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ABSTRACT

A simple model of DCX is used to calculate the steady-state deuteron

and electron temperatures when partially ionized impurities are present.

The impurity considered is triply ionized carbon, i.e., C , which has an

excited state of 8 ev (the only excited state considered) and an ionization

energy of 6U.5 ev. The calculations indicate that for an injection energy

of 300 kev an average deuteron energy of the order of 250 kev will be ob

tained if the impurity input current is not greater than the deuteron input

current.

An alternate calculation using the same excited state but assuming

ionization impossible gives an average deuteron energy of the order of

8 kev if the impurity current is not greater than the deuteron input

current.
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I. INTRODUCTION

The presence of partially ionized impurities in DCX constitutes a

mechanism for loss of energy from the system. Such impurities may be

excited by collision and will then radiate, the radiated energy being lost

from the system. On the other hand, impurities may also be ionized by

collision and in this way become completely stripped so the loss process

must cease.

In the calculation reported here the importance of this energy loss

mechanism is evaluated by calculating the steady-state temperatures and

unstripped impurity density in DCX when a particularly simple class of

impurities is considered.

II. TYPE OF IMPURITY CONSIDERED

In general, impurity atoms will enter the plasma region in a neutral

state and will then undergo excitations and ionizations. In steady state

impurities of all stages of ionization will be present and the population

of each stage should be taken into account. However, when a neutral

impurity enters the system it will lose the more loosely bound electrons

very rapidly, and thus, without appreciable error, the calculations may be

simplified by neglecting these initial ionizations and assuming that the

impurities enter the system in an already ionized state.

Even with this assumption it is still, in principle, necessary to

consider several stages of ionization. In the present calculation this

complication will be neglected and only one stage of ionization will be

considered. That is, it will be assumed that an impurity must undergo only

one ionization to become stripped.

Once an impurity is stripped it can no longer be excited and thus it

no longer constitutes a serious mechanism of energy loss unless a recombina

tion occurs. However, at the energies involved in the calculation

recombination is a very unlikely process even for impurities of rather high

charge, and thus may be neglected.

1. L. Spitzer, Jr., Physics of Fully Ionized Gases, Interscience Publishers,
Inc., New York, 1956, pp. 90-91=



The single class of impurities which is assumed can still undergo a
large variety of excitations. However, not all excitations are equally
likely and only a few would contribute to the calculation even if they
were all included. In the present calculations only one possible excita
tion is included, that is, the impurities are assumed to have only one
excited state other than the continuum.

The impurity used in the calculation is modeled after triply ionized
carbon, i.e., C . The excited state used is the lowest excited state of
C which has an excitation energy of 8 ev. The ionization energy used
is also that corresponding to C17, 64.5 ev. The oscillator strengths
needed in the calculation are not known for C17 so reasonable values are
assumed.

Calculations are also carried out using the same excited state as
above but assuming that ionization is impossible.

III. STEADY-STATS EQUATIONS

In writing the steady-state equations for DCX a model which has been
reported previously will be used.2 The model consists of aslowing-down
beam of deuterons which feeds a plasma. The essential feature of the model
is that an entering deuteron is considered to be part of the slowing-down
beam until it attains the average energy of the deuterons in the plasma
and thereafter it is considered to be part of the plasma.

The equation of the model may be written

(1)

where

dE

dt

N(E) dE

dt
E-*E

dE

dt
E-*E

dE

dt
= I

E->E_

N(E) =distribution of energies in slowing-down beam,

rate of loss of energy of a deuteron with energy E to a
E-*E

+ Maxwellian distribution of deuterons with average energy E ,

2. A. Simon and M. Rankin, Some Properties of a Steady State High-Energy
Injection Device, ORNL-235TT(August 195777
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dt

dE

dt

= rate of loss of energy of a deuteron with energy E to a

Maxwellian distribution of electrons with average energy E ,

= rate of loss of energy of a deuteron with energy E to the

x excitation of impurities,

I = input current of deuterons.

