pi(j) = I (1 -u) - g
X -♦ 0

lim

X •*
P±(J) =
00

1

dp^j) i
ax "4

JQue V

lim

X •+

ap±(J)
QdX

1

= i V

lim

X •*

dp±(j)
dX

00

= 0

-J~x

P±(J) -| (1 +3ue °)

lim p (j) = i (i + 3 -I2g) =1 - 3g
X -* 01

lim

X -*
P±(J)
00

=

1

a.p±(j)
dX 4 V

lim

X -•

cLp±(j)
0dX =

3
J u

0

lim

X -

clp^j)
dX

00

= 0
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J~k , -J„X
H - H,0 = | (1 -ue °)log2 J(1 -ue °)+

£ (1 +3ue u)logg £ (1 +3ue °)

lim (H -HQ) = -2 bits/symbol
X -* 00

_T x "^n^
dH 3 T 0 -, 1 - ue
eu - TjVe log2 . x , -J0X

1 + 3ue u

... dH 3 T g
lim tt = ¥• J u lost,. „ ™

dX 4 o 2 1 - 3g
X -» 0

., dH „
lim -^r = 0

. dX
X -* 00

b. Summary of X Dependence; Diploid Case

i t 3

P±(J) - I (1 - ue 2 X )

lim pi(j) = g
X •* 0J

lim p1(j) = ^
X "* eo

dX

dp,(j)
lim —~—• = 0

WO dX

4P-(J)

^ "ST- " °
X -»• 00
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P±(J) - If (1 + 3ue

i J X2
21 )

lim p,(j)
X -* 0X

= 1 - 3g

lim P,(j)
X -*«r

=

1

dp±(j)
dX " •i u J.X

-i J X2
e

dp,(J)
lim —st—
X-0d*

= 0

dp,(J)
lim Jx

X -♦ 00
= 0

^x2 , -ij.x2
H -HQ = I (1 -ue 2 X )logg ^(1 -ue 2 1 )+

-i- 2 -i 2
|(1 +3ue 2J1X )logg | (1 +3ue 2J1X )

lim (H - H ) - -2 bits/symbol
X -+ » U

.1jx2 -|J.X2
dH 3 T . 2 dl , 1 - ue _ x^ = f J uX e log^ . 1 _,2

lim -H = 0
X-O^

-.4 dH A
^m dX = °
X -* oo
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c. Summary of X Dependence: General Case

It is interesting that the substitutions

1 2-J0X -fJ.^
x = e and y = e (Eq. 38)

reduce the haploid and diploid equations to the same form.

Haploid.

H - HQ +I(1 -ux) log2 (1 -ux) + (Eq. 40)

I(1 +3ux) logg tj (1 +3ux)
Diploid.

H = Hq +I(1 -uy) logg (1 -uy) + (Eq. 42)

£(1 +3uy) logg I (1 +3uy)
In general

S - - i ulog2 rriiz &*- ^
H = HQ + •£ (1 - uZ) logg (1 - uZ) + (Eq. 44)

I (1 +3uZ) logg I (1 +3uZ)
where

/ J(X)dX
(Eq. 45)
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