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Abstract

Rosenbluth (LA-2030) has investigated the stability of the pinch

for an equilibrium case which has sheet currents at the surface of the

pinch and a uniform pressure inside the plasma. In addition, there was

an axial magnetic field in the plasma interior, a different axial field

in the outer region, and a conducting wall. R. J. Tayler (AERE-T/R-198*0

has also investigated the pinch stability by the method of normal modes

for an equilibrium case in which the plasma contains a uniform volume

current in the axial direction and a pressure which varies parabolically

in the radial direction. However, although axial magnetic fields were

considered in this case they were taken to be equal in the interior and

exterior and no external conducting wall was used.

In this calculation Tayler's analysis is extended to include a

finite axial field in the plasma interior with no external axial field.

In addition, there is now an external conducting wall. The resulting

dispersion relation is discussed.
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1. Introduction

The stability of a pinched conducting fluid under the combined influence

of a longitudinal magnetic field and a conducting exterior wall or shell has

been studied by M. Rosenbluth. A set of conditions allowing complete

stability were found. These conditions included an assumption of constant

pressure in the plasma and a limitation on the pinch radius. A jump or

discontinuity of the longitudinal field is permitted at the plasma surface.

The stability of a pinched conducting fluid has also been studied by
2

R. J. Tayler in a somewhat similar situation. Tayler restricted himself

in the above papers to the case of a continuous longitudinal field at the

plasma surface, but attains greater generality in another direction in that

internal currents are permitted in the plasma steady state.

In the present paper we consider an idealized steady state pinched

plasma that contains internal currents but allows surface currents that

produce a discontinuity in the longitudinal field at the plasma surface.

It turns out that by an analysis essentially similar to Tayler's we are

able to extend somewhat the conditions of stability found by Rosenbluth.

The plasma is at rest initially. Using normal modes the behavior of a

so-called "kink"-type perturbation is investigated. There is some reason

to believe that perhaps this type of perturbation is most capricious from

the standpoint of stability. It turns out that for a pressure distribution

that is nearly constant and for a not too severe pinch all wave lengths are

1. Marshall Rosenbluth, Stability of the Pinch, LA-2030 (June 19, 1956).
2. R. J. Tayler, Hydromagnetic Instabilities of a Cylindrical Gas Discharge,

AERE-1859 (Jan. 1956)7
3. Since the work described in this paper was completed, a paper by R. J. Tayler

in the Proc. of the Physical Society, Section B, Vol. 70, Part II,
Nov. 1, 1957, "The Influence of an Axial Magnetic Field on the Stability
of a Constricted Gas Discharge," has appeared. The specific case con
sidered below is apparently not treated by Tayler.



stable. In the limit of constant pressure our dispersion relation passes

over into that given by Rosenbluth for the magnetohydrodynamic picture.

In the last section an estimate is made of the ratio of volume current

density to surface current density parallel to the axis at which value in

stability sets in. The limitation on volume current density may alternatively

be regarded as a limitation on the pinch radius.

The author is happy to acknowledge the helpful suggestions of Dr. Albert

Simon who pointed out the existence and desirability of studying the problem

treated below.

2. Geometry and Basic Physical Hypotheses

In addition to the assumption of a plasma describable by means of the

magnetohydrodynamic equations, we explicitly assume:

1. Collisions are sufficiently frequent to justify the use

of a scalar pressure.

2. The plasma is incompressible.

3. The plasma has infinite conductivity.

h. Displacement currents may be neglected.

5. The speed of light is infinite.

The geometry is that of the infinite cylinder. The plasma fills the

region 0 ± r ^ r initially. There is a vacuum region r <: r <c r bounded

by a conducting wall at r = r .

3. Plasma Equations and Boundary Conditions

Denote by v the velocity of the fluid, by p the scalar pressure and p

the fluid density. Let £ denote the charge density, E, B electromagnetic

field quantities and £_ the current density. The magnetohydrodynamic equsctions

in Gaussian units under the above limitations will take the form:

, x dv j x B

(2) V ' v = 0

/ \ (v x B)
(3) E + -^- «-^ = 0



(10 V xB=^
— c

(5) V • B= 0

(6) 7x,.(.i)»

(7) V - E = hn€ .