In writing Eq. 1 several approximations in addition to those of the model

have been introduced and will be used throughout the calculations.

First, the distribution functions are assumed to be Maxwellian.

Second, elastic collisions between deuterons and impurities, both

stripped and unstripped, are neglected compared to elastic deuteron-deuteron

collisions. This approximation will be valid when the impurity densities

times the square of their charge factors are small compared to the deuteron

density in the plasma.

Third, ionization of impurities by deuterons is neglected. Because

of the uncertainty in the cross section for the ionization of atoms by

massive particles it ie difficult to access the validity of this approximation.

However, the omission of an ionization mechanism should lead to lower steady-

state temperatures, and thus this approximation is justified in the sense

that it makes the calculation more pessimistic rather than less so.

A. Energy Balance in Plasma Deuterons

The deuterons in the plasma gain energy from the slowing-down deuteron

beam and they lose energy to the plasma electrons and to the excitation of

impurities. In steady state the rate of gain of energy must be equal to the

rate of loss of energy and thus we have

(2) £ / N(E)f dE =n f
E-*+ +dt

dE
+ n -rr

V*E- + E-*E
+ X

*This statement is physically reasonable, but a direct proof from the
equations is not known.



where

(3)

dE

dt

dE

dt

where

V =

E =
o

E+ =

n =

volume of the plasma,

deuteron injection energy,

average energy of plasma deuterons,

density of deuterons in plasma,

E-^E
+ -

E^»E
+ x

= rate of loss of energy of a deuteron with energy E to a

Maxwellian distribution of electrons with average energy E ,

= rate of loss of energy of a deuteron with energy E to

excitation of impurities.

On the right-hand side of Eq. 2 the approximation of evaluating the loss

rates at the average energy E rather than integrating over a Maxwellian

distribution has been introduced.

B. Energy Balance in the Plasma Electrons

We shall neglect elastic collisions between electrons and impurities

compared to elastic collisions between electrons and deuterons so the

electrons of the plasma gain energy from the slowing-down beam and from the

plasma deuterons. They lose energy to the excitation of impurities, to

the ionization of impurities, and to bremsstrahlung. Thus we have

"<E>f

= n
dE

dt

E-»E

dE
dE + n ir

+ dt

+ n
dE

- dt

E-

E -^E E -*E_,

+ n

n = electron density in plasma,

dE

- dt
E —»BREM.

dE

dt
E—-*E

= rate of loss of energy of an electron with energy E

x to the excitation of impurities,



dE

dt

dE

dt
= rate of loss of energy of an electron with energy E_

- i to the ionization of impurities,

= rate of loss of energy of an electron with energy E_
E —?BREM.

to bremsstrahlung.

In writing the right-hand side of Eq. 3 the approximation of evaluating the

loss rates at the average electron energy has been made.

C. Charge Neutrality

In order to have charge neutrality, again neglecting the impurity

densities with respect to the deuteron density, the number of electrons

present must neutralize the deuterons in the plasma and the deuterons in the

slowing-down beam. Thus we have

E

(k) n_ =n+ +| / N(E)dE
E
+

D. Conservations of Deuterons

Deuterons are constantly fed into the system and are lost through the

mirror field so we have

(5) I = loss rate of deuterons through mirror field

where

I = input current of deuterons.

E. Conservation of Impurities

Impurities are constantly entering the plasma region and are being

lost through the mirror field and by ionization. Thus we have at steady

S"C£t"C6

(6) I. = loss rate of impurities through mirror

+ loss rate of impurities by ionization

where

I. = input current of impurities.



IV. ENERGY LOSS RATES

To proceed further in the calculation expressions must be given for

the various energy loss rates which occur in the steady-state equations.

These loss rates must, of course, be obtained frbm the usual collision

theories.