At an interface between plasma and vacuum Eqs. (8) and (ll) below must

be fulfilled. The values of a quantity in plasma and vacuum will be denoted

by X , X , etc. Let n denote the inward surface normal and let u be the

component of plasma velocity along the inward normal. The boundary conditions

have been derived by Kruskal and Schwarzschild and others.

(8) nx(BP -B°) =!&£- - (f -E°) (H

(9) n • (f - B°) =0

(10) nx(f - E°) =(f -B°) f±

(11) j* x (BP + B°) = 2cn(pP -p°)

At the wall, r = r , it is required that

(12) n . B = 0, nxE=0

where, again, n is a unit normal, this time at the wall.

k. The Steady State

In the plasma we assume j_ = (0, 0, j ) and B =

j , B , and B- are constants. From Eq, (l)
z z 9

(13) p=P/l-^j+Pl
V o

0, BJr/r ), B„

. *
4. A surface quantity is denoted by an asterisk, X .

where



where

2
K cBQ

In the vacuum

(15) E.[o, He (i),0
and

2 2 2 2 2 2HT - B* - B* H* + B^ - B*
(16) p. --i 2 £,p -J. § £

1 8* "^ 8x

The surface current is determined from Eq. (8),

A check shows that these quantities satisfy the steady state equations.

5- The Perturbed State

Using a linear analysis, each perturbed variable is written

A ot

q qequilibruim + q e

where q depends only on space co-ordinates. The problem is to study the

nature of 4). Limiting ourselves to a consideration of "kink"-type perturba

tions, we take

„ . ~7 \ i(9+kz)+tot
*=Equilibrium +*(r)e

with similar equations for vector quantities.



6. Perturbed Plasma Quantities

From 7* v = 0, v = v + v, 7» v = 0. From VxE = (-1/c) QB/dt

and E +1(v x B)/cJ= 0.

(18) V x (v x B) = OB.

From the equation of motion and Vx B = rrtj/c

(19) p& =J- |(^x B) xBj - (Vp)1

where the subscript 1 means to pick out the first order terms. Rewriting the
A

equation forQB,

£>B = vx (v x 1)

= (B • V)v - (v . 7)B

Discarding exponential factors, we find

B

or

(20)

where a

to find

(21)

r^/ /^/

G)B = iv — + kB )
v r z

- i«r B = B„(l + Ok)v
o 0V '

r B /B . In order to eliminate v from Eq. (20), we curl Eq. (19)

ip r o
"o o

B,
^VxB^yx (VxB)xB



The expression t— (V x B) x. Br will give, after discarding exponential
11

factors, the following components

B,

r: — [-2B1 + ikQB - D(cffl ) - D(rBn)
r \ 9 r v z' x 9

+ iB 1

9: -S.
r

o

* B0k: -2
r

o

2B - — B + i0£kBo
r r z 9

iB - ikrB„
z 0

where D = d/dr. The components of Vx B in Eq. (21) give

iB ~

If, following Tayler, we set

(22) 0 =

r 0

ikB - DB
r z

- D(rBj - i B .
r v 9 r r

1 + Qfc +

knp r o
To o

B^(l + Ok)

the components of Eq. (21) above give

(23)

(2k)

(25)
B.

ID \ -f-l + D

kB„ - = B
0 r z

ikpB = 0

ikpB. + iDB + kB =0
9 z r

D(rB )
2^ 2

k B - ik p = 0
r ^



The divergence equation gives

(26) D(rB ) + iB. + ikrB = 0.
v r' 0 z

The equations are not independent, of course, but we choose to use the most

convenient three for solution.