A general expression for the energy loss rate of a particle of mass M

and energy E to a Maxwell-Boltzmann distribution of target particles is^*

(7) £5
v" dt

8o*e*
= n M

E->E " M

where

Let

x2 = 1 2 5-
2 M E '

x

0(x) --|r f e"y dy,
o

G(x) -K*> -x^'(x) ,
2x2

n_ = density of target particles,

m = mass of target particles,

E_ = average energy of target particles,

M = mass of deuteron,

m = mass of electron

rLr [a*2 \ +jj) G(x) -0(x)
'2E L

M

then -rr
dt

given by Eq. 7 is the same as defined previously, i.e., the
E^>E

rate of loss of energy of a deuteron with energy E to a Maxwellian distribu

tion of electrons with average energy E . The other Coulomb loss rates

3. Chandrasekhar, Astrophys.J, 97, 255 (19^3).

*The energy-dependent logrithmic term is^approximated by a,constant (*)20).
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which occur in the steady-state equations can be obtained from Eq. 7 with

the appropriate changes of masses and energies.

The rate of loss of energy to excitation of impurities by both electrons
k

and deuterons is given by the Born approximation as

(8)

(9)

dE

dt
= n

E—*E
+ x

dE

dt
E -^E

= n

face

1 mE
M +

fite

1 E

'2E

M
log

log

E
k 2 _±

M E
x

E

X

where

n = density of impurities,

E = excitation energy (= 8 ev),

f = oscillator strength (= .75)*

The rate of loss of energy by an electron with energy E_ to ionization of

impurities is given bjr

(10)
dE

dt
= n

E —»E_,

bite

i E

1_
E,

1_
E

E.

where

b = a constant depending on the atom being ionized (= .5),

E. = ionization energy (= 6k.5 ev).

This expression is not the usual Born approximation expression. In the

region where the Born approximation is valid Eq. 10 is the same as the Born

expression except that the logarithmic term is neglected, and in the region

where the Born approximation is not valid Eq. 10 presumably gives a better
5

representation of the loss rate.

k. N. F. Mott, and H. S. W. Massey, The Theory of Atomic Collisions, 2nd ed.,
The Clarendon Press, Oxford, 19k9> Ch. XI and XII.

5. R. v. d. R. Nooley and D. W. N. Stibbs, The Outer Layers of a Star,
Clarendon Press, Oxford, 1953, P« 119•



The rate of loss of energy of an electron with energy E to brems-

strahlung is given by

M I E_-^BREM. +3/jit mc% /m

The rate of loss of deuterons through a mirror field is given approximately

by7

p j^ k /2E
(12) Loss rate of deuterons through mirror = V n \i P /—-+ E+ J M

where

P = 1 - /l - —

R = mirror ratio (= 2).

The rate of loss of impurities through a mirror field is given by an

expression similar to Eq. 12.

o k0 k /2E
(13) Loss rate of impurities through mirror =Vn n.z^ "e p /—-

K
where

n = density of impurities,

z = charge of an impurity (= 3).

In writing Eq. 13 it has been assumed that the impurities have the same

temperature as the plasma deuterons and the mass has not been changed to

take into account the impurity mass. The loss rate formula is so approximate

that it is not clear what mass should be used.

Finally, the loss rate of impurities due to ionization is obtained in

the same manner as Eq. 10 to be

6. A. Simon, Nine Lectures on Project Sherwood, 0RNL-2285 (March 1957),
p. 13-

7. Ibid., pp. 19 and 10U.



(lU) Loss rate of impurities due to ionization

= Vn n
bice

IE 7 m

1_ 1_
E. ' E

1

V. SIMPLIFICATION AND NUMERICAL SOLUTION OF THE EQUATIONS

When the loss rates of Section IV are introduced into the equations of

Section III we obtain the equations

(15) |

(16) |

(17)

E \
o

8Qjte 1 4x2G(x+) - 0(x+) dE

E

E

E.

= n n

T

80jte 1

«/i ^
2x2 (l +$) G(x ) - 0(x )

o v m/ v o' rx o .
fne 12 ,

+ n n. —= / rr log
+ i m rr- J M

M/E+

E
k 2 _±

ME
x

n
80ite 1

M fl J*
VM

2x2(jL +|)o(xJ - 0(xj
+ n n

8 One 1

T +-«/r^

*o (i +1) ^ - *l*o\ f«e / 2 , „
= n n. , /— log

- i /^ v m
/E

UE

E J
x J

+ n n.
bjte /2

n »♦♦!

E.
i

E

E

E

dE

T

64 ec
, v.— n n

3 y 3n mc "fi /m"



T = n

(18)

80«e

M
M

~ kx2G(x )
F L + +

1Q

0(x+) + n
80ne

"f ^

jacf (l +;)oOO - ?(x_) + n.
frte

MvE

2 i
fM l0g

I

v

2 3 E

+ 2 E

2 _ 3 m E_
X- 2 M E

2 3 m f+
Xo 2 M E

2 l)-
n Jj-Oite

+

E2

2E_(
~M~

(19) ^ =

2 4
n n.z.40«e

+ i l

E2

2E . 1|.
+ , bite

IT +n-ni K

4mE
ME

xJ

1_
E
-J

Thus there is a system of five algebraic equations from which to obtain

the unknowns E , E , n , n , and n,.
+ - + - i

To simplify the equations we define X by

(20) I. = \I
l

and use Eq. 18 to eliminate I from the other equations. When this is done

the resultant equations have the desireable property that they depend on

the ratios n_/n+ and n./n and not on the individual densities.
Carrying out this procedure and at the same time introducing the new

variables



n

n

N =
n

E
_j

E

+
e =

E

F
e =

and the constants

E

ex E

E.

W
o

a = P

. _ f M
p - Ho 5

_ f_ [m"
kO J m

_ 6k £/° " 3y^ 8o*

b

^ = io

v =

m

M

x

TJ - —

tx

M

m
T" E3~ o

mc -H



9 =
lb /M

P £o J m

-*(i-2)
2 3

X =2
E

/ =| m

M

E

e

•a-i
m

M

6
e

12

we have, after a little algebra,

ctE,
(21)

(22) a

(23)

(2*0

(25)

(26)

N cz G(z) - 0(z) n31og(v6)

i-1--2-
6 €

= ni31og(v£) + Nn7

,1/2Np J€ el X/2 +Nnu |"|]

cm.

n = i +
"572"

1/2

i-li
e

X = nz. + nN
i

V2 re €'
Lei e

log QjeJ

h'
[l»x2G(x) - 0(x)] dE

J2 =

D

lnpiog(vE)j dE
D



(27)

D=lUx2G(x) -0(x)j +N[cy2G(y) -0(y)] +nplog [i/Ej

The Eqs. 21 to 27 must now be solved to determine the unknowns 6, e, N, and

n for any given value of X. Numerical solutions to the equations are most

easily obtained by noting that X occurs only in Eq. 2k. Then if n is chosen

Eqs. 21 to 23 can be solved to determine £r, e, and N and once these are

known X may be obtained directly from Eq. 2k.

In obtaining numerical solutions to the equations the possibility of

multiple roots must be considered. In determining 6, e, and N for a given

n the possibility of roots other than those obtained was effectively

eliminated by a trial and error procedure. The equations were solved by an

iteration scheme and various initial values were used. For all initial

values the iteration either did not converge or it converged to a single

set of roots. Once the unique £, e, and N are determined X may be obtained

from Eq. 2k.

However, there is still the somewhat troublesome possibility that a com

pletely different choice of n could yield a different set 6, e, N and still

lead to the same X. If this should happen the particular solution which the

system would move to in steady state would then depend on the initial conditions.