Solving Eqs. (23) and (2k) for B. and B in terms of B and substituting

into Eq. (26),

0 p*-* ^
r D B + rDB

z z
1 + (1 - f32)k2r2 B = 0

z

Since B is bounded near r = 0 we. take
z

Bz =BzoiIl (kr A"p2 )

or, using a superscript to distinguish from vacuum quantities

IJ( /l -p2 kr) pi1( /l -p2 kr) f

(27)

/N> S~>

B9 = B 0 = B
r zor zo

/ 1 - p

I±( )

kr(l - p^)

p^ = B V1 = iB
0 zo zo

kr(l -p2) /l -p2
I{()

BP = iB I.( ).
z zo r '

Use E = - (v x B)/c, to find

(28)

r

iOr
0

r B0c(l + ok)

3-
-tor

0

c(l + oik)
(2bp~

r r

~3>-
z

iOr
0 "iiip

r r
0

c(l + ak)

r z
o
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If Eq. (19) is used (before curling) together with

(29)

we get

(30)

-tor
~ o
v = BQ(1 + Qk) B

B

P=S
0

•itr pk -«)%-&

This completes the set of perturbed plasma quantities that we need.

7. Perturbed Field Quantities

Solving Maxwell's equations for the vacuum region, we find, setting

cT= 0 and t?2 =k2 +c3/c2 Xk2

(3D

E = Ea K_(kr) + E In(kr)
z zo 1 zo 1

B = Ba K_(kr) + Bb I.(kr)
z zolv ' zo lv '

The other components are

B = —~ E - iB
r . 2 z z

rck

~ 1 ^ ,\ ~*B = i- B + -«f E
0 rk z ck z

E =
io0>

B
2 z z

E„ =

rck

tE - ~ b
rk z ck z

To simplify notations we impose first the boundary conditions

B = E. = E =0
r 0 z



at r = r.., hence Eq. (31) becomes

(31')

Setting

E

E° = zo
z K^kr^ I.(kr)K.(kr,) K.(kr)l (kr )

Bz =Kjl%> [l1(^r)K];(kr1) -̂ (kr)!^)

Y(kr) =I(kr)KL(kr.) -K,(kr)l'(kr.)

Z(kr) = I1(kr)KL(kr1) -K^krU^kr^

we list the vacuum quantities as follows

(32)

B^^F-iB0*
r . 2 z z

rck

B" = 1 B°+^E°'
rk z ck z

B°-
B Y(kr)
zo v '

z K-^kr^

E° =
r

±(J <^a ~o'
= -=-s B - iE

, 2 z z
rck

E0 •
si-l:0 _ J± b0'
rk z ck z

E° =
Eb Z(kr)
zo % '

z Kjfti^)

It remains to impose the boundary conditions at r

plasma and vacuum quantities.

r on the perturbed
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The surface of the plasma, in the perturbed state, is given by

i(0+kz)+<3t
r = r + r e

o

The components of the surface normal are given initially by (-1, 0, 0) and

the perturbations of the components are

o

8. Application of Boundary Conditions to Interface
Between Plasma and Vacuum

Perturbation of n •(BP - B°) and nx (jf - E°) =- (BP - B°) gives

n • (B* - B°) + n • (T? - B°) = 0

and

1? - E° =U (Bfl -HJ - (E* - E°) =H B .
z z c x 0 9 v 0 0 cz

Noting that u = - v and substituting the appropriate quantities for W - "b ,
E5 - E° we obtain 3 linear equations

o r +b°' .ifV^ +kBlj; m±?
V r r,2 z z co V r

rck o

pi - 1(*- ~-
<»» - K +-c <Be • %*r' Ttrrm«E

^ . B -laa

l^.^B0,+-^v =-n -B*
r k z ck z c r c(l + ok) r

o

whose solutions are given by
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V 0 o z/

/^
,- iB*

Vr = Bfl +rkB ){~^o)
\ 9 o z

2

where we have used our hypotheses that *~ <<1.
c k

Before using the last boundary condition, namely the one which arises
* o

by elimination of j , we rewrite B in a more convenient form. By dif-

ferentiation of B = B Y(kr)/K (kr ) and substituting kr = kr and comparing
Z ZO JL X O

with the result of solving the 3 linear equations we find

i£>
(35) B° =

z
H

9 Bn + r kB
0 o z t

Y(kr)

I (k^)

where all quantities within the bracket have been evaluated at r = r .
* o

Elimination of j between the first and fourth boundary condition gives

(36) [b] .<B>+ [b] .<B^= -8«[p]

where [] means the jump in the quantity in question in passing from vacuum
into plasma, ando means the arithmetic mean on the two sides of the surface.