This possibility can not be eliminated completely but can be made implausible

by the following argument. It is to be expected that the impurity current

will be an increasing function of the impurity density until the peak in the

ionization rate is reached (E = 3E. = 193-5 ev, see Eq. Ik). That is, an

increase in impurity density will cause a decrease in average electron

energy. This increases the ionization rate and increases the impurity

current required to sustain the increased impurity density. After the

peak in the ionization rate is reached the impurity current may either

increase or decrease with increasing impurity density. However, when

ionization becomes energetically impossible (E = 64.5) the impurity

current must again increase with increasing impurity density. Thus even



Ik

if the impurity current should decrease for increasing impurity density

after the ionization peak is reached — in which case there would be two

values of n for a given X — this cannot continue. It follows from the

calculations (see Fig. 1) that the value of X at which the ionization

peak will occur is quite large and thus it may be presumed that even if

X should decrease it will not decrease sufficiently far to cause a

second root to exist in the region of X (i.e., X <• l)'v values that are

of interest.

The results of solving Eqs. 21 to 27 may be viewed in a somewhat

different light if we first modify the equations slightly. The modification

consists in omitting the ionization terms in Eqs. 22 and 2k. Then the

equations correspond to considering a class of impurities which can be

excited but which cannot be ionized. This way of viewing the equations

has two obvious advantages. First, the approximation of neglecting recombina

tion is no longer involved. Since the impurities cannot be ionized there is

obviously no recombination to consider. Second, the possibility of a

multiple root discussed above no longer exists since in the absence of

ionization X is a monotonic function of n. To show this we must rewrite

Eqs. 18 and 19 in the form which is valid when n. is not small compared
to n. We have

(28)

(29)

so

I

V

I.
1

2 2
n + n n. z.
+ + i i

20^ p K.
E2 J M
+

2 2 k
nn. z, + n. z.
+ i i i l

2
X = nz.

*For X values greater than one the density of stripped impurities can no
longer be neglected.
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and thus X is a monotonic function of n.

VI. DISCUSSION OF THE RESULTS

The numerical results are given in Tables 1 and 2 and shown in

Figs. 1 and 2.

In Fig. 1 the values of E , E are plotted as functions of X for

X values between 0 and 1.

For very small impurity currents, i.e., for small X the results ob

tained are essentially the same as those obtained in Ref. 2. As X increases

the excitation of impurities by deuterons begins to become important and the

temperatures decrease. Over the range of X considered the electron energy

loss to bremsstrahlung is larger than the electron energy loss to excitation.

In Fig. 2 the values of E and E from Table 2, i.e., the values when
+ 2ionization is neglected, are plotted against X (= nz^. For very small values

of X we obtain the same results as in Fig. 1. As X increases the energies

fall much more rapidly than in Fig. 1.because without ionization the

impurity density builds up more rapidly. During the initial steep descent

the primary mechanism of energy loss is the excitation of impurities by

deuterons. The excitation of impurities by plasma deuterons goes through a

maximum in the vicinity of X = .05 and begins to decrease. As this

decrease continues we obtain the flat region in which the energies do not

change rapidly with X. The primary mechanism of energy loss in this flat

region is the excitation of impurities by the slowing-down deuterons.

The conclusions which are to be drawn from the calculations are

rather apparent. Since rather high deuteron energies were obtained in

all cases, it seems reasonable to conclude, in spite of the approximate

nature of the calculation, that partially ionized impurities will not be

a serious deterent to the successful operation of DCX.

dE
*This behavior is, of course, due to the expression used for —
which may not be accurate at such low energies. E ->E

+ x
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Table 1

X n E in Kev
+

E in Kev

.137 .00001 289 219

.411 .00003 283 215

•951 .00007 273 207

Table 2

X E in Kev E_ in Kev

.00009 289 219

.0009 266 202

.009 144 112

.045 48 56

.090 27 46

.225 13 30

.450 9-3 16

•900 7.8 5.5
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