We list the explicit quantities needed and note that since the plasma surface

has moved there is a first order contribution to [b] and <^B > above that
due to local change of these quantities.
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[Bl - [£ - B°, BP B° - -i- (Bfl +H- ), BP -I0!
L-J [ r r' 0 0 r cj 0 0" z zj

/ Bn + H B

[Bj = (0, B9 - B9, Bz)

„ \9-~B° b* + b° bP+5°]
L O J

A*

Substituting these expressions into Eq. (36) and using the value of [pi from
Eq. (30) we find

(37) (%)^ -B# +,# +H9B° ♦ ^ lSBfy)

hence

P/

From Eq. (22)

^0 ^pffi p
"F =Bfl,rkB + B0 + rokBz

0 o z

• Into r2W2 \ / 2BP \ ^ /-_, 2BP \ 2uBrtH„ j

or

2 2 /"/d , ^oImp r 0 / o \ B. / B*/ _ \ BnToo ( 2 \ - 00 2) 0B„ /2uH„ \ H„ B:

\ z V o z' z

From the formulas for Ir, B° IEqs. (27-32) this equation may be written



(39)

lut,
2 2

pry
Co o

r k + ~
o B

r kH2
- o 0-

a

13

I^l-p^)

ix( )

+ a
2B0
P B„

2P2 -1 + P_
kro(l "P> /l -P2

P

kr (1 - p )

! Y(krQ),(kr1)

kro(l"P^J rk(rki) M^K^)
"o v o B

v/--^2^
IX()

2H,

B„ + r kB
0 o z

where a = B /H . This is the general dispersion relation with a plasma

current density 5

cB,

j„ =
z 2itr

To treat the constant pressure case one lets B—>0 (p = B /kit) to obtain

the following simplified dispersion relation:

2 2 r <
ojtp r

(hO)
8rtPoro^ 2
(rk)2!!2 p

0

Y(kr )
o

r kY*(kr )
o v o

If one sets cj =0, the resulting limiting equation agrees with that of

5. In any finite machine |k| ^ S > 0. Hence for B. sufficiently small

fr k +-g—j (r k) is positive and it is unnecessary to analyze separately
B&

the case r k + =- = 0.
o d-
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Rosenbluth based on considerations of a virtual displacement of a

hydrodynamic plasma.

9. Onset of Instability

Suppose the volume current density is increased. We seek the critical

ratio of surface current density to volume current density for the kink-

type perturbation to become unstable.

From kiti /c = n x (B5 - B°) we get

cB ca H„

(hi)

From /JzdA = / H •ds,

'0 = Tjj" = ~XT! = _£ = ,P 9
On

Jz =k^E9- V

i = c r,
Jz 2itr 0

Hence, eliminating H and B in Eq. (kl)
*

* °9 *o"z

z a

J0 rJ-

P

An increase in j can evidently be brought about only if at least one of the
z

other quantities in Eq. (k2) is suitably altered. If we assume the surface

currents unaltered, j and j remain the same and a must decrease. Since
v z p

B is fixed, and a decreases, H must increase, as may also be seen from
z P "

. (kl).

From Eq. (*J-2)

*

~P * Vz
Jz 2
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1 2
Rosenbluth shows that if a is greater than some minimum critical value

between 1/2 and 1 (depending on the ratio of plasma radius to wall radius),
then the plasma is stable against perturbations for all k and m = 0, +1,

... where m = + 1 corresponds to the kink-type instabilities now being
i

considered. Further, a plasma with a > a as above is stable. If we
P P

denote the minimum value of a that corresponds to stability by a_ in the
P -Pc

no volume current case an estimate may be made of the maximum allowable

volume current density j before instabilities set in* That is, if
z

•*

J0
— >

Jz

a

pc
>

then the critical current is given by

(Itf)
Vz

*

j0 #

a

P,

It is not clear that the parameter a retains the same general significance

as in the constant pressure case. However, on account of the simple way in

which a enters in the dispersion relation Eq. (39) it seems likely that

for m = 1 (kink perturbation) this is the case. This is particularly true

when r j /2 is small compared to the surface currents. In that case

B0/Bz is small and the last term in Eq. (39) may be neglected.
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